12
ARTICLE Serotype distribution of invasive Streptococcus pneumoniae in Canada after the introduction of the 13-valent pneumococcal conjugate vaccine, 2010–2012 Walter H.B. Demczuk, Irene Martin, Averil Griffith, Brigitte Lefebvre, Allison McGeer, Marguerite Lovgren, Gregory J. Tyrrell, Shalini Desai, Lindsey Sherrard, Heather Adam, Matthew Gilmour, George G. Zhanel, the Toronto Bacterial Diseases Network, and the Canadian Public Health Laboratory Network Abstract: The introduction of the 7-valent pneumococcal vaccine (PCV7) in Canada was very effective in reducing invasive pneumo- coccal disease (IPD) in children; however, increases of non-PCV7 serotypes have subsequently offset some of these reductions. A 13-valent pneumococcal vaccine (PCV13) targeting additional serotypes was implemented between 2010 and 2011, and in 2012 changes in the incidence of disease and the distribution of IPD serotypes began to emerge. The incidence of IPD in children <5 years of age declined from 18.0 to 14.2 cases per 100 000 population between 2010 and 2012; however, the incidence in ages ≥5 years remained relatively unchanged over the 3-year period, at about 9.7 cases per 100 000 population. From 2010 to 2012, PCV13 serotypes declined significantly from 66% (224/339) to 41% (101/244, p < 0.001) in children <5 years of age, and from 54% (1262/2360) to 43% (1006/2353, p < 0.001) in children ≥5 years of age. Serotypes 19A, 7F, 3, and 22F were the most common serotypes in 2012, with 19A decreasing from 19% (521/2727) to 14% (364/2620, p < 0.001), 7F decreasing from 14% (389/2727) to 12% (323/2620, p = 0.04), and 22F increasing from 7% (185/2727) to 11% (279/2620, p < 0.001) since 2010. Serotype 3 increased from 7% (23/339) to 10% (24/244) in <5-year-olds (p = 0.22) over the 3-year period. The highest rates of antimicrobial resistance were observed with clarithromycin (23%), penicillin using meningitis breakpoints (12%), clindamycin (8%), and trimethoprim–sulfamethoxazole (6%). Shifts in the distribution of IPD serotypes and reduc- tions in the incidence of disease suggest that current immunization programs in Canada are effective in reducing the burden of IPD in children. While we acknowledge the limited data on the effectiveness of the PCV13 vaccine, to our knowledge, this study represents one of the first descriptions of the potential impact of the PCV13 vaccine in the Canadian population. Continued surveillance will be important to recognize replacement serotypes, to determine the extent of herd immunity effects in nonpaediatric populations, and to assess the overall effectiveness of PCV13 in reducing IPD in Canada. Key words: Streptococcus pneumoniae, invasive pneumococcal disease, serotype, surveillance, PCV13. Résumé : L’introduction du vaccin antipneumococcique 7-valent (PCV7) au Canada s’est montrée fort efficace pour faire baisser l’incidence des infections pneumococciques invasives (IPI) chez les enfants; or, une montée subséquente des sérotypes non inclus dans le PCV7 a contrebalancé ces baisses. Un vaccin antipneumococcique 13-valent (PCV13) ciblant davantage de sérotypes a été employé entre 2010 et 2011; en 2012, l’incidence des infections et la distribution des sérotypes d’IPI a commencé a ` basculer. Le taux d’incidence de l’IPI chez les enfants de < 5 ans a chuté de 18,0 a ` 14,2 cas par tranche de 100 000 habitants entre 2010 et 2012; cependant, l’incidence dans la population âgée de ≥ 5 ans n’a pas sensiblement varié au cours des 3 années, avoisinant 9,7 cas par 100 000 habitants. Chez les enfants de < 5 ans, les sérotypes PCV13 ont baissé significativement passant de 66 % (224/339) a ` 41 % (101/244, p < 0,001); dans les cas âgés de ≥ 5 ans, l’incidence a diminué passant de 54 % (1262/2360) a ` 43 % (1006/2353, p < 0,001) de 2010 a ` 2012. Les sérotypes les plus fréquents en 2012 étaient 19A, 7F, 22F et 3. Les trois premiers sont passés respectivement de 19 % (521/2727) a ` 14 % (364/2620, p < 0,001), de 14 % (389/2727) a ` 12 % (323/2620, p = 0,04), et de 7 % (185/2727) a ` 11 % (279/2620, p < 0,001). Le sérotypes 3 a augmenté passant de 7 % (23/339) a ` 10 % (24/244) chez les moins de 5 ans (p = 0,22) pendant la période de 3 ans. Les plus hauts taux d’antibiorésistance ont été observés en lien avec la clarithromycine (23 %), la pénicilline selon les seuils de méningite (12 %), la clindamycine (8 %) et le triméthoprime–sulfaméthoxazole (6 %). Les déplacements de la distribution des Received 3 September 2013. Revision received 18 October 2013. Accepted 18 October 2013. W.H.B. Demczuk, I. Martin, and A. Griffith. National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada. B. Lefebvre. Laboratoire de santé publique du Québec, 20045 chemin Sainte-Marie, Ste-Anne-de-Bellevue, QC H9X 3R5, Canada. A. McGeer and Toronto Bacterial Diseases Network.* Department of Microbiology, Mount Sinai Hospital, 600 University Avenue, Room 210, Toronto, ON M5G 1X5, Canada. M. Lovgren and G.J. Tyrrell. The Provincial Laboratory for Public Health (Microbiology), Walter Mackenzie Health Sciences Centre, 8440 – 112 Street, Edmonton, AB T6G 2J2, Canada. S. Desai and L. Sherrard. Vaccine Preventable Diseases Section, Surveillance and Outbreak Response Division, Centre for Immunization and Respiratory Infectious Diseases, Public Health Agency of Canada, Room 273A, 2nd Floor, 130 Colonnade Road, AL 6502A, Ottawa, ON K1A 0K9, Canada. H. Adam and M. Gilmour. Department of Medical Microbiology and Infectious Diseases, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Diagnostic Services Manitoba, Health Sciences Centre, 820 Sherbrook Street, Winnipeg, MB R3A 1R9, Canada. G.G. Zhanel. Department of Medical Microbiology and Infectious Diseases, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada. Canadian Public Health Laboratory Network.* Corresponding author: Walter H.B. Demczuk (e-mail: [email protected]). *Participants are listed in the Acknowledgements section. 778 Can. J. Microbiol. 59: 778–788 (2013) dx.doi.org/10.1139/cjm-2013-0614 Published at www.nrcresearchpress.com/cjm on 21 October 2013. PTAB PAGE 1/12 MERCK EXHIBIT 1078

778 ARTICLE · 2017. 3. 27. · test using EpiCalc 2000 software version 1.02 (Joe Gilman and MarkMyatt1998,BrixtonBooks)andOpenEpiversion2.3.1(Dean et al. 2011). Differences of p

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • ARTICLE

    Serotype distribution of invasive Streptococcus pneumoniae inCanada after the introduction of the 13-valent pneumococcalconjugate vaccine, 2010–2012Walter H.B. Demczuk, Irene Martin, Averil Griffith, Brigitte Lefebvre, Allison McGeer,Marguerite Lovgren, Gregory J. Tyrrell, Shalini Desai, Lindsey Sherrard, Heather Adam,Matthew Gilmour, George G. Zhanel, the Toronto Bacterial Diseases Network, and the Canadian PublicHealth Laboratory Network

    Abstract: The introduction of the 7-valent pneumococcal vaccine (PCV7) in Canada was very effective in reducing invasive pneumo-coccal disease (IPD) in children; however, increases of non-PCV7 serotypes have subsequently offset some of these reductions. A13-valent pneumococcal vaccine (PCV13) targeting additional serotypes was implemented between 2010 and 2011, and in 2012 changesin the incidence of disease and the distribution of IPD serotypes began to emerge. The incidence of IPD in children

  • sérotypes d’IPI et la diminution de l’incidence de la maladie tendent à démontrer que les programmes de vaccination en vigueurau Canada réduisent efficacement le fardeau d’IPI chez les enfants. Tout en admettant le caractère limité des données sur l’efficacitéréelle du vaccin PCV13, la présente étude représente à nos yeux l’une des premières descriptions de l’impact potentiel du vaccin PCV13sur la population canadienne. Il sera important d’exercer une surveillance continue afin de repérer les sérotypes de remplacement, dedéterminer l’ampleur du phénomène d’immunité collective dans les populations non pédiatriques, et d’évaluer l’efficacité généraledu PCV13 dans la lutte contre l’IPI au Canada. [Traduit par la Rédaction]

    Mots-clés : Streptococcus pneumoniae, infection pneumococcique invasive, sérotype, surveillance, PCV13.

    IntroductionStreptococcus pneumoniae is a common microorganism that causes

    severe invasive pneumococcal diseases (IPDs), such as bacteraemiaand meningitis. Individuals at highest risk of IPD are young childrenand seniors (Scott et al. 1996; Robinson et al. 2001). A 7-valent pneu-mococcal conjugate vaccine (PCV7) targeting 7 serotypes (4, 6B, 9V,14, 18C, 19F, and 23F) of the 93 serotypes was introduced in allCanadian provinces and territories between 2002 and 2006(National Advisory Committee on Immunization 2002; Bettingeret al. 2010) and was very effective in reducing the incidence ofpediatric IPD caused by PCV7 serotypes. During the implementa-tion period, the incidence of IPD among children

  • cial pool, group, type, and factor antisera (SSI Diagnostica; StatensSerum Institute, Copenhagen, Denmark) (Austrian 1976; Lovgrenet al. 1998). Isolates for which a quellung reaction was not observedwere tested for the presence of the cpsA gene using polymerasechain reaction (Centers for Disease Control and Prevention 2011),and the species was verified by rpoB (beta subunit of RNA polymer-ase gene) sequence typing (Drancourt et al. 2004; Clinical LaboratoryStandards Institute 2008).

    In 2011, the NML began a collaborative project with the Univer-sity of Manitoba – Health Sciences Centre – Canadian Antimicro-bial Resistance Alliance to provide antimicrobial susceptibilitytesting for S. pneumoniae isolates submitted to the NML by 8participating jurisdictions. Antimicrobial susceptibilities were de-termined on 2520 isolates submitted in 2011 and 2012 by brothmicrodilution according to Clinical Laboratory Standards Insti-tute guidelines (Clinical Laboratory Standards Institute 2009,2012) for ceftriaxone, chloramphenicol, clarithromycin, clinda-mycin, levofloxacin, penicillin, trimethoprim–sulfamethoxazole,and vancomycin.

    Statistical analyses were performed using �2 or Fisher’s exacttest using EpiCalc 2000 software version 1.02 (Joe Gilman andMark Myatt 1998, Brixton Books) and OpenEpi version 2.3.1 (Deanet al. 2011). Differences of p < 0.05 were considered statisticallysignificant.

    Results

    Isolate informationOf the 8047 isolates analyzed, 2727 were isolated in 2010, 2700 in

    2011, and 2620 in 2012. Serotyped isolates represent 97% (889/920) ofthe number of cases reported between 2010 and 2012 in chil-dren

  • from 7% (185/2727) to 11% (279/2620, p < 0.001), and overall levels ofserotype 3 have remained relatively unchanged (Table 1).

    Serotype 19A was common in all clinical isolation sites, represent-ing 17% (1236/7422) of blood, 12% (34/277) of CSF, and 16% (24/147) ofpleural fluid isolates. Serotype 3 represented only 8% (594/7422) ofthe isolates from blood sources but was the most predominant sero-type isolated from CSF and pleural fluid, accounting for 16% (43/277,p < 0.001) and 18% (27/147, p < 0.001) of isolates from those sources,respectively. Serotype 7F represented a higher proportion ofblood isolates (15%, 1082/7422) than CSF (7%, 18/277, p < 0.001) orpleural fluid (7%, 11/147, p = 0.03) isolates. Levels of serotype 22Fwere similar in all clinical sources, representing 9% (634/7422) ofblood, 7% (20/277) of CSF, and 4% (6/147) of pleural fluid isolates.

    Age distribution of serotypesOver the 3-year period, dramatic declines in the PCV13 sero-

    types 7F and 19A were observed in children

  • (oral breakpoints), and trimethoprim–sulfamethoxazole. The S. pneu-moniae isolates were universally susceptible to vancomycin.

    A trend towards higher resistance rates was noted among thePCV13 serotypes for ceftriaxone, clindamycin, penicillin (intravenousmeningitis and oral breakpoints), and trimethoprim–sulfamethoxazolecompared with the resistance rates of the non-PCV13 serotypes.Lower resistance rates among the PCV13 serotypes compared withnon-PCV13 serotypes were only observed with clarithromycin.

    DiscussionFollowing the introduction of PCV13 to all Canadian provinces

    and territories, shifts in the overall distribution of pneumococcalserotypes have emerged. PCV13 serotypes have declined overall inCanada since 2010, from 55% of the isolates to 43% in 2012, withthe greatest reductions seen in children

  • group, from 70% to 40% by 2012 (Fig. 2). The decrease of originalPCV7 serotypes have contributed to the decline of PCV13 serotypesas a whole; however, a greater reduction was attributed to de-creases of the 6 additional PCV13-specific serotypes, particularlyserotype 19A (Table 1).

    The introduction of the PCV7 vaccine resulted in swift and sig-nificant reductions in the PCV7 serotypes and in the overall inci-

    dence of IPD (Lovgren et al. 1998; Whitney et al. 2003; Lexau et al.2005; Bjornson et al. 2007; Bruce et al. 2008; Winters et al. 2008;Kellner et al. 2009; Tyrrell et al. 2009; Bettinger et al. 2010;Pilishvili et al. 2010; Wong et al. 2012; Lim et al. 2013). After theinitial post-PCV7 decrease from 2004 to 2006, the childhood inci-dence of IPD in Canada increased once again during 2007 to 2009(Public Health Agency of Canada, unpublished data1) mainly due

    50–64 years ≥65 years All agesa

    2010 2011 2012 2010 2011 2012 2010 2011 2012

    2.0 (14) 5.4 (37) 2.7 (19) 2.0 (19) 1.2 (11) 1.8 (17) 2.5 (69) 3.3 (88) 2.4 (63)0.6 (4) 0.4 (3) 0.3 (2) 1.3 (13) 0.9 (8) 1.0 (9) 0.9 (24) 0.5 (14) 0.6 (16)1.6 (11) 0.7 (5) 0.3 (2) 1.1 (11) 0.9 (8) 0.6 (6) 1.2 (32) 0.7 (20) 0.4 (11)0.9 (6) 0.9 (6) 0.3 (2) 1.4 (14) 0.9 (8) 0.7 (7) 1.1 (29) 0.7 (19) 0.5 (13)1.6 (11) 0.9 (6) 1.0 (7) 1.1 (11) 0.2 (2) 0.6 (6) 1.2 (33) 0.5 (13) 0.7 (19)1.3 (9) 0.7 (5) 0.7 (5) 1.6 (15) 1.9 (17) 1.2 (11) 1.8 (48) 1.3 (36) 1.1 (29)0.6 (4) 0.1 (1) 0.3 (2) 1.1 (11) 0.7 (6) 0.9 (8) 0.9 (24) 0.4 (11) 0.4 (11)8.6 (59) 9.1 (63) 5.6 (39) 9.7 (94) 6.6 (60) 6.8 (64) 9.5 (259) 7.4 (201) 6.2 (162)

    0.3 (2) 0.4 (3) 0.1 (1) 0.3 (3) 0.1 (1) 0.2 (2) 0.7 (20) 0.5 (13) 0.4 (10)0.4 (3) 0.9 (6) 0.9 (6) 0.1 (1) — 0.2 (2) 0.5 (13) 0.5 (13) 0.5 (12)12.4 (85) 14.5 (100) 12.5 (87) 9.8 (95) 10.6 (97) 7.7 (72) 14.3 (389) 15.1 (407) 12.3 (323)10.5 (72) 8.3 (57) 8.5 (59) 8.8 (85) 10.7 (98) 9.7 (91) 8.3 (226) 8.6 (232) 8.4 (221)2.8 (19) 1.5 (10) 0.6 (4) 3.8 (37) 1.5 (14) 1.8 (17) 2.6 (72) 1.3 (36) 1.0 (27)17.2 (118) 15.7 (108) 12.8 (89) 17.8 (172) 13.8 (126) 12.9 (121) 19.1 (521) 16.1 (436) 13.9 (364)43.5 (299) 41.2 (284) 35.3 (246) 40.6 (393) 36.8 (336) 32.6 (305) 45.5 (1241) 42.1 (1137) 36.5 (957)52.0 (358) 50.4 (347) 40.9 (285) 50.4 (487) 43.3 (396) 39.4 (369) 55.0 (1500) 49.6 (1338) 42.7 (1119)

    — — — — — — — — —5.2 (36) 3.9 (27) 4.9 (34) 2.4 (23) 2.0 (18) 2.6 (24) 3.3 (90) 3.3 (90) 3.7 (96)2.9 (20) 5.1 (35) 4.5 (31) 3.2 (31) 2.6 (24) 2.0 (19) 2.4 (65) 3.2 (87) 3.3 (87)1.2 (8) 1.2 (8) 1.3 (9) 1.4 (14) 0.8 (7) 1.4 (13) 1.4 (37) 1.4 (39) 1.5 (40)1.7 (12) 3.3 (23) 3.3 (23) 3.0 (29) 2.7 (25) 3.5 (33) 2.6 (71) 2.8 (76) 3.0 (79)4.8 (33) 3.2 (22) 3.3 (23) 1.3 (13) 2 (18) 1.7 (16) 3.4 (93) 3.0 (80) 3.0 (78)1.0 (7) 0.9 (6) 1.0 (7) 1.7 (16) 1.1 (10) 1.3 (12) 1.5 (41) 1.4 (39) 1.5 (39)1.0 (7) 1.0 (7) 1.0 (7) 1.2 (12) 1.0 (9) 1.3 (12) 0.9 (25) 0.7 (20) 1.0 (25)0.6 (4) 1.0 (7) 2.2 (15) 0.8 (8) 0.8 (7) 1.1 (10) 0.7 (18) 1.0 (26) 2.1 (56)8 (55) 6.2 (43) 10.9 (76) 7.8 (75) 9.8 (90) 13.1 (123) 6.8 (185) 7.8 (210) 10.6 (279)2.6 (18) 1.6 (11) 1.6 (11) 2.0 (19) 1.2 (11) 2.7 (25) 1.8 (49) 1.6 (42) 2.3 (60)29.1 (200) 27.4 (189) 33.9 (236) 24.8 (240) 24.0 (219) 30.6 (287) 24.7 (674) 26.3 (709) 32.0 (839)78.1 (537) 75.9 (523) 74.1 (516) 71 (687) 65.6 (600) 68 (637) 76.3 (2082) 74.0 (1998) 73.3 (1921)

    1.7 (12) 2.2 (15) 3.2 (22) 5.4 (52) 6.6 (60) 5.2 (49) 3.1 (84) 3.5 (94) 3.5 (93)2.5 (17) 3.8 (26) 2.3 (16) 4.0 (39) 4.2 (38) 5.9 (55) 3.2 (88) 3.2 (86) 3.5 (93)0.9 (6) 0.7 (5) 0.9 (6) 0.7 (7) 1.1 (10) 1.3 (12) 1.0 (28) 1.4 (37) 1.3 (35)1.3 (9) 1.5 (10) 3.2 (22) 1.9 (18) 1.8 (16) 2.9 (27) 1.6 (43) 1.7 (45) 2.4 (63)2.5 (17) 2.6 (18) 2.9 (20) 3.7 (36) 5.0 (46) 5.3 (50) 2.4 (66) 3.3 (89) 3.6 (94)1.9 (13) 2.6 (18) 3.7 (26) 1.6 (15) 2.2 (20) 2.2 (21) 2.0 (55) 2.1 (56) 3.2 (84)0.7 (5) 0.4 (3) 1.1 (8) 0.5 (5) 1.2 (11) 1.0 (9) 0.4 (11) 0.8 (21) 0.9 (24)0.4 (3) 1.7 (12) 0.7 (5) 0.6 (6) 1.4 (13) — 0.6 (15) 1.3 (36) 0.3 (8)1.3 (9) 0.9 (6) 0.9 (6) 0.8 (8) 1.5 (14) 0.9 (8) 0.7 (20) 0.9 (24) 0.8 (20)1.3 (9) 1.2 (8) 1.4 (10) 0.8 (8) 2.6 (24) 1.5 (14) 1.2 (32) 1.4 (39) 1.4 (36)1.0 (7) 1.2 (8) 1.3 (9) 1.9 (18) 1.4 (13) 1.7 (16) 1.2 (34) 1.0 (28) 1.3 (35)0.4 (3) 0.4 (3) 1.0 (7) 0.8 (8) 1.8 (16) 0.7 (7) 0.6 (16) 1.2 (33) 1.0 (27)2.9 (20) 3.0 (21) 2.6 (18) 2.1 (20) 2.0 (18) 1.4 (13) 2.1 (58) 2.4 (65) 1.9 (50)18.9 (130) 22.2 (153) 25.1 (175) 24.8 (240) 32.7 (299) 30.0 (281) 20.2 (550) 24.2 (653) 25.3 (662)

    (688) (689) (696) (967) (914) (937) (2727) (2700) (2620)

    Demczuk et al. 783

    Published by NRC Research Press

    PTAB PAGE 6/12 MERCK EXHIBIT 1078

  • to the emergence of non-PCV7 serotypes such as 7F and 19A(Kellner et al. 2009; Tyrrell et al. 2009; Bettinger et al. 2010; Sahniet al. 2012; Lim et al. 2013). Since 2009, IPD has declined once againin children (Public Health Agency of Canada, unpublished data1),

    although the rate of the decrease has been more moderate thanduring the comparable post-PCV7 time frame. It is interesting tonote that the decline of the 6 PCV13-specific serotypes in childrenduring the early implementation of PCV13 in Canada between

    Fig. 3. Distribution of pneumococcal serotypes in Canada, 2010–2012. Note: The 13-valent pneumococcal conjugate vaccine (PCV13) includesserotypes 4, 6B, 9V, 14, 18C, 19F, 23F, 1, 5, 7F, 3, 6A, and 19A. The 23-valent polysaccharide pneumococcal vaccine (PPV23) includes all PCV13serotypes except 6A, plus serotypes 2, 8, 9N, 10A, 11A, 12F, 15B, 17F, 20, 22F, and 33F. “Other” non-vaccine serotypes include 6D, 7A, 7C, 9A, 9L,10B, 10F, 11B, 11F, 12A, 12B, 13, 15F, 17A, 18A, 18B, 18F, 19B, 19C, 21, 22A, 24F, 24B, 25A, 27, 28A, 29, 33B, 35A, 37, 42, 45, and nontypeable. Theasterisk (*) indicates statistically significant difference from 2010 at p < 0.05.

    Table 2. Antimicrobial resistance of Streptococcus pneumoniae in Canada 2011–2012 for all serotypes, 13-valent pneu-mococcal conjugate vaccine (PCV13) serotypes and non-PCV13 serotypes.

    All serotypes(n = 2520)

    PCV13 serotypes(n = 1119)

    Non-PCV13 serotypes(n = 1401)

    Antimicrobial agent(CLSI interpretive criteria) %S %I %R %S %I %R %S %I %R

    Ceftriaxone (non-meningitis) 98.9 0.9 0.2 92.8 4.6 2.6 100 0 0Ceftriaxone (meningitis) 96.1 2.7 1.2 97.4 2.1 0.5 98.7 1.3 0Chloramphenicol 98.3 0 1.7 98.3 0 1.7 98.4 0 1.6Clarithromycin 75.6 1.1 23.3 78.0 1.4 20.6 73.6 0.9 25.4Clindamycin 91.8 0.3 7.9 91.0 0.5 8.4 92.4 0.1 7.4Levofloxacin 99.4 0.1 0.5 99.6 0 0.4 99.3 0.1 0.6Penicillin (iv non-meningitis) 97.7 2.3 0.04 94.8 5.1 0.1 99.9 0.1 0.0Penicillin (iv meningitis) 87.6 0 12.4 86.4 0 13.6 88.6 0.0 11.4Penicillin (oral, Penicillin V) 87.6 8.7 3.7 86.4 7.1 6.5 88.6 9.9 1.4Trimethoprim–sulfamethoxazole 87.8 6.4 5.8 87.8 2.6 9.6 87.9 9.4 2.7Vancomycin 100 0 0 100 0 0 100 0 0

    Note: S, susceptible; I, intermediate; R, resistant.

    784 Can. J. Microbiol. Vol. 59, 2013

    Published by NRC Research Press

    PTAB PAGE 7/12 MERCK EXHIBIT 1078

  • 2010 and 2012 (62% to 39%) is greater than that of PCV7 serotypesduring the early implementation period of PCV7 between 2002 and2004 (77% to 64%) (Bettinger et al. 2010), which may be due to thelonger implementation period of PCV7. However, 4 to 6 years afterthe initial introduction of PCV7 there was a very large decrease ofPCV7 serotypes to 18% (Bettinger et al. 2010), which may suggestfurther declines in the proportion of PCV13 serotypes in the comingyears.

    During 2009, a year prior to implementation of the PCV13 vac-cine in Canada, non-PCV7 serotypes accounted for 89% of paediat-ric isolates submitted to the National Centre for Streptococcus,Edmonton, Alberta, of which the 6 PCV13-specific serotypes ac-counted for 54% (Tyrrell 2010). During the transition to the PCV13vaccine, the proportion of the 6 PCV13-specific serotypes decreasedfrom 62% to 52% between 2010 and 2011, and further to 39% in 2012.Similarly, recent reports during the early PCV13 implementationperiod in the United States noted that the 6 PCV13-specific serotypesin children declined from about 62% to 53% between 2008–2009 and2010–2011 (Kaplan et al. 2013; Richter et al. 2013).

    Despite a World Health Organization recommendation in 2007that PCV7 be used in all routine childhood immunization pro-grams (World Health Organization 2007), in many parts of theworld, PCV7 serotypes and, therefore, PCV13 serotypes continueto predominate because of inadequate vaccination programs inthese regions (Hackel et al. 2013). Elevated levels of PCV13 sero-types have been reported during 2004–2009 in Africa (79%), Asia-Pacific (68%), Middle East (70%), and Latin America (75%) (Hackelet al. 2013). In Europe the proportion of PCV13 serotypes decreasedfrom representing 76% of IPD reported during 2004–2009 to ap-proximately 60% in 2010 (European Centre for Disease Preventionand Control 2013).

    In contrast to reports where the incidence of IPD has rapidlydeclined in older age groups after the introduction of PCV7immunization programs due to reduced carriage and transmis-sion from immunized individuals (Lexau et al. 2005; McBean et al.2005; Isaacman et al. 2007; Kellner et al. 2008; Pilishvili et al. 2010),the incidence of IPD in those ≥5 years of age in Canada increasedsteadily from 5.4 per 100 000 population in 2000 to 9.4 in 2007(Public Health Agency of Canada, unpublished data1) and has re-mained relatively unchanged to 2012. Although this appears tosuggest little or no herd immunity in the older populations, it isgenerally thought that the full impact on disease rates may requireup to 6–7 years postimplementation of the vaccine to be observed(Wong et al. 2012; Nurhonen et al. 2013) and that reductions in vac-cine serotypes may have been offset by concurrent increases of non-vaccine serotypes (Lexau et al. 2005; McBean et al. 2005; Kellner et al.2008, 2009; Tyrrell et al. 2009; Pilishvili et al. 2010; Reinert et al. 2010;Weinberger et al. 2011; Wong et al. 2012). Despite the lack of reduc-tions in incidence in those ≥5 years of age from 2010 to 2012, herdimmunity effects may be evident with a reduction in overall PCV13serotypes in the older age groups (Fig. 2). Further reductions mightbe expected in the older age groups over time, as younger individualsinitially immunized move up into older age categories.

    The overall incidence of IPD in Canada has remained relativelyunchanged over the 3-year period at about 9.6 cases of per 100 000,similar to European countries during 2010, such as the UnitedKingdom (9.1), Iceland (10.1), and Slovenia (10.9) (European Centrefor Disease Prevention and Control 2013), as well as the UnitedStates during 2011 with 8.0 cases of IPD per 100 000 population ofreporting states (United States Census Bureau 2012; Centers forDisease Control and Prevention 2013). The highest European inci-dence rates in 2010 were seen in Belgium (17.1), Denmark (17.4),Finland (15.6), Sweden (15.6), and Norway (15.4) (European Centrefor Disease Prevention and Control 2013).

    In the present study, while the proportion of 19A and 22F wassomewhat evenly distributed among the clinical isolation sites,serotype 7F was more frequently isolated from blood isolateswhereas serotype 3 was more frequently isolated from pleural

    fluid and CSF sources, consistent with previous reports (Hausdorffet al. 2000; Ciruela et al. 2013). Higher CSF isolation rates amongpaediatric cases indicate that children continue to be more sus-ceptible to pneumococcal meningitis than adults as previouslyreported (Dagan et al. 1992).

    Shifts in the relative proportions of serotype 19A and 7F inCanada since 2010 reflect trends in overall PCV13 serotypes whereoccurrence has declined significantly first in the

  • types of antimicrobials used, and population density. In thisstudy, a trend towards higher resistance rates was noted amongthe PCV13 serotypes compared with the non-PCV13 serotypes forthe majority of tested antimicrobial agents. PCV13 serotypes 6B,6A, 9V, 14, 19F, 19A, and 23F are commonly associated with highrates of resistance to penicillin and erythromycin (Lexau et al.2005; Dagan 2009; Liñares et al. 2010; Hackel et al. 2013), and as theutilization of PCV13 vaccine increases, decreases in antimicrobialresistance may be observed. A comprehensive analysis of Canadianpneumococcal isolates is currently being planned by the authorsto describe serotype-specific variations of antimicrobial suscepti-bilities and assess regional and demographic relationships.

    IPD has been nationally notifiable in Canada since 2000, with allprovincial and territorial jurisdictions voluntarily reporting casesmeeting the national case definition (Public Health Agency ofCanada 2009) to CNDSS. Information such as serotype, antimicro-bial susceptibilities, vaccine coverage rates, as well as other en-hanced epidemiological patient information such as medical riskfactors, outcome, cultural background, and immunization his-tory were not available from CNDSS. Cases not captured by CNDSSmay include those that do not get medical attention or thosewhere clinical measures were applied with no specimen beingtaken. The laboratory-based, passive surveillance of pneumococ-cal serotype distribution is done collaboratively with jurisdic-tional public health authorities and may be limited by variableregional standards, the preliminary nature of some data, the time-liness of testing and reporting, the availability of isolates for test-ing, and privacy concerns. Although the large majority of IPDcases in Canada are thought to be serotyped, true serotype-specificincidence rates could not be established, and therefore, changesin serotype occurrence were reported as percentage differences.Serotype levels may be biased toward overrepresenting morevirulent serotypes for which medical treatment is sought andmicrobiological specimens were taken. Additionally, pneumococ-cal pneumonia is not considered an invasive disease, so this largeclinical burden is poorly represented by the more complicatedcases of pleural effusion. National serotyping coverage of adultIPD was affected by the hospital-based sentinel surveillance datafrom Quebec, which represented only about 34% of cases ≥5 yearsof age in that province and may have overrepresented antimicrobial-resistant serotypes in that province. Comprehensive serotypingsurveillance systems face further challenges with the introduc-tion of molecular detection techniques, such as PCR for pneumo-coccal disease, where bacterial isolates may not be available forserotyping. Despite these limitations, the passive national surveil-lance program and data submitted by 3 additional reference lab-oratories accounted for 97% of all isolates from children

  • Centers for Disease Control and Prevention. 2011. PCR deduction of pneumococ-cal serotypes [online]. Available from http://www.cdc.gov/ncidod/biotech/strep/pcr.htm [accessed 1 August 2013].

    Centers for Disease Control and Prevention. 2013. Summary of notifiablediseases — United States, 2011. MMWR, 60(53): 1–117.

    Ciruela, P., Soldevila, N., Selva, L., Hernandez, S., Garcia-Garcia, J.J., Moraga, F.,De Sevilla, M.F., Codina, G., Planes, A.M., Esteva, C., Coll, F., Cardenosa, N.,Jordan, I., Batalla, J., Salleras, L., Munoz-Almagro, C., and Dóminguez, A. 2013.Are risk factors associated with invasive pneumococcal disease according todifferent serotypes? Hum. Vaccin. Immunother. 9(3): 712–719. doi:10.4161/hv.23270. PMID:23295982.

    Clinical Laboratory Standards Institute. 2008. Interpretative criteria for identi-fication of bacteria and fungi by DNA target sequencing; approved guideline.CLSI document MM18-A. Clinical Laboratory Standards Institute, Wayne,Penn., USA. pp. 21–24.

    Clinical Laboratory Standards Institute. 2009. Methods for dilution antimicro-bial susceptibility tests for bacteria that grow aerobically; approvedstandard — 8th ed. CLSI document M7-A8. Clinical Laboratory StandardsInstitute, Wayne, Penn., USA.

    Clinical Laboratory Standards Institute. 2012. Performance standards for antimi-crobial susceptibility testing; 22nd Informational Supplement. CLSI docu-ment M100-S22. Clinical Laboratory Standards Institute, Wayne, Penn., USA.

    Dagan, R. 2009. Impact of pneumococcal conjugate vaccine on infections causedby antibiotic-resistant Streptococcus pneumoniae. Clin. Microbiol. Infect.15(Suppl. 3): 16–20. doi:10.1111/j.1469-0691.2009.02726.x. PMID:19366365.

    Dagan, R., Engelhard, D., and Piccard, E. 1992. Epidemiology of invasive child-hood pneumococcal infections in Israel. The Israeli Pediatric Bacteremia andMeningitis Group. JAMA, 268(23): 3328–3332. doi:10.1001/jama.268.23.3328.PMID:1364814.

    Dean, A.G., Sullivan, K.M., and Soe, M.M. 2011. OpenEpi: Open Source Epidemi-ologic Statistics for Public Health, Version 2.3.1 [online]. Available fromhttp://openepi.com [accessed 15 October 2013].

    De Wals, P., Lefebvre, B., Defay, F., Deceuninck, G., and Boulianne, N. 2012.Invasive pneumococcal diseases in birth cohorts vaccinated with PCV-7and/or PHiD-CV in the province of Quebec, Canada. Vaccine, 30(45): 6416–6420. doi:10.1016/j.vaccine.2012.08.017. PMID:22921290.

    Drancourt, M., Roux, V., Fournier, P.E., and Raoult, D. 2004. rpoB gene sequence-based identification of aerobic Gram-positive cocci of the genera Streptococcus,Enterococcus, Gemella, Abiotrophia, and Granulicatella. J. Clin. Microbiol. 42(2):497–504. doi:10.1128/JCM.42.2.497-504.2004. PMID:14766807.

    European Centre for Disease Prevention and Control. 2013. Annual Epidemio-logical Report 2012. Reporting on 2010 surveillance data and 2011 epidemicintelligence data. ECDC, Stockholm, Sweden. Available from http://www.ecdc.europa.eu/en/publications/Publications/Annual-Epidemiological-Report-2012.pdf [accessed 15 June 2013].

    Facklam, R.R., and Washington, J.A. 1991. Streptococcus and related catalase-negative gram-positive cocci. In Manual of clinical microbiology. Edited byA. Balows, W.J. Hausler, K.L. Hermann, H.D. Isenberg, and H.J. Shadomy.American Society for Microbiology, Washington, D.C. pp. 238–257.

    Fenoll, A., Aguilar, L., Vicioso, M.D., Gimenez, M.J., Robledo, O., and Granizo, J.J.2011. Increase in serotype 19A prevalence and amoxicillin non-susceptibilityamong paediatric Streptococcus pneumoniae isolates from middle ear fluid in apassive laboratory-based surveillance in Spain, 1997–2009. BMC Infect. Dis.11: 239. doi:10.1186/1471-2334-11-239. PMID:21910891.

    Hackel, M., Lascols, C., Bouchillon, S., Hilton, B., Morgenstern, D., and Purdy, J.2013. Serotype prevalence and antibiotic resistance in Streptococcus pneumoniaeclinical isolates among global populations. Vaccine, 31(42): 4881–4887. doi:10.1016/j.vaccine.2013.07.054. PMID:23928466.

    Hanquet, G., Kissling, E., Fenoll, A., George, R., Lepoutre, A., Lernout, T.,Tarrago, D., Varon, E., and Verhaegen, J. 2010. Pneumococcal serotypes inchildren in 4 European countries. Emerg. Infect. Dis. 16(9): 1428–1439. doi:10.3201/eid1609.100102. PMID:20735928.

    Hausdorff, W.P., Bryant, J., Kloek, C., Paradiso, P.R., and Siber, G.R. 2000. Thecontribution of specific pneumococcal serogroups to different disease man-ifestations: implications for conjugate vaccine formulation and use, part II.Clin. Infect. Dis. 30(1): 122–140. doi:10.1086/313609. PMID:10619741.

    Huss, A., Scott, P., Stuck, A.E., Trotter, C., and Egger, M. 2009. Efficacy of pneu-mococcal vaccination in adults: a meta-analysis. CMAJ, 180(1): 48–58. doi:10.1503/cmaj.080734. PMID:19124790.

    Isaacman, D.J., Fletcher, M.A., Fritzell, B., Ciuryla, V., and Schranz, J. 2007.Indirect effects associated with widespread vaccination of infants with hep-tavalent pneumococcal conjugate vaccine (PCV7; Prevnar). Vaccine, 25(13):2420–2427. doi:10.1016/j.vaccine.2006.09.011. PMID:17049677.

    Kaplan, S.L., Barson, W.J., Lin, P.L., Romero, J.R., Bradley, J.S., Tan, T.Q.,Hoffman, J.A., Givner, L.B., and Mason, E.O., Jr. 2013. Early trends for invasivepneumococcal infections in children after the introduction of the 13-valentpneumococcal conjugate vaccine. Pediatr. Infect. Dis. J. 32(3): 203–207.doi:10.1097/INF.0b013e318275614b. PMID:23558320.

    Kellner, J.D., Scheifele, D., Vanderkooi, O.G., Macdonald, J., Church, D.L., andTyrrell, G.J. 2008. Effects of routine infant vaccination with the 7-valentpneumococcal conjugate vaccine on nasopharyngeal colonization withStreptococcus pneumoniae in children in Calgary, Canada. Pediatr. Infect. Dis. J.27(6): 526–532. doi:10.1097/INF.0b013e3181658c5c. PMID:18458650.

    Kellner, J.D., Vanderkooi, O.G., MacDonald, J., Church, D.L., Tyrrell, G.J., and

    Scheifele, D.W. 2009. Changing epidemiology of invasive pneumococcal dis-ease in Canada, 1998–2007: update from the Calgary-area Streptococcuspneumoniae research (Casper) study. Clin. Infect. Dis. 49(2): 205–212. doi:10.1086/599827. PMID:19508165.

    Laroche, J., Frescura, A.M., and Belzak, L. 2010. Results from the 2006 and 2009childhood national immunization coverage surveys (NICS). Canadian Immu-nization Conference, Quebec City.

    Lexau, C.A., Lynfield, R., Danila, R., Pilishvili, T., Facklam, R., Farley, M.M.,Harrison, L.H., Schaffner, W., Reingold, A., Bennett, N.M., Hadler, J.,Cieslak, P.R., Whitney, C.G., and Active Bacterial Core Surveillance Team2005. Changing epidemiology of invasive pneumococcal disease among olderadults in the era of pediatric pneumococcal conjugate vaccine. JAMA,294(16): 2043–2051. doi:10.1001/jama.294.16.2043. PMID:16249418.

    Lim, G.H., Wormsbecker, A.E., McGeer, A., Pillai, D.R., Gubbay, J.B., Rudnick, W.,Low, D.E., Green, K., Crowcroft, N.S., and Deeks, S.L. 2013. Have changingpneumococcal vaccination programmes impacted disease in Ontario? Vac-cine, 31(24): 2680–2685. doi:10.1016/j.vaccine.2013.04.007. PMID:23597716.

    Liñares, J., Ardanuy, C., Pallares, R., and Fenoll, A. 2010. Changes in antimicro-bial resistance, serotypes and genotypes in Streptococcus pneumoniae over a30-year period. Clin. Microbiol. Infect. 16(5): 402–410. doi:10.1111/j.1469-0691.2010.03182.x. PMID:20132251.

    Lovgren, M., Spika, J.S., and Talbot, J.A. 1998. Invasive Streptococcus pneumoniaeinfections: serotype distribution and antimicrobial resistance in Canada,1992-1995. CMAJ, 158(3): 327–331. PMID:9484256.

    Manitoba Health. 2010. Manitoba immunization monitoring system (MIMS). An-nual Report 2010 [online]. Available from http://digitalcollection.gov.mb.ca/awweb/pdfopener?smd=1&did=20457&md=1 [accessed September 2013].

    McBean, A.M., Park, Y.T., Caldwell, D., and Yu, X. 2005. Declining invasive pneu-mococcal disease in the U.S. elderly. Vaccine, 23(48–49): 5641–5645. doi:10.1016/j.vaccine.2005.05.043. PMID:16111788.

    McIntosh, E.D.G., and Reinert, R.R. 2011. Global prevailing and emerging pedi-atric pneumococcal serotypes. Expert Rev. Vaccines, 10(1): 109–129. doi:10.1586/erv.10.145. PMID:21162625.

    Messina, A.F., Katz-Gaynor, K., Barton, T., Ahmad, N., Ghaffar, F., Rasko, D., andMcCracken, G.H., Jr. 2007. Impact of the pneumococcal conjugate vaccine onserotype distribution and antimicrobial resistance of invasive Streptococcuspneumoniae isolates in Dallas, TX, children from 1999 through 2005. Pediatr.Infect. Dis. J. 26(6): 461–467. doi:10.1097/INF.0b013e31805cdbeb. PMID:17529859.

    National Advisory Committee on Immunization. 2002. Statement on recom-mended use of pneumococcal conjugate vaccine. CCDR, 28(Pt. 2): 1–32. PMID:12728645.

    National Advisory Committee on Immunization. 2010. Update on the use ofconjugate pneumococcal vaccines in childhood. CCDR, 36(ACS-12): 1–21.

    Novak, D., Lundgren, A., Westphal, S., Valdimarsson, S., Olsson, M.L., andTrollfors, B. 2013. Two cases of hemolytic uremic syndrome caused byStreptococcus pneumoniae serotype 3, one being a vaccine failure. Scand. J.Infect. Dis. 45(5): 411–414. doi:10.3109/00365548.2012.737019. PMID:23270474.

    Nurhonen, M., Cheng, A.C., and Auranen, K. 2013. Pneumococcal transmissionand disease in silico: a microsimulation model of the indirect effects ofvaccination. PLoS One, 8(2): e56079. doi:10.1371/journal.pone.0056079. PMID:23457504.

    Ongkasuwan, J., Valdez, T.A., Hulten, K.G., Mason, E.O., Jr., and Kaplan, S.L. 2008.Pneumococcal mastoiditis in children and the emergence of multidrug-resistantserotype19Aisolates.Pediatrics,122(1):34–39.doi:10.1542/peds.2007-2703. PMID:18595984.

    Parra, E.L., De La Hoz, F., Díaz, P.L., Sanabria, O., Realpe, M.E., and Moreno, J.2013. Changes in Streptococcus pneumoniae serotype distribution in invasivedisease and nasopharyngeal carriage after the heptavalent pneumococcalconjugate vaccine introduction in Bogotá, Colombia. Vaccine, 31(37): 4033–4038. doi:10.1016/j.vaccine.2013.04.074. PMID:23680440.

    Pfizer Canada Inc. 2012. Product Monograph: Prevnar* 13 [online]. Available fromhttp://www.pfizer.ca/en/our_products/products/monograph/232 [accessedJuly 2013].

    Pichichero, M.E., and Casey, J.R. 2007. Emergence of a multiresistant serotype19A pneumococcal strain not included in the 7-valent conjugate vaccine as anotopathogen in children. JAMA, 298(15): 1772–1778. doi:10.1001/jama.298.15.1772. PMID:17940232.

    Pilishvili, T., Lexau, C., Farley, M.M., Hadler, J., Harrison, L.H., Bennett, N.M.,Reingold, A., Thomas, A., Schaffner, W., Craig, A.S., Smith, P.J., Beall, B.W.,Whitney, C.G., and Moore, M.R. ; Active Bacterial Core Surveillance/EmergingInfections Program Network. 2010. Sustained reductions in invasive pneumo-coccal disease in the era of conjugate vaccine. J. Infect. Dis. 201(1): 32–41.doi:10.1086/648593. PMID:19947881.

    Poolman, J., Kriz, P., Feron, C., Di-Paolo, E., Henckaerts, I., Miseur, A.,Wauters, D., Prymula, R., and Schuerman, L. 2009. Pneumococcal serotype 3otitis media, limited effect of polysaccharide conjugate immunisation andstrain characteristics. Vaccine, 27(24): 3213–3222. doi:10.1016/j.vaccine.2009.03.017. PMID:19446194.

    Public Health Agency of Canada. 2005. Notifiable diseases On-Line [online].Available from http://dsol-smed.phac-aspc.gc.ca/dsol-smed/ndis/c_time-eng.php [accessed 31 March 2012].

    Demczuk et al. 787

    Published by NRC Research Press

    PTAB PAGE 10/12 MERCK EXHIBIT 1078

    http://www.cdc.gov/ncidod/biotech/strep/pcr.htmhttp://www.cdc.gov/ncidod/biotech/strep/pcr.htmhttp://dx.doi.org/10.4161/hv.23270http://dx.doi.org/10.4161/hv.23270http://www.ncbi.nlm.nih.gov/pubmed/23295982http://dx.doi.org/10.1111/j.1469-0691.2009.02726.xhttp://www.ncbi.nlm.nih.gov/pubmed/19366365http://dx.doi.org/10.1001/jama.268.23.3328http://www.ncbi.nlm.nih.gov/pubmed/1364814http://openepi.comhttp://dx.doi.org/10.1016/j.vaccine.2012.08.017http://www.ncbi.nlm.nih.gov/pubmed/22921290http://dx.doi.org/10.1128/JCM.42.2.497-504.2004http://www.ncbi.nlm.nih.gov/pubmed/14766807http://www.ecdc.europa.eu/en/publications/Publications/Annual-Epidemiological-Report-2012.pdfhttp://www.ecdc.europa.eu/en/publications/Publications/Annual-Epidemiological-Report-2012.pdfhttp://www.ecdc.europa.eu/en/publications/Publications/Annual-Epidemiological-Report-2012.pdfhttp://dx.doi.org/10.1186/1471-2334-11-239http://www.ncbi.nlm.nih.gov/pubmed/21910891http://dx.doi.org/10.1016/j.vaccine.2013.07.054http://dx.doi.org/10.1016/j.vaccine.2013.07.054http://www.ncbi.nlm.nih.gov/pubmed/23928466http://dx.doi.org/10.3201/eid1609.100102http://www.ncbi.nlm.nih.gov/pubmed/20735928http://dx.doi.org/10.1086/313609http://www.ncbi.nlm.nih.gov/pubmed/10619741http://dx.doi.org/10.1503/cmaj.080734http://dx.doi.org/10.1503/cmaj.080734http://www.ncbi.nlm.nih.gov/pubmed/19124790http://dx.doi.org/10.1016/j.vaccine.2006.09.011http://www.ncbi.nlm.nih.gov/pubmed/17049677http://dx.doi.org/10.1097/INF.0b013e318275614bhttp://www.ncbi.nlm.nih.gov/pubmed/23558320http://dx.doi.org/10.1097/INF.0b013e3181658c5chttp://www.ncbi.nlm.nih.gov/pubmed/18458650http://dx.doi.org/10.1086/599827http://dx.doi.org/10.1086/599827http://www.ncbi.nlm.nih.gov/pubmed/19508165http://dx.doi.org/10.1001/jama.294.16.2043http://www.ncbi.nlm.nih.gov/pubmed/16249418http://dx.doi.org/10.1016/j.vaccine.2013.04.007http://www.ncbi.nlm.nih.gov/pubmed/23597716http://dx.doi.org/10.1111/j.1469-0691.2010.03182.xhttp://dx.doi.org/10.1111/j.1469-0691.2010.03182.xhttp://www.ncbi.nlm.nih.gov/pubmed/20132251http://www.ncbi.nlm.nih.gov/pubmed/9484256http://digitalcollection.gov.mb.ca/awweb/pdfopener?smd=1&did=20457&md=1http://digitalcollection.gov.mb.ca/awweb/pdfopener?smd=1&did=20457&md=1http://dx.doi.org/10.1016/j.vaccine.2005.05.043http://dx.doi.org/10.1016/j.vaccine.2005.05.043http://www.ncbi.nlm.nih.gov/pubmed/16111788http://dx.doi.org/10.1586/erv.10.145http://dx.doi.org/10.1586/erv.10.145http://www.ncbi.nlm.nih.gov/pubmed/21162625http://dx.doi.org/10.1097/INF.0b013e31805cdbebhttp://www.ncbi.nlm.nih.gov/pubmed/17529859http://www.ncbi.nlm.nih.gov/pubmed/12728645http://dx.doi.org/10.3109/00365548.2012.737019http://www.ncbi.nlm.nih.gov/pubmed/23270474http://dx.doi.org/10.1371/journal.pone.0056079http://www.ncbi.nlm.nih.gov/pubmed/23457504http://dx.doi.org/10.1542/peds.2007-2703http://dx.doi.org/10.1542/peds.2007-2703http://www.ncbi.nlm.nih.gov/pubmed/18595984http://dx.doi.org/10.1016/j.vaccine.2013.04.074http://www.ncbi.nlm.nih.gov/pubmed/23680440http://www.pfizer.ca/en/our_products/products/monograph/232http://dx.doi.org/10.1001/jama.298.15.1772http://dx.doi.org/10.1001/jama.298.15.1772http://www.ncbi.nlm.nih.gov/pubmed/17940232http://dx.doi.org/10.1086/648593http://www.ncbi.nlm.nih.gov/pubmed/19947881http://dx.doi.org/10.1016/j.vaccine.2009.03.017http://dx.doi.org/10.1016/j.vaccine.2009.03.017http://www.ncbi.nlm.nih.gov/pubmed/19446194http://dsol-smed.phac-aspc.gc.ca/dsol-smed/ndis/c_time-eng.phphttp://dsol-smed.phac-aspc.gc.ca/dsol-smed/ndis/c_time-eng.php

  • Public Health Agency of Canada. 2009. Case definitions for communicable dis-eases under national surveillance – 2009. CCDR, 35S2.

    Public Health Agency of Canada. 2012a. Vaccine-preventable diseases: invasivepneumococcal disease [online]. Available from http://www.phac-aspc.gc.ca/im/vpd-mev/pneumococcal-eng.php [accessed 17 October 2013].

    Public Health Agency of Canada. 2012b. Canadian immunization guide [online].Available from http://www.phac-aspc.gc.ca/publicat/cig-gci/p04-pneu-eng.php#ru [accessed 17 October 2013].

    Public Health Agency of Canada. 2013. Publicly funded immunization programsin Canada – routine schedule for infants and children including special pro-grams and catch-up programs (as of March 2013) [online]. Available fromhttp://www.phac-aspc.gc.ca/im/ptimprog-progimpt/table-1-eng.php [accessed17 October 2013].

    Reinert, R., Jacobs, M.R., and Kaplan, S.L. 2010. Pneumococcal disease caused byserotype 19A: review of the literature and implications for future vaccinedevelopment. Vaccine, 28(26): 4249–4259. doi:10.1016/j.vaccine.2010.04.020.PMID:20416266.

    Richter, S.S., Heilmann, K.P., Dohrn, C.L., Riahi, F., Diekema, D.J., andDoern, G.V. 2013. Pneumococcal serotypes before and after introduction ofconjugate vaccines, United States, 1999–2011. Emerg. Infect. Dis. 19(7): 1074–1083. doi:10.3201/eid1907.121830. PMID:23763847.

    Robinson, K.A., Baughman, W., Rothrock, G., Barrett, N.L., Pass, M., Lexau, C.,Damaske, B., Stefonek, K., Barnes, B., Patterson, J., Zell, E.R., Schuchat, A.,and Whitney, C.G. 2001. Epidemiology of invasive Streptococcus pneumoniaeinfections in the United States, 1995–1998 opportunities for prevention inthe conjugate vaccine era. JAMA, 285(13): 1729–1735. doi:10.1001/jama.285.13.1729. PMID:11277827.

    Rückinger, S., Von Kries, R., Siedler, A., and Van Der Linden, M. 2009. Associa-tion of serotype of Streptococcus pneumoniae with risk of severe and fatal out-come. Pediatr. Infect. Dis. J. 28(2): 118–122. doi:10.1097/INF.0b013e318187e215.PMID:19116604.

    Sahni, V., Naus, M., Hoang, L., Tyrrell, G.J., Martin, I., and Patrick, D.M. 2012. Theepidemiology of invasive pneumococcal disease in British Columbia follow-ing implementation of an infant immunization program: increases in herdimmunity and replacement disease. Can. J. Public Health, 103(1): 29–33.PMID:22338325.

    Scott, J.A.G., Hall, A.J., Dagan, R., Dixon, J.M.S., Eykyn, S.J., Fenoll, A., Hortal, M.,Jette, L.P., Jorgensen, J.H., Lamothe, F., Latorre, C., Macfarlane, J.T.,Shlaes, D.M., Smart, L.E., and Taunay, A. 1996. Serogroup-specific epidemiol-ogy of Streptococcus pneumoniae: associations with age, sex, and geography in7,000 episodes of invasive disease. Clin. Infect. Dis. 22(6): 973–981. doi:10.1093/clinids/22.6.973. PMID:8783696.

    Selva, L., Ciruela, P., Esteva, C., De Sevilla, M.F., Codina, G., Hernandez, S.,Moraga, F., García-García, J.J., Planes, A., Coll, F., Jordan, I., Cardenosa, N.,Batalla, J., Salleras, L., Dominguez, A., and Munoz-Almagro, C. 2012. Serotype

    3 is a common serotype causing invasive pneumococcal disease in childrenless than 5 years old, as identified by real-time PCR. Eur. J. Clin. Microbiol.Infect. Dis. 31(7): 1487–1495. doi:10.1007/s10096-011-1468-7. PMID:22052607.

    Spellerberg, B., and Brandt, C. 2007. Streptococcus. In Manual of clinical microbi-ology. Edited by P.R. Murray, E.L. Baron, J.H. Jorgensen, M.L. Landry, andM.A. Pfaller. American Society of Microbiology, Washington, USA. pp. 412–429.

    Tyrrell, G.J. 2010. Pneumococcal serotypes – What’s happening across Canada?Focus on 2009. In Proceedings of the 2010 Association of Medical Microbiol-ogy and Infectious Disease Canada / Canadian Association of Clinical Microbiol-ogy and Infectious Disease (AMMI-CACMID) Annual Conference, Edmonton,Alberta, Canada.

    Tyrrell, G.J., Lovgren, M., Chui, N., Minion, J., Garg, S., Kellner, J.D., andMarrie, T.J. 2009. Serotypes and antimicrobial susceptibilities of invasiveStreptococcus pneumoniae pre- and post-seven valent pneumococcal conjugatevaccine introduction in Alberta, Canada, 2000–2006. Vaccine, 27(27): 3553–3560. doi:10.1016/j.vaccine.2009.03.063. PMID:19464534.

    United States Census Bureau. 2012. Annual estimates of the resident populationfor the United States, regions, states, and Puerto Rico: April 1, 2010 to July 1,2011 (NST-EST2011-01) [online]. Available from http://www.census.gov/popest/data/state/totals/2011/ [accessed 17 October 2013].

    Weinberger, D.M., Harboe, Z.B., Sanders, E.A.M., Ndiritu, M., Klugman, K.P.,Rückinger, S., Dagan, R., Adegbola, R., Cutts, F., Johnson, H.L., O’Brien, K.L.,Scott, J.A., and Lipsitch, M. 2010. Association of serotype with risk of deathdue to pneumococcal pneumonia: a meta-analysis. Clin. Infect. Dis. 51(6):692–699. doi:10.1086/655828. PMID:20715907.

    Weinberger, D.M., Malley, R., and Lipsitch, M. 2011. Serotype replacement indisease after pneumococcal vaccination. Lancet, 378(9807): 1962–1973. doi:10.1016/S0140-6736(10)62225-8. PMID:21492929.

    Whitney, C.G., Farley, M.M., Hadler, J., Harrison, L.H., Bennett, N.M., Lynfield, R.,Reingold, A., Cieslak, P.R., Pilishvili, T., Jackson, D., Facklam, R.R.,Jorgensen, J.H., and Schuchat, A. 2003. Decline in invasive pneumococcaldisease after the introduction of protein–polysaccharide conjugate vaccine.N. Engl. J. Med. 348(18): 1737–1746. doi:10.1056/NEJMoa022823. PMID:12724479.

    World Health Organization. 2007. Pneumococcal conjugate vaccine for child-hood immunization — WHO position paper. Wkly. Epidemiol. Rec. 82(12):93–104. PMID:17380597.

    Winters, M., Patrick, D.M., Marra, F., Buxton, J., Chong, M., Isaac-Renton, J.L.,Shaw, C., Tyrrell, G.J., Lovgren, M., and Paulus, S. 2008. Epidemiology ofinvasive pneumococcal disease in BC during the introduction of conjugatedpneumococcal vaccine. Can. J. Public Health, 99(1): 57–61. PMID:18435393.

    Wong, K., McGeer, A., Green, K., Shigayeva, A., Plevneshi, A., Rudnick, W., Low,D.E., and TIBDN. 2012. Lack of impact of infant PCV vaccination on rates ofadult invasive pneumococcal disease in Ontario Canada. In Proceedings ofthe 52nd Interscience Conference on Antimicrobial Agents and Chemother-apy, San Francisco, California, USA.

    788 Can. J. Microbiol. Vol. 59, 2013

    Published by NRC Research Press

    PTAB PAGE 11/12 MERCK EXHIBIT 1078

    http://www.phac-aspc.gc.ca/im/vpd-mev/pneumococcal-eng.phphttp://www.phac-aspc.gc.ca/im/vpd-mev/pneumococcal-eng.phphttp://www.phac-aspc.gc.ca/publicat/cig-gci/p04-pneu-eng.php%23ruhttp://www.phac-aspc.gc.ca/publicat/cig-gci/p04-pneu-eng.php%23ruhttp://www.phac-aspc.gc.ca/im/ptimprog-progimpt/table-1-eng.phphttp://dx.doi.org/10.1016/j.vaccine.2010.04.020http://www.ncbi.nlm.nih.gov/pubmed/20416266http://dx.doi.org/10.3201/eid1907.121830http://www.ncbi.nlm.nih.gov/pubmed/23763847http://dx.doi.org/10.1001/jama.285.13.1729http://dx.doi.org/10.1001/jama.285.13.1729http://www.ncbi.nlm.nih.gov/pubmed/11277827http://dx.doi.org/10.1097/INF.0b013e318187e215http://www.ncbi.nlm.nih.gov/pubmed/19116604http://www.ncbi.nlm.nih.gov/pubmed/22338325http://dx.doi.org/10.1093/clinids/22.6.973http://dx.doi.org/10.1093/clinids/22.6.973http://www.ncbi.nlm.nih.gov/pubmed/8783696http://dx.doi.org/10.1007/s10096-011-1468-7http://www.ncbi.nlm.nih.gov/pubmed/22052607http://dx.doi.org/10.1016/j.vaccine.2009.03.063http://www.ncbi.nlm.nih.gov/pubmed/19464534http://www.census.gov/popest/data/state/totals/2011/http://www.census.gov/popest/data/state/totals/2011/http://dx.doi.org/10.1086/655828http://www.ncbi.nlm.nih.gov/pubmed/20715907http://dx.doi.org/10.1016/S0140-6736(10)62225-8http://www.ncbi.nlm.nih.gov/pubmed/21492929http://dx.doi.org/10.1056/NEJMoa022823http://www.ncbi.nlm.nih.gov/pubmed/12724479http://www.ncbi.nlm.nih.gov/pubmed/17380597http://www.ncbi.nlm.nih.gov/pubmed/18435393

  • Copyright of Canadian Journal of Microbiology is the property of Canadian SciencePublishing and its content may not be copied or emailed to multiple sites or posted to alistserv without the copyright holder's express written permission. However, users may print,download, or email articles for individual use.

    PTAB PAGE 12/12 MERCK EXHIBIT 1078

    ArticleIntroductionMaterials and methodsResultsIsolate informationIncidence of diseasePCV13 serotypesOverall serotype distributionAge distribution of serotypesAntimicrobial resistance

    DiscussionConclusions

    AcknowledgementsReferences