74
7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors Java Synchronization

7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

Embed Size (px)

Citation preview

Page 1: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.1

Process Synchronization

• Background

• The Critical-Section Problem

• Synchronization Hardware

• Semaphores

• Classical Problems of Synchronization

• Monitors

• Java Synchronization

Page 2: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.2

Background

• Concurrent access to shared data may result in data inconsistency.

• Maintaining data consistency requires mechanisms to ensure the orderly execution of cooperating processes.

Page 3: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.3

Bounded Buffer

public class BoundedBuffer {

public void enter(Object item) {

// producer calls this method

}

public Object remove() {

// consumer calls this method

}

// potential race condition on count

private int count;

}

Page 4: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.4

enter() Method

// producer calls this method

public void enter(Object item) {

while (count == BUFFER_SIZE)

; // do nothing

// add an item to the buffer

++count;

buffer[in] = item;

in = (in + 1) % BUFFER_SIZE;

}

Page 5: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.5

remove() Method

// consumer calls this method

public Object remove() {

Object item;

while (count == 0)

; // do nothing

// remove an item from the buffer

--count;

item = buffer[out];

out = (out + 1) % BUFFER_SIZE;

return item;

}

Page 6: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.6

Issues

• count++ load count in register;

register register +1;

store register in count ;

• count : similarly

• count is a shared variable; the effect of count++ and count– is imprevisible

Page 7: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.7

Critical Section (or Region)

• Critical Section part of code:

when one process is executing it, no other process may be in it

Page 8: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.8

Critical-Section Requierements

1. Mutual Exclusion. If process Pi is executing in its critical section, then no other processes can be executing in their critical sections.

2. Progress. If no process is executing in its critical section and there exist some processes that wish to enter their critical section, then the selection of the processes that will enter the critical section next cannot be postponed indefinitely.

3. Bounded Waiting. A bound must exist on the number of times that other processes are allowed to enter their critical sections after a process has made a request to enter its critical section and before that request is granted.

Assume that each process executes at a nonzero speed No assumption concerning relative speed of the n

processes.

Page 9: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.9

Worker Thread

public class Worker extends Thread {

public Worker(String n, int i, MutualExclusion s) {

name = n;

id = i;

shared = s;

}

public void run() { /* see next slide */ }

private String name;

private int id;

private MutualExclusion shared;

}

Page 10: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.10

run() Method of Worker Thread

public void run() {

while (true) {

shared.enteringCriticalSection(id);

// in critical section code

shared.leavingCriticalSection(id);

// out of critical section code

}

}

Page 11: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.11

MutualExclusion Abstract Class

public abstract class MutualExclusion {

public static void criticalSection() {

// simulate the critical section

}

public static void nonCriticalSection() {

// simulate the non-critical section

}

public abstract void enteringCriticalSection(int t);

public abstract void leavingCriticalSection(int t);

public static final int TURN_0 = 0;

public static final int TURN_1 = 1;

}

Page 12: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.12

Testing Each Algorithm

public class TestAlgorithm

{

public static void main(String args[]) {

MutualExclusion alg = new Algorithm_1();

Worker first = new Worker("Runner 0", 0, alg);

Worker second = new Worker("Runner 1", 1, alg);

first.start();

second.start();

}

}

Page 13: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.13

Algorithm 1

public class Algorithm_1 extends MutualExclusion {

public Algorithm_1() {

turn = TURN_0;

}

public void enteringCriticalSection(int t) {

while (turn != t)

Thread.yield();

}

public void leavingCriticalSection(int t) {

turn = 1 - t;

}

private int turn;

}

PROGRESS – is not satisfied (consumer and producer must alternate).

Page 14: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.14

Algorithm 2

public class Algorithm_2 extends MutualExclusion {

public Algorithm_2() {

flag[0] = false;

flag[1] = false;

}

public void enteringCriticalSection(int t) {

// see next slide

}

public void leavingCriticalSection(int t) {

flag[t] = false;

}

private boolean[] flag = new boolean[2];

}

Page 15: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.15

Algorithm 2 – enteringCriticalSection()

public void enteringCriticalSection(int t) {

int other = 1 - t;

flag[t] = true; // I want to enter in the critical section

while (flag[other] == true)

Thread.yield();

}

Problem: what if both set flag[t]=true ?

Page 16: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.16

Algorithm 3

public class Algorithm_3 extends MutualExclusion {

public Algorithm_3() {

flag[0] = false;

flag[1] = false;

turn = TURN_0;

}

public void enteringCriticalSection(int t) {/* see next slides */ }

public void leavingCriticalSection(int t) {{/* see next slides */ }

private volatile int turn;

private volatile boolean[] flag = new boolean[2];

}

Page 17: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.17

Algorithm 3 – enteringCriticalSection()

public void enteringCriticalSection(int t) {

int other = 1 - t;

flag[t] = true;

turn = other;

while ( (flag[other] == true) && (turn == other) )

Thread.yield();

}

Page 18: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.18

Algo. 3 – leavinging Critical Section()

public void leavingCriticalSection(int t) {

flag[t] = false;

}

Page 19: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.19

Synchronization Hardware

public class HardwareData {

public HardwareData(boolean v) {

data = v;

}

public boolean get() {

return data;

}

public void set(boolean v) {

data = v;

}

private boolean data;

}

Page 20: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.20

Test-and-Set Instruction (mimicked in Java)

public class HardwareSolution

{

public static boolean testAndSet(HardwareData target) {

HardwareData temp = new HardwareData(target.get());

target.set(true);

return temp.get();

}

}

Page 21: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.21

Thread using Test-and-Set

HardwareData lock = new HardwareData(false);

while (true) {

while (HardwareSolution.testAndSet(lock))

Thread.yield(); // do nothing

// now in critical section code

lock.set(false);

// out of critical section

}

Page 22: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.22

Swap instruction

public static void swap(HardwareData a, HardwareData b) {

HardwareData temp = new HardwareData(a.get());

a.set(b.get());

b.set(temp.get());

}

Page 23: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.23

Thread using Swap

HardwareData lock = new HardwareData(false);

HardwareData key = new HardwareData(true);

while (true) {

key.set(true);

do {

HardwareSolution.swap(lock,key);

} while (key.get() == true);

// now in critical section code

lock.set(false);

// out of critical section

}

Page 24: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.24

Semaphore- simple version

• Synchronization tool that does not require busy waiting.

• Semaphore S – integer variable (this is the simple version; still requires busy waiting)

• can only be accessed via two indivisible (atomic) operations

P (S): while S 0 do no-op;S--;

V(S): S++;

• P (probieren –in dutch) is also called wait.

• V (verhoegen- in dutch) is also called signal.

Page 25: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.25

Semaphore as General Synchronization Tool

Semaphore S; // initialized to 1

P(S);

CriticalSection()

V(S);

Page 26: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.26

Semaphore: Counter + Queue

P(S) {

if (value < = 0) {

add this process to list

block()

}

value--;

}

V(S) {

value++;

if (value > 0) {

remove a process P from list

wakeup(P);

}

}

Page 27: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.27

Synchronization Using Semaphores

public class FirstSemaphore {

public static void main(String args[ ]) {

Semaphore sem = new Semaphore(1);

Worker[] bees = new Worker[5];

for (int i = 0; i < 5; i++)

bees[i] = new Worker(sem, "Worker " + (new Integer(i)).toString() );

for (int i = 0; i < 5; i++)

bees[i].start();

}

}

Page 28: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.28

Worker Thread

public class Worker extends Thread {

public Worker(Semaphore s, String n) { sem = s; name=n;}

public void run() {

while (true) {

sem.P();

// in critical section

sem.V();

// out of critical section

}

}

private Semaphore sem;

private String name;

}

Page 29: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.29

Deadlock and Starvation

• Deadlock – two or more processes are waiting indefinitely for an event that can be caused by only one of the waiting processes.

• Let S and Q be two semaphores initialized to 1

P0 P1

P(S); P(Q);

P(Q); P(S);

V(S); V(Q);

V(Q) V(S);

• Starvation – indefinite blocking. A process may never be removed from the semaphore queue in which it is suspended.

Page 30: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.30

Two Types of Semaphores

• Counting semaphore – integer value can range over a finite domain.

• Binary semaphore – integer value can range only between 0 and 1; can be simpler to implement.

Page 31: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.31

Classical Problems of Synchronization

• Bounded-Buffer Problem (Producer-Consumer Problem)

• Readers and Writers Problem

• Dining-Philosophers Problem

Page 32: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.32

Bounded-Buffer Problem

public class BoundedBuffer {

public BoundedBuffer() { /* see next slides */ }

public void enter() { /* see next slides */ }

public Object remove() { /* see next slides */ }

private static final int BUFFER_SIZE = 2;

private Semaphore mutex;

private Semaphore empty;

private Semaphore full;

private int in, out;

private Object[] buffer;

}

Page 33: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.33

Bounded Buffer Constructor

public BoundedBuffer() {

// buffer is initially empty

count = 0;

in = 0;

out = 0;

buffer = new Object[BUFFER_SIZE];

mutex = new Semaphore(1);

empty = new Semaphore(BUFFER_SIZE); // how many empty slots

full = new Semaphore(0); //how many full slots

}

Page 34: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.34

enter() Method

public void enter(Object item) {

empty.P();

mutex.P();

// add an item to the buffer

buffer[in] = item;

in = (in + 1) % BUFFER_SIZE;

mutex.V();

full.V();

}

Page 35: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.35

remove() Method

public Object remove() {

full.P();

mutex.P();

// remove an item from the buffer

Object item = buffer[out];

out = (out + 1) % BUFFER_SIZE;

mutex.V();

empty.V();

return item;

}

Page 36: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.36

Readers-Writer Problem

• Readers do not do any harm.

• Writers do they have critical section, i.e., they cannot access the DataBase at the same time with any other thread.

• Requierement: a reader can wait only if a writer has been granted access to the critical section.

Page 37: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.37

Readers-Writers Problem: Reader

public class Reader extends Thread {

public Reader(Database db) {

server = db;

}

public void run() {

int c;

while (true) {

c = server.startRead();

// now reading the database

c = server.endRead();

}

}

private Database server;

}

Page 38: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.38

Readers-Writers Problem: Writer

public class Writer extends Thread {

public Writer(Database db) {

server = db;

}

public void run() {

while (true) {

server.startWrite();

// now writing the database

server.endWrite();

}

}

private Database server;

}

Page 39: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.39

Readers-Writers Problem (cont)

public class Database{ public Database() { readerCount = 0; mutex = new Semaphore(1); db = new Semaphore(1); }

public int startRead() { /* see next slides */ }public int endRead() { /* see next slides */ }public void startWrite() { /* see next slides */ }

public void endWrite() { /* see next slides */ }

private int readerCount; // number of active readers Semaphore mutex; // controls access to readerCount Semaphore db; // controls access to the database}

Page 40: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.40

startRead() Method

public int startRead() {

mutex.P();

++readerCount;

// if I am the first reader tell all others

// that the database is being read

if (readerCount == 1)

db.P(); // lock the DB so that a writer does not enter

mutex.V(); // allow other readers

return readerCount;

}

Page 41: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.41

endRead() Method

public int endRead() {

mutex.P();

--readerCount;

// if I am the last reader tell all others

// that the database is no longer being read

if (readerCount == 0)

db.V(); // unlock the DB for writers

mutex.V();

return readerCount;

}

Page 42: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.42

Writer Methods

public void startWrite() {

db.P();

}

public void endWrite() {

db.V();

}

Page 43: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.43

Dining-Philosophers Problem

• Shared data

Semaphore chopStick[] = new Semaphore[5];

Page 44: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.44

Dining-Philosophers Problem (Cont.)

• Philosopher i:while (true) {

// get left chopstickchopStick[i].P();// get right chopstickchopStick[(i + 1) % 5].P();

// eat for awhile

//return left chopstick chopStick[i].V();// return right chopstick chopStick[(i + 1) % 5].V();

// think for awhile}

May lead to deadlock.

Page 45: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.45

Monitors

• A monitor is a high-level abstraction that provides thread safety.

• Only one thread may be active within the monitor at a time.

• It’s basically a collection of routines; only one thread may execute

any of the routines in the monitor at a time.

monitor monitor-name

{

// variable declarations

public p1(…) {

}

public p2(…) {

}

}

Page 46: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.46

Condition Variables

• condition x, y;

• A thread that invokes x.wait is suspended until another thread invokes x.signal

Page 47: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.47

Monitor with condition variables

Page 48: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.48

Solution to Dining Philosophers

monitor diningPhilosophers {

int[] state = new int[5];

static final int THINKING = 0;

static final int HUNGRY = 1;

static final int EATING = 2;

condition[] self = new condition[5];

public diningPhilosophers {

for (int i = 0; i < 5; i++)

state[i] = THINKING;

}

public entry pickUp(int i) { /* see next slides */ }

public entry putDown(int i) { /* see next slides */ }

private test(int i) {/* see next slides */ }

}

Page 49: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.49

pickUp() Procedure

public entry pickUp(int i) {

state[i] = HUNGRY;

test(i); // check if neighbors are eating or not

// if they are not, state[I] EATING in test(i)

if (state[i] != EATING)

self[i].wait;

}

Page 50: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.50

putDown() Procedure

public entry putDown(int i) {

state[i] = THINKING;

// test left and right neighbors

test((i + 4) % 5);

test((i + 1) % 5);

}

Page 51: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.51

test() Procedure

private test(int i) {

if ( (state[(i + 4) % 5] != EATING) &&

(state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING) ) {

state[i] = EATING;

self[i].signal;

}

}

Page 52: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.52

Java Synchronization

• Synchronized, wait(), notify() statements

• Multiple Notifications

• Block Synchronization

• Java Semaphores

• Java Monitors

Page 53: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.53

synchronized Statement

• Every object has a lock associated with it.

• Calling a synchronized method requires “owning” the lock.

• If a calling thread does not own the lock (another thread already owns it), the calling thread is placed in the wait set for the object’s lock.

• The lock is released when a thread exits the synchronized method.

Page 54: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.54

Entry Set

Page 55: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.55

synchronized enter() Method

public synchronized void enter(Object item) {

while (count == BUFFER_SIZE)

Thread.yield();

++count;

buffer[in] = item;

in = (in + 1) % BUFFER_SIZE;

}

Page 56: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.56

synchronized remove() Method

public synchronized Object remove() {

Object item;

while (count == 0)

Thread.yield();

--count;

item = buffer[out];

out = (out + 1) % BUFFER_SIZE;

return item;

}

Page 57: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.57

The wait() Method

• When a thread calls wait(), the following occurs:

- the thread releases the object lock.

- thread state is set to blocked.

- thread is placed in the wait set.

Page 58: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.58

Entry and Wait Sets

Page 59: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.59

The notify() Method

• When a thread calls notify(), the following occurs:

- selects an arbitrary thread T from the wait set.

- moves T to the entry set.

- sets T to Runnable.

T can now compete for the object’s lock again.

Page 60: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.60

enter() with wait/notify Methods

public synchronized void enter(Object item) {

while (count == BUFFER_SIZE)

try {

wait();

}

catch (InterruptedException e) { }

}

++count;

buffer[in] = item;

in = (in + 1) % BUFFER_SIZE;

notify();

}

Page 61: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.61

remove() with wait/notify Methods

public synchronized Object remove() {

Object item;

while (count == 0)

try {

wait();

}

catch (InterruptedException e) { }

--count;

item = buffer[out];

out = (out + 1) % BUFFER_SIZE;

notify();

return item;

}

Page 62: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.62

Multiple Notifications

• notify() selects an arbitrary thread from the wait set. *This may not be the thread that you want to be selected.

• Java does not allow you to specify the thread to be selected.

• notifyAll() removes ALL threads from the wait set and places them in the entry set. This allows the threads to decide among themselves who should proceed next.

• notifyAll() is a conservative strategy that works best when multiple threads may be in the wait set.

Page 63: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.63

Reader Methods with Java Synchronization

public class Database { public Database() { readerCount = 0; dbReading = false; dbWriting = false; }

public synchronized int startRead() { /* see next slides */ }public synchronized int endRead() { /* see next slides */ }public synchronized void startWrite() { /* see next slides */ }

public synchronized void endWrite() { /* see next slides */ }

private int readerCount; private boolean dbReading; private boolean dbWriting;}

Page 64: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.64

startRead() Method

public synchronized int startRead() {

while (dbWriting == true) {

try {

wait();

}

catch (InterruptedException e) { }

++readerCount;

if (readerCount == 1)

dbReading = true;

return readerCount;

}

Page 65: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.65

endRead() Method

public synchronized int endRead() {

--readerCount

if (readerCount == 0)

dbReading = false;

db.notifyAll();

return readerCount;

}

Page 66: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.66

Writer Methods

public void startWrite() {

while (dbReading == true || dbWriting == true)

try {

wait();

}

catch (InterruptedException e) { }

dbWriting = true;

}

public void endWrite() {

dbWriting = false;

notifyAll();

}

Page 67: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.67

Block Synchronization

• Blocks of code – rather than entire methods – may be declared as synchronized.

• This yields a lock scope that is typically smaller than a synchronized method.

Page 68: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.68

Block Synchronization (cont)

Object mutexLock = new Object();

. . .

public void someMethod() {

// non-critical section

synchronized(mutexLock) {

// critical section

}

// non-critical section

}

Page 69: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.69

Java Semaphores

• Java does not provide a semaphore, but a basic semaphore can be constructed using Java synchronization mechanism.

Page 70: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.70

Semaphore Class

public class Semaphore {

public Semaphore() {

value = 0;

}

public Semaphore(int v) {

value = v;

}

public synchronized void P() { /* see next slide */ }

public synchronized void V() { /* see next slide */ }

private int value;

}

Page 71: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.71

P() Operation

public synchronized void P() {

while (value <= 0) {

try {

wait();

}

catch (InterruptedException e) { }

}

value --;

}

Page 72: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.72

V() Operation

public synchronized void V() {

++value;

notify();

}

Page 73: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.73

Solaris 2 Synchronization

• Solaris 2 Provides:

- adaptive mutex (similar to a busy-waiting semaphore, but avoids some spinning if the process having the lock is blocked)

- condition variables

- semaphores

- reader-writer locks

Page 74: 7.1 Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors

7.74

Windows 2000 Synchronization

• Windows NT Provides:

- mutex

- critical sections

- semaphores

- event objects (similar to condition variables)