20
3,350+ OPEN ACCESS BOOKS 108,000+ INTERNATIONAL AUTHORS AND EDITORS 115+ MILLION DOWNLOADS BOOKS DELIVERED TO 151 COUNTRIES AUTHORS AMONG TOP 1% MOST CITED SCIENTIST 12.2% AUTHORS AND EDITORS FROM TOP 500 UNIVERSITIES Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI) Chapter from the book Fourier Transforms - Approach to Scientific Principles Downloaded from: http://www.intechopen.com/books/fourier-transforms-approach- to-scientific-principles PUBLISHED BY World's largest Science, Technology & Medicine Open Access book publisher Interested in publishing with IntechOpen? Contact us at [email protected]

689 ' # '5& *#6 & 7cdn.intechopen.com/pdfs-wm/15149.pdf · 2018-04-05 · Orthogonal Discrete Fourier and Cosine Matrices for Signal Processing 141 00 22 20 21 22 11 11 w w F H w

  • Upload
    others

  • View
    9

  • Download
    1

Embed Size (px)

Citation preview

Page 1: 689 ' # '5& *#6 & 7cdn.intechopen.com/pdfs-wm/15149.pdf · 2018-04-05 · Orthogonal Discrete Fourier and Cosine Matrices for Signal Processing 141 00 22 20 21 22 11 11 w w F H w

3,350+OPEN ACCESS BOOKS

108,000+INTERNATIONAL

AUTHORS AND EDITORS115+ MILLION

DOWNLOADS

BOOKSDELIVERED TO

151 COUNTRIES

AUTHORS AMONG

TOP 1%MOST CITED SCIENTIST

12.2%AUTHORS AND EDITORS

FROM TOP 500 UNIVERSITIES

Selection of our books indexed in theBook Citation Index in Web of Science™

Core Collection (BKCI)

Chapter from the book Fourier Transforms - Approach to Scientific PrinciplesDownloaded from: http://www.intechopen.com/books/fourier-transforms-approach-to-scientific-principles

PUBLISHED BY

World's largest Science,Technology & Medicine

Open Access book publisher

Interested in publishing with IntechOpen?Contact us at [email protected]

Page 2: 689 ' # '5& *#6 & 7cdn.intechopen.com/pdfs-wm/15149.pdf · 2018-04-05 · Orthogonal Discrete Fourier and Cosine Matrices for Signal Processing 141 00 22 20 21 22 11 11 w w F H w

8

Orthogonal Discrete Fourier and Cosine Matrices for Signal Processing

Daechul Park1 and Moon Ho Lee2 1Hannam University,

2Chonbuk National University

Korea

1. Introduction

The A DFT (Discrete Fourier Transform) has seen studied and applied to signal processing

and communication theory. The relation between the Fourier matrix and the Hadamard

transform was developed in [Ahmed & Rao, 1975; Whelchel & Guinn, 1968] for signal

representation and classification and the Fast Fourier-Hadamand Transform(FFHT) was

proposed. This idea was further investigated in [Lee & Lee, 1998] as an extension of the

conventional Hadamard matrix. Lee et al [Lee & Lee, 1998] has proposed the Reverse Jacket

Transform(RJT) based on the decomposition of the Hadamard matrix into the Hadamard

matrix(unitary matrix) itself and a sparse matrix. Interestingly, the Reverse Jacket(RJ) matrix

has a strong geometric structure that reveals a circulant expansion and contraction

properties from a basic 2x2 sparse matrix.

The discrete Fourier transform (DFT) is an orthogonal matrix with highly practical value

for representing signals and images [Ahmed & Rao, 1975; Lee, 1992; Lee, 2000]. Recently,

the Jacket matrices which generalize the weighted Hadamard matrix were introduced in

[Lee, 2000], [Lee & Kim, 1984, Lee, 1989, Lee & Yi, 2001; Fan & Yang, 1998]. The Jacket

matrix1 is an abbreviated name of a reverse Jacket geometric structure. It includes the

conventional Hadamard matrix [Lee, 1992; Lee, 2000; Lee et al., 2001; Hou et. al., 2003],

but has the weights,ω , that are j or 2k , where k is an integer, and 1j = − , located in

the central part of Hadamard matrix. The weighted elements' positions of the forward

matrix can be replaced by the non-weighted elements of its inverse matrix and the signs

of them do not change between the forward and inverse matrices, and they are only as

element inverse and transpose. This reveals an interesting complementary matrix

relation.

Definition 1: If a matrix m

J⎡ ⎤⎣ ⎦ of size m m× has nonzero elements

0,0 0,1 0, 1

1,0 1,1 1, 1

1,0 1,1 1, 1

....

....

....

m

m

m

m m m m

j j j

j j jJ

j j j

−−

− − − −

⎡ ⎤⎢ ⎥⎢ ⎥=⎡ ⎤⎣ ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦B B B

, (6-1)

www.intechopen.com

Page 3: 689 ' # '5& *#6 & 7cdn.intechopen.com/pdfs-wm/15149.pdf · 2018-04-05 · Orthogonal Discrete Fourier and Cosine Matrices for Signal Processing 141 00 22 20 21 22 11 11 w w F H w

Fourier Transforms - Approach to Scientific Principles

140

0,0 0,1 0, 1

1 1,0 1,1 1, 1

1,0 1,1 1, 1

1 / 1 / .... 1 /

1 / 1 / .... 1 /1

1 / 1 / .... 1 /

T

m

m

m

m m m m

j j j

j j jJ

C

j j j

−− −

− − − −

⎡ ⎤⎢ ⎥⎢ ⎥=⎡ ⎤⎣ ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦B B B

(6-2)

where C is the normalizing constant, and T is of matrix transposition, then the matrix m

J⎡ ⎤⎣ ⎦

is called a Jacket matrix [Whelchel & Guinn, 1968],[Lee et al., 2001],[Lee et al, 2008; Chen et

al., 2008]. Especially orthogonal matrices, such as Hadamard, DFT, DCT, Haar, and Slant

matrices belong to the Jacket matrices family [Lee et al., 2001]. In addition, the Jacket

matrices are associated with many kind of matrices, such as unitary matrices, and Hermitian

matrices which are very important in communication (e.g., encoding), mathematics, and

physics. In section 2 DFT matrix is revisited in the sense of sparse matrix factorization. Section 3

presents recursive factorization algorithms of DFT and DCT matrix for fast computation.

Section 4 proposes a hybrid architecture for implentation of algorithms simply by adding a

switching device on a single chip module. Lastly, conclusions were drawn in section 4.

2. Preliminary of DFT presentation

The discrete Fourier transform (DFT) is a Fourier representation of a given sequence x(m),

0 1m N≤ ≤ − and is defined as

1

0

( ) ( ) , 0 1N

nm

m

X n x m W n N−=

= ≤ ≤ −∑ , (6-3)

where 2

jNW e

−= π. Let’s denote N -point DFT matrix as nm

NN

F W⎡ ⎤= ⎣ ⎦ , , {0,1,2,..., 1}n m N= − ,

where 2

jNW e

−= π (see about DFT in appendix), and the N N× Sylvester Hadamard matrix

as N

H⎡ ⎤⎣ ⎦ , respectively. The Sylvester Hadamard matrix is generated recursively by

successive Kronecker products,

22 NN

H H H= ⊗⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , (6-4)

for N=4, 8, 16, … and 2

1 1

1 1H

⎡ ⎤=⎡ ⎤ ⎢ ⎥⎣ ⎦ −⎣ ⎦ . For the remainder of this chapter, analysis will be

concerned only with N=2k, k=1,2,3, … as the dimensionality of both the F and H matrices.

Definition 2: A sparse matrixN

S⎡ ⎤⎣ ⎦ , which relates N

F⎡ ⎤⎣ ⎦ andN

H⎡ ⎤⎣ ⎦ , can be computed from the

factorization of F based on H. The structure of the S matrix is rather obscure. However, a much less complex and more

appealing relationship will be identified for S [Park et al., 1999].

To illustrate the DFT using direct product we alter the denotation of W to lower case 2jw e−= π , so that

nNw becomes the n-th root of unit for N -point W . For instance, the DFT

matrix of dimension 2 is given by:

www.intechopen.com

Page 4: 689 ' # '5& *#6 & 7cdn.intechopen.com/pdfs-wm/15149.pdf · 2018-04-05 · Orthogonal Discrete Fourier and Cosine Matrices for Signal Processing 141 00 22 20 21 22 11 11 w w F H w

Orthogonal Discrete Fourier and Cosine Matrices for Signal Processing

141

0 02 2

2 0 212 2

1 1

1 1

w wF H

w w

⎡ ⎤ ⎡ ⎤⎢ ⎥= = =⎡ ⎤ ⎡ ⎤⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ −⎣ ⎦⎣ ⎦ . (6-5)

Let’s define

04

2 14

1 00

00

wW

jw

⎡ ⎤ ⎡ ⎤⎢ ⎥= =⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎢ ⎥ −⎣ ⎦⎣ ⎦ and

2 2 2

1

1

jE F W

j

−⎡ ⎤= =⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , (6-6)

and in general, We define

( )1 /20/2 1/2 2/2( , , ,..., )N NN N N

NW diag w w w w

−=⎡ ⎤⎣ ⎦

and

[ ] [ ] [ ]TN N NN N N

E F W P F W= =⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ # . (6-7)

where [ ]NP is a permutation matrix and [ ] [ ] [ ]N N NF P F=# is a permuted version of DFT

matrix [ ]NF .

3. A sparse matrix factorization of orthogonal transforms

3.1 A sparse matrix analysis of discrete Fourier transform

Now we will present the Jacket matrix from a direct product of a sparse matrix computation and representation given by [Lee, 1989], [Lee & Finlayson, 2007]

1

m m mJ H S

m=⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , (6-8)

where 12 , {1,2,3,4,...}km k+= ∈ and m

S⎡ ⎤⎣ ⎦ is sparse matrix of m

J⎡ ⎤⎣ ⎦ . Thus the inverse of the

Jacket matrix can be simply written as

( ) ( )1 1

m m mJ S H

− −=⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ . (6-9)

As mentioned previously, the DFT matrix is also a Jacket matrix. By considering the sparse

matrix for the 4-piont DFT matrix4

F⎡ ⎤⎣ ⎦ ,

0 0 0 0

2 32 2 20 1 2 3

2 4 64 0 2 4 62 2 2

0 3 6 9

3 6 92 2 2

1 1 1 11 1 1 1

1 1 1

1 1 1 111 1

1

j j j

j j j

j j j

W W W We e eW W W W j j

FW W W W e e e

j jW W W We e e

− − × − ×

− × − × − ×

− × − × − ×

⎡ ⎤⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥⎢ ⎥ ⎢ ⎥= = =⎡ ⎤⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ − −⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

π π π

π π π

π π π

.

we can rewrite 4

F⎡ ⎤⎣ ⎦ by using permutations as

www.intechopen.com

Page 5: 689 ' # '5& *#6 & 7cdn.intechopen.com/pdfs-wm/15149.pdf · 2018-04-05 · Orthogonal Discrete Fourier and Cosine Matrices for Signal Processing 141 00 22 20 21 22 11 11 w w F H w

Fourier Transforms - Approach to Scientific Principles

142

2 2

4 442 2

1 0 0 0 1 1 1 1 1 1 1 1

0 0 1 0 1 1 1 1 1 1 [ ] [ ]Pr

0 1 0 0 1 1 1 1 1 1

0 0 0 1 1 1 1 1

j j F FF F

j j E E

j j j j

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎡ ⎤− − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤ = = = =⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − −⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

# ##

2 2 2

2 2 2

[ ] 0

0

T

I I F

I I E

⎛ ⎞⎡ ⎤⎡ ⎤⎜ ⎟= ⎢ ⎥⎢ ⎥⎜ ⎟− ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠#

, (6-10)

where 2

1

1

jE

j

−⎡ ⎤= ⎢ ⎥⎣ ⎦ , its inverse matrix is from element-inverse, such that

( ) 1

2

1 1 1 /1 1 /

1 /1 1 /

Tj

Ej j j

− ⎛ ⎞−⎡ ⎤ ⎡ ⎤= = ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟−⎣ ⎦ ⎣ ⎦⎝ ⎠ . (6-11)

In general, we can write that

/2 /2/2 /2 /2

/2 /2/2 /2 /2

[ ] [ ] [ ] 0Pr

0

T

N NN N N

N NNN NN N N

I IF F FF F

I IE E E

⎛ ⎞⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤ ⎜ ⎟= = =⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎜ ⎟−−⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠# # #

# , (6-12)

where 2 2

F F⎡ ⎤=⎡ ⎤⎣ ⎦ ⎣ ⎦# . And the submatrix NE could be written from (6-7) by

[ ] [ ] PrN NN N NNE F W F W⎡ ⎤= =⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦# , (6-13)

where

0

1

1

0 0

0 0

0 0

N

N

W

WW

W −

⎡ ⎤⎢ ⎥⎢ ⎥=⎡ ⎤⎣ ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

A

B D BA

, and W is the complex unit for 2N point DFT matrix.

For example, 2

1

1

jE

j

−⎡ ⎤=⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎣ ⎦ can be calculated by using

0

12 2 22

1 0 1 1 1 1 1 0 10Pr

0 1 1 1 1 1 0 10

jWE F W

j jW

⎡ ⎤ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤= = = =⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ − − −⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦# . (6-14)

By using the results from (6-12) and (6-13), we have a new DFT matrix decomposition as

/2 /2 /2

/2 /2 /2

[ ] 0Pr

0

T

N N N

N NNN N N

I I FF F

I I E

⎛ ⎞⎡ ⎤⎡ ⎤⎡ ⎤ ⎜ ⎟= =⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎜ ⎟− ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠#

#

/2 /2/2

/2 /2/2

[ ] 0

0

N NN

N NN

I IF

I IE

⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦⎣ ⎦#

www.intechopen.com

Page 6: 689 ' # '5& *#6 & 7cdn.intechopen.com/pdfs-wm/15149.pdf · 2018-04-05 · Orthogonal Discrete Fourier and Cosine Matrices for Signal Processing 141 00 22 20 21 22 11 11 w w F H w

Orthogonal Discrete Fourier and Cosine Matrices for Signal Processing

143

/2 /2 /2

/2 /2/2 /2 /2

[ ] 0

0 Pr [ ]

N N N

NN NN N N

F I IF

I IF W

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥= ⎢ ⎥⎣ ⎦ −⎢ ⎥ ⎣ ⎦⎣ ⎦#

##

/2 /2 /2 /2 /2

/2 /2 /2 /2/2

0 [ ] 0 0

0 Pr 00 [ ]

N N N N N

N N N NN

I F I I I

W I IF

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦#

# . (6-15)

Finally, based on the recursive form we have

( ) ( )1 /2 /2 /2 /2 /2

/2 /2 /2 /2/2

0 [ ] 0 0Pr Pr

0 Pr 00 [ ]

T N N N N N

N N NNN N N NN

I F I I IF F

W I IF

− ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥= =⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ −⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦#

##

( ) /2 2/4 /2 2

/2 2

/2 /2 /22 2 2

/4 /4/2 /2 /22 2 2

0 0Pr ...

0 Pr 0 Pr

00..

00

T N

N N NN

N N N

N NN N N

I II I F

I I II I II I

W I IW I I

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⊗ ⊗⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⊗ ⊗⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ −−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

. (6-16)

Using (6-16) butterfly data flow diagram for DFT transform is drawn from left to right to

perform [ ]NX F= x .

2/PrN

4/PrN

4/PrN

2Pr

2Pr

2Pr

2Pr

[ ]2F0

W

4/NW

[ ]2W

0W

0W

2W

22/ −NW

...

0W

2W

22/ −NW

...

[ ] 4/NW

0W

1W

12/ −NW

2W

3W

...

[ ] 2/NW

4/NW

0W

0W

4/NW

4/NW

Fig. 1. Butterfly data flow diagram of proposed DFT matrix with order N

3.2 A Sparse matrix analysis of discrete cosine transform

Similar to the section 3.1, we will present the DCT matrices by using the element inverse or block inverse Jacket like sparse matrix [Lee, 2000; Park et al., 1999] decomposition. In this

www.intechopen.com

Page 7: 689 ' # '5& *#6 & 7cdn.intechopen.com/pdfs-wm/15149.pdf · 2018-04-05 · Orthogonal Discrete Fourier and Cosine Matrices for Signal Processing 141 00 22 20 21 22 11 11 w w F H w

Fourier Transforms - Approach to Scientific Principles

144

section, the simple construction and fast computation for forward and inverse calculations and analysis of the sparse matrices, was very useful for developing the fast algorithms and orthogonal codes design. Discrete Cosine Transform (DCT) is widely used in image processing, and orthogonal transform. There are four typical DCT matrices [Rao & Yip, 1990; Rao & Hwang, 1996],

DCT - I: 1,

2cosI

N m nm n

mnC k k

N N+⎡ ⎤ =⎣ ⎦ π

, , 0,1,...,m n N= ; (6-17)

DCT - II: ,

1( )

2 2cosN

IIm

m n

m nC k

N N

+⎡ ⎤ =⎣ ⎦π

, , 0,1,..., 1m n N= − ; (6-18)

DCT - III: ,

1( )

2 2cosN

IIIn

m n

m nC k

N N

+⎡ ⎤ =⎣ ⎦π

, , 0,1,..., 1m n N= − ; (6-19)

DCT - IV: ,

1 1( )( )

2 2 2cosN

IV

m n

m nC

N N

+ +⎡ ⎤ =⎣ ⎦π

, , 0,1,..., 1m n N= − , (6-20)

where

1, 1,2,..., 1

1, 0,

2

j

j N

kj N

= −⎧⎪= ⎨ =⎪⎩.

To describe the computations of DCT, in this chapter, we will focus on the DCT - II algorithm, and introduce the sparse matrix decomposition and fast computations. The 2-by-2 DCT - II matrix can be simply written as

2

1 34 4

1 11 1

1 1 12 22 2

1 1 1 1 2

2 2

C

C C

⎡ ⎤⎡ ⎤ ⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥= = =⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎢ ⎥ −⎢ ⎥ ⎣ ⎦−⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦, (6-21)

where 1 2 can be seen as a special element inverse matrix of order 1, its inverse is 2 ,

and cos( / )ilC i l= π is the cosine unit for DCT computations.

Furthermore, 4-by-4 DCT - II matrix is of the form

1 3 5 78 8 8 842 6 6 28 8 8 8

3 7 1 58 8 8 8

1 1 1 1

2 2 2 2

C C C CC

C C C C

C C C C

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥=⎡ ⎤⎣ ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

, (6-22)

www.intechopen.com

Page 8: 689 ' # '5& *#6 & 7cdn.intechopen.com/pdfs-wm/15149.pdf · 2018-04-05 · Orthogonal Discrete Fourier and Cosine Matrices for Signal Processing 141 00 22 20 21 22 11 11 w w F H w

Orthogonal Discrete Fourier and Cosine Matrices for Signal Processing

145

we can write

1 3 5 7 2 6 6 28 8 8 8 8 8 8 84 42 6 6 2 1 3 5 78 8 8 8 8 8 8 8

3 7 1 5 3 7 1 58 8 8 8 8 8 8 8

1 1 1 1 1 1 1 11 0 0 0

2 2 2 2 2 2 2 20 0 1 0

0 1 0 0

0 0 0 1

C C C C C C C CP C

C C C C C C C C

C C C C C C C C

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

, (6-23)

where 4

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

P

⎡ ⎤⎢ ⎥⎢ ⎥=⎡ ⎤⎣ ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦ is permutation matrix.

NP⎡ ⎤⎣ ⎦ permutation matrix is a special case

which has the form

2 2

P I=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ , and

1 0 0 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 1

NP

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥=⎡ ⎤⎣ ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

A AA A

A

DD

, 4N ≥ ,

where

,i jN NP pr⎡ ⎤=⎡ ⎤⎣ ⎦ ⎣ ⎦ ,

with

,

,

,

1, 2 , 0 1,2

1, (2 1)mod , 1,2

0, .

i j

i j

i j

Npr if i j j

Npr if i j N j N

pr others

⎧ = = ≤ ≤ −⎪⎪⎪ = = + ≤ ≤ −⎨⎪ =⎪⎪⎩

where , {0,1,..., 1}i j N∈ − .

Since 1 7 2 6 3 58 8 8 8 8 8, ,C C C C C C= − = − = − , we rewrite (6-23) as

2 6 6 2 2 2 2 28 8 8 8 8 8 8 84 41 3 5 7 1 3 3 18 8 8 8 8 8 8 8

3 7 1 5 3 1 1 38 8 8 8 8 8 8 8

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

C C C C C C C CP C

C C C C C C C C

C C C C C C C C

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥= =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

, (6-24)

www.intechopen.com

Page 9: 689 ' # '5& *#6 & 7cdn.intechopen.com/pdfs-wm/15149.pdf · 2018-04-05 · Orthogonal Discrete Fourier and Cosine Matrices for Signal Processing 141 00 22 20 21 22 11 11 w w F H w

Fourier Transforms - Approach to Scientific Principles

146

and let us define a column permutation matrix 4

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

Pc

⎡ ⎤⎢ ⎥⎢ ⎥=⎡ ⎤⎣ ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦, and

NPc⎡ ⎤⎣ ⎦ is a

reversible permutation matrix which is defined by

2 2Pc I=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ , and

/4

/4

/4

/4

0 0 0

0 0 0

0 0 0

0 0 0

N

N

NN

N

I

IPc

I

I

⎡ ⎤⎢ ⎥⎢ ⎥=⎡ ⎤⎣ ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦, 4N ≥ .

Thus we have

2 6 6 28 8 8 84 4 41 3 5 78 8 8 8

3 7 1 58 8 8 8

1 1 1 11 0 0 0

2 2 2 20 1 0 0

0 0 0 1

0 0 1 0

C C C CP C Pc

C C C C

C C C C

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥=⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

2 2 2 2 2 28 8 8 8

1 3 1 3 2 28 8 8 8

3 1 3 18 8 8 8

1 1 1 1

2 2 2 2C C

C C C CB B

C C C C

C C C C

⎡ ⎤⎢ ⎥⎢ ⎥ ⎡ ⎤− −⎢ ⎥= = ⎢ ⎥−⎢ ⎥ ⎣ ⎦− −⎢ ⎥⎢ ⎥− −⎣ ⎦

, (6-25)

where 2

1 1

2 2

1 1

2 2

C

⎡ ⎤⎢ ⎥⎢ ⎥=⎡ ⎤⎣ ⎦ ⎢ ⎥−⎢ ⎥⎣ ⎦, the 2-by-2 DCT - II matrix and

1 38 8

3 128 8

C CB

C C

⎡ ⎤=⎡ ⎤ ⎢ ⎥⎣ ⎦ −⎢ ⎥⎣ ⎦ . Thus we can

write that

2 2 2 2 2

4 4 42 2 2 2 2

0

0

TC C I I C

P C PcB B I I B

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤= =⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎜ ⎟− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠ , (6-26)

it is clear that 2

2

0

0

C

B

⎡ ⎤⎢ ⎥⎣ ⎦ is a block inverse matrix, which has

( )

( )11

22

12 2

00

0 0

CC

B B

−−−

⎡ ⎤⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦. (6-27)

www.intechopen.com

Page 10: 689 ' # '5& *#6 & 7cdn.intechopen.com/pdfs-wm/15149.pdf · 2018-04-05 · Orthogonal Discrete Fourier and Cosine Matrices for Signal Processing 141 00 22 20 21 22 11 11 w w F H w

Orthogonal Discrete Fourier and Cosine Matrices for Signal Processing

147

The (6-27) is Jacket –like sparse matrix with block inverse.

In general the permuted DCT - II matrix N

C⎡ ⎤⎣ ⎦# can be constructed recursively by using

/2 /2 /2 /2 /2

/2 /2 /2 /2 /2

0

0

T

N N N N N

N N NNN N N N N

C C I I CC P C Pc

B B I I B

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ = = = ⎜ ⎟⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎜ ⎟− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠# . (6-28)

where /2N

C⎡ ⎤⎣ ⎦ denotes the 2 2

N N× DCT - II matrix, and /2N

B⎡ ⎤⎣ ⎦ can be calculated by using

( )( , )2/2 , /2

f m nNN m n N

B C⎡ ⎤=⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦ , (6-29)

where

( ,1) 2 1,

( , 1) ( , ) ( ,1) 2,

f m m

f m n f m n f m

⎧ = −⎪⎪⎨⎪ + = + ×⎪⎩ , {1,2,..., / 2}m n N∈ . (6-30)

For example, in the 4-by-4 permuted DCT - II matrix 4

C⎡ ⎤⎣ ⎦# , 2B could be calculated by using

(1,1) 1f = , (2,1) 3f = , (1,2) (1,1) (1,1) 2 3f f f= + × = , and (2,2) (2,1) (2,1) 2 9f f f= + × = ,

( ) ( ) ( )( ) ( )

(1,1) (1,2)8 8

1,1 1,2( , )82 (2 ,1) (2 ,2), 4

8 82 ,1 2 ,2

f f

f m n

f fm n

C CB C

C C

⎡ ⎤⎢ ⎥⎡ ⎤= =⎡ ⎤⎣ ⎦ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦. (6-31)

and its inverse is of N

C⎡ ⎤⎣ ⎦# can be simply computed from the block inverse

( )

( )( )

1

1 /2 /2 /2

/2 /2 /2

1/2 /2

/2

1

/2 /2 /2

0

0

2 20

2 20

T

N N N

N N NN N N

T

N NN

N N N

I I CP C Pc

I I B

I IC N N B I I

N N

−−

⎛ ⎞⎛ ⎞⎡ ⎤ ⎡ ⎤⎜ ⎟= ⎜ ⎟⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎜ ⎟⎜ ⎟−⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠

⎛ ⎞⎡ ⎤⎡ ⎤⎜ ⎟⎢ ⎥⎢ ⎥⎜ ⎟= ⎢ ⎥⎢ ⎥⎜ ⎟⎢ ⎥−⎢ ⎥⎣ ⎦⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

( )( )

1

/2 /2 /2

1/2 /2

/2

02

0

T

N N N

N NN

C I I

I IN B

⎛ ⎞⎡ ⎤ ⎡ ⎤⎜ ⎟⎢ ⎥= ⎢ ⎥⎜ ⎟⎢ ⎥ −⎣ ⎦⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

. (6-32)

For example, the 8 8× DCT - II matrix has

www.intechopen.com

Page 11: 689 ' # '5& *#6 & 7cdn.intechopen.com/pdfs-wm/15149.pdf · 2018-04-05 · Orthogonal Discrete Fourier and Cosine Matrices for Signal Processing 141 00 22 20 21 22 11 11 w w F H w

Fourier Transforms - Approach to Scientific Principles

148

[ ]

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

=

10516

9116

7716

6316

4916

3516

2116

716

9016

7816

6616

5416

4216

3016

1816

616

7516

6516

5516

4516

3516

2516

1516

516

6016

5216

4416

3616

2816

2016

1216

416

4516

3916

3316

2716

2116

1516

916

316

3016

2616

2216

1816

1416

1016

616

216

1516

1316

1116

916

716

516

316

116

8

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

CCCCCCCC

CCCCCCCC

CCCCCCCC

CCCCCCCC

CCCCCCCC

CCCCCCCC

CCCCCCCC

C

,

and it can be represented by

4 4 4 4 4 4 4 416 16 16 16 16 16 16 16

2 6 2 6 2 6 2 616 16 16 16 16 16 16 16

6 2 6 2 6 2 6 216 16 16 16 16 16 16 16

8 8 81 3 7 516 16 16 16

5 1 3 716 16 16 16

3 7 5 116 16 16 16

1

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

C C C C C C C C

C C C C C C C C

C C C C C C C CP C Pc

C C C C

C C C C

C C C C

C

− − − −− − − −

− − − −=⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ − −− − −−

4 4

4 41 3 7 516 16 16 16

5 1 3 716 16 16 16

3 7 5 116 16 16 16

7 5 1 3 7 5 1 36 16 16 16 16 16 16 16

C C

B BC C C C

C C C C

C C C C

C C C C C C C

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ ⎡ ⎤⎢ ⎥ = ⎢ ⎥⎢ ⎥ −⎣ ⎦− −⎢ ⎥⎢ ⎥−⎢ ⎥⎢ ⎥− − −⎢ ⎥− − − −⎣ ⎦

.

Additionally, it is clearly that the function (6-28) also can be recursively constructed by

using different permutations matrices N

P⎡ ⎤⎣ ⎦# and N

Pc⎡ ⎤⎣ ⎦# , as

/2 /2/2 /2 /2

/2 /2/2 /2 /2

0

0

T

N NN N N

N NNN NN N N

I IC C CP C Pc

I IB B B

⎛ ⎞⎡ ⎤ ⎡ ⎤⎡ ⎤⎜ ⎟⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥= = ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ −⎜ ⎟−⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠# # #

## ## # # , (6-33)

where /2N

C⎡ ⎤⎣ ⎦# and /2N

B⎡ ⎤⎣ ⎦# are the permutated cases of /2N

C⎡ ⎤⎣ ⎦ and /2N

B⎡ ⎤⎣ ⎦ , respectively. The

new permutation matrices have the form

/2

/2

[ ] 0

0N

NN

PP

I

⎡ ⎤⎡ ⎤ = ⎢ ⎥⎣ ⎦ ⎣ ⎦# , and

/2

/2

[ ] 0

0 [ ]N

NN

PcPc

Pc

⎡ ⎤⎡ ⎤ = ⎢ ⎥⎣ ⎦ ⎣ ⎦# , 4N > . (6-34)

Easily, we can check that

/2 /2 /2 /2

/2 /2 /2 /2

0 0

0 0N N N N

N NNN N N N

P C C PcP C Pc

I B B Pc

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤ = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦## #

/2 /2 /2 /2 /2

/2 /2 /2 /2 /2

Pr 0

0N N N N N

N N N N N

P C C Pc

I B I B Pc

⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

www.intechopen.com

Page 12: 689 ' # '5& *#6 & 7cdn.intechopen.com/pdfs-wm/15149.pdf · 2018-04-05 · Orthogonal Discrete Fourier and Cosine Matrices for Signal Processing 141 00 22 20 21 22 11 11 w w F H w

Orthogonal Discrete Fourier and Cosine Matrices for Signal Processing

149

/2 /2 /2 /2 /2 /2 /2 /2

/2 /2 /2 /2 /2 /2 /2 /2

N N N N N N N N

N NNN N N N N N N N

P C Pc P C Pc C CP C Pc

I B Pc I B Pc B B

⎡ ⎤⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥= =⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ − −⎢ ⎥⎣ ⎦ ⎣ ⎦# #

## ## # , (6-35)

where /2 /2/2 N NN

B B Pc⎡ ⎤ = ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦# .

For example, the 4-by-4 DCT - II case has

1 3 1 38 8 8 8

3 1 3 14/2 4/24/28 8 8 8

1 0

0 1

C C C CB B Pc

C C C C

⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤ = = =⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ − −⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦# . (6-36)

Moreover, the matrix 1 38 8

3 128 8

C CB

C C

⎡ ⎤=⎡ ⎤ ⎢ ⎥⎣ ⎦ −⎢ ⎥⎣ ⎦ can be decomposed by using the 2-by-2 DCT - II

matrix as

1 3 18 8 8

3 1 32 2 2 22 28 8 88 8

1 12 0 0

2 202 2

C C CB K C D

C C CC C

⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥= = = ⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎢ ⎥− ⎢− ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ −⎢ ⎥⎣ ⎦, (6-37)

where 2

2 0

2 2K

⎡ ⎤= ⎢ ⎥⎡ ⎤⎣ ⎦ ⎢− ⎥⎣ ⎦ is a upper triangular matrix,

18

328

0

0

CD

C

⎡ ⎤=⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦ is a diagonal matrix,

and we use the cosine related function

cos(2 1) 2 cos(2 )cos cos(2 1)m m m mk k k+ = − −φ φ φ φ . (6-38)

where mφ is m-th angle.

In a general case, we have

N N N N

B K C D=⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , (6-39)

where

2 0 0

2 2 0

2 2 2N

K

⎡ ⎤⎢ ⎥⎢− ⎥=⎡ ⎤ ⎢ ⎥⎣ ⎦ −⎢ ⎥⎢ ⎥⎣ ⎦

A

A

AB B D

,

0

1

1

4

4

4

0 0

0

0

0 0 N

N

N

N

N

C

CD

C −

ΦΦ

Φ

⎡ ⎤⎢ ⎥⎢ ⎥=⎡ ⎤⎣ ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

AB

B DA

, (6-40)

and 2 1i iΦ = + , {0,1,2,..., 1}i N∈ − . See appendix 2 for proof of (6-39).

By using the results from (6-28) and (6-39), we have a new form for DCT - II matrix

/2 /2 /2 /2 /2 /2

/2 /2 /2 /2 /2 /2

0 0Pr

0 0

T

N N N N N N

N N NNN N N N N N

I I C C I IC C Pc

I I B B I I

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ = = =⎜ ⎟⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎜ ⎟− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠#

www.intechopen.com

Page 13: 689 ' # '5& *#6 & 7cdn.intechopen.com/pdfs-wm/15149.pdf · 2018-04-05 · Orthogonal Discrete Fourier and Cosine Matrices for Signal Processing 141 00 22 20 21 22 11 11 w w F H w

Fourier Transforms - Approach to Scientific Principles

150

/2 /2 /2

/2 /2 /2 /2 /2

/2 /2 /2 /2 /2

/2 /2 /2 /2 /2

0

0

0 0 0

0 0 0

N N N

NN N N N N

N N N N N

N N N N N

C I IC

K C D I I

I C I I I

K C D I I

⎡ ⎤ ⎡ ⎤⎡ ⎤ = ⎢ ⎥ ⎢ ⎥⎣ ⎦ −⎣ ⎦ ⎣ ⎦⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

#

. (6-41)

Given the recursive form of (6-41), we can write

( ) ( )( )

11 /2 2/4 /4 /2 24

/2 2

12 2 2

/4 /4 /4 42 2 2

/2 /2 /2

/2 /2 /2

0 0Pr ... Pr

0 0

0

0

0...

0

N

N N N NNN

N N N

N N N

N N N

I IC I I I C

K K

I I II I I Pc

D I I

I I I

D I I

−−

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= ⊗ ⊗ ⊗⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⊗ ⊗ ⊗ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥− ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎡ ⎤⎢ ⎥ −⎣ ⎦ ( ) 1

NPc−⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎣ ⎦⎣ ⎦

. (6-42)

By taking all permutation matrices outside, we can rewrite (6-42) as

( )( )

1/2 2

/4 /2 2/2 2

1/2 /2 /22 2 2

/4 /4/2 /2 /22 2 2

0 0Pr ...

0 0

00..

00

N

N N NNN

N N N

N N NN N N

I IC I I C

K K

I I II I II I Pc

D I ID I I

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= ⊗ ⊗⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⊗ ⊗⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦−−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

#

#. (6-43)

Using (6-43) butterfly data flow diagram for DCT-II transform is drawn as Fig.2 from left to right to perform X=[C]N x.

2/NK

4/NK

4/NK

2K

2K

2K

2K

[ ]2C

18C

38C

[ ]2D

18C

38C

18C

38C

18C

38C

1NC

3NC

12/ −N

NC

...

1NC

3NC

12/ −N

NC

...

[ ] 4/ND

12NC

32NC

12−NN

C

52NC

72NC

...

[ ] 2/ND

Fig. 2. Butterfly data flow diagram of proposed DCT - II matrix with order N

www.intechopen.com

Page 14: 689 ' # '5& *#6 & 7cdn.intechopen.com/pdfs-wm/15149.pdf · 2018-04-05 · Orthogonal Discrete Fourier and Cosine Matrices for Signal Processing 141 00 22 20 21 22 11 11 w w F H w

Orthogonal Discrete Fourier and Cosine Matrices for Signal Processing

151

3.3 Hybrid DCT/DFT architecture on element inverse matrices

It is clear that the form of (6-43) is the same as that of (6-16), where we only need change lK

to Prl and lD to lW , with {2,4,8,..., / 2}l N∈ . Consequently, the results show that the DCT

- II and DFT can be unified by using same algorithm and architecture within some

characters changed. As illustrated in Fig.1, and Fig.2, we find that the DFT calculations can

be obtained from the architecture of DCT by replacing the N

D⎡ ⎤⎣ ⎦ to N

W⎡ ⎤⎣ ⎦ , and a permutation

matrix PrN

⎡ ⎤⎣ ⎦ to N

K⎡ ⎤⎣ ⎦ . Hence a unified function block diagram for DCT/DFT hybrid

architecture algorithm can be drawn as Fig.3. In this figure, we can joint DCT and DFT in

one chip or one processing architecture, and use one switching box to control the output

data flow. It will be useful to developing the unified chip or generalized form for DCT and

DFT together.

Fig. 3. A unified function block diagram for proposed DCT/DFT hybrid architecture algorithm

4. Conclusion

We propose a new representation of DCT/DFT matrices via the Jacket transform based on the block-inverse processing. Following on the factorization method of the Jacket transform, we show that the inverse cases of DCT/DFT matrices are related to their block inverse sparse matrices and the permutations. Generally, DCT/DFT can be represented by using the same architecture based on element inverse or block inverse decomposition. Linking between two transforms was derived based on matrix recursion formula. Discrete Cosine Transform (DCT) has applications in signal classification and representation, image coding, and synthesis of video signals. The DCT-II is a popular structure and it is usually accepted as the best suboptimal transformation that its

www.intechopen.com

Page 15: 689 ' # '5& *#6 & 7cdn.intechopen.com/pdfs-wm/15149.pdf · 2018-04-05 · Orthogonal Discrete Fourier and Cosine Matrices for Signal Processing 141 00 22 20 21 22 11 11 w w F H w

Fourier Transforms - Approach to Scientific Principles

152

performance is very close to that of the statistically optimal Karhunen-Loeve transform for picture coding. Further, the discrete Fourier transform (DFT) is also a popular algorithm for signal processing and communications, such as OFDM transmission and orthogonal code designs. Being combined these two different transforms, a unified fast processing module to implement DCT/DFT hybrid architecture algorithm can be designed by adding switching device to control either DCT or DFT processing depending on mode of operation. Further investigation is needed for unified treatment of recursive decomposition of orthogonal transform matrices exploiting the properties of Jacket-like sparse matrix architecture for fast trigonometric transform computation.

5. Acknowledgement

This work was supported by World Class Univ. R32-2008-000-20014-0, NRF , Korea.

6. Appendix

6.1 Appendix 1 The DFT matrix brings higher powers of w , and the problem turns out to be

2

0 02 1

1 12( 1)2 4

2 2

2( 1) ( 1)11 1

1 1 1 . 1

1 .

1 .

. . . . . . .

1 .

n

n

n nnn n

c yw w w c y

w w w c y

c yw w w

−−

− −− − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

. (A-1)

and the inverse form

2

( 1)1 2

2( 1)2 41

( 1) 2( 1) ( 1)

1 1 1 . 1

1 .1

1 .

. . . . .

1 .

n

n

n n n

w w w

w w wFn

w w w

− −− −− −− −−

− − − − − −

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

. (A-2)

Then, we can define the Fourier matrix as follows.

Definition A.1: An n n× matrix ijF a⎡ ⎤= ⎣ ⎦ is a Fourier matrix if

( 1)( 1)i jija w − −= , 2 /i nw e= π , and , {1,2,..., }i j n∈ . (A-3)

and the inverse form ( ) ( )1( 1)( 1)1 1 1 i j

ijF a wn n

− − − −− ⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎣ ⎦⎣ ⎦ .

For example, in the cases 2n = and 3n = , and inverse is an element-wise inverse like Jacket

matrix, then, we have

0 0

2 0 1

1 1

1 1

w wF

w w

⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦⎣ ⎦ , 0 0

12 0 1

1 11 1

1 12 2

w wF

w w

−−

⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦⎣ ⎦

www.intechopen.com

Page 16: 689 ' # '5& *#6 & 7cdn.intechopen.com/pdfs-wm/15149.pdf · 2018-04-05 · Orthogonal Discrete Fourier and Cosine Matrices for Signal Processing 141 00 22 20 21 22 11 11 w w F H w

Orthogonal Discrete Fourier and Cosine Matrices for Signal Processing

153

and

2 4

3 33

4 8

3 3

1 1 1

1

1

i i

i i

F e e

e e

⎡ ⎤⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

π π

π π,

2 41 3 3

3

4 8

3 3

1 1 1

11

3

1

i i

i i

F e e

e e

− −−− −

⎡ ⎤⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

π π

π π.

We need to confirm that 1FF− equals the identity matrix. On the main diagonal that is clear.

Row j of F times column j of 1F− is ( )1 / (1 1 ... 1)n + + + , which is 1 . The harder part is

off the diagonal, to show that row j of F times column k of 1F− gives zero:

, if j k≠ . (A-4)

The key is to notice that those terms are the powers of :

2 11 ... 0nW W W −+ + + + = . (A-5)

6.2 Appendix 2

In a general case, we have

N N N N

B K C D=⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ,

where

2 0 0

2 2 0

2 2 2N

K

⎡ ⎤⎢ ⎥⎢− ⎥=⎡ ⎤ ⎢ ⎥⎣ ⎦ −⎢ ⎥⎢ ⎥⎣ ⎦

A

A

AB B D

,

0

1

1

4

4

4

0 0

0

0

0 0 N

N

N

N

N

C

CD

C −

ΦΦ

Φ

⎡ ⎤⎢ ⎥⎢ ⎥=⎡ ⎤⎣ ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

AB

B DA

,

and 2 1i iΦ = + , {0,1,2,..., 1}i N∈ − .

Proof: In case of N N× DCT - II matrix, N

C⎡ ⎤⎣ ⎦ , it can be represented by using the form as

0 0 0 1 0 2 0 2 0 1

1 0 1 2 1 11 1 1 2

2 0 2 2 2 12 1 2 2

2 0 2 1 2 2 2 2

2 2 2 2 24 4 4 4 4

2 2 22 24 4 4 4 4

2 2 22 24 4 4 4 4

2 2 2 24 4 4 4

1 1 1 1 1

2 2 2 2 2N N

N N

N N

N N N N N

k k k k kN N N N N

k k kk kN N N N NNk k kk kN N N N N

k k k kN N N N

C C C C C

C C C C CC

C C C C C

C C C C C

− −

− −

− −

− − − − −

Φ Φ Φ Φ ΦΦ Φ ΦΦ ΦΦ Φ ΦΦ Φ

Φ Φ Φ Φ

=⎡ ⎤⎣ ⎦

A

AAA

B B BA 2 12

4N Nk

N− −Φ

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

, (A-6)

where 1ik i= + , {0,1,2,...}i∈ .

According to (6-37), a N N× matrix N

B⎡ ⎤⎣ ⎦ from 2N

C⎡ ⎤⎣ ⎦ can be simply presented by

www.intechopen.com

Page 17: 689 ' # '5& *#6 & 7cdn.intechopen.com/pdfs-wm/15149.pdf · 2018-04-05 · Orthogonal Discrete Fourier and Cosine Matrices for Signal Processing 141 00 22 20 21 22 11 11 w w F H w

Fourier Transforms - Approach to Scientific Principles

154

0 11 2

0 0 0 1 0 2 0 1

1 0 1 11 1 1 2

2 0 2 1 2 2 2 1

4 4 4 4

(2 1) (2 1) (2 1) (2 1)4 4 4 4

(2 1) (2 1)(2 1) (2 1)4 4 4 4

(2 1) (2 1) (2 1) (2 1)4 4 4 4

N

N

N

N N N N N

N N N N

k k k kN N N N

k kk kN N N NN

k k k kN N N N

C C C C

C C C C

B C C C C

C C C C

− − − − −

Φ ΦΦ Φ+ Φ + Φ + Φ + Φ+ Φ + Φ+ Φ + Φ

+ Φ + Φ + Φ + Φ

⎡⎢⎢⎢=⎡ ⎤⎣ ⎦ ⎢⎣

AAA

B B BA

⎤⎥⎥⎥⎥⎢ ⎥⎢ ⎥⎢ ⎥⎦

. (A-7)

And based on (6-78), we have the formula

(2 1) 2 (2 1) (2 1) 24 4 4 4 4 4 42 2i m i m m i m i m i m mk k k k k

N N N N N N NC C C C C C C+ Φ Φ Φ − Φ − Φ Φ Φ= − = − + , (A-8)

where {0,1,2,....}m∈ .

Thus we can calculate that

0 0 0 1 0 2 0 2 0 1

1 0 1 2 1 11 1 1 2

2 0 2 1 2

2 2 2 2 24 4 4 4 4

2 2 22 24 4 4 4 4

2 2 24 4 4

1 1 1 1 12 0 0 0 0

2 2 2 2 22 2 0 0 0

2 2 2 0 0

2 2 2 2

2 2 2 2 2

N N

N N

N N N

k k k k kN N N N N

k k kk kN N N N N

k k kN N N

K C D

C C C C C

C C C C C

C C C

− −

− −

Φ Φ Φ Φ ΦΦ Φ ΦΦ ΦΦ Φ Φ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎡ ⎤⎢ ⎥⎢− ⎥⎢ ⎥−⎢ ⎥= ⎢ ⎥− −⎢ ⎥⎢ ⎥− −⎢ ⎥⎢ ⎥⎣ ⎦

AA

AA

A B

B D

2 2 2 12

2 0 2 1 2 2 2 2 2 1

0

1

1

2 24 4

2 2 2 2 24 4 4 4 4

4

4

4

0 0

0

0

0 0

N N

N N N N N N N

N

k kN N

k k k k kN N N N N

N

N

N

C C

C C C C C

C

C

C

− −

− − − − − − −

Φ Φ

Φ Φ Φ Φ ΦΦ

Φ

Φ

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

AB B B

A

AB

B DA

,

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

⎡⎥⎥⎥⎥

⎢⎢⎢⎢

⎡+−+−+−

+−+−+−=

−−−

Φ

ΦΦ

ΦΦΦΦΦΦΦΦΦ

1

1

0

211011100100

101000

4

4

4

24

24

24

24

24

24

24

24

24

00

0

0

00

221221221

21...2121

1...11

N

NN

N

N

N

N

k

N

k

N

k

N

k

N

k

N

k

N

k

N

k

N

k

N

C

C

C

CCCCCC

CCC

ADB

BA

BBA

,

0 11

0 0 0 0 0 1 1 0 1 11 1

0 0 0 0 1 0 0 0 11 1 1 1 1

4 4 4

2 2 24 4 4 4 4 4 4 4 4

2 2 2 24 4 4 4 4 4 4 4 4 4

...

2 2 2

2 2 2 2

N

N N N

N N N

k k kN N N N N N N N N

k k k kN N N N N N N N N N

C C C

C C C C C C C C C

C C C C C C C C C C

− − −

Φ ΦΦΦ Φ Φ Φ Φ Φ ΦΦ Φ

Φ Φ Φ Φ Φ ΦΦ Φ Φ Φ

⎡ ⎤⎢ ⎥− + − + − +⎢ ⎥= ⎢ ⎥− + − +⎢ ⎥⎢ ⎥⎣ ⎦

AA

B B

, (A-9)

www.intechopen.com

Page 18: 689 ' # '5& *#6 & 7cdn.intechopen.com/pdfs-wm/15149.pdf · 2018-04-05 · Orthogonal Discrete Fourier and Cosine Matrices for Signal Processing 141 00 22 20 21 22 11 11 w w F H w

Orthogonal Discrete Fourier and Cosine Matrices for Signal Processing

155

Since 0 1k = , we get

0 0 0 02 (2 1) 2 (2 1)4 4 4 4 4 4 42 2m m m m m m mk k k k

N N N N N N NC C C C C C CΦ Φ Φ − Φ Φ Φ + Φ− + = − + = , (A-10)

and 0 0 0 02 (2 1) 2 (2 1)4 4 4 4 4 4 42 ( 2 )m m m m m m mk k k k

N N N N N N NC C C C C C CΦ Φ Φ − Φ Φ Φ + Φ− = − − + = − . (A-11)

In case of 1ik i= + , we have ( )1(2 1) (2( 1) 1) 2 1i m i m i mk k k− + Φ = − + Φ = − Φ , then we get

1 12 2 (2 1) 2

4 4 4 4 4 4 4 4

(2 1) 2 (2 1)4 4 4 4

2 2 2

2

m i m m i m m i m i m m

i m i m m i m

k k k kN N N N N N N N

k k kN N N N

C C C C C C C C

C C C C

− −Φ Φ Φ Φ Φ + Φ Φ Φ− Φ Φ Φ + Φ

− + = − += − + = . (A-12)

Taking the (A-10)-(A-12) to (A-9), we can rewrite that

[ ] [ ] [ ]NNN

DCK

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

+−+−+−+−+−= ΦΦΦΦΦΦΦΦΦΦ

ΦΦΦΦΦΦΦΦΦΦΦΦ

−−−−

BBAA

11111010010000

110111010000

110

4244

2444

244

244

42444

2444

244

444

2222

222

...

N

k

NN

k

NNN

k

NN

k

NN

N

k

NNN

k

NNN

k

NN

NNN

CCCCCCCCCC

CCCCCCCCC

CCC

NNN

N

[ ]Nk

N

k

N

k

N

k

N

k

N

k

N

NNN

B

CCC

CCC

CCC

N

N

N

=⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

⎡= −

−−

Φ+Φ+Φ+Φ+Φ+Φ+

ΦΦΦ

BB

111101

101000

110

)12(4

)12(4

)12(4

)12(4

)12(4

)12(4

444

...

...

...

. (A-13)

The proof is completed.

7. References

Ahmed, N. & K.R. Rao(1975), Orthogonal Transforms for Digital Signal Processing, 0387065563, Berlin, Germany: Springer-Verlag

Chen, Z.; M.H. Lee, & Guihua Zeng(2008), Fast Cocylic Jacket Transform, IEEE Trans. on Signal Proc. Vol. 56, No.5, 2008, (2143-2148) ,1053-587X

Fan, C.-P. & Jar-Ferr Yang(1998), Fast Center Weighted Hadamard Tranform Algorithm, IEEE Trans.on CAS-II Vol. 45, No. 3, (1998) (429-432), 1057-7130

Hou, Jia; M.H. Lee, & Ju Yong Park(2003), New Polynomial Construction of Jacket Transform, IEICE Trans. Fund. Vol. E86A, No. 3, (2003) (652-660) , 0916-8508

Lee, M.H.(1989), The Center Weighted Hadamard Transform, IEEE Trans. on Circuits and Syst. 36(9), (1989) (1247- 1249), 0098-4094

Lee, M.H.(1992), High Speed Multidimensional Systolic Arrays for Discrete Fourier Transform, IEEE Trans. on .Circuits and Syst.II 39 (12) , (1992) (876-879), 1057-7130

Lee, M.H.(2000) , A New Reverse Jacket Transform and Its Fast Algorithm, IEEE, Trans. on Circuit and System 47(1) ,2000, (39-47), 1057-7130

Lee, M.H. & Ken Finlayson(2007), A simple element inverse Jacket transform coding, IEEE Signal Processing Lett. 14 (5) , 2007, (325-328), 1070-9908

www.intechopen.com

Page 19: 689 ' # '5& *#6 & 7cdn.intechopen.com/pdfs-wm/15149.pdf · 2018-04-05 · Orthogonal Discrete Fourier and Cosine Matrices for Signal Processing 141 00 22 20 21 22 11 11 w w F H w

Fourier Transforms - Approach to Scientific Principles

156

Lee, M. H. & D.Y.Kim(1984), Weighted Hadamard Transform for S/N Ratio Enhancement in Image Transform, Proc. of IEEE ISCAS’84 , 1984 , pp. 65-68.

Lee, S.R. & M.H. Lee(1998), On the Reverse Jacket Matrix for Weighted Hadamard Transform, IEEE Trans. On CAS-II, Vol. 45, No. 3, (1998) (436-441) , 1057-7130

Lee, M.H.; N.L.Manev & Xiao-Dong Zhang (2008), Jacket transform eigenvalue decomposition, Appl. Math.Comput.198 , (May 2008). (858-864)

Lee, M.H.; B. S. Rajan, & Ju Yong Park(2001), A Generalized Reverse Jacket Transform, IEEE Trans. on Circuits and Syst. II 48 (7) ,(2001) (684-690), 1057-7130

Lee, S. R. & J. H. Yi(2002), Fast Reverse Jacket Transform as an Altenative Representation of N point Fast Fourier Transform, Journal of Mathematical Imaging and Vision Vol. 16, No. 1,,(2002) (1413-1420), 0924-9907

Park, D.; M.H. Lee & Euna Choi(1999), Revisited DFT matrix via the reverse jacket transform and its application to communication, The 22nd symposium on Information theory and its applications (SITA 99), 1999, Yuzawa, Niigata, Japan

Rao, K.R. & P. Yip(1990), Discrete Cosine Transform Algorithms, Advantages, Applications,. 0-12-580203-X, Academic Press, San Diego, CA, USA

Rao, K.R. & J.J. Hwang(1996), Techniques & Standards for Image Video & Audio Coding, 0-13-309907-5, Prentice Hall , Upper Saddle River, NJ, USA

Whelchel, J.E. & D.F. Guinn(1968), The fast fourier hadamard transform and its use in signal representation and classification, Proc. EASCON’68, 1968 , pp. 561-564

www.intechopen.com

Page 20: 689 ' # '5& *#6 & 7cdn.intechopen.com/pdfs-wm/15149.pdf · 2018-04-05 · Orthogonal Discrete Fourier and Cosine Matrices for Signal Processing 141 00 22 20 21 22 11 11 w w F H w

Fourier Transforms - Approach to Scientific PrinciplesEdited by Prof. Goran Nikolic

ISBN 978-953-307-231-9Hard cover, 468 pagesPublisher InTechPublished online 11, April, 2011Published in print edition April, 2011

InTech EuropeUniversity Campus STeP Ri Slavka Krautzeka 83/A 51000 Rijeka, Croatia Phone: +385 (51) 770 447 Fax: +385 (51) 686 166www.intechopen.com

InTech ChinaUnit 405, Office Block, Hotel Equatorial Shanghai No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820 Fax: +86-21-62489821

This book aims to provide information about Fourier transform to those needing to use infrared spectroscopy,by explaining the fundamental aspects of the Fourier transform, and techniques for analyzing infrared dataobtained for a wide number of materials. It summarizes the theory, instrumentation, methodology, techniquesand application of FTIR spectroscopy, and improves the performance and quality of FTIR spectrophotometers.

How to referenceIn order to correctly reference this scholarly work, feel free to copy and paste the following:

Daechul Park and Moon Ho Lee (2011). Orthogonal Discrete Fourier and Cosine Matrices for SignalProcessing, Fourier Transforms - Approach to Scientific Principles, Prof. Goran Nikolic (Ed.), ISBN: 978-953-307-231-9, InTech, Available from: http://www.intechopen.com/books/fourier-transforms-approach-to-scientific-principles/orthogonal-discrete-fourier-and-cosine-matrices-for-signal-processing