Author
others
View
6
Download
0
Embed Size (px)
Algebraic*Trig*Worksheet**1) Simplify*the*Following:*
a) 1− csc x − cos x ⋅cot x( )2cos x
*
**
***
b) *−
csc xsin x
−1
cot x ⋅sin xcos2 x −1
*** *
**
***
c) 3− 3csc2 x
− 2sec2 x
1+ cos1+ sec
⎛⎝⎜
⎞⎠⎟2 **
******
d) −cot2 x − 1tan2 x
⎛⎝⎜
⎞⎠⎟
1csc x
− tan xcos x
csc x − csc x ⋅ 1sec2 x
⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟**
******
e) cos x sin3 x + sin3 xcos x ⋅sin x
+
2tan x
⋅ csc xsec x
cot xsin x
+ sin x ⋅cos x ⋅sec2 x
1− cos2 x
⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟**
** *
2) sin 18!( ) = 5 −1
4.*Find* sin 78! .**
Hint:* sin(A + B) = sinAcosB + cosAsinB **
*******3) Evaluate* cos arcsin 3
5 − arctan 512( ) .*
*Hint:* cos(A − B) = cosAcosB + sinAsinB ********
*4) Evaluate* tan arcsin x + arctan y( ) .**
Hint:* tan(A + B) = tanA + tanB1− tanA tanB
**
**********
5) Earlier*in*the*term,*there*was*a*HW*question*that*was*impossible*without*the*double*angle*formula.*I*told*you*to*just*assume*that* sin 2x( ) = 2sin xcos x .*Prove*this*fact*using*an*angle*addition*formula.**
*