653-667.pdf

Embed Size (px)

Citation preview

  • 8/20/2019 653-667.pdf

    1/15

     Po is Journa o Environmenta Stu ies Vo . 12, No. 6 2003 , 653-667 

    Analytical M thods for Determining Arsenic,A timony and Selenium in E vironmental Samples

    P. Niedzielski *, M. Siepak 

    Department of Water and Soil Analysis,Adam Mickiewicz University, 24 Drzymały Street, 60-613 Poznań, Poland

    Department o Hy rogeo ogy an Water Protect on,A am M c ew cz Un vers ty, 16 Ma ów Po nyc Street, 61-686 Poznań, Po an

     Received: 26 August, 2002

     Accepte : 15 Apri , 2003

    Abstract

    This paper presents a comparative description of different methods of determination of arsenic, anti-mony an se en um: spectrop otometr c, e ectro-ana yt ca vo tamperometry), act vat on ana ys s, atom c

    uorescence an t e met o s o n uct ve or m crowave- n uce p asma n com nat on w t erentetect on met o s em ss on or mass spectrometry). e escr pt on s ase on terature ata ustrat ng

    the present state of the metalloid determinations in different matrices. The limits of determination ensured by different methods are also compared. Much attention has been paid to methods combining chromato-graphic separation with selective detection, especially with the application of plasma generation methodsusua y - ).

    Keywords:  spectrophotometry, electroanalysis, neutron activation, atomic fluorescence, plasmamethods, arsenic, antimony, selenium

     Review

    Introduction

    Determinations of arsenic, antimony and seleniumy atom c a sorpt on spectrometry were escr e n a

     prev ous art c e 1 . T e met o o a sorpt on atom cspectrometry is neither the only nor the best for deter-

    ining arsenic, antimony and selenium. Depending onhe kind of samples to be analyzed and the expected

    concentrat ons o meta s to e eterm ne , ot er met -o s can prove equa y success u 2-6 .

    Spectrophotometric Methods

    The spectrophotometric methods of determinationo meta s ave een very popu ar ut recent y ave

     become obsolete, in particular for analyses of environ-menta samp es, as t ey are t me-consum ng an o notensure a su c ent y ow etect on m t. At present t emethods are used for direct determination of inorganicmetal compounds. They are based on more or less spe-cific reactions of colour metal complexes which can

    e assesse on t e as s o t e a sorpt on o a certa nwave engt o ra at on pass ng t roug a stu e so-ut on 7 . T e too g etect on m ts o t s met o

    can be reduced by special sample preparation, e.g.extraction, sorption, chelation, in order to concentrate

    the metal to be determined. Speciation analyses are poss e w t t e use o erent react on con t onse.g. erent pH va ues or a com nat on o erent

    methods [3].*Corresponding author; e-mail: [email protected]

  • 8/20/2019 653-667.pdf

    2/15

     Niedzielski P., Siepak M.654

    Spectrop otometr c et o s o Determ nat ono Arsen c

    The molybdenum blue method [7,8] is based on theformation of molybdenum blue by ammonium molybdate

    (VI) with As(V) ions (in the environment of hydrazine sul- p ate . T e samp e to e eterm ne s m nera se y nor-gan c ac s, extracte y arsen c an t en arsen c o e sextracted by a mixture of chloroform with 10 M hydrochlo-ric acid. The As (III) ions are oxidized by cerium sulphateto As (V), which takes part in the reaction of molybdenium

    ue ormat on an s etecte at t e wave engt 825 nm.In t s met o t ere s a poss ty o nter erence romt e presence o german um, ut t s can e e m nate yco-precipitation with hydrated iron oxide or extraction with

     bromides applied by Rao [8].The method based on the use of silver dithiocarbamin-

    an DDTC-Ag . In t s met o arsen c erate rom aso ut on as arsen c y r e orms comp exes w t DDTCn the presence of a strong reducing agent (sodium boro-

    hydride) and can be detected at a wavelength of 525 nm.Different kinetics of the reaction of hydride generation,epen ng on t e pH o t e env ronment, a ows spec a-

    t on eterm nat on o As III an As V . At pH a ove 6t e y r es are orme w t As III . At pH 1-4 As V sreduced to As (III)

    As V + 2BH + 6H O → As III + 2B OH + 7H 1

    an t en y r es are generate

    As (III) + 3BH - + 9H O → AsH + 3B(OH) + 9H (2)

    T e met o s su ecte to erent nter erence, rsto a rom t e e ements orm ng vo at e y r es S , Se,Sn, Te, Bi) but also from transition metals (Ag, Au, Cr,Cu, Ni, Pt), but only when present at concentrations muchhigher than natural. The interference can be eliminated byt e a t on o 1,10-p enantro ne Pt or extract on o aot er e ements ment one a ove y t oz ne pr or to e-term nat on o arsen c. T e m t o near ty o ca rat oncurve 2-40 µg for 20 mL of sample, which corresponds to

    a detection limit of 100 ng/mL.The method based on the formation of DDTC-Ag

    comp ex 7 as een recommen e y Internat onaStan ar s ISO 6595 9 or eterm nat on o tota arsen cn water samples. After oxidation of organic compounds

    or sulphates by heating with potassium manganate and potassium sulphate peroxide, arsenic is reduced to As(III)

    y y roxy am ne y roc or e an t en As III s re-uce to y r e y ree y rogen appear ng n an ac c

    me um as a pro uct o t e react on o y roc or c acwith tin chloride. Arsenic hydride is absorbed in a solu-tion of silver diethyldithiocarbaminate in chloroform or

     pyridine. The red-violet complex formed as a product iseterm ne at t e wave engt o 510 or 525 nm. In t sreact on nter erence rom ant mony can e expecte ast forms a red complex with silver diethyldithiocarbami-

    nate. T e met o s unre a e at t s g concentrat onso a ove 500 ng mL. T e met o ase on t e react ono comp ex ormat on w t s ver car am nate was rec-ommended for determination of antimony in samples ofnatural water [10].

    he methods used for separation of arsenic from theso ut on or or t e concentrat on o arsen c are: st at ona ter re uct on to arsen c y r e, extract on o a ogen-ides by CCl from an acidic environment and extraction ofthe diethyldithiocarbaminate complex with As (III) [7].

    Spectrop otometr c et o s or eterm nat ono t mony

    A frequently used method is the one based on the for-mation of brilliant green after reduction of Sb(V) to Sb(III) by cerium sulphate and hydroxylamine hydrochlo-

    r e. In t s orm S s eterm ne at t e wave engt o620 nm. T e extract on o ant mony y sur actants cety-lopirydynium chloride (CPC) or Triton X-100) decreasesthe detection limit to 3 ng/mL [11].

    Antimony also forms complexes with the bromopyro-ga o BPR re , er ng or S III an S V y opt -ca a sorpt on. T e erence at wave engt o max muma sor ance s great enoug to ena e spec at on eterm -nation of Sb (III) and Sb (V). With the use of a micellarsystem of sodium dodecylsulphate (VI) (SDS) and nony-op enoxypo yet oxyet ano OP at 80  C, t s poss e

    to eterm ne S III n t e nary system S III S Vat 538 nm, reac ng a etect on m t o 40 ng mL. T emethod tolerates 10-fold excess of Sb (V) and is resistantto interferences from transition metals and anions.

    here are two methods of determination of antimonyapp e o ten 7 : one ase on t e use o r o am ne Ban one us ng o e ons. In t e rst a v o et-p n asso-ciation complex is formed between SbCl - and rhodamineB, which can be extracted by benzene or ethyl ether andshows a maximum absorption at 565 or 552 nm. In thesecon met o , n an env ronment o su p ur c ac , ant -mony orms a green-ye ow comp ex w t o e ons ant e max ma o t e comp ex a sorpt on are at 425 nm an330 nm. Due to the presence of bismuth the interferences

    can be eliminated by extracting antimony complexes by benzene. In the two methods, preliminary preparation oft e samp e s recommen e y coprec p tat on w t y-

    rate manganese ox e, extract on o t e c or ne com- plex by isopropyl ether in HCl environment, extractionof the iodide complex by benzene in H SO environmentand extraction of dithiocarbaminate complexes in an acidenv ronment. It s a so poss e to so ate ant mony n t eorm o y r e, rom a so ut on.

    Spectrophotometric ethod of eterminationof Selenium

    e met o ase on t e react on o se en um onsw t met y ene ue requ res re at ve y s mp e nstru-ments. However, more often the catalytic-spectropho-

  • 8/20/2019 653-667.pdf

    3/15

    na ytica Met o s or Determining rsenic, Antimony an ... 655

    ometr c met o s are use , n w c erent re -oxeagents are app e : p- y raz ne enzosu on c ac ,

     p eny y raz ne, 3- uorop eny y raz ne a ter t eeaction of amine coupling to azides or reduction of sul-

     phates. An interesting reaction is the catalytic reduction

    of methylene blue by sulphides to selenesulphides [12],w c can e escr e as o ows.

    1. Reduction of methylene blue (MB) by sulphides:2MB + S -  3H O → 2HMB + 2OH- + S (3)

    2. Re uct on o se enates IV to e ementary se en um:SeO - + 2S - + 3H O → Se + 2S + 6OH   4

    3. Formation of selenosulphides stabilized by polysulphides:S + S - → (S...S) - + Se → (S...Se) - (5)

    . Cata yze re uct on o MB y se enosu p es:2MB + S...Se - + H O → 2HMB + 2OH + S + Se 6

    The sensitivity of the method can be enhanced to be-ow 50 ng/mL, by applying a cationic surfactant such as

    cety otr met y ammon um rom e CTAB .Popu ar reagents n spectrop otometr c eterm nat on

    o s e en um are t zon, o-p eny am ne an c romo-ropic acid. The methods based on the use of amines re-

    quire a long reaction time (~2 hours), are not selective andare su ecte to erent nter erences. A new reagent orspectrop otometr c eterm nat on o se en um s 6-am -no-1-nap t o o-su p on c ac J-ac , orm ng w t Se(IV) at pH 1-2,5 a yellow complex showing a maximumabsorption at 392 nm. The method is practically free fromnterference and allows achieving a detection limit of 80

    ng mL 13 .Se en um reacts w t 2,3- am nenap t a ene n t e

     presence of bromide ions acting as a catalyst, forminga complex which can be extracted by cyclohexane in anacid environment. The maximum absorption of the com-

     p ex s at 378.5 nm an t e etect on m t o t e met os 12 ng mL 14 .

    A c ass ca met o o eterm nat on o se en um 7s based on the formation of a yellow complex between

    Se (IV) and 3,3’-diaminebenzidine (DAB) in acidicenvironment. The complex is extracted by toluene ands ows a max mum o a sorpt on at 420 nm. T s react ons spec c or se en um. To mprove t e sens t v ty o t e

    ethod, selenium can be distilled after its reduction toydride by precipitation in the metallic form and usingin chloride or hydrazine, or by extraction methods. This

    et o as een recommen e or eterm nat on o se e-n um n sur ace waters 10 .

    Electrocatalytical Methods

    A well-known advantage of the electroanalyticalet o s s t e act t at t ey perm t eterm nat on oe ements at t e eve o t e r natura occurrence n t eenvironment (in particular voltamperometric methods)

    and are usually suitable for speciation determination.The drawback of these methods is the possibility of their

    app cat on to a re at ve y sma num er o e ements ancu t es n eterm n ng a ser es o samp es n erentenvironmental matrices. The methods used for determi-nation of elements in samples of different kinds include

     polarographic ones such as: the classical direct current po arograp y DCP , a ternat ve current po arograp y

    ACP , square wave po arograp y SWP , norma pu se po arograp y NPP an erent a pu se po arograp y(DPP) and voltamperometric ones with linearly changing

     potential (LSV), cyclic and inverse.

    etermination of Arsenic

     by Electroanalytical MethodsDetermination of total arsenic by differential pulse

    cathode stripping voltamperometry (DPCSV) has beenescr e y a ew aut ors 15-17 . T e m ts o etec-

    t on ac eve were 0.05 ng mL 15 , 0.52 ng mL 16 an121 ng/mL [17], depending on the time and way of theanalyte concentration on the electrode, and the resultswere in good agreement with those reported to be ob-ta ne y HGAAS 15 . Moreover, n eterm nat on owater samp es 16 spec at on ana ys s erent at ng AsIII an As V was per orme , ase on t e use o -

    ferent electrolytes and oxidation of arsenic to As (V).

    Li and Smart [18] have discussed different electroana-lytical methods for determination of arsenic proposed in

    terature an eve ope y t em a e 1 .Determ nat ons per orme y rect current str pp ng

    voltamperometry with the gold electrode have been re- ported by Hua [19]. The speciation determination of As(III) and total arsenic after sample reduction proved to beo no ava ecause o t e content o arsen c e ow t e

    m t o etect on o 0.15 ng mL.

    etermination of Antimony by Electroanalytical Methods

    Us ng erent a pu se ano e str pp ng vo tamperom-etry DPASV w t a mo e car on e ectro e or eter-mination of antimony, the detection limit is 1.0 ng/mL.

    Method eagentimit of

    detection ng/mLSD (%)

    . .

    DPASV (Au) HCl . HClO 0.02 (20 min)

    DPCSV Cu(II). HCl 0.2 (1 min) 2.9

    e ).2

      . m n) .

    u ) . m n) .

    Cl 0.005 (10 min)

    a e . ectroana yt ca met o s o eterm nat on o arsen c .

  • 8/20/2019 653-667.pdf

    4/15

     Niedzielski P., Siepak M.656 

    Concentrat on o t e ana yte was ac eve a ter 10 m n20 . Us ng t e same met o s w t HC an acetate u -er as e ectro ytes, t e etect on m ts or eterm nat on

    of Sb (III) were 7.3 ng/mL and 73.2 ng/mL, respectively.For determination of Sb (V) it is recommended to use

    high concentrations of HCl [21]. The speciation analysiscan e ma e eterm n ng rect y t e content o S IIIan t e tota ant mony a ter re uct on o t e samp e yhydrazine at elevated temperature; the detection limit ob-tained was 0.02 ng/mL [22].

    The method of adsorption stripping voltamperometryASV , a spec at on eterm nat on o S III an S V ,

    was ma e on t e as s o t e erence n t e potent a atw c t e correspon ng pea s occurre 23 . T e etec-tion limits obtained were 0.21 ng/mL for Sb (III) and 0.56ng/mL for Sb (V), after a 5-minute preconcentration.

    The authors reported determination of Sb by the

    met o o rect current str pp ng vo tamperometry w ta go e ectro e, an spec at on eterm nat ons w t t euse of different electrolytes [24].

    eterm nat on o Se en umy E ectroana yt ca Met o s

    Determ nat on o t e tota content o se en um ythe differential pulse cathode stripping voltamperometry(DPCSV) was described in [17], with the detection limito 121 ng mL. T e met o o erent a pu se po arogra-

     p y DPP was use or eterm nat on o se en um Se IVn an env ronment o n tr c ac , reac ng g ntens ty o

    the diffusion current [25]. When applying a strongly basic(pH>9) electrolyte, the limit of determination was 0.08ng/mL and the results of the determinations were compa-ra e to t ose o ta ne y ot er met o s 26 .

    For eterm nat on o Se IV , t e met o o cata yt c polarography was applied, ensuring the detection limit of0.04 ng/mL. The speciation determinations were possibleafter reduction of Se(IV) by hot HCl [27]. Selective deter-m nat on o Se IV was poss e y t e use o a sorpt onstr pp ng vo tamperometry A SV at t e etect on m to 0.1 ng mL. T e resu ts were n goo agreement w tthose obtained by other methods [28].

    Neutron ctivation Analysis

    T e met o s o act vat on ana ys s are ase on t e phenomenon of radioactivity discovered by Irene andFrederic Joliot in 1934. In this phenomenon, referred toas activation, the radioactive nuclei are formed as a resulto om ar ment o a g ven su stance w t neutrons, onsor p otons. T us, orme sotopes can e ent e ont e as s o measurements o t e energy o ra at on anhalf-lifetime. Knowing the isotopes, we can also identify

     particular elements they were formed from. The quantita-

    tive analysis is based on the dependence of the radioactiveact v ty o a g ven sotope an ts concentrat on.At present, t e neutron act vat on ana ys s NAA

    using neutrons as activating particles, is one of the most

    un versa met o s or eterm n ng c em ca compos -t on o erent mater a s. A source o neutrons can e anuc ear reactor w c a ows very ow etect on m ts,of an order of 10-  gram) or a generator of fast neutrons(allowing a possibility of determination of light elements

    (Al, Si) undetectable by other radiometric methods). Thismet o ’s etect on m t or eterm nat on o arsen c s0,02 ng mL. Spec at on eterm nat ons are poss e a terappropriate sample preparation [29]. In determination ofSb (III) and Sb (V), with precipitation at a given pH, thedetection limit obtained was of an order of pg/mL [30].For As an S , us ng extract on y qu so vents, t e

    etect on m ts ac eve were 5 ng g an 6 ng g, respec-t ve y 31 . For eterm nat on o t e same su stanceswith the use of ion exchange, the detection limits were5 ng/g and 10 ng/g, for As and Sb, respectively [32]. Animportant advantage of the NAA method is the fact that

    t e samp e ana yze s not estroye an can e userepet t ve y.

    Atomic Fluorescence

    s met o s ase on a s m ar pr nc p e as t at oa sorpt on atom c spectrometry, an t us construct on ot e ana yt ca nstruments s a so s m ar. T e ra at oncoming from a powerful source (electrodeless lamp EDL,laser) is absorbed by plasma generated by flame or ane ectrot erma atom ser. T e a sorpt on causes exc tat ono atoms, w c em t ra at on uorescence on com ng

    ac to groun eve . T e wave engt o t e em tte uo-rescence can be the same as that of the excitation radia-tion (resonance fluorescence), higher (transition throughan intermediate state) or lower (thermoluminescence).T e ntens ty o t e uorescence ra at on s proport onato t e concentrat on o atoms n t e p asma, w c a owsquantitative analysis (e.g. by a comparison with a stan-dard curve). The intensity of the fluorescence radiation ismeasured at an angle to the path of the excitation radia-t on com ng rom t e source, w c e m nates t e e ecto t e exc tat on ra at on on t e uorescence ntens ty.However, t e resu t can st e a ecte y scatter ng othe radiation by the sample.

    he methods suitable for determination of ele-ments heavier than sodium (elements of smalleratom c mass s ow very sma uorescence are X-ray

    uorescence XRF an t e met o w t t e samp eexcitation by fast protons (PIXE). In the method ofXRF the sample is excited by X-ray radiation andthen it emits secondary X-ray radiation (the so-calledX-ray uorescence . Eac e ement em ts a c aracter-st c spectrum o ra at on qua tat ve ana ys s an

    spectra ne ntens t es are proport ona to t e contentof a given element in the sample (quantitative analy-sis). In the method of PIXE, the atoms are excited by

     bombardment with fast protons and the sensitivity oft e met o s 100 t mes greater t an t at o XRF. T euorescence met o s a ow reac ng etect on m ts

    of an order of ppm-ppb.

  • 8/20/2019 653-667.pdf

    5/15

    na ytica Met o s or Determining rsenic, Antimony an ... 657 

    In combination with hydride generation, the method ofatomic fluorescence gives results comparable with thoseobtained by the other methods of metal determination

    33 . T e met o o XRF w t separat on o t e e ementseterm ne rom t e matr x e m nates nter erences an permits a detection limits of an order of 10 ng/g [34] or0.005 ng/mL [35]. The use of laser excitation allows de-ermination of As, Se and Sb at the detection limits of 4

    ng mL, 2 ng mL an 15 ng mL 36 .

    lasmic Spectrometric Methods

    The plasmic spectrometric methods are based one em ss on o e ectromagnet c ra at on y e ements

    exc te e.g. n g temperature. Eac e ement em ts ra-at on o c aracter st c wave engt s a ow ng qua ta-

    ive analysis) and intensity proportional (at a given tem- perature) to the concentration of this element (allowingquantitative analysis). Emission of radiation by an atomo a g ven e ement s re ate to c anges n t e energystates o e ectrons rom t e outer e ectron c s e . Anappropriately high quantum of energy (thermal, electric)

     provided to the atom makes one or more electrons jumpo a higher energy level, causing the atom’s excitation.

    e g er t e energy o exc tat on, t e greater t e r c -ness o t e e ectron c trans t ons an t e comp ex ty o

    e em ss on spectrum.A sample to be studied is transformed into aerosol by

    nebulizer or in a spark ablation system in which a frag-ent of the sample is evaporated from its surface and in-

    ro uce nto p asma. In suc a orm t s ntro uce ntoa stream o neutra gas e.g. argon to w c a g re-quency signal (27-90 MHz) is applied through inductivecoupling (electrodeless). The energy of the signal heatsup the gas (argon + the sample) to 10,000 C - the stateo p asma, n w c most atoms are on ze ormat ono Me Me + etc. . T e exc te atoms em t ra at on anon t e as s o t s em ss on spectrum t e c em ca com-

     position (quantitative and qualitative) can be established.he method based on plasma excitation and analysis of

    he emission spectrum is known as ICP-AES (inductivelycoup e p asma - atom c em ss on spectrometry .Anot er so ut on s ase on t e p enomenon o on-

    zation of atoms in a plasma state at high temperature and

    the possibility of identification of the ions using massspectrometry (ICP-MS inductively coupled plasma - mass

     spec rome ry). The sensitivity of the method of ICP-MS is

    t e same or g er t an t at o GFAAS.e ICP met o s, ot AES an MS, an MIP met -ods allow determination of a few elements in a wide rangeof concentrations, in the same sample in a few minutes, sothey are superior in performance. Moreover, the use of anu trason c ne u zer USN , nstea o a pneumat c one,

    ecreases t e m t o etect on rom 5 to 20 t mes w tt e use o a pneumat c ne u zer on y 10% o t e samp ewas introduced into the plasma studied). Table 2 gives acomparison of the limits of detection obtained for differ-ent tec n ques o ana yte ntro uct on. However, t e ICPmet o s suscept e to erent n s o nter erence,w c ave to e e m nate y erent nstrumenta anchemical solutions.

    eterm nat on o Arsen c

    e app cat on o t e met o o y r e generat on before the introduction of analyte to the plasma enablesa separation of the elements under determination fromthe interfering matrix. The results obtained by ICP-AESare compara e to t ose n HGAAS eterm nat ons, w tt e etect on m t o 0.2 ng mL 38 . T e etect on m tac eve w en us ng t e met o o atom c em ss on spec-trometry (AES), with inductively coupled plasma (ICP)

    was 0.1 ng/mL and with microwave excitation and gen-eration of hydrides prior to the introduction of the analyte- t was 0.25 ng mL. T e use o a trap concentrat ng t e

    y r es, t e etect on m ts or ICP an CMP were 0.02ng/mL and 0.002 ng/mL, respectively. Using heliuminstead of argon, the detection limit can be 1.5-2 timesdecreased in the method with microwave plasma excita-t on an atom c em ss on spectrometry MIP-AES 39 .T e etect on m ts ac eve w t generat on o y r esan t e r concentrat on n a grap te urnace or n a cotrap (liquid nitrogen temperature) were 0.4 ng/mL and 0.8ng/mL [37]. Using mass spectroscopy (MS) the detection

    limit was 0.08 ng/mL, after hydride generation and reduc-t on 40 . T e eterm nat ons w t y r e generat oncan e per orme n t e cont nuous ow o t e ana yteand in the batch system, getting comparable results at the

    a e . e m ts o etect on o s, an e o ta ne us ng erent tec n ques o ana yte ntro uct on .

    ec n ques e

     ng m ) ng m ) ng m )

    - - . . .GF-3F-MIP 50 1.8 20 2.0 46 1.5

    - - - . . . . . .

    - - - . . . . . .

    - t e m t o etect on, - re at ve stan ar ev at on n percent.

  • 8/20/2019 653-667.pdf

    6/15

     Niedzielski P., Siepak M.658

    etect on m t o 4 ng mL 41 , or w t n ect on supp yo t e ana yte FIA 42 . Intro uct on o t e ana yte anhydride generation can be used irrespective of the methodof detection: AES [37-39], or MS [40, 42-44]. Massspectrometry ensures the detection limit of 0.006 ng/mLw t out pre m nary concentrat on o t e ana yte 42, 45 .Improvement o t e etect on m t an re uct on o t enter erence can e ac eve y app y ng e ectrot erma

    evaporation of the sample in combination with ICP-MS,which decreases the detection limit down to 0.03 ng/gsamp e 46 . T e samp e evaporat on s per orme n agrap te urnace s m ar to t at use n GFAAS n t econ t ons use n t s met o temperature program anmodifiers). With the use of a graphite furnace for on-lineconcentration of hydrides and the method of ICP-MS thedetection limit was achieved to be 0.02 ng/mL [47].

    etermination of Antimony

    Applying the selectively pH-dependent extraction ofSb(III)/(V) complexes, it was possible to separate differ-ent orms o ant mony ox at on an t e m ts o etec-t on or AES were: 3 ng mL an 5 ng mL or S IIIan S V , respect ve y 48 . App y ng t e tec n que ohydride generation and their capture in a graphite furnace

    of a cryogenic trap, the detection limits were 0.35 ng/mLand 0.4 ng/mL, respectively [37].

    In t e met o o ICP w t generat on o y r es, t enter erences rom ot er e ements present n t e ana yte

    even in a few hundred excess are negligible [43]. Using themethod of mass spectrometry for determination of antimo-ny in solid samples after their deep wet mineralisation theetect on m t o ta ne was 6 ng g, an t e resu ts were n

    goo agreement w t t e cert e va ues 43 . Mass spec-trometry app e toget er w t t e generat on o y r esallow reaching a detection limit of 0.06 ng/g [40]. The con-tinuous or batch introduction of the sample can be replaced

     by the injection supply (FIA), in which much smallervo umes o t e samp e are nee e . T e etect on m t o0.001 ng mL was ac eve a ter t e pre m nary re uct onof the sample and the injection loop volume of 500 µL [42].

    App y ng t e met o o ICP-MS an t e e ectrot ermaevaporat on o t e samp e, t e etect on m t ac eve was0.01 ng/g [46]. The evaporation was realized in a graphitefurnace, similar to that used in GFAAS, in the conditionsused in this method (temperature program, modifiers). The

    etect on m t o ta ne n ICP-MS eterm nat ons w t t euse o a grap te urnace or on- ne concentrat on o gener-ate y r es was 0.005 ng mL 47 .

    Determ nat on o Se en um

    A compar son o per ormance o t e ana yt ca met o suse or eterm nat ons o Se n env ronmenta samp es(bottom sediments) is illustrated in Table 3. The data showthat the method of ICP-MS is characterised by a similar

     performance to AAS, provided that generation of hydridess app e n eac o t em. T e nter erence ue to trans -

    t on meta s can e e m nate y remov ng t e meta s onion-exchange resin (cationit) and on-line. Having removedthe transition metals and applied hydride generation, themethod of ICP-AES ensured the detection limit of 0.4ng mL 49 . App y ng organ c compoun s suc as s mp ea co o s, po ya co o s, organ c ac s as mo ers t e

    etect on m t can e ecrease to 0.2 ng mL 50 . In e-termination of selenium by any method with hydride gen-

    eration, an important step is to reduce selenium to Se (IV).In determinations by the method of ICP-AES using HClas re ucer, t e etect on m t o 1.5 ng mL was ac eve51 , t e same as w en t e ICP-MS met o was use 52 .

    Applying generation of hydrides followed by their capturein a graphite furnace or cryogenic trap, the detection limitswere 0.25 ng/mL and 0.5 ng/mL [37]. When the injectionsamp e supp y was use w t generat on o y r es anmass spectrometry, t e m ts o etect on o Se IV anSe VI were 0.012 ng mL an 0.016 ng mL 49 .

    Chromatographic ethods (Hyphenated T chniques)

    C romatograp c met o s, n part cu ar gas c roma-tograp y GC an g -per ormance qu c romatogra-

     phy (HPLC) provide more detailed information than the

    a e . er ormance o erent ana yt ca met o s o eterm nat on o se en um .

    MethodCalibration range

    ng/mLLinearity

    ng/mLSD

    me o ana ys shours samp es)

    - . . .- . . .

    FI-HGAAS 0-50 1 0.29 .9

    - - - . . .

    - - 77 e - . . .

    - - e - . .

    DL stands for the detection limit, RSD% - relative standard deviation in percent.

  • 8/20/2019 653-667.pdf

    7/15

    na ytica Met o s or Determining rsenic, Antimony an ... 659

    a ove- escr e met o s. T e atter g ve tota content oa g ven meta n t e samp e or t e ract ons at erent e-grees o ox at on 53 , w ereas c romatograp c str -

     bution allows identification of specific compounds, bothorganic and inorganic, containing a given metal. Unfor-

    unately, the detectors used in chromatographic methods,suc as e ectron capture etector ECD , t erma con uc-

    v ty etector TCD , ame on sat on etector FID , photoionisation detector (PID), spectrophotometers(UV-Vis, IR, UV) or fluorimeters (RF) are non-selectiveo compounds of different metals and usually do not have

    su c ent y ow etect on m ts 54, 55 . T e s tuat on smprove y t e use o atom c a sorpt on spectrometers

    spec c or meta s 55-59 or p asm c spectrometers w temission or mass detection [58-65] and with differentsources of excitation: microwave-induced plasma (MIP),capacity-coupled plasma (CCP), capacity-microwave

    coup e p asma CMP , n uct ve y-coup e p asmaICP , rect y-coup e p asma DCP 54 , or atom cfluorescence detector [66].

    A combination of a chromatograph with a spectrom-eter acting as a selective detector permits determinationo organometa c compoun s on t e eve o t e r oc-currence n t e natura env ronment an ent cat ono part cu ar compoun s. T e aut ors o 67 eterm ne

    s (III), As (V), monomethylarsenic acid (MMAA),dimethylarsenic acid (DMAA), arsenobetaine (AB) andarsenoc o ne AC n mo e so ut ons s mu at ng naturasamp es, app y ng a system o HPLC-ICP-MS. T e re-su ts o t e c romatograp c eterm nat ons w t t e useof C (HPLC) were comparable with those obtained byHGAAS and ICP-MS. The detection limits were 10 ng/

    L for arsenates (III), 15 ng/mL for DMAA, AB, MMAAan 20 ng mL or arsenates V , app y ng t e HGAAS e-ect on 60 . W t t e use o an on-exc ange co umn or

    HPLC with ICP-MS detection, the detection limits were:0.12 ng/mL for As (III) and AC, 0.04 ng/mL for As (V),0.08 ng/mL for MMAA, 0.06 ng/mL for DMAA and AB61 , 1.3 mg g or As III , DMAA, MMAA or 1.7 mgg or As V n eterm nat ons o so samp es extracte

    w t p osp or c ac . Us ng qu c romatograp y w tHGAAS detection and membrane (PTFE) separation of

    gas from liquid phase, the following detection limits wereeached: 0.7 ng/mL; 1.1 ng/mL; 1.2 ng/mL and 3.0 ng/mLor eterm nat ons o arsenates III , DMAA, MMAA an

    arsenates V 57 . For eterm nat ons o erent arse-nic compounds with the microcapillary HPLC and ICP-MS detection, the detection limits varied from 0,1 to 0,9ng/mL, but the sample volume of 1 µL was required forn v ua ana ys s 68 . T e use o erent co umns an

    o e p ases or spec at on eterm nat on o ant monys compare n 58 . T e aut ors cons er t e an on-

    exchange, cation-exchange and reverse-phase columnsworking with FAAS or ICP-MS as detectors, and report

    agreement between the results of chromatographic analy-ses an n rect ICP-MS.Spec at on ana ys s o organ c se en um com-

     pounds and selenium amino acids was performed in

    t e system HPLC-ICP-MS 33 . S m ar etect onm ts o a out 1ng mL were o ta ne or eterm na-tion of Se (IV), Se (VI), selenometionine (SM) andselenocysteine (SC) by HPLC combined with FAASdetection (with the use of a slit concentrator STAT)or ICP-MS etect on 59 . Per ormances o gas an

    qu c romatograp y met o s or spec at on ana y-s s o organ c se en um compoun s are compare nTable 4.

    In a combined analytical system HPLC-ICP-MS as mu taneous spec at on ana ys s o arsen c, ant mony,se en um an te ur um was per orme erent at ng

    etween erent orms o ox at on an met y com- pounds of these metals, achieving the detection limitsfrom 0.01 ng/mL to 1.8 ng/mL, depending on the com-

     pound determined [64].

    Other A alytical ethods

    he above described and discussed methods of de-termination of arsenic, antimony and selenium are nota ana yt ca met o s use or t s purpose ut ave

    een c osen as most o ten app e . T e ot er met o sment one n terature nc u e rect mass spectrometry(dual MS-MS) [69], molecular absorption spectrometry

    [70], capillary electrophoresis as a method for separationof compounds prior to detection by ICP-MS [68], or ion-exc ange c romatograp y 71, 72 w t ICP-AES or MS

    etect on.

    A Comparison of the Methods of Determination

    of Arsenic, timony and Selenium

    e aut ors o 73 , evote to eterm n ng nor-gan c an organ c compoun s n water, compare t e

     performance of analytical methods for determinationof arsenic, antimony and selenium. They analyzed the

    spectrophotometric methods, absorption and emissionspectroscop es, e ectroana yt ca an com ne c roma-tograp y w t erent etect on tec n ques met o sdescribed above.

    a e . pec at on ana ys s o organ c se en um compoun s .

    orm atr x etect on

    as c romatograp y

    e, e wa er  MSe, DMDSe ir  

    MSe, DMDSe gas samples, , ,

    ,

    Liquid chromatography

    TMSe , Se(IV),e )

    wa er ETAAS, IDMS,

    - ,e , e ),e )

    c n ca samp es, ,

    , -

  • 8/20/2019 653-667.pdf

    8/15

     Niedzielski P., Siepak M.660

    T e Stan ar Met o s recommen HGAAS, GFAAS,t e spectrop otometr c met o w t s ver car am nateand ICP for determination of arsenic, FAAS, GFAAS,HGAAS for determination of antimony, the spectrophoto-metric method with 2,3-diaminenaphthalene, fluorimetricmet o , GFAAS an ICP or eterm nat on o se en um,an t e ways o samp e preparat on or ana yses.

    Spec at on ana ys s o arsen c as een escr e ndetails in ref. [3]. The paper presents different proceduresof determination of different forms of arsenic and theetect on m ts o t e met o s escr e rom t e ow-

    est to t e g est reporte n terature or a g ven orm

    o arsen c n erent n s o env ronmenta samp es,F g. 1 an Ta e 5. T e aut ors 6 present erentanalytical methods of selenium determination: fluorim-etry, HGAAS, FI-HGAAS, HG-ICP-AES, HG-ICP-MS,RNAA. They describe the procedures of sample prepara-t on, g ve t e as c parameters o t e ana yt ca met o san re evant nstruments, Ta e 6. A compar son o gasan qu c romatograp y, n com nat on w t erentmethods of detection, for speciation analysis of organiccompounds of selenium is made [2] and the detection

    m ts ensure y erent met o s an epen ent on t eenv ronmenta matr x are g ven.

    a e . pec at on eterm nat ons o arsen c n env ronmenta samp es .

    Method Forms determined Samples range

    ng/mL

    UV-vis As(III), AsT water, sediments, model samples 2-100

    EQ As(III), As(V), AsB, AsC, AsT, MMAA, model samples, reference, clinical 0.1-18

    - As(III), As(V), MMAA, DMAA water, soils, clinical . -

    ETAAS As(III), AsT water, sediments, model 0.02-10

    - - s ), s ), , , s , s water, se ments, c n ca , mo e . -

    - - s ), s ), , , s , s water, se ments, o og ca , mo e -

    As(III), As(V) water, biological, reference .

    DL - detection limit

    Fig. 1. Different procedures of speciation analysis of arsenic in environmental samples of different types [3].

  • 8/20/2019 653-667.pdf

    9/15

    na ytica Met o s or Determining rsenic, Antimony an ... 661

    a e . compar son o se ecte met o s or eterm n ng se en um .

    na yt ca tec n que atr x ng m

     pectroscop c met o s

    - plantsAFS sediments 0.28

    wa er .

    t ssues .

    urine .

    ICP-AES sediments 0.4

    wa er .

    ectroc em ca met o s

    wa er

    wa er .

    DPP tissues 0.005

    a oc em ca met o s

    oo pro ucts .

     - etect on m t

    Table 7. Speciation analysis of selenium [4].

    orm Samples Analytical method DL ng/mL

    Se(IV) wa er 10

    e ) wa er .

    e ), e ) wa er .

    Se(IV), Se(VI) soil - .

    Se(IV) soil SCIC-LC-CD 110

    e ) so - -

    e ), e ) wa er - .

    e ), e ) wa er - - .

    Se(IV), Se(VI) sediments - .

    Se(IV), Se(VI) model LC-ICP-AES 0.054

    e mo e - - .

    e, e a r - .

    e air - .

    DMDSe air GC-GFAAS 0.0002

    e , e oo -

    e ) mo e - - .

    Se total model - -

    Se total wa er ID-MS .Se total biological HG-ICP-MS 0.0013

     - etect on m t

  • 8/20/2019 653-667.pdf

    10/15

     Niedzielski P., Siepak M.662

    A similar comparative presentation of the methods ofspeciation analysis of selenium has been made in [4]. Thedetection limits (Table 7) and analytical procedures ofeterm nat on o se en um n erent n s o env ron-

    menta samp es are g ven n F g. 2.T e aut ors 5 scuss pro ems re ate to spec at on

    analysis of selenium in environmental samples. They pres-ent sample preparation procedures, a comparison of analyt-

    cal methods and the detection limits achieved (Table 8).Ta es 9-11 g ve a r e c aracter sat on o t e a ove-scusse ana yt ca met o s an re erences concern ng

    speciation analysis.

    Summary

    his paper presents results illustrating the possibili-t es o se ecte ana yt ca met o s n eterm n ng arsen c,ant mony an se en um. T e s gn cance o now ng t eeve o t ese e ements n env ronmenta , tec no og ca

    and pharmaceutical samples is reflected in the numberof devised methods of their determinations, ensuring the

     possibility of optimisation for particular cases. The acces-s ty o a var ety o nstrumenta an met o ca so u-t ons perm ts t e c o ce o a tec n que est or expectelevels of concentration.

    Fig. 2. Analytical procedures of speciation analysis of selenium in environmental samples [4].

  • 8/20/2019 653-667.pdf

    11/15

    na ytica Met o s or Determining rsenic, Antimony an ... 663

    Spec at on ana ys s prov ng more n ormat on a outtox c ty, oava a ty, m grat on o e ements an t empact o n ustr a tec no og es as egun rep ac ng

    simple determinations of total contents in environmentalsamples. Methods combining the use of selective ana-

    lytical methods such as ICP-MS, AFS or MIP with chro-matograp c separat on o erent spec es conta n ng ag ven e ement ave ecome ncreas ng y ava a e. T enecessary laboratory equipment and analytical units arenot only constructed in laboratories, but in ready-madecommercial equipment.

    Acknowledgements

    his study has been financially supported by the StateCommittee for Scientific Research within project no. 4T09A 061 22.

    e Most O ten Use Acronyms

    a e . na yt ca met o s o eterm n ng se en um .

    Method DL ng/mL

    tom c a sorpt on spectrometry

    GFAAS 0.5-2. - .

    HGAAS with concentration ~ 0.001

    - - ~ .

    GC-GFAAS 0.1 ng

    - . - . ng

    tom c em ss on spectrometry

    - - . - .

    - - - ng

    - -

    - - . - . ng

    Atomic uorescence spectrometry

    - - ~ .

    - - . ng

    - - . - .

    . ·

    n uct ve y coup e p asma w t mass spectroscopy

    - ~ .

    - - . - . ng

    - - . ng

    - - .

    HG-GC-ICP-MS -

    - - . - . ng

    Gas chromatography

    - . ng

    GC-ECD ~ 0.001

    - . - . ng

    HG-GC-PID 0.025 ng

    uor metry

    DAN-FD 0.01-0.05

    - . · -4- -5

    Electrochemical methods

    , . -

    CSV, DPCSV 0.0005-0.1

    - -

    - . - . ng

    ass spectrometry

    -- - -

    L - detection limit

    AAS Atomic absorption spectrometryACP A ternat ve current po arograp yAFS Atom c uorescence spectrometryASV A sorpt on str pp ng vo tamperometryCCP Capacitive induced plasmaCMP Capacitive-microwave induced plasmaDAD D o e array etector  DCP D rect current po arograp yDPASV D erent a pu se ano e str pp ng

    voltamperometryDPCSV Differential pulse cathode stripping

    voltamperometryDPP D erent a pu se po arograp yECD E ectron capture etectorETAAS Electrothermal atomic absorption spectrometryFAAS Flame atomic absorption spectrometryFIA Flow-injection analysisFID F ame- on sat on etectorGC Gas c romatograp yGFAAS Grap te urnace atom c a sorpt on

    spectrometry

    HGAAS Hydride generation atomic absorptionspectrometry

    HPLC H g -per ormance qu c romatograp yIC Ion c romatograp yICP-AES Inductively coupled plasma with atomic

    emission spectrometryICP-MS Inductively coupled plasma with mass s

     pectroscopyLIF aser n uce uorescenceMIP M crowave n uce p asma

     NAA Neutron activation analysis NPP Normal pulse polarography

    PID Photoionisation detector  RF F uorometr c etector  XRF X-ray uorescence

  • 8/20/2019 653-667.pdf

    12/15

     Niedzielski P., Siepak M.664

    a e . na yt ca met o s o eterm n ng arsen c.

    et o n o samp es pec at on e erences

    - meta s, mo e - , ,

    soil, water + , ,SCCS water - 19

    geo og ca re erence mater a s

    mo e +

     biological reference materials -

     NAA water, geological reference materials + 29, 32

    - - water, re erence mater a s + ,

    - - mo e , ,

    - oo pro ucts -

    - - water, reference materials, model - ,

    HG-ICP-MS water - 40, 42, 45

    - - mo e , water, se ments, o og ca + - , ,

    - o og ca , water +

    - wa er +

    CE-HG-ICP-MS wa er + 68, 75

    re erence mater a s

      mo e

    x model +

    LIF-ICP model - 36

    + a reference concerning speciation analysis

    Table 10. Analytical methods of determining antimony.

    Method Kind of samples Speciation eferences

    - water, mo e +

    water, mo e + -

    water, re erence mater a s +

     biological, soil -

    AFS biological - 76

    water, o og ca , geo og ca + -

    - a er +

    - - model - ,

    EV-ICP-MS water, model - 45-47

    - - geo og ca , water , ,

    - - so , mo e + ,

    model -LIF-ICP model - 36

    + a reference concerning speciation analysis

  • 8/20/2019 653-667.pdf

    13/15

    na ytica Met o s or Determining rsenic, Antimony an ... 665

    References

    . ., ., .,., tom c a sorpt on spectrometry n eterm nat on o arse-

    nic, antimony and selenium in environmental samples, Pol.

    . nv ron. tu ., ), , .. PYRZY SKA K., Speciation analysis of some organic sele-nium compounds. A review, Analyst, 21 08), 77R, 996.

    3. BURGUERA M., BURGUERA J.L., Analytical methodol-ogy or spec at on o arsen c n env ronmenta an o og -cal samples,Talanta 44, 1581, 997.

    . OLIVAS R.O., DONARD O.F.X., CAMARA C., QUEVAU-  ., na yt ca tec n ques app e to t e spec at on

    of selenium in environmental matrices, Anal Chim Acta,, , .

    . ., eterm nat on o se en um an te ur um nenvironmental samples, Analyst, 22(12), 117R, 997.

    6. HAYGARTH P.M., ROWLAND A.P., STURUP S., JONES. ., ompar son o nstrumenta met o s or t e eterm -

    nat on o tota se en um n env ronmenta samp es, na yst,(10), 1303, .. ., ., pe tro otometry-

    czne meto y w ana z e n eorgan czne , arszawa,.

    . RAO V.S.S., RAJAN S.C.S., RAO N.V., Spectrophotomet-r c eterm nat on o arsen c y mo y enum ue met oin zinc-lead concentrates and related smelter products afterc oro orm extract on o o e comp ex, a anta, , ,

    .. HOWARD A.G., ARBAB-ZAVAR M.H., Sequential Spec-

    trop otometr c eterm nat on o norgan c rsen c ) anArsenic(V) Species, Analyst, 105 4), 338, 980.

    . DOJLIDO J.R., Chemia wód powierzchniowych Wyd. Eko-

    nomia i rodowisko, Białystok, .. . ., . ., eterm nat on o ant mony

    in rain water at the nanogram level with surfactant and bril-ant green, resen us na em, , , .

    12. RIKAN B., TUNCAY M., APAK R., Sensitivity enhance-ent o t e met y ene ue cata yt c-spectrop otometr cethod of selenium(IV) determination by CTAB, Anal

    m cta, , , .. . ., .,. ., pectrop otometr c eterm nat on o se en um w t

    6-amino-1-naphthol-3-sulphonic acid (j-acid) and its appli-cat on n trace ana us s, a anta, , , .

    . . ., . ., o e spec-rophotometric method for the determination of selenium in

    env ronmenta an m nera m xtures us ng , - am non- p t a ene, a anta, , , .

    . ., . ., . ., eter-ination of Total Arsenic in Soils by Differential-pulseat o c tr pp ng o tammetry, na yst, ), ,

    .. ., ., ., pec at on o

    rsenic (V) and arsenic (III) by cathodic stripping voltam-etry n res water samp es, resen us na em, ,, .

    . ., ., . .,. ,erent a pu se po arograp c eterm nat on o arsen c, se e-

    um an te ur um at g eve s, a anta, , , .. ., . ., eterm nat on o su -nanomo ar con-

    centration of arsenic(III) in natural waters by square wavecat o c str pp ng vo tammetry, na m cta, , ,

    .. ., ., ., utomate eterm na-

    ion of total arsenic in sea water by flow constant-currentstr pp ng ana ys s w t go re e ectro es, na . m.

    cta, , , .

    . HOO S.B., ZHU J., Determination of Trace Amountso nt mony ) y erent a -pu se no c tr pp ng

    o tammetry at a eny orone-mo e ar on astelectrode, Analyst, 21 12), 1983, 996.

    + a re erence concern ng spec at on ana ys s

    a e . na yt ca met o s o eterm n ng se en um.

    et o n o samp es pec at on e erences

    - water, mo e

    water, model -SCCS water, reference materials

    o og ca , so

    o o g c a

    water, o og ca , geo og ca -

    - wa er  

    G-MIP-AES odel - 37, 69

    - - water, mo e -

    - - geo og ca , water , ,

    - - soil, model ,

    AD MAS odel - 0

    - o e

  • 8/20/2019 653-667.pdf

    14/15

     Niedzielski P., Siepak M.666 

    . . ., . ., eterm nat on o an-t mony ) an ) y erent a pu se ano c str pp ngvoltammetry, Talanta, , , .

    . POSTUPOLSKI A., GOLIMOWSKI J., Trace Determina-tion of Antimony and Bismuth in Snow and Water Samples

     by Stripping Voltammetry, Electroanal, , , .. WAGNER W., SANDER S., HENZE G., Trace analysis ofantimony (III) and antimony (V) by adsorptive strippingvoltammetry, Fresenius J Anal Chem, 354, 11, 996.

    24. HUILIANG H., JAGNER D., RENMAN L., Flow Con-stant-Current Stripping Analysis for Antimony (III) andAntimony (V) With Gold Fibre Working Electrodes, Anal.

    m. cta, , , .. . ., . ., eterm nat on o se e-

    n um ) an te ur um ) y erent a pu se po arog-rap y, a anta, , , .

    . ., ., ., ., eeterm nat on o trace eve s o se en um conta ne n

    nese er a rugs y erent a pu se po arograp y,

    a anta, , , .. ., ., ., .,

    ., ., ., ., ata yt c po-larographic determination of total selenium in tea leaves,Talanta, , , .

    . ŁOZAK A., FIJAŁEK Z., Determination of Selenium inPharmaceutica Preparations for Parenteral Administration by Absorptive Stripping Voltammetry and Atomic Absorp-tion Spectrometry, Chem Anal (Warsaw), pp. 3-7, 997.

    29. VAN ELTEREN J.T., DAS H.A., DE LIGNY C.L., Deter-mination of arsenic (III,V) in aqueous samples by neutronactivation analysis after sequential coprecipitation with

    enzy t ocar amate, sev er c ence, .. . ., . ., . ., . ., eterm na-

    t on o ant mony , ) n natura waters y coprec p tat onan neutron act vat on ana ys s, na m cta, , ,

    .. . ., . ., eterm nat on o arsen c an

    ant mony n o og ca mater a s y so vent extract on anneutron act vat on, a anta, , , .

    . . ., . ., eterm nat on o arsen c,ant mony, tungsten an mo y enum n s cate mater a s yepithermal neutron activation and inorganic ion exchange,Anal Chim Acta, , , .

    . MESTER Z., FODOR P., Characteristics of the atomicfluorescence signals of arsenic in speciation studies, Spec-trochim Acta, 2 B, 1763, 997.

    . MESSERSCHMIDT J., VON BOHLEN A., ALT F.,KLOCKENKAMPER R., Determination of Arsenic andBismuth in Biological Materials by Total Reflection X-ray

    uorescence ter eparat on an o ect on o e r y-r es, . na . tom. pectr., ), , .

    . - ., . ., -  ., rect eterm nat on o rsen c n ea-water y

    ont nous- ow y r e enerat on tom c uorescence pectrometry, . na . tom. pectr., , , .

    . . ., ., . ., -  . ., . ., aser- n uce uorescence o s,

    e an n t e n uct ve y coup e p asma, pectroc mcta, , , .

    . ., ., . . .,

    G., Different sample introduction systems for the simultane-ous determination of As, Sb and Se by microwave-induced plasma atomic emission spectrometry, Anal Chim Acta, 271,171, 993.

    . . ., . - .,. . , - ., ., eter-

    mination of arsenic by inductively-coupled plasma atomicemission spectrometry enhanced by hydride generationfrom organized media, Talanta, , , .

    . ., . . ., .,G., Comparative study of argon and helium plasma in aTM010 cavity and a surfatron and their use for hydridegeneration microwave-inducted plasma atomic emissionspectrometry, na m cta, , , .

    . ., ., ., eve opmento a u t -e ement y r e enerat on- n uct ve y oup e

    asma ass pectrometry roce ure or t e mu taneouseterm nat on o rsen c, nt mony an e en um n aters,

    . na . tom. pectr., ), , .. . ., . . ., . .,

    . ., pp cat on o y r e generat onto t e eterm nat on o trace concentrat ons o arsen c ycapacitively coupled microwave plasma, Anal Chim Acta,

    , , .. STROH A., VOLKOPF U., Optimisation and Use of FlowInjection Vapour Generation Inductively Coupled PlasmaMass Spectrometry for the Determination of Arsenic, An-timony and Mercury in Water and Sea-water at Ultratrace

    eve s, . na . tom. pectr., ), , .43. HALL G.E.M., PELCHAT J.C., Analysis of Geological Ma-

    ter a s or smut , nt mony, e en um an e ur um yont nuous ow y r e enerat on n uct ve y oup easma ass pectrometry art . utua y r e nter er-

    ences, . na . tom. pectr., ), , .. ., .,

    . . ., eterm nat on o rsen c y n uct ve y oup easma ass pectrometry n ung ean ee ngs or use

    s a Bio-indicator of Arsenic Contamination, J. Anal. Atom. pectr., 9), 987, .

    . SANTOSA S.J., MOKUDAI H., Automated Continuous-flow Hydride Generation with Inductively Coupled PlasmaMass Spectrometric Detection for the Determination ofTrace Amounts of Selenium(IV), and Total Antimony, Ar-senic and Germanium in Sea-water, TANAKA S., J. Anal.

    tom. pectr., ), , .46. FAIRMAN B., CATTERICK T., Plasma Mass Spectrom-

    etry, , 8), 863, .. UGGERUD H., LUND W., Use of Palladium and Iridium

    s o ers n t e eterm nat on o rsen c an nt mony by Electrothermal Vaporization Inductively Coupled Plasma

    ass pectrometry, o ow ng n tu rapp ng o t e y-r es, . na . tom. pectr., ), , .

    . ., . .,SANCHEZ URIA J.E., SANZ-MEDEL A., Sanz-Medel,

    ) an ) separat on an ana yt ca spec at on ycontinuos tandem on-line separation device in connection

    with inductively coupled plasma atomic emission spectrom-etry, resen us na em, , , .

    . . ., ., .,M., OLSINA R., Selenium determination by HG-ICPAES:

    m nat on o ron nter erences y means o an on-ex-c ange res n n a cont nuous ow system, resen us naChem, , , .

    . ., ., ., mprove-

    ment of selenium determination in water by inductivelycoupled plasma mass specrometry through use of organiccompounds as matrix modifiers, Spectrochim Acta 52B,

    , .

  • 8/20/2019 653-667.pdf

    15/15

    na ytica Met o s or Determining rsenic, Antimony an ... 667 

    . . ., ., nvest gat ons nto mcon t ons or re uct on o e ) to e ) an or y-dride generation in determination of selenium by directcurrent plasma atomic emission spectrometry, SpectrochimActa, , , .

    . DELVES H.T., SIENIAWSKA C.E., Simple Method for theAccurate Determination of Selenium in Serum by UsingInductively Coupled Plasma Mass Spectrometry, J. Anal.Atom. Spectr., 2(3), 387, 997.

    53. ŁOBIŃSKI R., Elemental speciation and coupled tech-n ques, pp e pectrosc, ), , .

    54. ŁOBIŃSKI R., ADAMS F.C., Speciation analysis by gasc romatograp y w t p asma source spectrometr c etec-t on, pectroc m cta, , , .

    . ., ., ., o -p aseextract on proce ure or t e eterm nat on o se en um ycap ary gas c romatograp y, na m cta, , ,

    .. . ., . . ., . .,

    . ., pp cat on o y r e generat onto t e eterm nat on o trace concentrat ons o arsen c ycapacitively coupled microwave plasma, Anal Chim Acta,

    , , .. KO F-H., CHEN S-L., YANG M-H., Evaluation of the

    Gas-Liquid Separation Efficiency of a Tabular Membraneand Determination of Arsenic Species in Groundwater byLiquid Chromatography Coupled Wiyh Hydride Generation

    tom c sorpt on pectrometry, . na . tom. pectr.,), , .

    . ., ., ., e mann .,eterm nat on o ant mony spec es w t g -per ormancequ c romatograp y us ng e ement spec c etect on,resen us na em, , , .

    . . ., . ., pec at on o our se e-n um compoun s us ng g per ormance qu c romatog-rap y w t on- ne etect on y n uct ve y coup e p asmamass spectrometry or flame atomic absorption spectrometry,Fresenius J Anal Chem, , , .

    . LE X-C., CULLEN W.R., REIMER K.J., Speciation of ar-senic compounds by HPLC with hydride generation atomicabsorption spectrometry and inductively coupled plasmamass spectrometry detection, Talanta, 1, 495, 994.

    61. SAVERWYNS S., ZHANG X., VANHAECKE F., COR- NELIS R., MOENS L., DAMS R., Speciation of SixArsenic Compounds Using High-performance Liquid

    romatograp y- n uct ve y oup e asma ass pectrometry t amp e ntro uct on y ermospraye u zat on, . na . tom. pectr. , ) , ,

    .. ., . ., . ., eas ty o

    ent cat on an on tor ng o rsen c p ec es n o ane ment amp es y oup e g -per ormance qu

    Chromatography - Inductively Coupled Plasma Mass Spec-trometry, J. Anal. Atom. Spectr., (12), 1367, .

    . . ., . ., . .,Speciation of Arsenic Animal Feed Additives by MicroboreHigh-performance Liquid Chromatography with Inductive-ly Coupled Plasma Mass Spectrometry, Analyst, 22 10),1063, 997.

    . . ., . ., . ., ., -  ., pec at on o e enoam no c s an rganose en um

    Compounds in Seleniumenriched Yeast Using High-perfor-ance Liquid Chromatography-Inductively Coupled Plasmaass Spectrometry, J. Anal. Atom. Spectr., (7), 785, .

    . GUERIN T., ASTRUC M., BATEL A., BORSIER M., Mul-ielemental speciation of As, Se, Sb and Te by HPLC-ICP-s, Talanta 44, 2201, 997.

    66. ASTER Z., FODOR P., Analytical System for Arseno- betaine and Arsenocholine Speciation, J. Anal. Atom.

     pectr., ), , .67. EMESMAY C., OLLE M., PORTHAULT M., Arsenic

    spec at on y coup ng g -per ormance qu c romatog-ap y w t n uct ve y coup e p asma mass spectrometry,resen us na em, , , .

    . . ., . ., . ., pec at on o rsen c ompoun s n r n ng ater yap ary ectrop ores s w t y ro ynam ca y o eectroosmot c ow etecte roug y r e enera-

    ion Inductively Coupled Plasma Mass Spectrometry WithMembrane Gas-Liquid separator, J. Anal. Atom. Spectr.,7), 689, .

    . ARSEN E.H., PEDERSEN G.A., MCLAREN J.W., Char-cterisation of National Food Agency Shrimp and Plaiceeference Materials for trace Elements and Arsenic Species

     by Atomic and Mass Spectrometric Techniques, J. Anal.tom. pectr., ), , .

    . . ., . ., . ., mu tane-ous eterm nat on o arsen c, ant mony an se en um ygas-p ase o e array mo ecura a sorpt on spectrometry,

    ter preconcetrat on n a cryogen c trap, na m cta,, , .

    . . ., . ., e spec at on o

    rsen c ) an arsen c ), y on-ex us on c romatogra- p y, n so ut ons conta n ng ron an su p ur c ac , a anta,

    , , .. . ., . ., . ., ., - NOYER E., Speciation of Selenoamino Acids and Or-ganoselenium Compounds in Seleniumenriched Yeast Us-ng High-performance Liquid Chromatography-Inductively

    Coupled Plasma Mass Spectrometry, J. Anal. Atom. Spectr.,2 7), 785, 997.

    73. AC CARTHY P., KLUSMAN R.W., Water analysis, Analem, , , .

    74. OWARD A.G., ARBAB-ZAVAR M.H., Sequen-a pectrop otometr c eterm nat on o norgan crsen c ) an rsen c ) pec es, na yst, ),

    , .. . ., . ., . .,

     pec at on o e en um an rsen c ompoun s y ap aryectrop ores s t y ro ynam ca y o e ectroos-ot c ow an n- ne e uct on o e en um ) to e en -

    um (IV) With Hydride Generation Inductively Coupled Plasmaass Spectrometric Detection, Analyst, (10), 1057, .

    . ., ., ., .,Correlation of the antimony concentration of umbilicalcord and infant hair measured by hydride generation-tomic fluorescence spectrometry, Anal Chim Acta, 354,

    1, 997.