20
Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 6.002 Fall 2000 Lecture 4 6.002 CIRCUITS AND ELECTRONICS The Digital Abstraction

6002_l4

Embed Size (px)

Citation preview

Page 1: 6002_l4

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 4

6.002 CIRCUITS ANDELECTRONICS

The Digital Abstraction

Page 2: 6002_l4

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 4

ReviewDiscretize matter by agreeing to observe the lumped matter discipline

Analysis tool kit: KVL/KCL, node method, superposition, Thévenin, Norton (remember superposition, Thévenin, Norton apply only for linear circuits)

Lumped Circuit Abstraction

Page 3: 6002_l4

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 4

Discretize value Digital abstraction

Interestingly, we will see shortly that the tools learned in the previous three lectures are sufficient to analyze simple digital circuits

Reading: Chapter 5 of Agarwal & Lang

Today

Page 4: 6002_l4

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 4

Analog signal processing

But first, why digital?In the past …

By superposition,

The above is an “adder” circuit.

221

11

21

20 V

RRRV

RRRV

++

+=

If ,21 RR =

221

0VVV +

=

1V

1R

2R+–

2V +–

0V

andmight represent the outputs of two sensors, for example.

1V 2V

Page 5: 6002_l4

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 4

Noise Problem

… noise hampers our ability to distinguishbetween small differences in value —e.g. between 3.1V and 3.2V.

Receiver:huh?

add noise onthis wire

t

Page 6: 6002_l4

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 4

Value Discretization

Why is this discretization useful?

Restrict values to be one of two

HIGH5V

TRUE1

LOW0V

FALSE0

…like two digits 0 and 1

(Remember, numbers larger than 1 can be represented using multiple binary digits and coding, much like using multiple decimal digits to represent numbers greater than 9. E.g., the binary number 101 has decimal value 5.)

Page 7: 6002_l4

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 4

Digital System

sender receiverSV

RV

noise

SV“0” “0”“1”

0V

2.5V

5V HIGH

LOW

t

RV“0” “0”“1”

0V2.5V

5Vt

VVN 0=

NV

SV“0” “0”“1”

2.5V t

With noiseVVN 2.0=

SV“0” “0”“1”

0V2.5V

5Vt

0.2Vt

Page 8: 6002_l4

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 4

Digital System

Better noise immunityLots of “noise margin”

For “1”: noise margin 5V to 2.5V = 2.5VFor “0”: noise margin 0V to 2.5V = 2.5V

Page 9: 6002_l4

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 4

Voltage Thresholds and Logic Values

1

0

1

0

sender receiver

1

0

0V

2.5V

5V

Page 10: 6002_l4

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 4

forbiddenregion

VH

V L

3V

2V

But, but, but …What about 2.5V?Hmmm… create “no man’s land”or forbidden regionFor example,

sender receiver

0V

5V

1 1

0 0

“1” V 5V

“0” 0V V

H

L

Page 11: 6002_l4

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 4

sender receiver

But, but, but …Where’s the noise margin?What if the sender sent 1: ?VHHold the sender to tougher standards!

5V

0V

11

00

V0H

V0L

VIH

VIL

Page 12: 6002_l4

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 4

sender receiver

5V

0V

VH

But, but, but …Where’s the noise margin?What if the sender sent 1: ?Hold the sender to tougher standards!

“1” noise margin:“0” noise margin:

VIH - V0HVIL - V0L

11

00

V0H

V0L

VIH

VIL

Noise margins

Page 13: 6002_l4

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 4

Digital systems follow static discipline: if inputs to the digital system meet valid input thresholds, then the system guarantees its outputs will meet valid output thresholds.

sender

receiver

0 1 0 1

t

5VV0H

V0L0V

VIHVIL

0 1 0 1

t

5VV0H

V0L0V

VIHVIL

Page 14: 6002_l4

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 4

Processing digital signals

Recall, we have only two values —

Map naturally to logic: T, FCan also represent numbers

1,0

Page 15: 6002_l4

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 4

Processing digital signalsBoolean Logic

If X is true and Y is trueThen Z is true else Z is false.

Z = X AND YX, Y, Z

are digital signals“0” , “1”

Z = X • YBoolean equation

Enumerate all input combinations

Truth table representation:ZX Y

AND gateZXY

0 0 00 1 01 0 01 1 1

Page 16: 6002_l4

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 4

Adheres to static disciplineOutputs are a function ofinputs alone.

Combinational gateabstraction

Digital logic designers do nothave to care about what isinside a gate.

Page 17: 6002_l4

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 4

Demo

Noise

ZXYZ = X • Y

Z

Y

X

Page 18: 6002_l4

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 4

Z = X • Y

Examples for recitation

X

t

Y

t

Z

t

Page 19: 6002_l4

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 4

In recitation…Another example of a gate

If (A is true) OR (B is true)then C is true else C is false

C = A + B Boolean equationOR

OR gateCA

B

ZXY

NANDZ = X • Y

More gatesB B

Inverter

Page 20: 6002_l4

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 4

Boolean Identities

AB + AC = A • (B + C)

X • 1 = XX • 0 = XX + 1 = 1X + 0 = X

1 = 00 = 1

output

BC B • C

A

Digital CircuitsImplement: output = A + B • C