13
6-1 Chapter 6. Laplace Transforms 6.4 Short Impulses. Dirac Delta Function. Partial Fraction 6.5 Convolution. Integral Equations 6.6 Differentiation and Integration of Transforms 6.7 Systems of ODEs

6.4 Short Impulses. Dirac Delta Function. Partial Fraction 6.5 …contents.kocw.net/KOCW/document/2015/sungkyunkwan/... · 2016-09-09 · 6-1 . Chapter 6. Laplace Transforms . 6.4

  • Upload
    others

  • View
    22

  • Download
    4

Embed Size (px)

Citation preview

Page 1: 6.4 Short Impulses. Dirac Delta Function. Partial Fraction 6.5 …contents.kocw.net/KOCW/document/2015/sungkyunkwan/... · 2016-09-09 · 6-1 . Chapter 6. Laplace Transforms . 6.4

6-1

Chapter 6. Laplace Transforms 6.4 Short Impulses. Dirac Delta Function.

Partial Fraction

6.5 Convolution. Integral Equations 6.6 Differentiation and Integration of Transforms 6.7 Systems of ODEs

Page 2: 6.4 Short Impulses. Dirac Delta Function. Partial Fraction 6.5 …contents.kocw.net/KOCW/document/2015/sungkyunkwan/... · 2016-09-09 · 6-1 . Chapter 6. Laplace Transforms . 6.4

6-2 6.4 Short Impulses. Dirac Delta Function. Partial Fraction

Dirac delta function or unit impulse function is defined as

( ) if 0 otherwise

t a t aδ − = ∞ =

=

( ) 1a

a

t a dt+ε

−ε

δ − =∫

The delta function can be obtained by taking the limit of kf

( ) ( )0

lim kkt a f t a

→δ − = −

Sifting property of delta function

( ) ( ) ( )a

a

g t t a dt g a+ε

−ε

δ − =∫

The Laplace transform of delta function. Start from kf

( ) ( ) ( ) 1kf t a u t a u t a k

k − = − − − +

→ Take the limit 0k → and apply l’Hopital’s rule to the quotient.

0 0

1lim lim

ks ksas as

k k

e see e

ks s

− −− −

→ →

−⇒

→ ( ) ast a e−δ − = L

Page 3: 6.4 Short Impulses. Dirac Delta Function. Partial Fraction 6.5 …contents.kocw.net/KOCW/document/2015/sungkyunkwan/... · 2016-09-09 · 6-1 . Chapter 6. Laplace Transforms . 6.4

6-3 Example 1 Mass-Spring system under a square wave Input is of the form of a rectangular function

The subsidiary equation

Use the partial fraction expansion : The inverse transform : Using t-shifting

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 2 21 1 1 11 2

2 2 2 2t t t ty t e e u t e e u t− − − − − − − − = − + − − − + −

Example 2 Hammer blow response of a mass-spring system The input is given by a delta function

Solving algebraically

The solution ( ) ( ) ( )( 1) 2( 1)1 1t ty t e u t e u t− − − −= − − −

Page 4: 6.4 Short Impulses. Dirac Delta Function. Partial Fraction 6.5 …contents.kocw.net/KOCW/document/2015/sungkyunkwan/... · 2016-09-09 · 6-1 . Chapter 6. Laplace Transforms . 6.4

6-4 Example 3 Four-Terminal RLC-Network Find the output voltage if 420 , 1 , 10R L H C F−= Ω = = . The input is a delta function and current and charge are zero at t=0.

The voltage drops on R, L, C should be equal to the input. Using 'i q=

The subsidiary equation

Using s-shifting and 29900 99.50≈

The solution

More on Partial Fractions

The solution of a subsidiary equation is of the form ( )( )

F sY

G s=

Partial fraction representation may be needed.

(1) Unrepeated factor (s-a) in G(s) → Partial fraction should be ( )

As a−

(2) Repeated factor ( )2s a− in G(s) → Partial fractions ( ) ( )2

A Bs as a

+−−

Repeated factor ( )3s a− in G(s) → Partial fractions ( ) ( ) ( )3 2

A B Cs as a s a

+ +−− −

(3) Unrepeated complex factors ( )2 2s −α +β → Partial fraction ( )2 2

As B

s

+ −α +β

Page 5: 6.4 Short Impulses. Dirac Delta Function. Partial Fraction 6.5 …contents.kocw.net/KOCW/document/2015/sungkyunkwan/... · 2016-09-09 · 6-1 . Chapter 6. Laplace Transforms . 6.4

6-5 Example 4 Unrepeated Complex Factors. A damped mass-spring system under a sinusoidal force.

( )" 2 ' 2y y y r t+ + = , ( ) 10sin2 for 0

0 for r t t t

t = < < π

= > π, ( ) ( )0 1, ' 0 5y y= = −

The subsidiary equation

The solution

(6) • The partial fraction of the first term

Multiplying the common denominator

Terms of like powers of s should be equal on the right and left sides

→ A=-2, B=-2, M=2, N=6 Therefore the first term becomes

The inverse transform

(8)

• The inverse of the second term of (6) is obtained from (8) using t-shifting ( )u t − π (11) • Rewrite the third term of (6)

( )2 2

3 ( 1) 42 2 1 1

s ss s s

− + −⇒

+ + + +

The inverse using s-shifting ( )cos 4sinte t t− − (7) • The final solution For 0 t< < π y(t)= Eq. (8) + Eq. (7) For t > π y(t)= Eq. (8) + Eq. (7) + Eq. (11)

Page 6: 6.4 Short Impulses. Dirac Delta Function. Partial Fraction 6.5 …contents.kocw.net/KOCW/document/2015/sungkyunkwan/... · 2016-09-09 · 6-1 . Chapter 6. Laplace Transforms . 6.4

6-6 6.5 Convolution. Integral Equations

The convolution of two functions f and g is defined as

( ) ( ) ( )0

*t

f g f g t d≡ τ − τ τ∫ : Note the integration interval

Theorem 1 Convolution theorem

If F and G are Laplace transforms of f and g, respectively, the multiplication FG is the Laplace transform of the convolution (f*g)

Proof:

Set p t= − τ , then

Calculate the multiplication

↑ ↑ ↑ G can be inside of F For fixed τ , integrate from τ to ∞ . because and t τ are independent. ( The integration over blue region ) The integration can be changed as

• Some properties of convolution

( )0

*ste f g dt∞

−⇒ ∫

Page 7: 6.4 Short Impulses. Dirac Delta Function. Partial Fraction 6.5 …contents.kocw.net/KOCW/document/2015/sungkyunkwan/... · 2016-09-09 · 6-1 . Chapter 6. Laplace Transforms . 6.4

6-7 Example 1 Convolution

Let ( ) ( )1

H ss a s

=−

. Find h(t).

Rearrange : ( ) ( )1 1

H ss a s

= −

↑ ↑ F(s) G(s) Inverse transforms : ( ) ( ), 1atf t e g t= =

Using convolution theorem : ( ) ( ) ( ) ( )0

1* 1 1

ta ath t f t g t e d e

aτ= ⇒ ⋅ τ⇒ −∫

Example 2 Convolution

Let ( )( )22 2

1H s

s=

+ω. Find h(t).

Rearrange : ( )( ) ( ) ( )2 2 2 2 22 2

1 1 1H s

s ss= ⇒

+ω +ω+ω

Inverse of ( )2 2

1s +ω

: sin tωω

Using convolution theorem : ( ) ( )2 20

sin sin 1 1 sin* sin sin cos

2

tt t th t t d t t

ω ω ω = ⇒ ωτ ω − τ τ⇒ − ω + ω ω ωω ω ∫

)]cos()cos([2/1sinsin yxyxyx −++−= Example 3 Unusual Properties of Convolution *1f f≠ in general → ( )* 0f f ≥ may not hold → Applications to Nonhomogeneous Linear ODEs Nonhomogeneous linear ODE in standard form ( )" 'y ay by r t+ + = : a and b, constant The solution

( ) ( ) ( ) ( ) ( ) ( ) ( )0 ' 0Y s s a y y Q s R s Q s= + + + : ( ) 2

1Q s

s as b=

+ +, transfer function

The inverse of the first right term can be easily obtained. The inverse of the second term, assuming ( ) ( )0 ' 0 0y y= =

( ) ( ) ( )0

t

y t q t r d= − τ τ τ∫

The output is given by the convolution of the impulse response q(t) and the driving force r(t). Example 5 Mass-spring system

Page 8: 6.4 Short Impulses. Dirac Delta Function. Partial Fraction 6.5 …contents.kocw.net/KOCW/document/2015/sungkyunkwan/... · 2016-09-09 · 6-1 . Chapter 6. Laplace Transforms . 6.4

6-8 Solve

( )" 3 ' 2y y y r t+ + = , ( ) 1 for 1 2

0 otherwiser t t = < <

= ( ) ( )0 ' 0 0y y= =

The transfer function

Its inverse

Since ( ) ( )0 ' 0 0y y= = , the solution is given by the convolution of q and r.

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 212

10 0 1

1 2t t t t

t t t ty t q t r d q t u u d e e d e eτ=

− −τ − −τ − −τ − −τ

τ= = − τ τ τ⇒ − τ τ − − τ − τ⇒ − τ⇒ − ∫ ∫ ∫

↑ ↑ r(t)=1 only for 1<t<2 Note the change in the lower limit. t should be less than 2. For t<1 : y(t) = 0

For 1<t<2 : The upper limit is t, ( ) ( ) ( ) ( ) ( )2 1 2 112

1

1 12 2

tt t t ty t e e e e

τ=− −τ − −τ − − − −

τ= = − ⇒ − +

For t>2 : The upper limit is 2, ( ) ( ) ( ) ( ) ( ) ( ) ( )22 2 2 2 1 2 11

21

1 12 2

t t t t t ty t e e e e e eτ=

− −τ − −τ − − − − − − − −

τ=

= − ⇒ − − −

Integral Equations Convolutions can be used to solve certain integral equations Example 6 A volterra Integrals Equation of the Second Kind Solve

↑ Convolution of ( ) ( ) and siny t t Using the convolution theorem we obtain the subsidiary equation

( ) ( ) ( )2

2 2 2

1 11 1

sY s Y s Y s

s s s− = ⇒

+ + → ( )

2

4 2 4

1 1 1sY s

s s s+

= ⇒ +

The answer is

Page 9: 6.4 Short Impulses. Dirac Delta Function. Partial Fraction 6.5 …contents.kocw.net/KOCW/document/2015/sungkyunkwan/... · 2016-09-09 · 6-1 . Chapter 6. Laplace Transforms . 6.4

6-9 6.6 Differentiation and Integration of Transforms. Differentiation of Transforms If F(s) is the transform of f(t), then its derivative is

( ) ( )0

stF s f t e dt∞

−= ∫ → ( ) ( ) ( )0

' stdF sF s t f t e dt

ds

∞−= = −∫

Consequently ( ) ( )'t f t F s= − L and ( ) ( )1 'F s t f t− = − L

Example 1 Differentiation of Transforms The table can be proved using differentiation of F(s).

The second one

[ ]( )2 2 22 2

2sin

sdt t

ds s s

β ββ = − ⇒ +β +β

L

Integration of Transforms If f(t) has a transform and ( )

0lim /

tf t t

→ + exists,

( ) ( )

s

f tF s ds

t

∞ =

∫L and ( ) ( )1

s

f tF s ds

t

∞−

= ∫L

Proof: From the definition

( ) ( ) ( ) ( )0 0

st st

s s s

f tF s ds e f t dt ds f t e ds dt

t

∞ ∞ ∞ ∞ ∞− −

= ⇒ ⇒

∫ ∫ ∫ ∫ ∫ L

↑ ↑ Reverse the order of integration. = /ste t−

Page 10: 6.4 Short Impulses. Dirac Delta Function. Partial Fraction 6.5 …contents.kocw.net/KOCW/document/2015/sungkyunkwan/... · 2016-09-09 · 6-1 . Chapter 6. Laplace Transforms . 6.4

6-10 Example 2 Differentiation and Integration of Transforms Find the inverse transform of F(s) = Its derivative

Take the inverse transform

( ) ( )1 12 2

2 2' 2cos 2

sF s t t f t

ss− − ⇒ − ⇒ ω − = − + ω

L L

→ ( ) 2cos 2tf t

tω −

= −

• Using integration of transforms Let → Then

( ) ( ) ( ) ( )' 0s s

F s F F s ds G s ds∞ ∞

= ∞ − ⇒ −∫ ∫

Take the inverse transform of both sides

( ) ( )g tf t

t= − ( ) ( )2 cos 1

t

f ttω −

→ = −

Special Linear ODEs with Variable Coefficients Use differentiation of transform to solve ODEs. Let [ ]y Y=L → [ ] ( )' 0y sY y= −L . Using differentiation of transform

[ ] ( )' 0d dY

ty sY y Y sds ds

= − − ⇒ − − L

Similarly, using [ ] ( ) ( )2" 0 ' 0y s Y sy y= − −L

[ ] ( ) ( ) ( )2 2" 0 ' 0 2 0d dY

ty s Y sy y sY s yds ds

= − − − ⇒ − − + L

Page 11: 6.4 Short Impulses. Dirac Delta Function. Partial Fraction 6.5 …contents.kocw.net/KOCW/document/2015/sungkyunkwan/... · 2016-09-09 · 6-1 . Chapter 6. Laplace Transforms . 6.4

6-11 Example 3 Laguerre’s Equation Laguerre’s ODE is ( )" 1 ' 0ty t y ny+ − + = n=0, 1, 2, … The subsidiary equation

→ Separating variables, using partial fractions

2

1 11

dY n s n nds ds

Y s ss s+ − + = − ⇒ − −−

→ ( ) ( ) ( )1

1ln ln 1 1 ln ln

n

n

sY n s n s

s +

−= − − + ⇒ →

( )1

1 n

n

sY

s +

−=

The inverse transform is given by Rodrigues’s formula [ ]1

nl Y−= L → n=1, 2, … • Prove Rodrigues’s formula Using s-shifting

Using the n-th derivative of f,

After another s-shifting

Page 12: 6.4 Short Impulses. Dirac Delta Function. Partial Fraction 6.5 …contents.kocw.net/KOCW/document/2015/sungkyunkwan/... · 2016-09-09 · 6-1 . Chapter 6. Laplace Transforms . 6.4

6-12 6.7 Systems of ODEs

The Laplace transform can be used to solve systems of ODEs. Consider a first-order linear system with constant coefficients

The subsidiary equations

Rearrange

( ) ( ) ( )

( ) ( ) ( )11 1 12 2 1 1

21 1 22 2 2 2

0

0

a s Y a Y y G s

a Y a s Y y G s

− + = − −

+ − = − −

Solve this system algebraically for ( ) ( )1 2 and Y s Y s and take the inverse transform for ( ) ( )1 2 and y t y t Example 2 Electrical Network Find the currents ( ) ( )1 2 and i t i t .

( ) 100 only for 0 0.5v t volts t= ≤ ≤ and ( ) ( )0 = ' 0 0i i = From Kirchhoff’s voltage law in the lower and the upper circuits,

Rearrange

The subsidiary equations using ( ) ( )1 20 = 0 0i i =

Solve algebraically for 1 2 and I I

( )( )( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

/2 /21 1 7 1 7

2 2 2 2

/2 /21 1 7 1 7

2 2 2 2

125 1 500 125 6251 1

7 3 21

125 500 250 2501 1

7 3 21

s s

s s

sI e e

s s s s s s

I e es s s s s s

− −

− −

+= − ⇒ − − −

+ + + +

= − ⇒ − + − + + + +

Page 13: 6.4 Short Impulses. Dirac Delta Function. Partial Fraction 6.5 …contents.kocw.net/KOCW/document/2015/sungkyunkwan/... · 2016-09-09 · 6-1 . Chapter 6. Laplace Transforms . 6.4

6-13 The inverse transform of the square bracket terms using s-shifting.

/2 7 /2

/2 7 /2

500 125 6257 3 21

500 250 2507 3 21

t t

t t

e e

e e

− −

− −

− −

− +

Using t-shifting

( ) ( )

( ) ( )

/2 7 /2 ( 0.5)/2 7( 0.5)/21

/2 7 /2 ( 0.5)/2 7( 0.5)/22

500 125 625 500 125 6250.5

7 3 21 7 3 21500 250 250 500 250 250

0.57 3 21 7 3 21

t t t t

t t t t

i t e e e e u t

i t e e e e u t

− − − − − −

− − − − − −

= − − − − − − = − + − − + −

Note that the solution for 1

2t ≥ is different from that for 120 t≤ ≤ due to the unit step function.

Example 3 Two masses on Springs Ignoring the mass of the springs and the damping

↑ ↑ ↑ Newton’s second law(mass X acceleration) ↑ ↑ Hooke’s law (restoring force) Initial conditions

( ) ( )( ) ( )

1 2

1 2

0 0 1

' 0 3 , ' 0 3

y y

y k y k

= =

= = −

The subsidiary equations

The algebraic solution using Cramer’s rule

The final solution