43
6. REFERENCES 1. Ripoll, B. C.; Leutholtz, I. Exercise and disease management (2nd ed.). Boca Raton: CRC Press. 2011, 25. http://books.google.ca/books?id= eAn9-bm_pi8C&pg=PA25 (accessed 02 March 2012). 2. Leonid, P. Principles of diabetes mellitus (2nd ed.). New York: Springer. 2009, 3. http://books.google.ca/books?id=i0qojvF1SpUC&pg=PA3 (accessed 02 March 2012). 3. Diabetes. Oxford English Dictionary. 2011. 4. Harper, D. Diabetes. Online Etymology Dictionary, 2001-2010. http://www.etym online.com/index.php?search=diabetes&searchmode=none (accessed 02 March 2012). 5. Dallas, J. Diabetes, Doctors and Dogs: An exhibition on Diabetes and Endocrinology by the College Library for the 43rd St. Andrew's Day Festival Symposium, Royal College of Physicians of Edinburgh. 2011. 6. Mellite. Oxford English Dictionary. 2011. 7. Mellitus. MyEtimology. 2011. http://www.myetymology.com/latin/mellitus.html (accessed 04 March 2012). 8. -ite. Oxford English Dictionary. 2011. 9. Shoback. Greenspan's basic & clinical endocrinology. Chapter 17, 9th ed.; edited by David G. Gardner, Dolores. New York: McGraw-Hill Medical, 2011. 10. Other „types‟ of diabetes. American Diabetes Association. August 25, 2005. http://www.diabetes.org/other-types.jsp (accessed 09 March 2012). 11. Diseases: Johns Hopkins Autoimmune Disease Research Center. http://autoimmune.pathology.jhmi.edu/diseases.cfm?systemID=3&DiseaseID=23 (accessed 15 March 2012). 12. Rother, K. I. Diabetes treatment-bridging the divide. New Engl. J. Med. 2007, 356, 14991501. 13. Diabetes Mellitus (DM): Diabetes Mellitus and Disorders of Carbohydrate Metabolism: Merck Manual Professional. http://www.merck.com/mmpe/sec12/ch158/ ch158b.html#sec12- ch158-ch158b-1206 (accessed 22 March 2012). 14. Dorner, M.; Pinget, M.; Brogard, J. M. Essential labile diabetes. MMW Munch. Med. Wochenschr. 1977, 119, 671674. 15. Insulin Resistance and Prediabetes. U.S. Department of Health and Human Services; NIH, NIH Publication No. 06-489, August 2006. 16. King, M. W. Diabetes and Insulin function, file://E:\PRINT\Insulin%20 Function%20and%20Diabetes.html (accessed 25 March 2012).

6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

6. REFERENCES

1. Ripoll, B. C.; Leutholtz, I. Exercise and disease management (2nd ed.). Boca Raton: CRC

Press. 2011, 25. http://books.google.ca/books?id= eAn9-bm_pi8C&pg=PA25 (accessed 02

March 2012).

2. Leonid, P. Principles of diabetes mellitus (2nd ed.). New York: Springer. 2009, 3.

http://books.google.ca/books?id=i0qojvF1SpUC&pg=PA3 (accessed 02 March 2012).

3. Diabetes. Oxford English Dictionary. 2011.

4. Harper, D. Diabetes. Online Etymology Dictionary, 2001-2010. http://www.etym

online.com/index.php?search=diabetes&searchmode=none (accessed 02 March 2012).

5. Dallas, J. Diabetes, Doctors and Dogs: An exhibition on Diabetes and Endocrinology by the

College Library for the 43rd St. Andrew's Day Festival Symposium, Royal College of Physicians

of Edinburgh. 2011.

6. Mellite. Oxford English Dictionary. 2011.

7. Mellitus. MyEtimology. 2011. http://www.myetymology.com/latin/mellitus.html (accessed 04

March 2012).

8. -ite. Oxford English Dictionary. 2011.

9. Shoback. Greenspan's basic & clinical endocrinology. Chapter 17, 9th ed.; edited by David G.

Gardner, Dolores. New York: McGraw-Hill Medical, 2011.

10. Other „types‟ of diabetes. American Diabetes Association. August 25, 2005.

http://www.diabetes.org/other-types.jsp (accessed 09 March 2012).

11. Diseases: Johns Hopkins Autoimmune Disease Research Center.

http://autoimmune.pathology.jhmi.edu/diseases.cfm?systemID=3&DiseaseID=23 (accessed 15

March 2012).

12. Rother, K. I. Diabetes treatment-bridging the divide. New Engl. J. Med. 2007, 356, 1499–

1501.

13. Diabetes Mellitus (DM): Diabetes Mellitus and Disorders of Carbohydrate Metabolism:

Merck Manual Professional. http://www.merck.com/mmpe/sec12/ch158/ ch158b.html#sec12-

ch158-ch158b-1206 (accessed 22 March 2012).

14. Dorner, M.; Pinget, M.; Brogard, J. M. Essential labile diabetes. MMW Munch. Med.

Wochenschr. 1977, 119, 671–674.

15. Insulin Resistance and Prediabetes. U.S. Department of Health and Human Services; NIH,

NIH Publication No. 06-489, August 2006.

16. King, M. W. Diabetes and Insulin function, file://E:\PRINT\Insulin%20

Function%20and%20Diabetes.html (accessed 25 March 2012).

Page 2: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

17. Definition, Diagnosis and Classification of Diabetes Mellitus and its Complications. World

Health Organisation Department of Noncommunicable Disease Surveillance. 1999.

http://whqlibdoc.who.int/hq/ 1999/WHO_NCD_NCS _99.2.pdf (accessed 05 April 2012).

18. Risérus, U.; Willett, W. C.; Hu, F. B. Dietary fats and prevention of type 2 diabetes. Prog.

Lip. Res. 2009, 48, 44–51.

19. Shai, I.; Jiang, R.; Manson, J. E.; Stampfer, M. J.; Willett, W. C.; Colditz, G. A.; Hu, F. B.

Ethnicity, Obesity, and Risk of Type 2 Diabetes in Women. Diabetes Care 2006, 29, 1585–1590.

20. Ramachandran, A.; Snehalatha, C.; Viswanathan, V. Burden of type 2 diabetes and its

complications – The Indian scenario. Current Science 2002, 83, 1471–1476.

21. Abate, N.; Chandalia, M. Ethnicity and type 2 diabetes - focus on Asian Indians. J. Diabetes

and its Complications 2001, 15, 320–327.

22. Sheppard, R.; Kumar, V.; Abbas, A. K.; Fausto, N. Robbins Basic Pathology. 8th ed.;

Philadelphia: Saunders. ISBN 1-4160-2973-7.

23. Sattar, N.; Preiss, D.; Murray, H. M.; Welsh, P.; Buckley, B.M.; de Craen, A.J.; Seshasai,

S.R.; McMurray, J.J.; Freeman, D.J.; Jukema, J.W.; Macfarlane, P.W.; Packard, C.J.; Stott, D.J.;

Westendorp, R.G.; Shepherd, J.; Davis, B.R.; Pressel, S.L.; Marchioli, R.; Marfisi, R.M.;

Maggioni, A.P.; Tavazzi, L.; Tognoni, G.; Kjekshus, J.; Pedersen, T.R.; Cook, T.J.; Gotto, A.M.;

Clearfield, M.B.; Downs, J.R.; Nakamura, H.; Ohashi, Y.; Mizuno, K.; Ray, K. K.; Ford, I.

Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials.

Lancet 2010, 375, 735–742.

24. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia. World

Health Organization. 2006. www.who.int. 2006. http://www.who.int/diabetes/

publications/Definition%20and%20diagnosis%20of%20diabetes_new.pdf (accessed 10 April

2012).

25. Vijan, S. Type 2 diabetes. Annals of Internal Medicine 2010, 152, ITC31-15; quiz ITC316.

doi:10.1059/0003-4819-152-5-201003020-01003.

26. Neogi, S. India, world diabetes capital. Hindustan Times, New Delhi. 2007, Sep 03.

27. Snehalatha, C.; Ramachnadaran, A. Insight into the Mechanism of Primary Prevention of

Type 2 Diabetes: Improvement in Insulin Sensitivity and Beta cell function. Conference: Genetic

and Epigenetic Basis of Complex Diseases. Centre for Cellular and Molecular Biology. 2009,

Dec.

28. Hoskote, S.S.; Joshi, S.R. Are Indians Destined to be Diabetic? J. Assoc. Physicians India

2008, 56, 225–226.

29. Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: Estimates

for the year 2000 and projections for 2030. Diabetes Care 2004, 27, 1047-1053.

30. Sicree, R.; Shaw, J.; Zimmet, P. Diabetes and impaired glucose tolerance. Diabetes Atlas.

International Diabetes Federation. 3rd ed. 2006, 15-103.

Page 3: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

31. Wild, S.; Roiglic, G.; Grren, A.; Sicree, R.; King, H. Global Prevalence of Diabetes. Diabetes

Care 2009, 27, 1047–1053.

32. King, H.; Aubert, R.E.; Herman, W. H. Global burden of diabetes, 1995-2025: prevalence,

numerical estimates and projections. Diabetes Care 1998, 21, 1414–1131.

33. Knowler, W. C.; Bennett, P.H.; Hamman, R.F.; Miller; M. Diabetes Incidence and prevalence

in PIMA Indians: A19-fold Greater Incidence than in Rochester, Minnesosta. Am. J. Epidemiol.

1998, 108, 497-505.

34. Ravussin, E.; Valencia, M.E.; Esparza, J.; Bennett, P.H.; Schulz, L. O. Effects of a traditional

lifestyle on obesity in Pima Indians. Diabetes Care 1994, 17, 1067–1074.

35. IDF Diabetes Atlas, International Diabetes Federation, 4th ed. 2009.

36. Mohan, V.; Deepa, M.; Anjana, R.M.; Lanthorn, H.; Deepa, R. Incidence of Diabetes and

Pre-diabetes in a Selected Urban South Indian Population (Cups - 19). J. Assoc. Physicians India

2008, 56,152–157.

37. Mohan, V.; Sandeep, S.; Deepa, R.; Shah, B.; Varghese, C. Epidemiology of type 2 diabetes:

Indian scenario. Indian J. Med. Res. 2007, 125, 217-230

38. Kutty, V.; Joseph, A.; Soman, C.R. High prevalence of type 2 diabetes in an urban settlement

in Kerala, India. Ethn. Health 1999, 4, 231-239.

39. Shah, S.K.; Saikia, M.; Burman, N.N.; Snehalatha, C.; Ramachandran, A. High prevalence of

type 2 diabetes in urban population in north eastern India. Int. J. Diabetes Dev. Countries 1999,

19, 144-147.

40. Zargar, A.H.; Khan, A.K.; Masoodi, S.R.; Laway, B. A.; Wani, A.I.; Bashir, M.I. Prevalence

of type 2 diabetes mellitus and impaired glucose tolerance in the Kashmir Valley of the Indian

subcontinent. Diabetes Res. Clin. Pract. 2000, 47, 135-146.

41. Ramachandran, A.; Snehalatha, C.; Kapur, A.; Vijay, V.; Mohan, V.; Das, A. K. Diabetes

Epidemiology Study Group in India (DESI). High prevalence of diabetes and impaired glucose

tolerance in India: National Urban Diabetes Survey. Diabetologia 2001, 44, 1094-1101.

42. Gupta, A.; Gupta, R.; Sarna, M.; Rastogi, S.; Gupta, V.P.; Kothari, K. Prevalence of diabetes,

impaired fasting glucose and insulin resistance syndrome in an urban Indian population. Diabetes

Res. Clin. Pract. 2003, 61, 69-76.

43. Menon, V.U. Kumar, K.V.; Gilchrist, A.; Sugathan, T.N.; Sundaram; K.R.; Nair. V.

Prevalence of known and undetected diabetes and associated risk factors in central Kerala -

ADEPS. Diabetes Res. Clin. Pract. 2006, 74, 289-294.

44. Mohan, V.; Deepa, M.; Deepa, R.; Shantirani, C.S.; Farooq, S.; Ganesan, A. Secular trends in

the prevalence of diabetes and glucose tolerance in urban South India - the Chennai Urban Rural

Epidemiology Study (CURES-17). Diabetologia 2006, 49, 1175-1178.

Page 4: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

45. Ahuja MMS. Epidemiological studies in diabetes mellitus in India. In: Epidemiology of

diabetes mellitus in developing countries. New Delhi: Interprint. 1979

46. Ramachandran, A.; Snehalatha, C.; Kapur, A.; Vijay, V.; Mohan, V.; Das, A. K. Diabetes

Epidemiology Study Group in India (DESI). High prevalence of diabetes and impaired glucose

tolerance in India: National Urban Diabetes Survey. Diabetologia 2001, 44, 1094-1101.

47. Mohan, V.; Mathur, P.; Deepa, R.; Deepa, M.; Shukla D. K. Urban rural differences in

prevalence of selfreported diabetes in India-The WHO-ICMR Indian NDC risk factor

surveillance. Diabetes Res. Clin. Pract. 2008a, 80, 159–168.

48. Ahuja MMS. Recent contributions to the epidemiology of diabetes mellitus in India. Int. J.

Diabetes Dev. Countries. 1991, 11, 5–9.

49. Sadikot, S.M.; Nigam, A.; Das, S.; Bajaj, S.; Zargar, A. H. The burden of diabetes and

impaired glucose tolerance in India using the WHO 1999 criteria: prevalence of diabetes in India

study (PODIS). Diabetes Res. Clin. Pract. 2004, 66, 301–307.

50. Chow, C.K.; Raju, P.K.; Raju, R.; Reddy, K.S.; Cardona, M.; Celermajer, D.S.; Neal, B. C.

The prevalence and management of diabetes in rural India. Diabetes Care, 2006, 29, 1717–1718.

51. Ramachandran, A.; Ramachandran, S.; Snehalatha, C.; Augustine, C.; Murugesan, N.

Increasing expenditure on health care incurred by diabetic subjects in a developing country: a

study from India. Diabetes Care 2007, 30, 252–256.

52. Shobhana, R.; Rao, P. R.; Lavanya, A.; Williams, R.; Vijay, V.; Ramachandran, A.

Expenditure on health care incurred by diabetic subjects in a developing country: a study from

southern India. Diabetes Res. Clin. Pract. 2000, 48, 37–42.

53. Indian Budget 2010: http://indiabudget.nic.in (accessed 24 April 2012)

54. Ramachandran, A.; Snehalatha, C.; Yamuna, A.; Mary, S.; Ping, Z. Cost effectiveness of the

interventions in the primary prevention of diabetes among Asian Indians: within-trial results of

the Indian Diabetes Prevention Programme (IDPP). Diabetes Care 2007a, 30, 2548-2552.

55. Prabhakaran, D.; Ajay, V. Non-communicable Disease in India: A perspective. Centre for

Chronic Disease Control discussion report for the WHO. New Delhi, India. 2009.

56. Kumar, A.; Nagpal, J.; Bhartia, A. Direct Cost of Ambulatory Care of Type 2 Diabetes in the

Middle and High Income Group Populace of Delhi: The DEDICOM Survey. J. Assoc. Physicians

India 2008, 5, 667–674.

57. Improving the built environment in India. Preventing chronic diseases: a vital investment.

WHO report, Geneva. 2005.

58. Assessment of Burden of NCDs. Indian Council of Medical Research, 2006.

59. Report: International Diabetes Federation (IDF). 2009.

60. Jönsson, B. The economic impact of diabetes. Diabetes Care 1998, 21 (Suppl 3), C7-10.

Page 5: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

61. Venkataraman, K.; Kannan, A.T.; Mohan, V. Challenges in diabetes management with

particular reference to India. Int. J. Diabetes Dev. Countries 2009, 29, 103–109.

62. Mohan, V.; Shanthirani, C.S.; Deepa, M.; Deepa, R.; Unnikrishnan, R.I.; Datta, M. Mortality

rates due to diabetes in a selected urban South Indian population - the Chennai Urban Population

Study (CUPS). J. Assoc. Physicians India 2006, 54, 113-117.

63. Poretsky, L. Principles of diabetes mellitus. 2nd ed, New York: Springer. 2009, 3.

http://books.google.ca/books?id=i0qojvF1SpUC&pg=PA3 (accessed 01 May 2012).

64. Hinterthuer, A. Retired Drugs: Failed Blockbusters, homicidal Tampering Fatal Oversights.

Wired News, 2008.

65. European Medicines Agency. European Medicines Agency recommends suspension of

Avandia, Avandamet and Avaglim. EMA, 23-09-2009.

66. Rushakoff, R. J.; Evans, J. L. Oral Pharmacological Agents for Type 2 Diabetes.

http://www.endotext.org/diabetes/ diabetes15/diabetes15.html (accessed 04 May 2012).

67. Ramachandran, A.; Das, A. K.; Joshi, S. R.; Yajnik, C. S.; Shah, S.; Kumar, K. M. P. Current

Status of Diabetes in India and Need for Novel Therapeutic Agents. J. Assoc. Physicians India,

2010, 58, 7-9.

68. http://www.aafp.org/afp/20010501/1747_f1.gif (accessed 12 May 2012).

69. Boden, G. Obesity, free fatty acids, and insulin resistance. Diabetes 2001, 8, 235-239.

70. Boden, G.; Shulman, G. I. Free fatty acids in obesity and type 2 diabetes: Defining their role

in the development of insulin resistance and β-cell dysfunction. Eur. J. Clin. Invest. 2002, 32, 14-

23.

71. Arner, P. Insulin resistance in type 2 diabetes: Role of fatty acids. Diabetes Metab. Res. Rev.

2002, 18, S5-S9.

72. Mangelsdorf, D. J.; Evans, R. M. The RXR heterodimers and orphan receptors. Cell 1995,

83, 841-850.

73. Issemann, I.; Green, S. Activation of a member of the steroid hormone receptor superfamily

by peroxisome proliferators. Nature 1990, 347, 645-650.

74. A unified nomenclature system for the nuclear receptor superfamily. Cell 1999, 97, 161-163.

75. Xu, H. E.; Lambert, M. H.; Montana, V. G.; Plunket, K. D.; Moore, L. B.; Collins, J. L.;

Oplinger, J. A.; Kliewer, S. A.; Gampe, R. T., Jr.; McKee, D. D.; Moore, J. T.; Willson, T. M.

Structural determinants of ligand binding selectivity between the peroxisome proliferator-

activated receptors. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 13919-13924.

76. Henke, B. R. Peroxisome Proliferator-Activated Receptor α/γ Dual Agonists for the

Treatment of Type 2 Diabetes, J. Med. Chem. 2004, 47, 4118-4127.

Page 6: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

77. Berger, J. P.; Akiyama, T. E.; Meinke, P. T. PPARs: therapeutic targets for metabolic

disease, TRENDS Pharmacol. Sci. 2005, 26, 244-251.

78. Staels, B.; Auwerx, J. Role of PPAR in the pharmacological regulation of lipoprotein

metabolism by fibrates and thiazolidinediones. Curr. Pharm. Des. 1997, 3, 1-14.

79. Reddy, J.K.; Hashimoto, T. Peroxisomal beta-oxidation and peroxisome proliferator-

activated receptor alpha: an adaptive metabolic system. Annu. Rev. Nutr. 2001, 21, 193–230.

80. Kersten, S. et al. Peroxisome proliferator-activated receptor alpha mediates the adaptive

response to fasting. J. Clin. Invest. 1999, 103, 1489–1498.

81. Plutzky, J. Emerging concepts in metabolic abnormalities associated with coronary artery

disease. Curr. Opin. Cardiol. 2000, 15, 416–421.

82. Linton, M.F.; Fazio, S. Re-emergence of fibrates in the management of dyslipidemia and

cardiovascular risk. Curr. Atheroscler. Rep. 2000, 2, 29–35.

83. Berger, J.; Moller, D.E. (2002) The mechanism of action of PPARs. Annu. Rev. Med. 2002,

53, 409–435.

84. Vu-Dac, N. et al. Negative regulation of the human apolipoprotein A-1 promoter by fibrates

can be attenuated by interaction of the peroxisome proliferator activated receptor with its

response element. J. Biol. Chem. 1994, 269, 31012–31018.

85. Vu-Dac, N. et al. Fibrates increase human apolipoprotein A-II expression through activation

of the peroxisome proliferator-activated receptor. J. Clin. Invest. 1995, 96, 741–750.

86. Bays, H.; Stein, E.A. Pharmacotherapy for dyslipidaemia – current therapies and future

agents. Expert Opin. Pharmacother. 2003, 4, 1901–1938.

87. Israelian-Konaraki, Z.; Reaven, P.D. Peroxisome proliferator-activated receptor-alpha and

atherosclerosis: from basic mechanisms to clinical implications. Cardiology 2005, 103, 1–9.

88. Rubins, H.B. et al. Diabetes, plasma insulin, and cardiovascular disease: subgroup analysis

from the Department of Veterans Affairs high-density lipoprotein intervention trial (VA-HIT).

Arch. Intern. Med. 2002, 162, 2597–2604.

89. Steiner, G. Treating lipid abnormalities in patients with type 2 diabetes mellitus. Am. J.

Cardiol. 2001, 88, 37N–40N.

90. Fajas, L. et al. The organization, promoter analysis, and expression of the human

PPARgamma gene. J. Biol. Chem. 1997, 272, 18779–18789.

91. Tontonoz, P. et al. Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid activated

transcription factor. Cell 1994, 79, 1147–1156.

Page 7: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

92. He, W. et al. Adipose-specific peroxisome proliferator-activated receptor gamma knockout

causes insulin resistance in fat and liver but not in muscle. Proc. Natl. Acad. Sci. U. S. A. 2003,

100, 15712–15717.

93. Barak, Y. et al. PPAR gamma is required for placental, cardiac, and adipose tissue

development. Mol. Cell 1999, 4, 585–595.

94. Kubota, N. et al. PPARγ mediates high fat diet-induced adipocyte hypertrophy and insulin

resistance. Mol. Cell 1999, 4, 597–609.

95. Rosen, E.D. et al. PPAR gamma is required for the differentiation of adipose tissue in vivo

and in vitro. Mol. Cell 1999, 4, 611–617.

96. Rangwala, S.M.; Lazar, M.A. Peroxisome proliferatoractivated receptor gamma in diabetes

and metabolism. Trends Pharmacol. Sci. 2004, 25, 331–336.

97. Bays, H. et al. Role of the adipocyte, free fatty acids, and ectopicfat in pathogenesis of type 2

diabetes mellitus: peroxisomal proliferator- activated receptor agonists provide a rational

therapeutic approach. J. Clin. Endocrinol. Metab. 2004, 89, 463–478.

98. Mayerson, A.B. et al. The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic

and skeletal muscle triglyceride content in patients with type 2 diabetes. Diabetes 2002, 51, 797–

802.

99. Bajaj, M. et al. Pioglitazone reduces hepatic fat content and augments splanchnic glucose

uptake in patients with type 2 diabetes. Diabetes 2003, 52, 1364–1370.

100. Kawai, T. et al. Effects of troglitazone on fat distribution in the treatment of male type 2

diabetes. Metabolism 1999, 48, 1102–1107.

101. Miyazaki, Y. et al. Effect of pioglitazone on abdominal fat distribution and insulin

sensitivity in type 2 diabetic patients. J. Clin. Endocrinol. Metab. 2002, 87, 2784–2791.

102. Laplante, M. et al. PPAR-gamma activation mediates adipose depot-specific effects on gene

expression and lipoprotein lipase activity: mechanisms for modulation of postprandial lipemia

and differential adipose accretion. Diabetes 2003, 52, 291–299.

103. Okuno, A. et al. Troglitazone increases the number of small adipocytes without the change

of white adipose tissue mass in obese Zucker rats. J. Clin. Invest. 1998, 101, 1354–1361.

104. Boden, G. et al. Effect of thiazolidinediones on glucose and fatty acid metabolism in

patients with type 2 diabetes. Metabolism 2003, 52, 753–759.

105. Arner, P. Regional adipocity in man. J. Endocrinol. 1997, 155, 191–192.

106. Hegele, R.A. et. al. PPARG F388L, a transactivation-deficient mutant, in familial partial

lipodystrophy. Diabetes 2002, 51, 3586–3590.

Page 8: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

107. Savage, D.B. et. al. Human metabolic syndrome resulting from dominant-negative

mutations in the nuclear receptor peroxisome proliferator-activated receptor-gamma. Diabetes

2003, 52, 910–917.

108. Rajala, M.W.; Scherer, P.E. Minireview: The adipocyte–at the crossroads of energy

homeostasis, inflammation, and atherosclerosis. Endocrinology 2003, 144, 3765–3773.

109. Berg, A.H. et. al. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action.

Nat. Med. 2001, 7, 947–953.

110. Yamauchi, T. et. al. The fat-derived hormone adiponectin reverses insulin resistance

associated with both lipoatrophy and obesity. Nat. Med. 2001, 7, 941–946.

111. Combs, T.P. et. al. Induction of adipocyte complement-related protein of 30 kilodaltons by

PPARgamma agonists: a potential mechanism of insulin sensitization. Endocrinology 2002, 143,

998–1007

112. Bajaj, M. et. al. Decreased plasma adiponectin concentrations are closely related to hepatic

fat content and hepatic insulin resistance in pioglitazone-treated type 2 diabetic patients. J. Clin.

Endocrinol. Metab. 2004, 89, 200–206.

113. Xu, H. et. al. Chronic inflammation in fat plays a crucial role in the development of obesity-

related insulin resistance. J. Clin. Invest. 2003, 112, 1821–1830.

114. Hotamisligil, G.S. Inflammatory pathways and insulin action. Int. J. Obes. Relat. Metab.

Disord. 2003, 27 (Suppl. 3), S53–S55.

115. Ruan, H. and Lodish, H.F. Regulation of insulin sensitivity by adipose tissue-derived

hormones and inflammatory cytokines. Curr. Opin. Lipidol. 2004, 15, 297–302.

116. Leibowitz, M.D. et al. Activation of PPARdelta alters lipid metabolism in db/db mice.

FEBS Lett. 2000, 473, 333–336.

117. B Oliver, W.R. et al. A selective peroxisome proliferator-activated receptor delta agonist

promotes reverse cholesterol transport. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 5306–5311.

118. Tanaka, T. et al. Activation of peroxisome proliferator-activated receptor delta induces fatty

acid beta-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc. Natl. Acad. Sci.

U. S. A. 2003, 100, 15924–15929.

119. Willson, T. M.; Brown, P. J.; Sternbach, D. D.; Henke, B. R. The PPARs: from orphan

receptors to drug discovery. J. Med. Chem. 2000, 43, 527-550.

120. Issemann, I.; Green, S. Activation of a member of the steroid hormone receptor superfamily

by peroxisome proliferators. Nature 1990, 347, 645-650.

121. Sher, T.; Yi, H. F.; McBride, O. W.; Gonzalez, F. J. cDNA cloning, chromosomal mapping,

and functional characterization of the human peroxisome proliferator activated receptor.

Biochemistry 1993, 32, 5598-5604.

Page 9: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

122. Brown, P. J.; Winegar, D. A.; Plunket, K. D.; Moore, L. B.; Lewis, M. C.; Wilson, J. G.;

Sundseth, S. S.; Koble, C. S.; Wu, Z.; Chapman, J. M.; Lehmann, J. L.; Kliewer, S. A.; Willson,

T. M. A ureido-thioisobutyric acid (GW9578) is a subtype-selective PPARα agonist with potent

lipid-lowering activity. J. Med.

Chem. 1999, 42, 3785-3788.

123. Kobayashi, M.; Shigeta, Y.; Hirata, Y.; Omori, Y.; Sakamoto, N.; Nambu, S.; Baba, S.

Improvement of glucose tolerance in NIDDM by clofibrate. Randomized double-blind study.

Diabetes Care 1988, 11, 495-499.

124. Elisaf, M. Effects of fibrates on serum metabolic paramters. Curr. Med. Res. Opin. 2002,

18, 269-276.

125. Muscari, A.; Puddu, G. M.; Puddu, P. Lipid-lowering drugs: are adverse effects predictable

and reversible? Cardiology 2002, 97, 115-121.

126. Mudaliar, S.; Henry, R. R. New oral therapies for type 2 diabetes mellitus: the glitazones or

insulin sensitizers. Annu. Rev. Med. 2001, 52, 239-257.

127. Lehmann, J. M.; Moore, L. B.; Simth-Oliver, T. A.; Wilkison, W. O.; Willson, T. M.;

Kliewer, S. A. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome

proliferator-activated receptor γ (PPARγ). J. Biol. Chem. 1995, 270, 12953-12956.

128. Forman, B. M.; Tontonoz, P.; Chen, J.; Brun, R. P.; Spiegelman, B. M.; Evans, R. M. 15-

Deoxy-¢12,14-prostaglandin J2 is a ligand for the adipocyte determination factor PPARγ Cell

1995, 83, 803-812.

129. Mudaliar, S.; Henry, R. R. PPAR agonists in health and disease: a pathophysiologic and

clinical overview. Curr. Opin. Endocrinol. Diabetes 2002, 9, 285-302.

130. Vazquez, M.; Merlos, M.; Adzet, T.; Laguna Juan, C. Decreased susceptibility to copper-

induced oxidation of rat-lipoproteins after fibrate treatment: influence of fatty acid composition.

Br. J. Pharmacol. 1996, 117, 1155-1162.

131. Chaput, E.; Saladin, R.; Silvestre, M.; Edgar, A. D. Fenofibrate and rosiglitazone lower

serum triglycerides with opposing effects on body weight. Biochem. Biophys. Res. Commun.

2000, 271, 445-450.

132. Henke, B. R.; Blanchard, S. G.; Brackeen, M. F.; Brown, K. K.; Cobb, J. E.; Collins, J. L.;

Harrington, W. W., Jr.; Hashim, M. A.; Hull-Ryde, E. A.; Kaldor, I.; Kliewer, S. A.; Lake, D. H.;

Leesnitzer, L. M.; Lehmann, J. M.; Lenhard, J. M.; Orband- Miller, L. A.; Miller, J. F.; Mook, R.

A.; Noble, S. A.; Oliver, W.Parks, D. J.; Plunket, K. D.; Szewczyk, J. R.; Willson, T. M. N-(2-

Benzoylphenyl)-L-tyrosine PPARç agonists. 1. Discovery of a novel series of potent

antihyperglycemic and antihyperlipidemic agents. J. Med. Chem. 1998, 41, 5020-5036.

133. E. Chaput, E. et al., Fenofibrate and rosiglitazone lower serum triglycerides with opposing

effects on body weight. Biochem. Biophys. Res. Commun. 2000, 271, 445–450.

134. Guerre-Millo, M. et al., Peroxisome proliferator-activated receptor alpha activators improve

insulin sensitivity and reduce adiposity. J. Biol. Chem. 2000, 275, 16638–16642.

Page 10: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

135. Buse, J. B. et. al., Muraglitazar, a dual (alpha/gamma) PPAR activator: a randomized,

double-blind, placebo-controlled, 24-week monotherapy trial in adult patients with type 2

diabetes. Clin. Ther. 2005, 27, 1181–1195.

136. Calkin, A. C.; Thomas, M. C.; Cooper, M. E. MK-767. Kyorin/Banyu/Merck. Curr. Opin.

Investig. Drugs 2003, 4, 444–448.

137. Fagerberg, B. et al. Tesaglitazar, a novel dual peroxisome proliferator activated receptor

alpha/gamma agonist, dose-dependently improves the metabolic abnormalities associated with

insulin resistance in a non-diabetic population. Diabetologia 2005, 48, 1716–1725.

138. Pickavance, L. C. et. al. The dual PPARalpha/gamma agonist, ragaglitazar, improves insulin

sensitivity and metabolic profile equally with pioglitazone in diabetic and dietary obese ZDF

rats. Br. J. Pharmacol. 2005, 144, 308–316.

139. Tanaka, T. et. al. Activation of peroxisome proliferator-activated receptor delta induces

fatty acid beta-oxidation in skeletal muscle and attenuates metabolic syndrome, Proc. Natl. Acad.

Sci. U. S. A. 2003, 100, 15924–15929.

140. Oliver, W. R. Jr., et. al. A selective peroxisome proliferator-activated receptor delta agonist

promotes reverse cholesterol transport. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 5306–5311.

141. Wang, Y. X. et al., Peroxisome-proliferator-activated receptor delta activates fat metabolism

to prevent obesity. Cell 2003, 113, 159–170.

142. Liu, K. G. et al. Identification of a series of PPAR gamma/delta dual agonists via solid-

phase parallel synthesis. Bioorg. Med. Chem. Lett. 2001, 11, 2959–2962.

143. Xu, Y. et. al., Design and synthesis of dual peroxisome proliferator-activated receptors

gamma and delta agonists as novel euglycemic agents with a reduced weight gain profile. J. Med.

Chem. 2006, 49, 5649–5652.

144. Ramachandran, U.; Kumar, R.; Mittal, A. Fine tuning of PPAR ligands for type 2 diabetes

and metabolic syndrome. Mini Rev. Med. Chem. 2006, 6, 563–573.

145. Etgen, G. J. et al. A tailored therapy for the metabolic syndrome: the dual peroxisome

proliferator-activated receptor-alpha/gamma agonist LY465608 ameliorates insulin resistance

and diabetic hyperglycemia while improving cardiovascular risk factors in preclinical models.

Diabetes 2002, 51, 1083–1087.

146. Shearer, B. G.; Billin, A. N. The next generation of PPAR drugs: Do we have the tools to

find them? Biochim. Biophys. Acta 2007, 1771, 1082–1093.

147. Haberman, A. B. Emerging Targets in Diseases with High Unmet Need: Alzheimer‟s

Disease, Lung Caner, Dyslipidemia, Type 2 Diabetes and COPD. Cambridge Healthtech

Associates 2006.

148. Khanolkar, A.D.; Palmer, S.L.; Makriyannis, A. Molecular probes for the cannabinoid

receptors. Chem. Phys. Lipids 2000, 108, 37-52.

Page 11: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

149. Leach, A.R.; Gillet, V. J. An Introduction to Chemoinformatics. Kluwer Academic

Publishers, Dordrecht; 2003.

150. King, M. W. Diabetes: Type 1 and Type 2. http://themedicalbiochemistry page.

org/diabetes.php, 2012.

151. National Diabetes Data Group. Bethsday Md.: National Institute of Health, 1985 (NIH

Publication No. 85-1468).

152. Deckert, T.; Poulsen, J.E.; Larsen, M. Prognosis of diabetics with diabetes onset before the

age of thirtyone. Diabetologia 1978, 14, 363-377.

153. Simeon, I. T.; Yuni, I.; Domenico A. Perspective in Diabetes. Insulin Resistance or Insulin

Defficiency Which is the Primary Cause of NIDDM. Diabetes 1994, 43.

154. Kahn, C. R. Insulin resistance, insulin insensitivity, and insulin unresponsiveness: A

necessary distinction. Metabolism 1978, 27 (suppl. 2), 1893-1902,

155. Zhang, C. Y.; Baffy, G.; Perret, P.; Krauss, S.; Peroni, O.; Grujic, D.; Hagen, T.; Vidal-

Puig, A.; Boss, O.; Kim, Y. B.; Zheng, X. X.; Wheeler, M.B.; Shulman, G. I.; Chan, C. B.;

Lowell, B. B. Uncoupling Protein-2 Negatively Regulates Insulin Secretion and Is a Major Link

between Obesity, β Cell Dysfunction, and Type 2 Diabetes. Cell 2001, 105, 745-755.

156. Polonsky, K. S. et. al. Abnormal Patterns of Insulin Secretion in Non-Insulin Dependent

Diabetes Mellitus. New Eng. J. Med. 1988, 318, 1231-1239.

157. Kahn, S.E.; Porte, D. Jr. The pathophysiology of type II (noninsulin dependent) diabetes

mellitus. Diabetes 1991, 40, 166-180.

158. De Fronzo, R. A. Pathogenesis of Type 2 (non insulin dependent) diabetes mellitus: a

balanced overview. Diabetologia 1992, 35, 389-397.

159. Geluk, A.; van Meijgaarden, K. E.; Schloot, N. C.; Drijfhout, J. W.; Ottenhoff, T. H.; Roep,

B. O. HLA-DR binding analysis of peptides from islet antigens in IDDM. Diabetes 1988, 47,

1594-1601.

160. Warram, J. H.; Martin, B. C.; Krolewski, A. S.; Soeldner, J. S.; Kahn, R. C. Slow Glucose

Removal Rate and Hyperinsulinemia Precede the Development of Type II Diabetes in the

Offspring of Diabetic Parents. Ann. Intern. Med. 1990, 113, 909-915.

161. Martin, B. C.; Warram, J. H.; Krolewski, A.S.; Soeldner, J.S.; Kahn, C.R.; Martin, B.C.;

Bergman, R.N. Role of glucose and insulin resistance in development of type 2 diabetes mellitus:

results of a 25-year follow-up study. Lancet 1992, 310, 925-929.

162. Lillioja, S. et. al. Insulin Resistance and Insulin Secretory Dysfunction as Precursors of

Non-Insulin-Dependent Diabetes Mellitus: Prospective Studies of Pima Indians. New Eng. J.

Med. 1993, 329, 1988-1992.

Page 12: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

163. Bogardus, C. Insulin Resistance in the Pathogenesis of NIDDM in Pima Indians. Diabetes

Care, 1993, 16, 228-231.

164. Bliss, M. The Discovery of Insulin. The University of Chicago Press, Chicago; 1982.

165. Voet. D.; Voet, J. G. Biochemistry, 2nd ed.; John Wiley and Sons Inc.; 1995.

166. Ungar, H. A tutorial: Insulin. http://c4.cabrillo.cc.ca.us/projects/

insulin_tutorial/tutorial/index.html. 1999. (Retrived on 12 March 2012)

167. King, M. W. Insulin function and food intake control of secretion. http://themedical

biochemistrypage.org/insulin.php. 2012. (Retrived on 08 March 2012)

168. White, M. F.; Kahn, R. The insulin signaling system. J. Biol. Chem. 1994, 269, 1–4.

169. Tavare´, J. M.; Siddle, K. Biochim. Biophys. Acta 1993, 1178, 21–39.

170. Luo, R. Z. T.; Beniac, D. R.; Fernandes, A. B.; Yip, C. C.; Ottensmeyer,

F. P. Science 1999, 285, 1077–1080.

171. Ottensmeyer, F. P.; Beniac, D. R.; Luo, R. Z. T.; Yip, C. C. Mechanism of Transmembrane

Signaling:  Insulin Binding and the Insulin Receptor. Biochemistry 2000, 39, 12103–12112.

172. Yip, C. C.; Ottensmeyer, P. Three-dimensional Structural Interactions of Insulin and Its

Receptor. J. Biol. Chem. 2003, 278, 27329–27332.

173. Schlessinger, J.; Ullrich, A. Growth factor signaling by receptor tyrosine kinases. Neuron

1992, 9, 383–391.

174. Ottensmeyer, F. P.; Oh, A. C. H.; Luo, R. Z. T.; Fernandes, A.; Beniac, D. R.; Yip, C. C.

Microsc. Microanal. 2002, 8 (Suppl. 2), 200–201.

175. Christiansen, K.; Tranum-Jensen, J.; Carlsen, J.; Vinten, J. A model for the quaternary

structure of human placental insulin receptor deduced from electron microscopy. Proc. Natl.

Acad. Sci. U. S. A. 1991, 88, 249–252.

176. Woldin, C. N., Hing, F. S., Lee, J., Pilch, P. F., and Shipley, G. G. Structural Studies of the

Detergent-solubilized and Vesicle-reconstituted Insulin Receptor. J. Biol. Chem. 1999, 274,

34981–34992.

177. Schaefer, E. M.; Erickson, H. P.; Federwisch, M.; Wollmer, A.; Ellis, L. Structural

organization of the human insulin receptor ectodomain. J. Biol. Chem. 1992, 267, 23393–23402.

178. Ward, C. W.; Garrett, T. P.; McKern, N. M.; Lawrence, L. J. Today’s Life Sci. 1999, 11, 26–

32.

179. Tulloch, P. A.; Lawrence, L. J.; McKern, N. M.; Robinson, C. P.; Bentley, J. D.; Cosgrove,

L.; Ivancic, N.; Lovrecz, G. O.; Siddle, K.; Ward, C. W. Single-Molecule Imaging of Human

Insulin Receptor Ectodomain and Its Fab Complexes. J. Struct. Biol. 1999, 125, 11–18.

Page 13: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

180. DeFronzo, R. A.; Bonadonna, R. C.; Ferranini, E. Pathogenesis of NIDDM-A balanced

overview. Diabetes Care 1992, 15, 318.

181. Richter, E. A., Garetto, L. P.; Goodman, M. N.; Ruderman, N. B. Muscle glucose

metabolism following exercise in the rat: Increased sensitivity to insulin. J. Clin. Invest. 1982,

69, 785.

182. James, D. E.; Kraegen, E.W.; Chisholm, D. J. Effects of exercise training on in vivo insulin

action in individual tissues of the rat. J. Clin. Invest. 1985, 76, 657.

183. Katz, A., Nyomba, B. L.; Bogardus, C. No accumulation of glucose in human skeletal

muscle during euglycemic hyperinsulinemia. Am. J. Physiol. 1988, 255, E942.

184. Ziel, F. H.; Venkatesan, N.; Davidson, M. B. Glucose transport is rate limiting for skeletal

muscle glucosemetabolism in normal and STZ-induced diabetic rats. Diabetes 1988, 37, 885.

185. Bell, G. I.; Kayano, T.; Buse, J. B.; Burant, C. F.; Takeda, J.; Lin, D.; Fukumoto, H.; Seino,

S. Molecular biology of mammalian glucose transporters. Diabetes Care 1990, 13, 198.

186. Waddell, I. D.; Zomerschoe, A. G.; Voice, M. W.; Burchell, A. Cloning and expression of a

hepatic microsomal glucose transporter protein. Biochem. J. 1992, 286, 173.

187. Wright, E. M.; Turk, E.; Zabel, B.; Mundlos, S.; Dyer, J. Molecular genetics of intestinal

glucose transport. J. Clin. Invest. 1991, 88, 1435.

188. Burant, C. F.; Takeda, J.; Brot-Laroche, E.; Bell, G. I.; Davidson, N. O. Fructose transporter

in human spermatozoa and small intestine is GLUT5. J. Biol. Chem. 1992, 267, 14523.

189. Holman, G.; Leggio, L.; Cushman, S. Insulin-stimulated GLUT4 transporter recycling. A

problem in membrane protein subcellular trafficking through multiple pools. J. Biol. Chem.

1994, 269, 17516.

190. Olson, A. L.; Pessin, J. E. Transcriptional regulation of GLUT4 gene expression. Sem. Cell

Dev. Biol. 1996, 7, 145.

191. Shepherd, P.; Kahn, B. Cellular defects in glucose transport: lessons from animal models

and implications for human insulin resistance. In: Moller, D. (Ed.) Insulin Resistance. John

Wiley & Sons, Sussex, U.K.; 1993, 253-281.

192. Shepherd, P.R.; Kahn. B. B. Expression of the GLUT4 glucose transporter in diabetes. In:

Draznin, B.; LeRoith, D. (Ed.) Molecular Biology of Diabetes. Humana Press, Totowa, N.J.;

1994, 529-546.

193. Abel, E. A.; Houseknecht, K. L.; Kahn, B. B. Recent advances in understanding the

molecular basis for insulinstimulated glucose transport. Curr. Opin. Endocrin. Diabetes 1995, 2,

313.

194. White, M.; Kahn, C. The insulin signaling system. J. Biol. Chem. 1994, 269, 1.

Page 14: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

195. Cheatham, B.; Kahn, C. R. Insulin action and the insulin signaling network. Endocr. Rev.

1995, 16, 117.

196. Quon, M.; Guerre-Millo, M.; Zarnowski, M.; Butte, A.; Em, M.; Cushman, S.; Taylor, S.

Tyrosine kinase-deficient mutant human insulin receptors (Metl153-Ile) overexpressed in

transfected rat adipose cells fail to mediate translocation of epitope-tagged GLUT4. Proc. Natl.

Acad. Sci. USA 1994b, 91, 5587.

197. Quon, M.; Butte, A.; Zarnowski, M.; Sesti, G.; Cushman, S.; Taylor, S. Insulin receptor

substrate 1 mediates the stimulatory effect of insulin on GLUT4 translocation in transfected rat

adipose cells. J. Biol. Chem. 1994a, 269, 27920.

198. Araki, E.; Lipes, M.; Patti, M.; Bruning, J.; Haag, B.; Johnson, R.; Kahn, C. R. Alternative

pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature (Lond.)

1994, 372, 186.

199. Burgering, B. M.; Medema, R. H.; Maassen, J. A.; van de Wetering, M. L.; van der Eb, A.

J.; McCormick, F.; Bos, J. L. Insulin stimulation of gene expression mediated by p21ras

activation. EMBO. J. 1991, 10, 1103.

200. Osterop, A.; Medema, R.; Bos, J.; Zon, G.V.D.; Moller, D.; Flier, D.; Moller, W.; Maassen,

J. Relation between the insulin receptor number in cells, autophosphorylation and

insulinstimulated Ras-GTP formation. J. Biol. Chem. 1992, 267, 14647.

201. Porras, A.; Nebreda, A. R.; Benito, M.; Santos, E. Activation of Ras by insulin in 3T3 L1

cells does not involve GTPaseactivating protein phosphorylation. J. Biol. Chem. 1992, 267,

21124.

202. Houseknecht, K. L.; Kahn, B. B. Molecular Mechanisms for Insulin-Stimulated Glucose

Transport: Regulation of Glut4 Translocation. J. Anim. Sci. 1997, 75, 32-45.

203. van den Berghe, N.; Ouwens, D. M.; Maassen, J. A.; van Mackelenbergh, M.G.H.; Sips,

B.C.M.; Krans, H. M. J. Activation of the Ras/mitogen-activated protein kinase signaling

pathway alone is not sufficient to induce glucose uptake in 3T3-L1 adipocytes. Mol. Cell. Biol.

1994, 14, 2372.

204. Draznin, B.; Chang, L.; Leitner, J.; Takata, Y.; Olefsky, J. Insulin activates p21Ras and

guanine nucleotide releasing factor in cells expressing wild type and mutant insulin receptors. J.

Biol. Chem. 1993, 268, 19998.

205. Kozma, L.; Baltensperger, K.; Klarlund, J.; Porras, A.; Santos, E.; Czech, M. P. The Ras

signaling pathway mimics insulin action on glucose transporter translocation. Proc. Natl. Acad.

Sci. USA 1993, 90, 4460.

206. Quon, M. J.; Chen, H.; Ing, B. L.; Liu, M. L.; Zarnowski, M. J.; Yonezawa, I.C.; Kasuga,

M.; Cushman, S. W.; Taylor, S. I. Roles of ~l-Phosphatidylinositol 3-Kinase and ras in

regulating translocation of GLUT4 in transfected rat adipose cells. Mol. Cell. Biol. 1995, 15,

5403.

Page 15: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

207. Manchester, J.; Kong, X.; Lowry, H.; Lawrence, J. C. Jr. Ras signaling in the activation of

glucose transport by insulin. Proc. Natl. Acad. Sci. USA 1994, 91, 4644.

208. Hausdorff, S. F.; Frangioni, J. V.; Birnbaum, M. J. Role of p21ras in insulin-stimulated

glucose transport in 3T3-L1 adipocytes. J. Biol. Chem. 1994, 269, 21391.

209. Fingar, D. C.; Birnbaum, M. J. A role for Raf-1 in the divergent signaling pathways

mediating insulin-stimulated glucose transport. J. Biol. Chem. 1994, 269, 10127.

210. Reusch, D. E.; Bhuripanyo, P.; Carel, K.; Leitner, J. W.; Hsieh, P.; DePaolo, D.; Draznin, B.

Differential requirement for p21ras activation in the metabolic signaling by insulin. J. Biol.

Chem. 1995, 270, 2036-2040.

211. DeClue, J. E.; Vass, W. C.; Papageorge, A. G.; Lowy, D. R.; Willumsen, B. M. Inhibition of

cell growth by lovastatin is independent of ras function. Cancer Res. 1991, 51, 712.

212. Gibbs, J. B. Ras C-terminal processing enzymes-New drug targets? Cell 1991, 65, 1.

213. McGuire, T. F.; Xu, X. Q.; Corey, S. J.; Romero, G. G.; Sebti, S. M. Lovastatin disrupts

early events in insulin signaling: a potential mechanism of lovastatin's anti-mitogenic activity.

Biochem. Biophys. Res. Commun. 1994, 204, 399-406.

214. Etgen, G. J.; Wilson, C. M.; Jensen, J.; Cushman, S. W.; Ivy, J. L. Glucose transport and

cell surface GLUT4 protein in skeletal muscle of the obese Zucker rat. Am. J. Physiol. 1996, 271,

E294.

215. Zierath, J. R.; Houseknecht, Gnudi, K. L.; L.; Kahn, B. B. High fat feeding impairs insulin-

stimulated Glut4 recruitment in muscle via an early insulin signaling defect. Diabetes 1997, 46,

215.

216. Lebovitz, H. E. Insulin Secretogogues. In: LeRoith, D.; Taylor, S.I.; Olefsky, J. M. (Eds.)

Diabetes Mellitus: A Fundamental and Clinical Text. Lippincott Williams & Wilkins,

Philadelphia; 2000, 769-778.

217. Guillam, M.T.; Dupraz, P.; Thorens, B. Glucose uptake, utilization, and signaling in

GLUT2-null islets. Diabetes 2000, 49, 1485-1491.

218. Matschinsky, F. M. Banting Lecture 1995. A lesson in metabolic regulation inspired by the

glucokinase glucose sensor paradigm. Diabetes 1996, 45, 223-241.

219. Meglasson, M. D.; Matschinsky, F. M. Pancreatic islet glucose metabolism and regulation

of insulin secretion. Diabetes Metab. Rev. 1986, 2, 163-214.

220. Inagaki, N.; Gonoi, T.; Clement, J. P. et. al. Reconstitution of IKATP: an inward rectifier

subunit plus the sulfonylurea receptor. Science 1995, 270, 1166-1170.

221. DeFronzo, R. A. Pharmacologic therapy for type 2 diabetes mellitus. Ann. Intern. Med.

2000, 133, 73-74.

Page 16: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

222. Turner, R.C.; Cull, C.; Holman, R. United Kingdom Prospective Diabetes Study 17: a 9-

year update of a randomized, controlled trial on the effect of improved metabolic control on

complications in non-insulin-dependent diabetes mellitus. Ann. Intern. Med. 1996, 124, 136-145.

223. Dunning, B.E.; Foley, J. E. New therapies to increase insulin secretion. In: LeRoith, D.;

Taylor, S. I.; Olefsky, J. M. (Eds). Diabetes Mellitus: A Fundamental and Clinical Text.

Lippincott Williams & Wilkins, Philadelphia; 2000, 836-842.

224. Pratley, R.E.; Foley, J.E.; Dunning, B. E. Rapid acting insulinotropic agents: restoration of

early insulin secretion as a physiologic approach to improve glucose control. Curr. Pharm. Des.

2001, 7, 1375-1397.

225. Fuhlendorff, J.; Rorsman, P.; Kofod, H. et. al. Stimulation of insulin release by repaglinide

and glibenclamide involves both common and distinct processes. Diabetes 1998, 47, 345-351.

226. Akiyoshi, M.; Kakei, M.; Nakazaki, M.; Tanaka, H. A new hypoglycemic agent, A-4166,

inhibits ATP-sensitive potassium channels in rat pancreatic b-cells. Am. J. Physiol. 1995, 268,

E185-E193

227. Weaver, M.L.; Orwig, B.A.; Rodriguez, L. C. et. al. Pharmacokinetics and metabolism of

nateglinide in humans. Drug Metab. Dispos. 2001, 29, 415-421.

228. Hatorp, V.; Huang, W. C. Strange P. Pharmacokinetic profiles of repaglinide in elderly

subjects with type 2 diabetes. J. Clin. Endocrinol. Metab. 1999, 84, 1475-1478.

229. Culy, C. R.; Jarvis, B. Repaglinide: a review of its therapeutic use in type 2 diabetes

mellitus. Drugs 2001, 61, 1625-1660.

230. Goldberg, R. B.; Einhorn, D.; Lucas, C. P. et al. A randomized placebo-controlled trial of

repaglinide in the treatment of type 2 diabetes. Diabetes Care 1998, 21, 1897-1903.

231. Marbury, T.; Huang, W.C.; Strange, P.; Lebovitz, H. E. Repaglinide versus glyburide: a

one-year comparison trial. Diabetes Res. Clin. Pract. 1999, 43, 155-166.

232. Moses, R.; Slobodniuk, R.; Boyages, S. et. al. Effect of repaglinide addition to metformin

monotherapy on glycemic control in patients with type 2 diabetes. Diabetes Care 1999, 22, 119-

124.

233. Raskin, P.; Jovanovic, L.; Berger, S.; Schwartz, S.; Woo, V.; Ratner, R.

Repaglinide/troglitazone combination therapy: improved glycemic control in type 2 diabetes.

Diabetes Care 2000, 23, 979-983.

234. Fuchtenbusch, M.; Standl, E.; Schatz, H. Clinical efficacy of new thiazolidinediones and

glinides in the treatment of type 2 diabetes mellitus. Exp. Clin. Endocrinol. Diabetes 2000, 108,

151-163.

235. Hollander, P. A.; Schwartz, S. L.; Gatlin, M.R. et. al. Importance of early insulin secretion:

comparison of nateglinide and glyburide in previously diet-treated patients with type 2 diabetes.

Diabetes Care 2001, 24, 983-988.

Page 17: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

236. Kahn, S.E.; Montgomery, B.; Howell, W. et. al. Importance of early phase insulin secretion

to intravenous glucose tolerance in subjects with type 2 diabetes mellitus. J. Clin. Endocrinol.

Metab. 2001, 86, 5824-5829.

237. Horton, E. S.; Clinkingbeard, C.; Gatlin, M.; Foley, J. E.; Mallows, S.; Shen, S. Nateglinide

alone and in combination with metformin improves glycemic control by reducing mealtime

glucose levels in type 2 diabetes. Diabetes Care 2000, 23, 1660-1665.

238. Rosenstock, J.; Hassaman, D. R.; Madder, R.D.; Brazinsky, S.A.; Farrell, J.; Khutoryansky,

N.; Hale, P. Repaglinide Versus Nateglinide Comparison Study Group: Repaglinide versus

nateglinide monotherapy: a randomized multicenter study. Diabetes Care 2004, 27, 1265-1270.

239. Damsbo, P.; Clauson, P.; Marbury, T.C.; Windfeld, K. A double-blind randomized

comparison of meal-related glycemic control by repaglinide and glyburide in well- controlled

type 2 diabetic patients. Diabetes Care 1999, 22, 789-794.

240. Bailey, C. J.; Day, C. Traditional plant medicine as treatments for diabetes. Diabetes Care

1989, 12, 553-564.

241. Bailey, C. J.; Turner, R. C. Metformin. N. Engl. J. Med. 1996, 334, 574-579.

242. Davidson MB, Peters AL. An overview of metformin in the treatment of type 2 diabetes

mellitus. Am. J. Med. 1997, 102, 99-110.

243. Bolen, S.; Feldman, L.; Vassy, J.; Wilson, L.; Yeh, H. C. Marinopoulos, S. et. al.

Systematic review: comparative effectiveness and safety of oral medications for type 2 diabetes

mellitus. Ann. Intern. Med. 2007, 147, 386-99.

244. DeFronzo, R.A.; Ferrannini, E.; Simonson, D. C. Fasting hyperglycemia in non-insulin-

dependent diabetes mellitus: contributions of excessive hepatic glucose production and impaired

tissue glucose uptake. Metabolism 1989, 38, 387-395.

245. Stumvoll, M.; Nurjhan, N.; Perriello, G.; Dailey, G.; Gerich, J. E. Metabolic effects of

metformin in non-insulin-dependent diabetes mellitus. N. England J. Med. 1995, 333, 550-554.

246. Cusi, K.; DeFronzo, R. A. Metformin: a review of its metabolic effects. Diabetes Rev. 1998,

6, 89-131.

247. Zhou, G.; Myers, R.; Li, Y. et. al. Role of AMP-activated protein kinase in mechanism of

metformin action. J. Clin. Invest. 2001, 108, 1167-1174.

248. Hardie. D. G.; Carling, D.; Carlson, M. The AMP-activated/SNF1 protein kinase subfamily:

metabolic sensors of the eukaryotic cell? Annu. Rev. Biochem. 1998, 67, 821-855.

249. Turner, R.C.; Holman, R.R.; Stratton, I. M. et al. Effect of intensive blood-glucose control

with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK

Prospective Diabetes Study (UKPDS) Group. Lancet 1998, 352, 854-865.

Page 18: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

250. DeFronzo, R. A.; Goodman, A. M. Efficacy of metformin in patients with non-insulin-

dependent diabetes mellitus. The Multicenter Metformin Study Group. N. Engl. J. Med. 1995,

333, 541-549.

251. Sohda. T.; Mizuno. K.; Imamiya, E.; Sugiyama, Y.; Fujita, T.; Kawamatsu, Y. Studies on

antidiabetic agents. II. Synthesis of 5-[4-(1- methylcyclohexylmethoxy)-benzyl]thiazolidine-2,4-

dione (ADD-3878) and its derivatives. Chem. Pharm. Bull. 1982, 30, 3580-3600.

252. Sohda, T.; Ikeda, H.; Meguro, K. Studies on antidiabetic agents .12. Synthesis and activity

of the metabolites of (+/-)-5-[p-[2-(5-ethyl-2-pyridyl)ethoxy]benzyl]- 2,4-thiazolidinedione

(pioglitazone). Chem. Pharm. Bull. 1995, 43, 2168-2172.

253. Mudaliar, S.; Henry, R. R. New oral therapies for type 2 diabetes mellitus: The glitazones or

insulin sensitizers. Annu. Rev. Med. 2001, 52, 239-257.

254. Greene, D. A. Rosiglitazone: a new therapy for type 2 diabetes. Expert. Opin. Investig.

Drugs 1999, 8, 1709-1719.

255. Foyt, H.L.; Ghazzi, M. N.; Hanley, R.M.; Saltiel, A. R.; Whitcomb, R. W.

Thiazolidinediones. In: LeRoith. D.; Taylor, S. I.; Olefsky, J.M. (Eds). Diabetes Mellitus: A

Fundamental and Clinical Text. Lippincott Williams & Wilkins, Philadelphia; 2000, 788-797.

256. Boelsterli, U. A.; Bedoucha, M. Toxicological consequences of altered peroxisome

proliferator-activated receptor gamma (PPARgamma) expression in the liver: insights from

models of obesity and type 2 diabetes. Biochem. Pharmacol. 2002, 63, 1-10.

257. Lebovitz, H.E.; Kreider, M.; Freed, M. I. Evaluation of liver function in type 2 diabetic

patients during clinical trials: evidence that rosiglitazone does not cause hepatic dysfunction.

Diabetes Care 2002, 25, 815-821.

258. Chilcott, J.; Tappenden, P.; Jones, M.L.; Wight, J. P. A systematic review of the clinical

effectiveness of pioglitazone in the treatment of type 2 diabetes mellitus. Clin. Ther. 2001, 23,

1792-1823.

259. Scheen, A. J. Thiazolidinediones and liver toxicity. Diabetes Metab. 2001, 27, 305-313.

260. Woodcock, K.; Sharfstein, J.M. Regulatory Action on Rosiglitazone by the U.S. Food and

Drug Administration; Hamburg. New Engl. J. Med. September 23, 2010.

261. Goldstein, B. J. Current views on the mechanism of action of thiazolidinedione insulin

sensitizers. Diabet. Technol. Ther. 1999, 1, 267-275.

262. Miyazaki, Y.; Glass, L.; Triplitt, C. et. al. Effect of rosiglitazone on glucose and non-

esterified fatty acid metabolism in type II diabetic patients. Diabetologia 2001, 44, 2210-2219.

263. Miyazaki. Y.; Matsuda, M.; DeFronzo, R. A. Dose-response effect of pioglitazone on

insulin sensitivity and insulin secretion in type 2 diabetes. Diabetes Care 2002, 25, 517-523.

Page 19: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

264. Kawamori, R.; Matsuhisa, M.; Kinoshita, J. Et. al. Pioglitazone enhances splanchnic

glucose uptake as well as peripheral glucose uptake in non-insulin-dependent diabetes mellitus.

AD-4833 Clamp-OGL Study Group. Diabetes Res. Clin. Pract. 1998, 41, 35-43.

265. Saltiel, A.R.; Olefsky, J.M. Thiazolidinediones in the treatment of insulin resistance and

type II diabetes. Diabetes 1996, 45, 1661-1669.

266. Spiegelman, B. M. PPAR-gamma: Adipogenic regulator and thiazolidinedione receptor.

Diabetes 1998, 47, 507-514.

267. Lehmann, J.M.; Moore, L.B.; Smitholiver, T.A.; Wilkison, W.O.; Willson, T.M.; Kliewer,

S. A. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-

activated receptor gamma(PPAR-gamma). J. Biol. Chem. 1995, 270, 12953-12956.

268. Kliewer, S.A.; Lehmann, J.M.; Milburn, M.V.; Willson, T. M. The PPARs and PXRs:

nuclear xenobiotic receptors that define novel hormone signaling pathways. Recent. Prog. Horm.

Res. 1999, 54, 345-367.

269. Leibowitz M. D.; Fievet, C.; Hennuyer, N. et. al. Activation of PPARdelta alters lipid

metabolism in db/db mice. FEBS Lett. 2000, 473, 333-336.

270. Zhou, G.; Myers, R.; Li, Y. et. al. Role of AMP-activated protein kinase in mechanism of

metformin action. J. Clin. Invest. 2001, 108, 1167-1174.

271. Olefsky, J. M.; Saltiel, A. R. PPAR gamma and the treatment of insulin resistance. Trends

Endocrinol. Metab. 2000, 11, 362-368.

272. Picard, F.; Auwerx, J. PPARg and glucose homeostasis. Annu. Rev. Nutr. 2002, 22, 167-

197.

273. Berger, J.; Moller, D. E. The mechanisms of action of PPARs. Annu. Rev. Med. 2002, 53,

409-435.

274. Rosen, E.D.; Walkey, C.J.; Puigserver, P.; Spiegelman, B. M. Transcriptional regulation of

adipogenesis. Genes Dev. 2000, 14, 1293-1307.

275. Fajas, L.; Auboeuf, D.; Raspe, E. et. al. The organization, promoter analysis, and expression

of the human PPAR gamma gene. J. Biol. Chem. 1997, 272, 18779-18789.

276. Auboeuf, D.; Rieusset, J.; Fajas, L. et. al. Tissue distribution and quantification of the

expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-alpha

in humans: no alteration in adipose tissue of obese and NIDDM patients. Diabetes 1997, 48,

1319-1327.

277. Combs, T.P.; Wagner, J.A.; Berger, J. et. al. Induction of adipocyte complement-related

protein of 30 kilodaltons by PPARgamma agonists: a potential mechanism of insulin

sensitization. Endocrinology 2002, 143, 998-1007.

278. de Souza, C. J.; Eckhardt, M.; Gagen, K. et. al. Effects of pioglitazone on adipose tissue

remodeling within the setting of obesity and insulin resistance. Diabetes 2001, 50, 1863-1871.

Page 20: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

279. McGarry, J. D. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology

of type 2 diabetes. Diabetes 2002, 51, 7-18.

280. Berg, A. H.; Combs, T.P.; Du, X.; Brownlee, M.; Scherer, P. E. The adipocyte-secreted

protein Acrp30 enhances hepatic insulin action. Nat. Med. 2001, 7, 947-953.

281. Yamauchi, T.; Kamon, J.; Waki, H. et. al. The fat-derived hormone adiponectin reverses

insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 2001, 7, 941-946.

282. Yang, W.S.; Jeng, C.Y.; Wu, T. J et. al. Synthetic peroxisome proliferator-activated

receptor-gamma agonist, rosiglitazone, increases plasma levels of adiponectin in type 2 diabetic

patients. Diabetes Care 2002, 25, 376-380.

283. Havel, P. J. Control of energy homeostasis and insulin action by adipocyte hormones:

leptin, acylation stimulating protein, and adiponectin. Curr. Opin. Lipidol. 2002, 13, 51-59.

284. Steppan, C. M.; Lazar, M. A. Resistin and obesity-associated insulin resistance. Trends

Endocrinol. Metab. 2002, 13, 18-23.

285. Sood, V.; Colleran, K.; Burge, M. R. Thiazolidinediones: a comparative review of approved

uses. Diabetes Technol. Ther. 2000, 2, 429-440.

286. Goldstein, B. J. Differentiating members of the thiazolidinedione class: a focus on efficacy.

Diabetes Metab. Res. Rev. 2002, 18 (Suppl 2), S16-S22.

287. Boyle, P. J., King, A.B.; Olansky, L. et. al. Effects of pioglitazone and rosiglitazone on

blood lipid levels and glycemic control in patients with type 2 diabetes mellitus: a retrospective

review of randomly selected medical records. Clin. Ther. 2002, 24, 378-396.

288. Werner, A.L.; Travaglini, M. T. A review of rosiglitazone in type 2 diabetes mellitus.

Pharmacotherapy 2001, 21, 1082-1099.

289. Gillies, P. S.; Dunn, C. J. Pioglitazone. Drugs 2000, 60, 333-343.

290. Lebovitz, H. E.; Dole, J. F.; Patwardhan, R.; Rappaport, E.B.; Freed, M. I. Rosiglitazone

monotherapy is effective in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 2001, 86,

280-288.

291. Phillips, L. S.; Grunberger, G.; Miller, E.; Patwardhan, R.; Rappaport, E.B.; Salzman, A.

Once- and twice-daily dosing with rosiglitazone improves glycemic control in patients with type

2 diabetes. Diabetes Care 2001, 24, 308-315.

292. Aronoff, S.; Rosenblatt, S.; Braithwaite, S.; Egan, J.W.; Mathisen, A.L.; Schneider, R. L.

Pioglitazone hydrochloride monotherapy improves glycemic control in the treatment of patients

with type 2 diabetes: a 6-month randomized placebo-controlled dose-response study. The

Pioglitazone 001 Study Group. Diabetes Care 2000, 23, 1605-1611.

293. Einhorn, D.; Rendell, M.; Rosenzweig, J.; Egan, J.W.; Mathisen, A.L.; Schneider, R. L.

Pioglitazone hydrochloride in combination with metformin in the treatment of type 2 diabetes

Page 21: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

mellitus: a randomized, placebo-controlled study. The Pioglitazone 027 Study Group. Clin. Ther.

2000, 22, 1395-1409.

294. Kipnes, M. S.; Krosnick, A.; Rendell, M. S.; Egan, J. W.; Mathisen, A. L.; Schneider, R.

L. Pioglitazone hydrochloride in combination with sulfonylurea therapy improves glycemic

control in patients with type 2 diabetes mellitus: a randomized, placebo-controlled study. Am. J.

Med. 2001, 111, 10-17.

295. Miyazaki, Y.; Mahankali, A.; Matsuda, M. et. al. Improved glycemic control and

enhanced insulin sensitivity in type 2 diabetic subjects treated with pioglitazone. Diabetes Care

2001, 24, 710-719.

296. Karalliedde, J.; Buckingham, R.; Starkie, M.; Lorand, D.; Stewart, M.; Viberti, G.;

Rosiglitazone Fluid Retention Study Group. Effect of various diuretic treatments on

rosiglitazone-induced fluid retention J. Am. Soc. Nephrol. 2006, 17, 3482-3490.

297. Gorson, D. M. Significant weight gain with rezulin therapy. Arch. Intern. Med. 1998,

159, 99.

298. Anonymous. Physicians' Desk, PDR. Medical Economics Press, Montvale, New Jersy;

2008.

299. Nissen, S. E.; Wolski, K. Effects of rosiglitazone on the risk of myocardial infarction and

death from cardiovascular causes. N. Engl. J. Med. 2007, 356, 2457-2471.

300. Diamond, G.A.; Bax, L.; Kaul, S. Uncertain effects of rosiglitazone on the risk for

myocardial infarction and cardiovascular death. Ann. Intern. Med. 2007, 147, 578-581.

301. Lincoff, A.M.; Wolski, K.; Nicholls, S. J. et. al. Pioglitazone and risk of cardiovascular

events in patients with type 2 diabetes mellitus. JAMA 2007, 298, 1180-1188.

302. Dormandy, J. A.; Charbonnel, B.; Eckland, D.J.A. et. al. Secondary prevention of

macrovascular events in patients with type 2 diabetes in the PROactive study (Prospective

Pioglitazone Clinical Trial in Macrovascular Events): a randomized controlled trial. Lancet 2005,

366, 1279-1289.

303. Home, P. D.; Pocock SJ, Beck-Nielsen H, Curtis PS, Gomis R, Hanefeld M, Jones NP,

Komajda M, McMurray JJ; RECORD Study Team. Rosiglitazone evaluated for cardiovascular

outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre,

randomised, open-label trial. Lancet 2009, 373, 2125-2135.

304. Kahn, S. E.; Haffner, S. M.; Heise, M. A.; Herman, W. H.; Holman, R.R.; Jones, N. P.;

Kravitz, B. G.; Lachin, J. M.; O'Neill, M. C.; Zinman, B.; Viberti, G. ADOPT Study Group.

Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N. Engl. J. Med.

2006, 355, 2427-2443.

305. Loke, Y. K.; Singh, S.; Furberg, C. D. Long-term use of thiazolidinediones and fractures

in type 2 diabetes: a meta-analysis. CMAJ 2009, 180, 32-39.

Page 22: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

306. Grey, A.; Bolland, M.; Gamble, G.; Wattie, D.; Horne, A.; Davidson, J.; Reid, I. R. The

peroxisome proliferator-activated receptor-gamma agonist rosiglitazone decreases bone

formation and bone mineral density in healthy postmenopausal women: a randomized, controlled

trial. J. Clin. Endocrinol. Metab. 2007, 92, 1305-1310.

307. Glintborg, D.; Andersen, M.; Hagen, C.; Heickendorff, L.; Hermann, A. P. Association of

pioglitazone treatment with decreased bone mineral density in obese premenopausal patients

with polycystic ovary syndrome: a randomized, placebo-controlled trial. J. Clin. Endocrinol.

Metab. 2008, 93, 1696-1701.

308. Lebovitz, H. E. a-Glucosidase inhibitors as agents in the treatment of diabetes. Diabet.

Rev. 1998, 6, 132-145.

309. Magner, J.; Amatruda, J. M. a-glucosidase inhibitors in the treatment of diabetes. In:

LeRoith, D.; Taylor, S. I.; Olefsky, J. M. (Eds). Diabetes Mellitus: A Fundamental and Clinical

Text. Lippincott Williams & Wilkins, Philadelphia; 2000.

310. Puls, W. Pharmacology of glucosidase inhibitors. In: Kuhlmann, J.; Puls, W. (Eds).

Handbook of Experimental Pharmacology: Oral Antidiabetics. Springer, Berlin; 1996, 497-525.

311. Scheen, A. J. Clinical efficacy of acarbose in diabetes mellitus: A critical review of

controlled trials. Diabetes Metab. 1998, 24, 311-320.

312. Martin, A. E.; Montgomery, P. A. Acarbose: An alpha-glucosidase inhibitor. Amer. J.

Health-Syst. Pharm. 1996, 53, 2277-2290.

313. Coniff, R.; Krol, A. Acarbose: a review of US clinical experience. Clin. Ther. 1997, 19,

16-26.

314. Chiasson, J. L.; Josse, R. G.; Leiter, L. A. et. al. The effect of acarbose on insulin sensitivity

in subjects with impaired glucose tolerance. Diabetes Care 1996, 19, 1190-1193.

315. Shinozaki, K.; Suzuki, M.; Ikebuchi, M.; Hirose, J.; Hara, Y.; Harano, Y.; Improvement

of insulin sensitivity and dyslipidemia with a new a-glucosidase inhibitor, voglibose, in

nondiabetic hyperinsulinemic subjects. Metabolism 1996, 45, 731-737.

317. Ahren, B. Glucagon-like peptide-1 (GLP-1): a gut hormone of potential interest in the

treatment of diabetes. Bioessays 1998, 20, 642-651.

318. Holst, J.J.; Deacon, C. F. Inhibition of the activity of dipeptidyl peptidase IV as a

treatment for type 2 diabetes. Diabetes 1998, 47, 1663-1670.

319. Deacon, C.F.; Hughes, T.E.; Holst, J. J. Dipeptidyl peptidase IV inhibition potentiates the

insulinotropic effect of glucagon-like peptide 1 in the anesthetized pig. Diabetes 1998, 47, 764-

769.

320. Hughes, T. E.; Mone, M. D.; Russell, M. E.; Weldon, S. C.; Villhauer, E. B. NVP-

DPP728 (1-[[[2-[(5-cyanopyridin-2-yl)amino]ethyl]amino]acetyl]-2-cyano-(S)- pyrrolidine), a

slow-binding inhibitor of dipeptidyl peptidase IV. Biochemistry 1999, 38, 11597-11603.

Page 23: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

321. Villhauer, E. B.; Brinkman, J.A.; Naderi, G. B. et. al. 1-[2-[(5-Cyanopyridin-2-

yl)amino]ethylamino]acetyl-2-(S)-pyrrolidinecarbonitrile: a potent, selective, and orally

bioavailable dipeptidyl peptidase IV inhibitor with antihyperglycemic properties. J. Med. Chem.

2002, 45, 2362-2365.

322. Deacon, C. F.; Ahren, B.; Holst, J. J. Inhibitors of dipeptidyl peptidase IV: a novel

approach for the prevention and treatment of type 2 diabetes? Expert. Opin. Investig. Drugs

2004, 13, 1091-1102.

323. Demuth, H. U.; McIntosh, C. H.; Pederson, R. A. Type 2 diabetes--therapy with

dipeptidyl peptidase IV inhibitors. Biochim. Biophys. Acta. 2005, 1751, 33-44.

324. Lankas, G. R.; Leiting, B.; Roy, R. S. et al. Dipeptidyl peptidase IV inhibition for the

treatment of type 2 diabetes: potential importance of selectivity over dipeptidyl peptidases 8 and

9. Diabetes 2005, 54, 2988-2994.

325. Conarello, S. L.; Li, Z.; Ronan, J. et. al. Mice lacking dipeptidyl peptidase IV are

protected against obesity and insulin resistance. Proc. Natl. Acad. Sci. USA 2003, 100, 6825-

6830.

326. Balkan, B.; Kwasnik, L.; Miserendino, R.; Holst, J. J.; Li, X. Inhibition of dipeptidyl

peptidase IV with NVP-DPP728 increases plasma GLP-1 (7-36 amide) concentrations and

improves oral glucose tolerance in obese Zucker rats. Diabetologia 1999, 42, 1324-1331.

327. Mitani, H.; Takimoto, M.; Hughes, T. E.; Kimura, M. Dipeptidyl peptidase IV inhibition

improves impaired glucose tolerance in high-fat diet-fed rats: study using a Fischer 344 rat

substrain deficient in its enzyme activity. Jpn. J. Pharmacol. 2002, 88, 442-450.

328. Mitani, H.; Takimoto, M.; Kimura, M. Dipeptidyl peptidase IV inhibitor NVP-DPP728

ameliorates early insulin response and glucose tolerance in aged rats but not in aged Fischer 344

rats lacking its enzyme activity. Jpn. J. Pharmacol. 2002, 88, 451-458.

329. Ahren, B.; Simonsson, E.; Larsson, H. et. al. Inhibition of dipeptidyl peptidase IV

improves metabolic control over a 4-week study period in type 2 diabetes. Diabetes Care 2002,

25, 869-875.

330. Miller, S.; Onge, E. L. Sitagliptin: a dipeptidyl peptidase IV inhibitor for the treatment of

type 2 diabetes. Ann. Pharmacother. 2006, 40, 1336-1343.

331. Aschner, P.; Kipnes, M. S.; Lunceford, J. K. et. al. Effect of the dipeptidyl peptidase-4

inhibitor sitagliptin as monotherapy on glycemic control in patients with type 2 diabetes.

Diabetes Care 2006, 29, 2632-2637.

332. Hanefeld, M.; Herman, G. A.; Wu, M. et al. Once-daily sitagliptin, a dipeptidyl

peptidase-4 inhibitor, for the treatment of patients with type 2 diabetes. Curr. Med. Res. Opin.

2007, 23, 1329-1339.

Page 24: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

333. Raz, I.; Hanefeld, M.; Xu, L. et. al. Efficacy and safety of the dipeptidyl peptidase-4

inhibitor sitagliptin as monotherapy in patients with type 2 diabetes mellitus. Diabetologia 2006,

49, 2564-2571.

334. Charbonnel, B.; Karasik, A.; Liu, J. et. al. Efficacy and safety of the dipeptidyl peptidase-

4 inhibitor sitagliptin added to ongoing metformin therapy in patients with type 2 diabetes

inadequately controlled with metformin alone. Diabetes Care 2006, 29, 2638.

335. Goldstein, B. J.; Feinglos, M. N.; Lunceford, J. K. et. al. Effect of initial combination

therapy with sitagliptin, a dipeptidyl peptidase-4 inhibitor, and metformin on glycemic control in

patients with type 2 diabetes. Diabetes Care 2007, 30, 1979-1987.

336. Raz, I.; Chen, Y.; Wu, M. et. al. Efficacy and safety of sitagliptin added to ongoing

metformin therapy in patients with type 2 diabetes. Curr. Med. Res. Opin. 2008, 24, 537-550.

337. DeFronzo, R. A.; Fleck, P. R.; Wilson, C. A.; Mekki, Q. Efficacy and safety f the

dipeptidyl peptidase-4 inhibitor alogliptin in patients with ype 2 diabetes and inadequate

glycemic control: a randomized, double-blind, placebo-controlled study. Diabetes Care 2008, 31,

2315-2317.

338. Hermansen. K, Kipnes, M.; Luo, E.; et. al. Efficacy and safety of the dipeptidyl

peptidase-4 inhibitor, sitagliptin, in patients with type 2 diabetes mellitus inadequately controlled

on glimepiride alone or on glimepiride and metformin. Diabetes Obes. Metab. 2007, 9, 733-745.

339. Rosenstock, J.; Brazg, R.; Andryuk, P. J. et. al. Efficacy and safety of he dipeptidyl

peptidase-4 inhibitor sitagliptin added to ongoing ioglitazone therapy in patients with type 2

diabetes: a 24-week, mlticenter, randomized, double-blind, placebo-controlled, parallel-group

study. Clin. Ther. 2006, 28, 1556-1568.

340. Nauck, M. A.; Ellis, G. C.; Fleck, P. R. et. al. Efficacy and safety of adding he dipeptidyl

peptidase-4 inhibitor alogliptin to metformin therapy in patients with type 2 diabetes

inadequately controlled with mtformin monotherapy: a multicentre, randomised, doubleblind,

placeb cotrolled study. Int. J. Clin. Pract. 2009, 63, 46-55.

341. Pratley, R. E.; Kipnes, M.S.; Fleck, P.R. et. al. Efficacy and safety of the ipeptidyl

peptidase-4 inhibitor alogliptin in patients with type diabetes inadequately controlled by

glyburide monotherapy. Diabetes Obes. Metab. 2009, 11, 167-176.

342. Ravichandran, S.; Chacra, A. R.; Tan, G. H. et. al. Saxagliptin added to a submaximal

dose of sulphonylurea improves glycaemic control compared with uptitration of sulphonylurea in

patients with type 2 diabetes: a randomised controlled trial. Int. J. Clin. Pract. 2009, 63, 1395-

1406.

343. Allen, E.; Hollander, P.; Li, J.; Chen, R.; The Life Study Group. Saxagliptin added to a

thiazolidinedione improves glycaemic control in patients with inadequately controlled type 2

diabetes: systematic review and meta-analysis. Diabetologia 2008, 51, S78.

344. Di, M. V.; Petrocellis, L. D. Plant, synthetic, and endogenous cannabinoids in medicine.

Annu. Rev. Med. 2006, 57, 553-574.

Page 25: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

345. Zuardi, A. W. History of cannabis as a medicine: a review. Rev. Bras. Psiquiatr. 2006,

28, 153-157.

346. Gaoni, Y.; Mechoulam, R. Isolation, structure, and partial synthesis of an active

component of hashish. J. Am. Chem. Soc. 1964, 86, 1646-1647.

347. Pagotto, U.; Marsicano, G.; Cota, D.; Lutz, B.; Pasquali, R. The emerging role of the

endocannabinoid system in endocrine regulation and energy balance. Endocr. Rev. 2006, 27, 73-

100.

348. Mackie, K. Distribution of cannabinoid receptors in the central and peripheral nervous

system. Handb. Exp. Pharmacol. 2005, 168, 299-325.

349. Kirkham, T. C.; Tucci, S. A. Endocannabinoids in appetite control and the treatment of

obesity. CNS Neurol. Disord. Drug Targets 2006, 5, 272-292.

350. Jamshidi, N.; Taylor, D. A. Anandamide administration into the ventromedial

hypothalamus stimulates appetite in rats. Br. J. Pharmacol. 2001, 134, 1151-1154.

351. Kirkham, T. C.; Williams, C. M.; Fezza, F.; Di, M. Endocannabinoid levels in rat limbic

forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by

2-arachidonoyl glycerol. Br. J. Pharmacol. 2002, 136, 550-557.

352. Hao, S.; Avraham, Y.; Mechoulam, R.; Berry, E. M. Low dose anandamide affects food

intake, cognitive function, neurotransmitter and corticosterone levels in diet-restricted mice. Eur.

J. Pharmacol. 2000, 392, 147-156.

353. Ravinet, T. C.; Delgorge, C.; Menet, C.; Arnone, M.; Soubrie, P. CB1 cannabinoid

receptor knockout in mice leads to leanness, resistance to diet-induced obesity and enhanced

leptin sensitivity. Int. J. Obes. Relat. Metab. Disord. 2004, 28, 640-648.

354. Valverde, O.; Karsak, M.; Zimmer, A. Analysis of the endocannabinoid system by using

CB1 cannabinoid receptor knockout mice. Handb. Exp Pharmacol. 2005, 168, 117-145.

355. Engeli, S.; Bohnke, J.; Feldpausch, M. et. al. Activation of the peripheral

endocannabinoid system in human obesity. Diabetes 2005, 54, 2838-2843.

356. Sipe, J. C.; Waalen, J.; Gerber, A.; Beutler, E. Overweight and obesity associated with a

missense polymorphism in fatty acid amide hydrolase (FAAH). Int. J. Obes. (Lond) 2005, 29,

755-759.

357. Gelfand, E. V.; Cannon, C. P. Rimonabant: a cannabinoid receptor type 1 blocker for

management of multiple cardiometabolic risk factors. J. Am. Coll. Cardiol. 2006, 47, 1919-1926.

358. Scheen, A. J.; Van Gaal, L. G.; Despres, J. P.; Pi-Sunyer, X.; Golay, A.; Hanotin, C.

Rimonabant improves cardiometabolic risk profile in obese or overweight subjects: overview of

RIO studies. Rev. Med. Suisse. 2006, 2, 1916-1923

Page 26: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

359. Gelfand, E. V.; Cannon, C. P. Rimonabant: a selective blocker of the cannabinoid CB1

receptors for the management of obesity, smoking cessation and cardiometabolic risk factors.

Expert Opin. Investig. Drugs 2006, 15, 307-315.

360. Boyd, S. T.; Fremming, B. A. Rimonabant--a selective CB1 antagonist. Ann.

Pharmacother. 2005, 39, 684-690.

361. Van Gaal, L. F.; Rissanen, A. M.; Scheen, A. J.; Ziegler, O.; Rossner, S. Effects of the

cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors

in overweight patients: 1-year experience from the RIO-Europe study. Lancet 2005, 365, 1389-

1397.

362. Pi-Sunyer, F. X.; Aronne, L. J.; Heshmati, H. M.; Devin, J.; Rosenstock, J. Effect of

rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in

overweight or obese patients: RIO-North America: a randomized controlled trial. J. Am. Med.

Assoc. 2006, 295, 761-775.

363. Despres, J. P.; Golay, A.; Sjostrom, L. Effects of rimonabant on metabolic risk factors in

overweight patients with dyslipidemia. N. Engl. J. Med. 2005, 353, 2121-2134.

364. Scheen, A. J.; Finer, N.; Hollander, P.; Jensen, M. D.; Van Gaal, L. F. for the RIO-

Diabetes Study Group: Efficacy and tolerability of rimonabant in overweight or obese patients

with type 2 diabetes: a randomised controlled study. Lancet 2006, 368, 1660-1672.

365. DeFronzo, RA. Pharmacologic therapy for type 2 diabetes mellitus. Ann. Intern. Med.

1999, 131, 281-303.

366. Brower, V. Proteomics: biology in the post-genomic era. Companies all over the world

rush to lead the way in the new post-genomics race. EMBO Rep. 2001, 2, 558-560.

367. Hertzberg, R. P.; Pope, A. J. High-throughput screening: new technology for the 21st

century. Curr. Opin. Chem. Biol. 2000, 4, 445-451.

368. Toledo-Sherman, L. M.; Chen, D. High-throughput virtual screening for drug discovery

in parallel. Curr. Opin. Drug. Discov. Devel. 2002, 5, 414-421.

369. Jhoti, H. High-throughput structural proteomics using x-rays. Trends Biotechnol. 2001,

19, S67-S71

370. Blundell, T. L.; Jhoti, H.; Abell, C. High-throughput crystallography for lead discovery in

drug design. Nat. Rev. Drug. Discov. 2002, 1, 45-54.

371. Card, G. L.; Blasdel, L.; England, B. P. et. al. A family of phosphodiesterase inhibitors

discovered by cocrystallography and scaffold-based drug design. Nat. Biotechnol. 2005, 23, 201-

207.

372. Fischer, H. P. Towards quantitative biology: integration of biological information to

elucidate disease pathways and to guide drug discovery. Biotechnol. Annu. Rev. 2005, 11, 1-68.

Page 27: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

373. Michelson, S. The impact of systems biology and biosimulation on drug discovery and

development. Mol. Biosyst. 2006, 2, 288-291.

374. Zimmet, P.; Alberti, K. G.; Shaw, J. Global and societal implications of the diabetes

epidemic. Nature 2001, 414, 782-787.

375. Kopelman P. G. Obesity as a medical problem. Nature 2000, 404, 635-643.

376. Desvergene, B.; Wahli, W. Peroxisome proliferator-activated receptors: nuclear control

of metabolism. Endocr. Rev. 1999, 20, 649-688.

377. Lin, Q.; Ruuska, S. E.; Shaw, N. S.; Dong, D.; Noy, N. Ligand selectivity of peroxisome

proliferator activated receptor alpha. Biochemistry 1999, 38, 185-190.

378. Ellinghaus, P.; Wolfrum, C.; Assmann, G.; Spencer, F.; Seedorf, U. Phytanic acid

activates the peroxisome proliferator-activated receptor alpha (PPARalpha) in sterol carrier

protein 2-/+sterol carrier protein x-deficient mice. J. Biol. Chem. 1999, 274, 2766-2772.

379. Moya-Camarena, S. Y.; Vanden Heuvel, J. P.; Blanchard, S. G.; Leesnitzer, L. A.;

Belury, M. A. Conjugated linoleic acid is a potent naturally occurring ligand and activator of

PPARalpha. J. Lipid Res. 1999, 40, 1426-1433.

380. Kersten, S.; Desvergne, B.; Wahli, W. Roles of PPARs in health and disease. Nature

2000, 405, 421-412.

381. Rosen, E. D. et al. PPAR is required for the differentiation of adipose tissue in vivo and

in vitro. Mol. Cell 1999, 4, 611-617.

382. Rieusset, J. et. al. Insulin acutely regulates the expression of the peroxisome proliferator-

activated receptor-gamma in human adipocytes. Diabetes 1999, 48, 699-705.

383. Fajas, L. et. al. Regulation of peroxisome proliferator-activated receptor gamma

expression by adipocyte differentiation and determination factor 1/sterol regulatory element

binding protein 1: implications for adipocyte differentiation and metabolism. Mol. Cell. Biol.

1999, 19, 5495-5503.

384. Wang, M. Y.; Lee, Y.; Unger, R. H. Novel form of lipolysis induced by leptin. J. Biol.

Chem. 1999, 274, 17541-17544.

385. Kubota, N. et al. PPAR mediates high-fat diet-induced adipocyte hypertrophy and insulin

resistance. Mol. Cell 1999, 4, 597-609.

386. Kersten, S. et al. Peroxisome proliferator activated receptor alpha mediates the adaptive

response to fasting. J. Clin. Invest. 1999, 103, 1489-1498.

387. Leone, T. C.; Weinheimer, C. J.; Kelly, D. P. A critical role for the peroxisome

proliferator-activated receptor alpha (PPARalpha) in the cellular fasting response: the PARalpha-

null mouse as a model of fatty acid oxidation disorders. Proc. Natl Acad. Sci. USA 1999, 96,

7473-7478.

Page 28: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

388. Wang, M.; Wise, S. C.; Leff, T.; Su, T. Z. Troglitazone, an antidiabetic agent, inhibits

cholesterol biosynthesis through a mechanism independent of peroxisome proliferator-activated

receptorgamma. Diabetes 1999, 48, 254-260.

389. Kliewer, S.A.; Forman, B.M.; Blumber, B.; Ong, E.S.; Borgmeyer, U.; Mangelsdorf, D.J.;

Umesono, K.; Evans, R.M. Differential expression and activation of a family of murine

peroxisome proliferator-activated receptors. Proc. Natl. Acad. Sci. USA 1994, 91, 7355–7359.

390. Tontonoz, P.; Graves, R.A.; Budvari, A.I.; Erdjument-Bromage, H.; Lui, M.; Hu, E.;

Tempst, P.; Spiegelman, B.M. Adipocytespecific transcription factor ARF6 is a heterodimeric

complex of two nuclear hormone receptors, PPARgamma and RXRalpha. Nucl. Acids Res.

1994, 22, 5628–5634.

391. Mangelsdorf, D.J.; Evans, R.M. The RXR heterodimers and orphan receptors. Cell 1995,

83, 841–850.

392. Weatherman, R.V.; Fletterick, R.J.; Scanlan, T.S. Nuclear-receptor ligands and ligand-

binding domains. Annu. Rev. Biochem. 1999, 68, 559–581.

393. Freedman, L. P. Increasing the complexity of coactivation in nuclear receptor signaling.

Cell 1999, 97, 5-8.

394. Gampe, R. T.; Montana, G. V.; Lambert, M. H.; Miller, A. B.; Bledsoe, R. K.; Milburn, M.

V., Xu, H. E. Assymetry in the PPARγ/RXRσCrystal Structure Reveals the Molecular Basis of

Heterodimerization among Nuclear Receptors. Mol. Cell 2000, 5, 545-555.

395. Bourguet, W.; Ruff, M.; Chambon, P.; Gronemeyer, H.; Moras, D. Crystal structure of the

ligand-binding domain of the human nuclear receptor RXR-a. Nature 1995, 375, 377–382.

396. Nolte, R.T., Wisely, G.B., Westin, S., Cobb, J.E., Lambert, M.H., Kurokawa, R., Rosenfeld,

M.G., Willson, T.M., Glass, C.K., and Milburn, M.V. Ligand binding and co-activator assembly

of the peroxisome proliferator-activated receptor-g. Nature 1998, 395, 137–143.

397. Shiau, A.K.; Barstad, D.; Loria, P.M.; Cheng, L.; Kushner, P.J.; Agard, D.A.; Greene, G.L.

The structural basis of estrogen receptor/ coactivator recognition and the antagonism of this

interaction by tamoxifen. Cell 1998, 95, 927–937.

398. Henke, B.R., Blanchard, S.G., Brackeen, M.F., Brown, K.K., Cobb, J.E., Collins, J.L.,

Harrington, W.W., Jr., Hashim, M.A., Hull-Ryde, E.A., Kaldor, I., et al. (1998). N-(2-

Benzoylphenyl)-L-tyrosine PPARg agonists. I. Discovery of a novel series of potent

antihyperglycemic and antihyperlipidemic agents. J.Med.Chem. 41, 5020–5036.

399. Renaud, J.P.; Rochel, N.; Ruff, M.; Vivat, V.; Chambon, P.; Moras, D. Crystal structure of

the RAR-g ligand-binding domain bound to all-trans retinoic acid. Nature 1995, 378, 681–689.

400. Cornet, P.; Petersen, J. F.; Folmer, R.; Blomberg, N.; Sjoblom, K.; Karlsson, U.; Lindstedt,

E.; Bamberg, K. Structure of the PPARα and -γ Ligand Binding Domain in Complex with AZ

242; Ligand Selectivity and Agonist Activation in the PPAR Family. Structure 2001, 9, 699-706.

Page 29: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

401. Uppenberg, J.; Berkenstam, A. et. al. Crystal structure of the ligand binding domain of the

human nuclear receptor PPARγ. J. Biol. Chem. 1998, 273, 31108–31112.

402. Xu, H.E., et al., and Milburn, M.V. Molecular recognition of fatty acids by peroxisome

proliferator-activated receptors. Mol. Cell. 1999, 3, 397–403.

403. Farce, A.; Renault, N.; Chavatte, P. Structural insight into PPARγ ligands binding. Curr.

Med. Chem. 2009, 16, 1768−1789.

404. Barter, P. J.; Rye, K. A. Cardioprotective properties of fibrates: which fibrate, which

patients, what mechanism? Circulation 2006, 113, 1553−1555.

405. Thorp, J. M.; Waring, W. S. Modification of metabolism and distribution of lipids by ethyl

chlorophenoxyisobutyrate. Nature 1962, 194, 948−949.

406. Brown, P. J.; Stuart, L. W.; Hurley, K. P.; Lewis, M. C.; Winegar, D. A.; Wilson, J. G.;

Wilkison, W. O.; Ittoop, O. R.; Willson, T. M. Identification of a subtype-selective human

PPARα agonist through parallel-array synthesis. Bioorg. Med. Chem. Lett. 2001, 11, 1225−1227.

407. Xu, Y.; Mayhugh, D.; Saeed, A.; Wang, X.; Thompson, R. C.; Dominianni, S. J.; Kauffman,

R. F.; Singh, J.; Bean, J. S.; Bensch, W. R.; Barr, R. J.; Osborne, J.; Montrose-Rafizadeh, C.;

Zink, R. W.; Yumibe, N. P.; Huang, N.; Luffer-Atlas, D.; Rungta, D.; Maise, D. E.; Mantlo, N.

B. Design and synthesis of a potent and selective triazolone-based peroxisome proliferator-

activated receptor α agonist. J. Med. Chem. 2003, 46, 5121−5124.

408. Sierra, M. L.; Beneton, V.; Boullay, A. B.; Boyer, T.; Brewster, A. G.; Donche, F.; Forest,

M. C.; Fouchet, M. H.; Gellibert, F. J.; Grillot, D. A.; Lambert, M. H.; Laroze, A.; Le Grumelec,

C.; Linget, J. M.; Montana, V. G.; Nguyen, V. L.; Nicodeme, E.; Patel, V.; Penfornis, A.; Pineau,

O.; Pohin, D.; Potvain, F.; Poulain, G.; Ruault, C. B.; Saunders, M.; Toum, J.; Xu, H. E.; Xu, R.

X.; Pianetti, P. M. Substituted 2-[(4-aminomethyl)phenoxy]-2-methylpropionic acid PPARα

agonists. 1. Discovery of a novel series of potent HDLc raising agents. J. Med. Chem. 2007, 50,

685−695.

409. Schafer, S. A.; Hansen, B. C.; Volkl, A.; Fahimi, H. D.; Pill, J. Biochemical and

morphological effects of K-111, a peroxisome proliferator-activated receptor (PPAR)α activator,

in non-human primates. Biochem. Pharmacol. 2004, 68, 239−251.

410. Wagner, J. D.; Shadoan, M. K.; Zhang, L.; Ward, G. M.; Royer, L. J.; Kavanagh, K.;

Francone, O. L.; Auerbach, B. J.; Harwood, J. A selective PPAR α agonist, CP-900691,

improves plasma lipids, lipoproteins, and glycemic control in diabetic monkeys. J. Pharmacol.

Exp. Ther. 2010, 333, 844−853.

411. Li, W.-H.; Zou, H.-J.; Wu, A.-H.; Ye, Y.-L; Shen, J.-H. Structurebased drug design of a

novel family of chalcones as PPARα agonists: virtual screening, synthesis, and biological

activities in vitro. Acta. Pharmacol. Sin. 2007, 28, 2040−2052.

412. Nomura, M.; Tanase, T.; Ide, T.; Tsunoda, M.; Suzuki, M.; Uchiki, H.; Murakami, K.;

Miyachi, H. Design, synthesis, and evaluation of substituted phenylpropanoic acid derivatives as

human peroxisome proliferator-activated receptor activators. Discovery of potent and human

Page 30: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

peroxisome proliferator-activated receptor α subtype-selective activators. J. Med. Chem. 2003,

46, 3581−3599.

413. Deussen, H. -J.; Jeppesen, L.; Scharer, N.; Junager, F.; Bentzen, B.; Weber, B.; Sandor, V.

W.; Sauerberg, P. Process development and scale up of the PPAR agonist NNC 61-4655. Org.

Proc. Res. Dev. 2004, 8, 363−371.

414. Kuwabara, K.; Murakami, K.; Todo, M.; Aoki, T.; Asaki, T.; Murai, M.; Yano, J. A novel

selective peroxisome proliferator-activated receptor α agonist, 2-methyl-c-5-[5-methyl-2-(4-

methylphenyl)-4- oxazolyl]butyl]-1,3-dioxane-r-2-carboxylic acid (NS-220), potently decrease

plasma triglyceride and glucose levels and modifies lipoprotein profiles in KKAy mice. J.

Pharmacol. Exp. Ther. 2004, 309, 970−977.

415. Shi, G. Q.; Dropinski, J. F.; Zhang, Y.; Santini, C.; Sahoo, S. P.; Berger, J. P.; Macnaul, K.

L.; Zhou, G.; Agrawal, A.; Alvaro, R.; Cai, T. Q.; Hernandez, M.; Wright, S. D.; Moller, D. E.;

Heck, J. V.; Meinke, P. T. Novel 2,3-dihydrobenzofuran-2-carboxylic acids: highly potent and

subtype-selective PPARα agonists with potent hypolipidemic activity. J. Med. Chem. 2005, 48,

5589−5599.

416. Kliewer, S. A.; Forman, B. M.; Blumberg, B.; Ong, E. S.; Borgmeyer, U.; Mangelsdorf, D.

J.; Umesono, K.; Evans, R. M. Differential expression and activation of a family of murine

peroxisome proliferator-activated receptors. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 7355−7359.

417. Cano, C.; Pavon, J.; Serrano, A.; Goya, P.; Paez, J. A.; Rodriguez de Fonseca, F.; Macias-

Gonzalez, M. Novel sulfamide analogs of oleylethanolamide showing in vivo satiety inducing

actions and PPARα activation. J. Med. Chem. 2007, 50, 389−393.

418. Mizuno, C. S.; Ma, G.; Khan, S.; Patny, A.; Avery, M. A.; Rimando, A. M. Design,

synthesis, biological evaluation and docking studies of pterostilbene analogs inside PPARα.

Bioorg. Med. Chem. 2008, 16, 3800−3808.

419. Lohray, B. B.; Bhushan, V.; Rao, B. P.; Madhavan, G. R.; Murali, N.; Rao, K. N.; Reddy,

A. K.; Rajesh, B. M.; Reddy, P. G.; Chakrabarti, R.; Vikramadithyan, R. K.; Rajagopalan, R.;

Mamidi, R. N.; Jajoo, H. K.; Subramaniam, S. Novel euglycemic and hypolipidemic agents. 1. J.

Med. Chem. 1998, 41, 1619−1630.

420. Yoshioka, T.; Fujita, T.; Kanai, T.; Aizawa, Y.; Kurumada, T.; Hasegawa, K.; Horikoshi, H.

Studies on hindered phenols and analogues. 1. Hypolipidemic and hypoglycemic agents with

ability to inhibit lipid peroxidation. J. Med. Chem. 1989, 32, 421−428.

421. Momose, Y.; Meguro, K.; Ikeda, H.; Hatanaka, C.; Sohda, T. Studies on antidiabetic agents.

X. Synthesis and biological activities of pioglitazone and related compounds. Chem. Pharm.

Bull. 1991, 39, 1440−1445.

422. Cantello, B. C. C.; Cawthorne, M. A.; Cottam, G. P.; Duff, P. T.; Haigh, D.; Hindley, R. M.;

Lister, C. A.; Smith, S. A.; Thurlby, P. L. [[omega-(Heterocyclylamino)alkoxy]benzyl]-2,4-

thiazolidinediones as potent antihyperglycemic agents. J. Med. Chem. 1994, 37, 3977−3985.

423. Clark, D. A.; Goldstein, S. W.; Volkmann, R. A.; Eggler, J. F.; Holland, G. F.; Hulin, B.;

Stevenson, R. W.; Kreutter, D. K.; Gibbs, E. M.; Krupp, M. N. Substituted dihydrobenzopyran

Page 31: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

and dihydrobenzofuran thiazolidine-2,4-diones as hypoglycemic agents. J. Med. Chem. 1991, 34,

319−325.

424. Gross, B.; Staels, B. PPAR agonists: multimodal drugs for the treatment of type-2 diabetes.

Best Pract. Res., Clin. Endocrinol. Metab. 2007, 21, 687−710.

425. Picard, F.; Auwerx, J. PPAR(γ) and glucose homeostasis. Annu. Rev. Nutr. 2002, 22,

167−197.

426. Sohda, T.; Mizuno, K.; Momose, Y.; Ikeda, H.; Fujita, T.; Meguro, K. Studies on

antidiabetic agents. 11. Novel thiazolidinedione derivatives as potent hypoglycemic and

hypolipidemic agents. J. Med. Chem. 1992, 35, 2617−2626.

427. Chittiboyina, A. G.; Venkatraman, M. S.; Mizuno, C. S.; Desai, P. V.; Patny, A.; Benson, S.

C.; Ho, C. I.; Kurtz, T. W.; Pershadsingh, H. A.; Avery, M. A. Design and synthesis of the first

generation of dithiolane thiazolidinedione- and phenylacetic acid-based PPARg agonists. J. Med.

Chem. 2006, 49, 4072−4084.

428. (a) Araki, K.; Yachi, M.; Hagisawa, Y.; Tanaka, N.; Isobe, A.; Sakakibara, S.; Ohsumi, J.;

Tsuruta, F.; Izumi, T.; Fujita, T.; Fujiwara, T.; Horikoshi, H. Antidiabetic Characterization of

CS-011: A New Thiazolidinedione with Potent Insulin-Sensitizing Activity. Program and

Abstracts, 60th Scientific Sessions of the American Diabetes Association, San Antonio, TX,

2000; American Diabetes Association: Alexandria, VA, 2000; Abstract 425. (b) Uchiyama, M.;

Iwabuchi, H.; Tsuruta, F.; Abe, K.; Takahashi, M.; Koda, H.; Oguchi, M.; Okazaki, O.; Izumi, T.

Pharmacokinetics, metabolism, and disposition of rivoglitazone, a novel peroxisome proliferator-

activated receptor γ

agonist, in rats and monkeys. Drug Metab. Dispos. 2011, 39, 653−666.

429. Furnsinn, C.; Brunmair, B.; Meyer, M.; Neschen, S.; Furtmuller, R.; Roden, M.; Kuhnle, H.

F.; Nowotny, P.; Schneider, B.; Waldhausl, W. Chronic and acute effects of thiazolidinediones

BM13.1258 and BM15.2054 on rat skeletal glucose metabolism. Br. J. Pharmacol. 1999, 128,

1141−1148.

430. Aleo, M. D.; Lundeen, G. R.; Blackwell, D. K.; Smith, W. M.; Coleman, G. L.; Stadnicki,

S. W.; Kluwe, W. M. Mechanism and implications of brown adipose tissue proliferation in rats

and monkeys treated with the thiazolidinedione darglitazone, a potent peroxisome proliferator-

activated receptor g agonist. J. Pharmacol. Exp. Ther. 2003,

305, 1173−1182.

431. Shimazaki, N.; Togashi, N.; Hanai, M.; Isoyama, T.; Wada, K.; Fujita, T.; Fujiwara, K.;

Kurakata, S. Anti-tumour activity of CS-7017, a selective peroxisome proliferator-activated

receptor gamma agonist of thiazolidinedione class, in human tumour xenografts and a syngeneic

tumour implant model. Eur. J. Cancer 2008, 44, 1734−1743.

432. Reddy, K. A.; Lohray, B. B.; Bhushan, V.; Reddy, A. S.; Rao, M. N. V.; Reddy, P. P.;

Saibaba, V.; Reddy, N. J.; Suryaprakash, A.; Misra, P.; Vikramadithyan, R. K.; Rajagopalan, R.

Novel antidiabetic and hypolipidemic agents. 5. Hydroxyl versus benzyloxy containing chroman

derivatives. J. Med. Chem. 1999, 42, 3265−3278.

Page 32: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

433. Kumar, B. R.; Nanjan, M. J. Novel glitazones: design, synthesis, glucose uptake and

structure−activity relationships. Bioorg. Med. Chem. Lett. 2010, 20, 1953−1956.

434. Parks, D. J.; Tomkinson, N. C.; Villeneuve, M. S.; Blanchard, S. G.; Willson, T. M.

Differential activity of rosiglitazone enantiomers at PPARγ. Bioorg. Med. Chem. Lett. 1998, 8,

3657−3658.

435. Goldstein, S. W.; McDermott, R. E.; Gibbs, E. M.; Stevenson, R. W. Hydroyurea

derivatives as hypoglycemic agents. J. Med. Chem. 1993, 36, 2238−2240.

436. Haigh, D.; Allen, G.; Birrell, H. C.; Buckle, D. R.; Cantello, B. C.; Eggleston, D. S.;

Haltiwanger, R. C.; Holder, J. C.; Lister, C. A.; Pinto, I. L.; Rami, H. K.; Sime, J. T.; Smith, S.

A.; Sweeney, J. D. Nonthiazolidinedione antihyperglycemic agents. Part 3: The effects of

stereochemistry on the potency of α-methoxy-β-phenylpropanoic acids. Bioorg. Med. Chem.

Lett. 1999, 7, 821−830.

437. Hulin, B.; Newton, L. S.; Lewis, D. M.; Genereux, P. E.; Gibbs, E. M.; Clark, D. A.

Hypoglycemic activity of a series of α-alkylthio and α-alkoxy carboxylic acids related to

ciglitazone. J. Med. Chem. 1996, 39, 3897−3907.

438. Rybczynski, P. J.; Zeck, R. E.; Dudash, J.; Combs, D. W.; Burris, T. P.; Yang, M.; Osborne,

M. C.; Chen, X.; Demarest, K. T. Benzoxazinones as PPARγ agonists. 2. SAR of the amide

substituent and in vivo results in a type 2 diabetes model. J. Med. Chem. 2004, 47, 196−209.

439. Warshawsky, A. M.; Alt, C. A.; Brozinick, J. T.; Harkness, A. R.; Hawkins, E. D.; Henry, J.

R.; Matthews, D. P.; Miller, A. R.; Misener, E. A.; Montrose-Rafizadeh, C.; Rhodes, G. A.;

Shen, Q.; Vance, J. A.; Udodong, U. E.; Wang, M.; Zhang, T. Y.; Zink, R. W. Synthesis and

evaluation of aminomethyl dihydrocinnamates as a new class of PPAR

ligands. Bioorg. Med. Chem. Lett. 2006, 16, 6328−6333.

440. Henry, J. R.; Li, Y.; Warshawsky, A. M.; Brozinick, J. T.; Hawkins, E. D.; Misener, E. A.;

Briere, D. A.; Montrose-Rafizadeh, C.; Zink, R. W.; Yumibe, N. P.; Ajamie, R. T.; Wilken, B.;

Devanarayan, V. Tetrahydroisoquinolinone PPARγ agonists: design of novel, highly selective

non-TZD antihyperglycemic agents. Bioorg. Med. Chem. Lett. 2006, 16, 6293−6297.

441. Lin, C.-H.; Peng, Y.-H.; Coumar, M. S.; Chittimalla, S. K.; Liao, C.-C.; Lyn, P.-C.; Huang,

C.-C.; Lien, T.-W.; Lin, W.-H.; Hsu, J. T.-A.; Cheng, J.-H.; Chen, X.; Wu, J.-S.; Chao, Y.-S.;

Lee, H.-J.; Juo, C.-G.; Wu, S.-Y.; Hsieh, H.-P. Design and structural analysis of novel

pharmacophores for potent and selective peroxisome proliferatoractivated receptor γ agonists. J.

Med. Chem. 2009, 52, 2618−2622.

442. Pochetti, G.; Godio, C.; Mitro, N.; Caruso, D.; Galmozzi, A.; Scurati, S.; Loiodice, F.;

Fracchiolla, G.; Tortorella, P.; Laghezza, A.; Lavecchia, A.; Novellino, E.; Mazza, F.; Crestani,

M. Insight into the mechanism of partial agonism: crystal structures of the peroxisome

proliferator-activated receptor ligand-binding domain in the complex with two enantiomeric

ligands. J. Biol. Chem. 2007, 282, 17314−17324.

443. Henke, B. R.; Adkison, K. K.; Blachard, S. G.; Leesnitzer, L. M.; Mook, R. A. Jr.; Plunket,

K. D.; Ray, A. R.; Roberson, C.; Unwalla, R.; Willson, T. M. Synthesis and biological activity of

a novel series of indole-derived PPARγ agonists. Bioorg. Med. Chem. Lett. 1999, 9, 3329−3334.

Page 33: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

444. Sauerberg, P.; Mogensen, J. P.; Jeppesen, L.; Svensson, L. A.; Fleckner, J.; Nehlin, J.;

Wulff, E. M.; Pettersson, I. Structure−activity relationships of dimeric PPAR agonists. Bioorg.

Med. Chem. Lett. 2005, 15, 1497−1500.

445. Henke, B. R.; Blanchard, S. G.; Brackeen, M. F.; Brown, K. K.; Cobb, J. E.; Collins, J. L.;

Harrington, W. W. Jr.; Hashim, M. A.; Hull- Ryde, E. A.; Kaldor, I.; Kliewer, S. A.; Lake, D. H.;

Leesnitzer, L. M.; Lehmann, J. M.; Lenhard, J. M.; Orband-Miller, L. A.; Miller, J. F.; Mook, R.

A. Jr.; Noble, S. A.; Oliver, W. Jr.; Parks, D. J.; Plunket, K. D.; Szewczyk, J. R.; Willson, T. M.

N-(2-Benzoylphenyl)-L-tyrosine PPARγ agonists. 1. Discovery of a novel series of potent

antihyperglycemic and antihyperlipidemic agents. J. Med. Chem. 1998, 41, 5020−5036.

446. Cobb, J. E.; Blanchard, S. G.; Boswell, E. G.; Brown, K. K.; Charifson, P. S.; Cooper, J. P.;

Collins, J. L.; Dezube, M.; Henke, B. R.; Hull-Ryde, E. A.; Lake, D. H.; Lenhard, J. M.; Oliver,

W. Jr.; Oplinger, J.; Pentti, M.; Parks, D. J.; Plunket, K. D.; Tong, W. Q. N-(2- Benzoylphenyl)-

L-tyrosine PPARg agonists. 3. Structure−activity relationship and optimization of the N-aryl

subtituent. J. Med. Chem. 1998, 41, 5055−5069.

447. Brown, K. K.; Henke, B. R.; Blanchard, S. G.; Cobb, J. E.; Mook, R.; Kaldor, I.; Kliewer, S.

A.; Lehmann, J. M.; Lenhard, J. M.; Harrington, W. W.; Novak, P. J.; Faison, W.; Binz, J. G.;

Hashim, M. A.; Oliver, W. O.; Brown, H. R.; Parks, D. J.; Plunket, K. D.; Tong, W. Q.; Menius,

J. A.; Adkison, K.; Noble, S. A.; Willson, T. M. A novel N-aryl tyrosine activator of peroxisome

proliferator-activated receptor-γ reverses the diabetic phenotype of the Zucker diabetic fatty rat.

Diabetes 1999, 48, 1415−1442.

448. Liu, K. G.; Lambert, M. H.; Ayscue, A. H.; Henke, B. R.; Leesnitzer, L. M.; Oliver, W. R.

Jr.; Plunket, K. D.; Xu, H. E.; Sternbach, D. D.; Willson, T. M. Synthesis and biological activity

of Ltyrosine- based PPARγ agonists with reduced molecular weight. Bioorg. Med. Chem. Lett.

2001, 11, 3111−3113.

449. Blanc-Delmas, E.; Lebegue, N.; Wallez, V.; Leclerc, V.; Yous, S.; Carato, P.; Farce, A.;

Bennejean, C.; Renard, P.; Caignard, D. H.; Audinot-Bouchez, V.; Chomarat, P.; Boutin, J.;

Hennuyer, N.; Louche, K.; Carmona, M. C.; Staels, B.; Penicaud, L.; Casteilla, L.; Lonchampt,

M.; Dacquet, C.; Chavatte, P.; Berthelot, P.; Lesieur, D. Novel 1,3- dicarbonyl compounds

having 2-(3H)-benzazolonic heterocycles as PPARg agonists. Bioorg. Med. Chem. 2006, 14,

7377−7391.

450. Hopkins, C. R.; O‟Neil, S. V.; Laufersweiler, M. C.; Wang, Y.; Pokross, M.; Mekel, M.;

Evdokimov, A.; Walter, R.; Kontoyianni, M.; Petrey, M. E.; Sabatakos, G.; Roesgen, J. T.;

Richardson, E.; Demuth, T. P. Jr. Design and synthesis of novel N-sulfonyl-2-indole

carboxamides as potent PPAR-γ binding agents with potential application to the treatment of

osteoporosis. Bioorg. Med. Chem. Lett. 2006, 16, 5659−5663.

451. Ahn, J. H.; Shin, M. S.; Jung, S. H.; Kang, S. K.; Kim, K. R.; Rhee, S. D.; Jung, W. H.;

Kim, S. J.; Woo, J. R.; Lee, J. H.; Cheon, H. G.; Kim, S. S. Indenone derivatives: a novel

template for peroxisome proliferator-activated receptor γ (PPARγ) agonists. J. Med. Chem. 2006,

49, 4781−4784.

452. Felts, A. S.; Siegel, B. S.; Young, S. M.; Moth, C. W.; Lybrand, T. P.; Dannenberg, A. J.;

Mamett, L. J.; Subbaramaiah, K. Sulindac derivatives that activate the peroxisome proliferator-

Page 34: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

activated receptor gamma but lack cyclooxygenase inhibition. J. Med. Chem. 2008, 51,

4911−4919.

453. Knouff, C.; Auwerx, J. Peroxisome proliferator-activated receptor-γ calls for activation in

moderation: lessons from genetics ans pharmacology. Endocr. Rev. 2004, 25, 899−918.

454. Chakrabarti, R.; Vikramadithyan, R. K.; Misra, P.; Suresh, J.; Rajagopalan, R.

Balaglitazone, a quinazalone analogue of thiazolidione shows excellent antidiabetic and

hypolipidemic potential with less adipogenic activity. Diabetes 2003, 52 (Supp. 1), 601-P.

455. Doggrell, S. Do peroxisome proliferation receptor-gamma antagonists have clinical

potential as combined antiobesity and antidiabetic drugs? Expert Opin. Invest. Drugs 2003, 12,

713−716.

456. Pirat, C.; Farce, A.; Lebegue, N.; Furman, C.; Milet, R.; Speca, S.; Berthelot, P.; Chavatte,

P. Targeting Peroxisome Proliferator-Activated Receptors (PPARs): Development of

Modulators. J. Med. Chem. 2012, 55, 4027-4061.

457. Chaput, E.; Saladin, R.; Silvestre, M.; Edgar, A. D. Fenofibrate and rosiglitazone lower

serum triglycerides ith opposing effects on body weight. Biochem. Biophys. Res. Commun. 2000,

271, 445−450.

458. Murakami, K.; Tobe, K.; Ide, T.; Mochizuki, T.; Ohashi, M.; Akanuma, Y.; Yazaki, Y.;

Kadowaki, T. A novel insulin sensitizer acts as a coligand for peroxisome proliferator-activated

receptor-α (PPAR-α) and PPAR-γ: effect of PPAR-α activation on abnormal lipid metabolism in

liver of Zucker fatty rats. Diabetes 1998, 47, 1841−1847.

459. Chakrabarti, R.; Misra, P.; Vikramadithyan, R. K.; Premkumar, M.; Hiriyan, J.; Datla, S. R.;

Damarla, R. K.; Suresh, J.; Rajagopalan, R. Antidiabetic and hypolipidemic potential of DRF

2519, a dual activator of PPAR-α and PPAR-γ. Eur. J. Pharmacol. 2004, 491, 195−206.

460. Desai, R. C.; Gratale, D. F.; Han, W.; Koyama, H.; Metzger, E.; Lombardo, V. K.;

MacNaul, K. L.; Doebber, T. W.; Berger, J. P.; Leung, K.; Franklin, R.; Moller, D. E.; Heck, J.

V.; Sahoo, S. P. Aryloazolidinediones: identification of potent orally active PPAR dual α/γ

agonists. Bioorg. Med. Chem. Lett. 2003, 13, 3541−3544.

461. Shibata, T.; Takeuchi, S.; Yokota, S.; Kakimoto, K.; Yonemori,F.; Wakitani, K. E ffects of

peroxisome proliferator-activated receptor-α and -γ agonist, JTT-501, on diabetic complications

in Zucker diabetic fatty rats. Br. J. Pharmacol. 2000, 130, 495−504.

462. Fagerberg, B.; Edwards, S.; Halmos, T.; Lopatynski, J.; Schuster, H.; Stender, S.; Stoa-

Birketvedt, G.; Tonstad, S.; Halldorsdottir, S.; Gause-Nilsson, I. Tesaglitazar, a novel dual

peroxisome proliferator-activated receptor α/γ agonist, dose-dependently improves the metabolic

abnormalities associated with insulin resistance in a non-diabetic population. Diabetologia 2005,

48, 1716− 1725.

463. Hellmold, H.; Zhang, H.; Andersson, H. Z.; Andersson, U.; Blomgren, B.; Holland, T.;

Berg, A.-L.; Elebring, M.; Sjogren, N.; Bamberg, K.; Dahl, B.; Westerberg, R.; Dillner, B.;

Tugwood, J.; Roberts, R.; Lundholm, E.; Camejo, G.; Skånberg, I.; Evans, J. Tesaglitazar, a

Page 35: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

PPAR α/γ agonist, induces interstitial mesenchymal cell DNA synthesis and fibrosarcomas in

subcutaneous tissues in rats. Toxicol. Sci. 2007, 98, 63−74.

464. Lohray, B. B.; Lohray, V. B.; Bajji, A. C.; Kalchar, S.; Poondra, R. R.; Padakanti, S.;

Chakrabarti, R.; Vikramadithyan, R. K.; Misra, P.; Juluri, S.; Rao Mamidi, N. V. S.;

Rajagopalan, R. (−)3-[4-[2- (Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid [(−)-

DRF2725]: a dual PPAR agonist with potent antihyperglycemic and lipid modulating activity. J.

Med. Chem. 2001, 44, 2675−2678.

465. Oleksiewicz, M. B.; Thorup, I.; Nielsen, H. S.; Andersen, H. V.; Hegelund, A. C.; Iversen,

L.; Guldberg, T. S.; Brinck, P. R.; Sjogren, I.; Thinggaard, U. K.; Jørgensen, L.; Jensen, M. B.

Generalized cellular hypertrophy is induced by a dualacting PPAR agonist in rat urinary bladder

urothelium in vivo. Toxicol. Pathol. 2005, 33, 552−560.

466. Sauerberg, P.; Pettersson, I.; Jeppesen, L.; Bury, P. S.; Mogensen, J. P.; Wassermann, K.;

Brand, C. L.; Sturis, J.; Woldike, H. F.; Fleckner, J.; Andersen, A. S.; Mortensen, S. B.;

Svensson, L. A.; Rasmussen, H. B.; Lehmann, S. V.; Polivka, Z.; Sindelar, K.; Panajotova, V.;

Ynddal, L.; Wulff, E. M. Novel tricyclic-α- alkoxyphenylpropionic acids: dual PPARα/γ agonists

with hypolipidemic and antidiabetic activity. J. Med. Chem. 2002, 45, 789−804.

467. Long, G. G.; Reynolds, V. L.; Dochterman, L. W.; Ryan, T. E. Neoplastic and non-

neoplastic changes in F-344 rats treated with naveglitazar, a γ-dominant PPAR α/γ agonist.

Toxicol. Pathol. 2009, 37, 741−753.

468. Reifel-Miller, A.; Otto, K.; Hawkins, E.; Barr, R.; Bensch, W. R.; Bull, C.; Dana, S.;

Klausing, K.; Martin, J. A.; Rafaeloff-Phail, R.; Rafizadeh-Montrose, C.; Rhodes, G.; Robey, R.;

Rojo, I.; Rungta, D.; Snyder, D.; Wilbur, K.; Zhang, T.; Zink, R.; Warshawsky, A.; Brozinick, J.

T. A peroxisome proliferator-activated receptor α/γ dual agonist with a unique in vitro profile

and potent glucose and lipid effects in rodent models of type 2 diabetes and dyslipidemia. Mol.

Endocrinol. 2005, 19, 1593−1605.

469. Kasai, S.; Inoue, T.; Yoshitomi, H.; Hihara, T.; Matsuura, F.; Harada, H.; Shinoda, M.;

Tanaka, I. Antidiabetic and hypolipidemic effects of a novel dual peroxisome proliferator-

activated receptor (PPAR) α/γ agonist, E3030, in db/db mice and beagle dogs. J. Pharmacol. Sci.

2008, 108, 40−48.

470. Kim, M. K.; Chae, Y. N.; Son, M. H.; Kim, S. H.; Kim, J. K.; Moon, H. S.; Park, C. S.; Bae,

M. H.; Kim, E.; Han, T.; Choi, H. H.; Shin, Y. A.; Ahn, B. N.; Lee, C. H.; Lim, J. I.; Shin, C. Y.

PAR-5359, a well-balanced PPARα/γ dual agonist, exhibits equivalent antidiabetic and

hypolipidemic activities in vitro and in vivo. Eur. J. Pharmacol. 2008, 595, 119−125.

471. Xu, Y.; Rito, C. J.; Etgen, G. J.; Ardecky, R. J.; Bean, J. S.; Bensch, W. R.; Bosley, J. R.;

Broderick, C. L.; Brooks, D. A.; Dominianni, S. J.; Hahn, P. J.; Liu, S.; Mais, D. E.; Montrose-

Rafizadeh, C.; Ogilvie, K. M.; Oldham, B. A.; Peters, M.; Rungta, D. K.; Shuker, A. J.;

Stephenson, G. A.; Tripp, A. E.; Wilson, S. B.; Winneroski, L. L.; Zink, R.; Kauffman, R. F.;

McCarthy, J. R. Design and synthesis of α-aryloxy-α-methylhydrocinnamic acids: a novel class

of dual peroxisome proliferator-activated receptor α/γ agonists. J. Med. Chem. 2004, 47,

2422−2425.

Page 36: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

472. Hansen, B. C.; Tigno, X. T.; Benardeau, A.; Meyer, M.; Sebokova, E.; Mizrahi, J. Effects of

aleglitazar, a balanced dual peroxisome proliferator-activated receptor α/γ agonist on glycemic

and lipid parameters in a primate model of the metabolic syndrome. Cardiovasc. Diabetol. 2011,

10, 7.

473. Martres, P.; Faucher, N.; Laroze, A.; Pineau, O.; Fouchet, M. H.; Potvain, F.; Grillot, D.;

Beneton, V. The discovery of equipotent PPAR α/γ dual activators. Bioorg. Med. Chem. Lett.

2008, 18, 6251−6254.

474. Liu, K.; Xu, L.; Berger, J. P.; MacNaul, K. L.; Zhou, G.; Doebber, T. W.; Forrest, M. J.;

Moller, D. E.; Jones, A. B. Discovery of a novel series of peroxisome proliferator-activated

receptor α/γ dual agonists for the treatment of type 2 diabetes and dyslipidemia. J. Med. Chem.

2005, 48, 2262−2265.

475. Koyama, H.; Miller, D. J.; Boueres, J. K.; Desai, R. C.; Jones, A. B.; Berger, J. P.;

MacNaul, K. L.; Kelly, L. J.; Doebber, T. W.; Wu, M. S.; Zhou, G.; Wang, P.-R.; Ippolito, M.

C.; Chao, Y.-S.; Agrawal, A. K.; Franklin, R.; Heck, J. V.; Wright, S. D.; Moller, D. E.; Sahoo,

S. P. (2R)-2-Ethylchromane-2-carboxylic acids: discovery of novel PPARα/ γ dual agonists as

antihyperglycemic and hypolipidemic agents. J. Med. Chem. 2004, 47, 3255−3263.

476. Bertz, J; Zang, C; Liu, H; Wachter, M; Possinger, K; Koeffler, H. P.; Elstner, E. Compound

48, a novel dual PPAR α/γ ligand, inhibits the growth of human CML cell lines and enhances the

anticancer-effects of imatinib. Leuk. Res. 2009, 33, 686−692.

477. Xu, C.; Wang, L. L.; Liu, H. Y.; Zhou, X. B.; Cao, Y. L.; Li, S. C333H, a novel PPAR α/γ

dual agonist, has beneficial effects on insulin resistance and lipid metabolism. Acta Pharmacol.

Sin. 2006, 27, 223−228.

478. Chen, W.; Zhou, X. B.; Liu, H. Y.; Xu, C.; Wang, L. L.; Li, S. P633H, a novel dual agonist

at peroxisome proliferator-activated receptors α and γ, with different anti-diabetic effects in

db/db and KKAy mice. Br. J. Pharmacol. 2009, 157, 724−735.

479. Adams, A. D.; Hu, Z.; Von Langen, D.; Dadiz, A.; Elbrecht, A.; MacNal, K. L.; Berger, J.

P.; Zhou, G.; Doebber, T. W.; Meurer, R.; Forrest, M. J.; Moller, D. E.; Jones, A. B. O-

Arylmandelic acids as highly selective human PPAR α/γ agonists. Bioorg. Med. Chem. Lett.

2003, 13, 3185−3190.

480. Shi, G. Q.; Dropinski, J. F.; McKeever, B. M.; Xu, S.; Becker, J. W.; Berger, J. P.;

MacNaul, K. L.; Elbrecht, A.; Zhou, G.; Doebber, T. W.; Wang, P.; Chao, Y. S.; Forrest, M.;

Heck, J. V.; Moller, D. E.; Jones, A. B. Design and synthesis of α-aryloxyphenylacetic acid

derivatives: a novel class of PPAR α/γ dual agonists with potent

antihyperglycemic and lipid modulating activity. J. Med. Chem. 2005, 48, 4457−4468.

481. Ostberg, T.; Svensson, S.; Selen, G.; Uppenberg, J.; Thor, M.; Sundbom, M.; Sydow-

Backman, M.; Gustavsson, A. L.; Jendeberg, L. A new class of peroxisome proliferator-activated

receptor agonists with a novel binding epitope shows antidiabetic effects. J. Biol. Chem. 2004,

279, 41124−41130.

482. Buse, J.; Rubin, C.; Frederich, R.; Viraswami-Appanna, K.; Lin, K. C.; Montoro, R.;

Shockey, G.; Davidson, J. A. Muraglitazar, a dual (α/γ) PPAR activator: a randomized, double-

Page 37: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

blind, placebo-controlled, 24-week monotherapy trial in adult patients with type 2 diabetes. Clin.

Ther. 2005, 27, 1181−1195.

483. Nissen, S. E.; Wolski, K.; Topol, E. J. Effect of muraglitazar on death and major adverse

cardiovascular events in patients with type 2 diabetes mellitus. JAMA, J. Am. Med. Assoc. 2005,

294, 2581−2586.

484. Zhang, H.; Ryono, D. E.; Devasthale, P.; Wang, W.; O‟Malley, K.; Farrelly, D.; Gu, L.;

Harrity, T.; Cap, M.; Chu, C.; Locke, K.; Zhang, L.; Lippy, J.; Kunselman, L.; Morgan, N.;

Flynn, N.; Moore, L.; Hosagrahara, V.; Zhang, L.; Kadiyala, P.; Xu, C.; Doweyko, A. M.; Bell,

A.; Chang, C.; Muckelbauer, J.; Zahler, R.; Hariharan, N.; Cheng, P. T. Design, synthesis and

structure−activity relationships of azole acids as

novel, potent dual PPAR α/γ agonists. Bioorg. Med. Chem. Lett. 2009, 19, 1451−1456.

485. Sakamoto, J.; Kimura, H.; Moriyama, S.; Imoto, H.; Momose, Y.; Odaka, H.; Sawada, H. A

novel oxyiminoalkanoic acid derivative, TAK-559, activates human peroxisome proliferator-

activated receptor subtypes. Eur. J. Pharmacol. 2004, 495, 17−26.

486. Chen, H.; Dardik, B.; Qiu, L.; Ren, X.; Caplan, S. L.; Burkey, B.; Boettcher, B. R.;

Gromada, J. Cevoglitazar, a novel peroxisome proliferator-activated receptor-α/γ dual agonist,

potently reduces food intake and body weight in obese mice and cynomolgus monkeys.

Endocrinology 2010, 151, 3115−3124.

487. Hu, X.; Feng, Y.; Shen, Y.; Zhao, X. F.; Yu, J. H.; Yang, Y. S.; Leng, Y. Antidiabetic effect

of a novel non-thiazolidinedione PPAR α/γ agonist on ob/ob mice. Acta Pharmacol. Sin. 2006,

27, 1346−1352.

488. Jeong, H. W.; Lee, J. W.; Kim, W. S.; Choe, S. S.; Kim, K. H.; Park, H. S.; Shin, H. J.; Lee,

G. Y.; Shin, D.; Lee, H.; Lee, J. H.; Choi, E. B.; Lee, H. K.; Chung, H.; Park, S. B.; Park, K. S.;

Kim, H. S.; Ro, S.; Kim, J. B. A newly identified CG301269 improves lipid and glucose

metabolism without body weight gain through activation of peroxisome proliferator-activated

receptor α and γ. Diabetes 2011, 60, 496−506.

489. Liu, K. G.; Lambert, M. H.; Leesnitzer, L. M.; Oliver, W. Jr.; Ott, R. J.; Plunket, K. D.;

Stuart, L. W.; Brown, P. J.; Willson, T. M.; Sternbach, D. D. Identification of a series of PPAR

γ/δ dual agonists via solid-phase parallel synthesis. Bioorg. Med. Chem. Lett. 2001, 11,

2959−2962.

490. Brown, P. J.; Smith-Oliver, T. A.; Charifson, P. S.; Tomkinson, N. C. O.; Fivush, A. M.;

Sternbach, D. D.; Wade, L. E.; Orband-Miller, L.; Parks, D. J.; Blanchard, S. G.; Kliewer, S. A.;

Lehmann, J. M.; Willson, T. M. Identification of peroxisome proliferator-activated receptor

ligands from a biased chemical library. Chem. Biol. 1997, 4, 909−918.

491. Kasuga, J.; Hashimoto, Y.; Miyachi, H. Concise and efficient asymmetric synthesis of (S)-

2-ethylphenylpropanoic acid derivatives: dual agonists for human peroxisome proliferator-

activated receptor alpha and delta. Bioorg. Med. Chem. Lett. 2006, 16, 771−774.

492. Evans, J. L.; Lin, J. J.; Goldfine, I. D. Novel approach to treat insulin resistance, type 2

diabetes, and the metabolic syndrome: simultaneous activation of PPARα, PPARγ, and PPARδ.

Curr. Diabetes Rev. 2005, 1, 299−307.

Page 38: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

493. Mogensen, J. P.; Jeppesen, L.; Bury, P. S.; Pttersson, I.; Fleckner, J.; Nehlin, J.;

Frederiksen, K. S.; Albrektsen, T.; Din, N.; Mortensen, S. B.; Svensson, L. A.; Wassermann, K.;

Wulff, E. M.; Ynddal, L.; Sauerberg, P. Design and synthesis of novel PPARα/γ/δ triple

activators using a known PPAR α/γ dual activator as structural template. Bioorg. Med. Chem.

Lett. 2003, 13, 257−260.

494. Liu, K. G.; Smith, J. S.; Ayscue, A. H.; Henke, B. R.; Lambert, M. H.; Leesnitzer, L. M.;

Plunket, K. D.; Willson, T. M.; Sternbach, D. D. Identification of a series of oxadiazole-

substituted α-isopropoxy phenylpropanoic acid with activity on PPARα, PPARγ, and PPARδ.

Bioorg. Med. Chem. Lett. 2001, 11, 2385−2388.

495. Mahindroo, N.; Huang, C. F.; Peng, Y. H.; Wang, C. C.; Liao, C. C.; Lien, T. W.;

Chittimalla, S. K.; Huang, W. J.; Chai, C. H.; Prakash, E.; Chen, C. P.; Hsu, T. A.; Peng, C. H.;

Lu, I. L.; Lee, L. H.; Chang, Y. W.; Chen, W. C.; Chou, Y. C.; Chen, C. T.; Goparaju, C. M.;

Chen, Y. S.; Lan, S. J.; Yu, M. C.; Chen, X.; Chao, Y. S.; Wu, S. Y.; Hsieh, H. P. Novel indole-

based peroxisome proliferator activated receptor agonists: design, SAR, structural biology, and

biological activities. J. Med. Chem. 2005, 48, 8194−8208.

496. Mahindroo, N.; Wang, C. C.; Liao, C. C.; Huang, C. F.; Lu, I. L.; Lien, T. W.; Peng, Y. H.;

Huang, W. J.; Lin, Y. T.; Hsu, M. C.; Lin, C. H.; Tsai, C. H.; Hsu, J. T.; Chen, X.; Lyu, P. C.;

Chao, Y. S; Wu, S. Y.; Hsieh, H. P. Indol-1-yl acetic acids as peroxisome proliferator-activated

receptor agonists: design, synthesis, structural biology, and molecular docking studies. J. Med.

Chem. 2006, 49, 1212−1216.

497. Srivastava, R. A. Fenofibrate ameliorates diabetic and dyslipidemic profiles in KKAy mice

partly via down-regulation of 11beta-HSD1, PEPCK and DGAT2. Comparison of PPARα,

PPARγ, and liver x receptor agonists. Eur. J. Pharmacol. 2009, 607, 258−263.

498. O‟Sullivan, S. E. Cannabinoids go nuclear: evidence for activation of peroxisome

proliferator-activated receptors. B. J. Pharmacol. 2007, 152, 576−582.

499. Sun, W. H.; Chen, G. S.; Ou, X. L.; Yang, Y.; Luo, C.; Zhang, Y.; Shao, Y.; Xu, H. C.;

Xiao, B.; Xue, Y. P.; Zhou, S. M.; Zhao, Q. S.; Ding, G. X. Inhibition of COX-2 and activation

of peroxisome proliferator-activated receptor gamma synergistically inhibits proliferation and

induces apoptosis of human pancreatic carcinoma cells. Cancer Lett. 2009, 275, 247−255.

500. Fujimura, T.; Kimura, C.; Oe, T. et. al. A selective peroxisome proliferator-activated

receptor gamma modulator with distinct fat cell regulation properties. J. Pharmacol. Exp. Ther.

2006, 318, 863–871.

501. Burgermeister, E.; Schnoebelen, A.; Flament, A. et. al. A novel partial agonist of

peroxisome proliferator-activated receptor-gamma (PPARgamma) recruits PPARgamma-

coactivator-1alpha, prevents triglyceride accumulation, and potentiates insulin signaling in vitro.

Mol. Endocrinol. 2006, 20, 809–830.

502. Schupp, M.; Clemenz, M.; Gineste, R. et. al. Molecular characterization of new selective

peroxisome proliferator-activated receptor gamma modulators with angiotensin receptor blocking

activity. Diabetes 2005, 54, 3442–3452.

Page 39: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

503. (a) Porcari, A. R.; Devivar, R. V.; Kucera, L. S.; Drach, J. C.; Townsend, L. B. Design,

Synthesis, and Antiviral Evaluations of 1-(Substituted benzyl)-2-substituted-5,6-

dichlorobenzimidazoles as Nonnucleoside Analogues of 2,5,6-Trichloro-1-(β-d-

ribofuranosyl)benzimidazole. J. Med. Chem. 1998, 41, 1252-1262.

(b) Migawa, M. T.; Girardet, J.; Walker, II J. A.; Koszalka, G. W.; Chamberlain, S. D.; Drach, J.

C.; Townsend, L. B. Design, Synthesis, and Antiviral Activity of α-Nucleosides: d- and l-

Isomers of Lyxofuranosyl- and (5-Deoxylyxofuranosyl)benzimidazoles. J. Med. Chem. 1998,

41, 1242-1251.

504. Hasegawa, M.; Nishigaki, N.; Washio, Y.; Kano, K.; Harris, P.A.; Hideyuki, S.; Ichiro, M.;

West, R. I.; Megumi, S.; Hiroko, T.; Wang, L.; Nolte, R. T.; Veal, J. M.; Cheung M. Discovery

of Novel Benzimidazoles as Potent Inhibitors of TIE-2 and VEGFR-2 Tyrosine Kinase

Receptors. J. Med. Chem. 2007, 50, 4453-4470.

505. Alagoz, Z. A.; Kuş, C.; Çoban, T. Synthesis and antioxidant properties of novel

benzimidazoles containing substituted indole or 1,1,4,4-tetramethyl-1,2,3,4-tetrahydro-

naphthalene fragments. J. Enz. Inhib. Med. Chem. 2005, 22, 325-331.

506. Mederski, W. K. R. ; Dorsch, D.; Anzali, S. ; Gleitz, J. ; Cezanne, B. ; Tsaklakidis, C.

Halothiophene benzimidazoles as P1 surrogates of inhibitors of blood coagulation factor Xa.

Bioorg. Med. Chem. Lett. 2004, 14, 3763-3769.

507. Kubo, K.; Kohara, Y. ; Yoshimura, Y.; Inada, Y.; Shibouta, Y.; Furukawa, Y.; Kato, T.;

Nishikawa, K.; Naka, T. Nonpeptide angiotensin II receptor antagonists. Synthesis and biological

activity of potential prodrugs of benzimidazole-7-carboxylic acids J. Med. Chem. 1993, 36,

2343-2349.

508. Vázquez, G. N. ; Yépezb L, Camposa A H, Tapiab A, Luisa F H, Cedilloc R, Gonzáleza J,

Fernándezd A M, Grueirod M M, Castillo R. Synthesis and antiparasitic activity of albendazole

and mebendazole analogues. Bioorg. Med. Chem. 2003, 11, 4615-4622.

509. (a) Aggarwal, B. B. ; Ichikawa, H. Molecular Targets and Anticancer Potential of Indole-3-

Carbinol and Its Derivatives Cell Cycle 2005, 4, 1201-1215. (b) Safe, S.; Papineni, S.;

Chintharlapalli, S. Cancer chemotherapy with indole-3-carbinol, bis(3′-indolyl)methane and

synthetic analogs Cancer Lett. 2008, 269, 326-338. (c) Weng, J. R.; Tsai, C. H.; Kulp, S. K.;

Wang, D.; Lin, C. H.; Yang, H. C.; Ma, Y.; Sargeant, A.; Chiu, C. F.; Tsai, M. H.; Chen, C. S. A

Potent Indole-3-Carbinol–Derived Antitumor Agent with Pleiotropic Effects on Multiple

Signaling Pathways in Prostate Cancer Cells. Cancer Res. 2007, 67, 7815-7824.

510. (a) Huffmana, J. W.; Zengina, G.; Wua, M. J.; Lua, J.; Hynda, G.; Bushella, K.;

Thompsona, A. L. S.; Bushella, S.; Tartalb, C.; Hurstb, D. P.; Reggiob, P. H.; Selleyc, D. E.;

Cassidyc, M. P.; Wileyc. J. L.; Martinc, B. R. Structure–activity relationships for 1-alkyl-3-(1-

naphthoyl)indoles at the cannabinoid CB1 and CB2 receptors: steric and electronic effects of

naphthoyl substituents. New highly selective CB2 receptor agonists. Bioorg. Med. Chem. 2005,

13, 89-112. (b) Jennifer, M.; Frost, J. M.; Dart, M. J.; Tietje, K. R.; Garrison, T. R.; Grayson, G.

K.; Daza, A. V.; El-Kouhen, O. F.; Yao, B. B.; Hsieh, G. C.; Pai, M.; Zhu, C. Z.; Chandran, P.;

Meyer, M. D. Indol-3-ylcycloalkyl Ketones: Effects of N1 Substituted Indole Side Chain

Variations on CB2 Cannabinoid Receptor Activity. J. Med. Chem. 2010, 53, 295-315.

Page 40: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

511. Andreani, A.; Burnelli, S.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi,

M.; Varoli, L.; Landi, L.; Prata, C.; Berridge, M. V.; Grasso, C.; Fiebig, H. H.; Kelter, G.;

Burger, A. M.; Kunkel, M. W. Antitumor Activity of Bis-indole Derivatives. J. Med. Chem.

2008, 51, 4563-4570.

512. Sugiyama, Y.; Ito, Y.; Suzuki, M.; Hirota, A. Indole Derivatives from a Marine Sponge-

Derived Yeast as DPPH Radical Scavengers. J. Nat. Prod. 2009, 72, 2069-2071.

513. Bi, W.; Bi, Y.; Xue, P.; Zhang, Y.; Gao, X.; Wang, Z.; Li, M.; Ngerebara, M. B. N.; Gibson,

K. M.; Bi, L. Synthesis and Characterization of Novel Indole Derivatives Reveal Improved

Therapeutic Agents for Treatment of Ischemia/Reperfusion (I/R) Injury. J. Med. Chem. 2010, 53,

6763-6779.

514. Bastow, K. F.; Lowden, C. T. Acridone Derivatives as AntiHerpes virus agents. 2005,

Patent US 2005/0049273 A1.

515. Nguyen, H.; Lallemand, M. C.; Boutefnouchet, S.; Michel, S.; Tillequin, F. Antitumor

Psoropermum Xanthones and Sarcomelicope Acridones: Privileged Structures Implied in DNA

Alkylation. J. Nat. Prod. 2009, 72, 527-539.

516. (a) Manfroni, G.; Paeshuyse, J.; Massari, S.; Zanoli, S.; Gatto, B.; Maga, G.; Tabarrini, O.;

Cecchetti, V.; Fravolini, A.; Neyts, J. Inhibition of Subgenomic Hepatitis C Virus RNA

Replication by Acridone Derivatives: Identification of an NS3 Helicase Inhibitor. J. Med. Chem.

2009, 52, 3354-3365. (b) Drogo, A. S.; Drner, B.; Erker, T.; Chachulska, A. M. B. Synthesis of

New Acridone Derivatives, Inhibitors of NS3 Helicase, Which Efficiently and Specifically

Inhibit Subgenomic HCV Replication. J. Med. Chem. 2010, 53, 3117-3126.

517. Riscoe, M. K. Acridone Compunds. 2008, Patent WO 2008/06401.

518. Bernard Hulin, Linda S. Newton, Diana M. Lewis, Paul E. Genereux, E. Michael Gibbs, and

David A. Clark. Hypoglycemic Activity of a Series of α-Alkylthio and α-Alkoxy Carboxylic

Acids Related to Ciglitazone. J. Med. Chem. 1996, 39, 3897-3907.

519. Minshall, E.M.; Schleimer, R.; Cameron, L. Interleukin -5 expression in the bone marrow of sensitized Balb/c mice after challenge. Am. J. Respir. Crit. Care. Med. 1998, 158, 951-957. 520. Mould, A.W.; Matthei, K.I.; Young, I.G. Relationship between interleukin -5 and eotaxin in regulating blood and tissue eosinophilia in mice. J. Clin. Invest. 1997, 99, 1064-1071. 521. Shi, H.; Qin, S.; Huang, G. Infiltration of eosinophils into the asthmatic airways caused by interleukin-5. Am. J. Respir. Cell. Mol.Biol. 1997, 16, 220-224. 522. Goodman, J. M. Chemical Applications of Molecular Modelling; Royal Society of Chemistry, Cambridge, U. K., 1998. 523. Holtje, H-D.; Sippl, W.; Rognan, D. Molecular Modeling Basic Principles and Applications, 2nd ed.; Wiley-VCH Verlag GmbH & Co.; Weinheim, 2003.

Page 41: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

524. Foresman, J. B.; Frisch, A. E. Exploring Chemistry with Electronic Structure methods, 2nd ed.; Gaussian Inc.; Pittsburgh, 1995. 525. (a) http://en.wikipedia.org/wiki/Quantum_mechanics. (b) Reed, A. E.; Wienhold, F.; Curtiss, L. A. Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chem Rev. 1988, 88, 899-926. 526. Cramer, R. D. I.; Patterson, D. E.; Bunce, J. D. Comparative Molecular Field Analysis (CoMFA). 1. Effect of Shape on Binding of Steroids to Carrier Proteins. J. Am. Chem. Soc. 1988, 110, 5959-5967. 527. Klebe, G.; Abraham, U.; Meitzner, T. Molecular Similarity Indices in a Comparative Analysis (CoMSIA) of Drug Molecules to Correlate and Predict their Biological activity. J. Med. Chem. 1994, 37, 4130-4146. 528. Kubinyi, H. Comparative Molecular Field Analysis (CoMFA). In The Encyclopedia of Computational Chemistry, Schleyer, P. v. R.; Allinger, N. L.; Clark, T.; Gasteiger, J.; Kollman, P. A.; Schaefer III, H. F.; Schreiner, P. R. Eds.; John Wiley & Sons; Chichester, 1998, 448-460. 529. Golender, V. E.; Vorpogel, E. R. Computer Assisted-Pharmacophore Identification. In 3D-QSAR In Drug Design: Theory, Methods and Application, Kubinyi, H. ESCOM Science; Netherlands, 1993, 137-154. 530. Golender, V. E.; Rosenblit, A. B. Logical and Combinatorial Algorithms for Drug Design. Research Studies Press, Wiley & Sons; U. K, 1983. 531. Vedani, A.; Briem, H.; Dobler, M.; Dollinger, H.; McMasters, D. R. Multiple Conformation and Protonation-State Representation in 4D-QSAR: The Neurokinin–1 Receptor System. J. Med. Chem. 2000, 43, 4416-4427. 532. Vedani, A.; Dobler M. 5D-QSAR: The Key for Simulating Induced Fit? J. Med. Chem. 2002, 45, 2139-2149. 533. Vedani, A.; Dobler, M.; Lill M. A. Combining Protein Modeling and 6D-QSAR– Simulating the Binding of Structurally Diverse Ligands to the Estrogen Receptor. J. Med. Chem. 2005, 48, 3700-3703. 534. Leach, A. R. Molecular Modelling: Principles and Applications, Addison Wesley Longman; Harlow, 1996. 535. Cohen, N. C. Guidebook on Molecular Modeling in Drug Design; Academic Press Inc.; California, USA, 1996. 536. Abraham, D. J. Ed.; Burger's Medicinal Chemistry & Drug Discovery, 6th ed.; Wiley Interscience; New Jersey, 2003. 537. Charifson, P. S. Practical Application of Computer-Aided Drug Design; Marcel Dekker Inc.; New York, 1997.

Page 42: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

538. Schneider, G.; Bohm, H-J. Virtual Screening and Fast Automated Docking Methods. Drug Discov. Today, 2002, 7, 64-70. 539. (a) Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A Fast Flexible Docking Methods Using an Incremental Construction Algorithm. J. Mol. Biol. 1996, 261, 470-489. (b) Sybyl 6.9; Tripos Inc., 1699 South Hanley Rd., St. Louis, MO 631444, USA. 540. Kuntz, I. D.; Blaney, J. M.; Oatley, S. J.; Langridge, R.; Ferrin, T. E. A Geometric Approach to Macromolecule-Ligand Interactions. J. Mol. Biol. 1982, 161, 269-288. 541. Morris, G. M.; Goodsell, D. S.; Huey, R.; Olson, A. J. Distributed Automated Docking of Flexible Ligands to Proteins: Parallel Applications of AutoDock2.4. J. Comp. Aided Mol. Des. 1996, 10, 293-304. 542. Liu, M.; Wang, S. MCDOCK: A Monte Carlo Simulation Approach to the Molecular Docking Problem. J. Comp. Aided Mol. Des. 1999, 13, 435-451. 543. Claußen, C.; Buning, C.; Rarey, M.; Lengauer, T. FlexE: Efficient Molecular Docking Considering Protein Structure Variations. J. Mol. Biol. 2001, 308, 377-395. 544. Makino, S.; Ewing, T. J. A.; Kuntz, I. D. DREAM++: Flexible Docking Program for Virtual Combinatorial Libraries. J. Comp. Aided Mol. Des. 1999, 13, 513-532. 545. Martin, Y. C.; Bures, M.; Dahaner, E. A Fast Approach to Pharmacophore Mapping and its Applications to Dopaminergic and Benzodiazepine Agonists. J. Comp. Aided Mol. Des. 1993, 7, 83-102. 546. Marriott, D. P.; Dougall, I. B.; Meghani, P.; Liu, Y-J.; Flower D. R. Lead Generation Using Pharmacophore Mapping and Three-dimensional Database Searching: Application to Muscarinic M(3) Receptor Antagonists. J. Med. Chem. 1999, 42, 3210-3216. 547. VanDrie, J. H. Strategies for 3D Pharmaco Database Queries. J. Comp. Aided Mol. Des. 1997, 11, 39-52. 548. CATALYST. Biosyn-MSI, San Diego, CA, USA, 1992.

549. Sybyl 7.3, Tripoos Inc. 2006. 1699 Hanley Road, St. Louis, MO 63144, USA.

550. Xu, Y.; Rito, C.J.; Etgen, G.J.; Ardecky, R.J.; Bean, J.S.; Bensch, W.R.; Bosley, J.R.;

Broderick, C.L.; Brooks, D.A.; Dominianni, S. J. et. al. Design and Synthesis of α-Aryloxy-α-

methylhydrocinnamic Acids: A Novel Class of Dual Peroxisome Proliferator-Activated

Receptor α/γ Agonists. J. Med. Chem. 2004, 47, 2422–2425.

551. Collins, J.L.; Blanchard, S.G.; Boswell, G.E.; Charifson, P.S.; Cobb, J.E.; Henke, B.R.;

Ryde, E.A.; Kazmierski, W. M.; Lake, D.H. et al. N-(2-Benzoylphenyl)-l-tyrosine PPARγ

Agonists. 2. Structure−Activity Relationship and Optimization of the Phenyl Alkyl Ether Moiety.

J. Med. Chem. 1998, 41, 5037–5054.

Page 43: 6. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/10230/12/12_references.… · interventions in the primary prevention of diabetes among Asian Indians: within-trial

552. Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative

analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med

Chem 37:4130–4146.

553. Bo¨hm M, Stu¨rzebecher J, Klebe G (1999) Three-dimensional quantitative structure–

activity relationship analyses using comparative molecular field analysis and comparative

molecular similarity indices analysis to elucidate selectivity differences of inhibitors binding to

trypsin, thrombin, and factor Xa. J Med Chem 42:458–477.

554. Khanna, S.; Sobhia, M. E.; Bharatam, P. V. Additivity of Molecular Fields: CoMFA

Study on Dual Activators of PPARα and PPARγ. J. Med. Chem. 2005, 48, 3015-3025.

555. Sundriyal, S.; Bharatam, P. V. Sum of activities‟ as dependent parameter: A new

CoMFA-based approach for the design of pan PPAR agonists. Eur. J. Med. Chem. 2009, 44, 42-

53.

556. Barrie C. C. Cantello, Michael A. Cawthorne, Graham P. Cottam, Peter T. Duff, David

Haigh, Richard M. Hindley, Carolyn A. Lister, Stephen A. Smith, and Peter L. Thurlby.

[ω[.omega.-(Heterocyclylamino)alkoxy]benzyl]-2,4-thiazolidinediones as potent

antihyperglycemic agents. J. Med. Chem., 1994, 37 (23), 3977-3985.

557.Fatma Gu¨mu¨s, Go¨kc¸en Eren, Leyla Ac¸ık, Ayten C¸ elebi, Fatma O¨ ztu¨rk, S¸u¨kran

Yılmaz, Rahs¸an Ilıkc¸Sagˇkan, Sibel Gu¨r, Aykut O¨ zkul, Ayhan Elmalı, and Yalc¸ın Elerman.

Synthesis, Cytotoxicity, and DNA Interactions of New Cisplatin Analogues Containing

Substituted Benzimidazole Ligands. J. Med. Chem., 2009, 52, 1345–1357.

558. Xingjun Fani, Jinmao Yout, Tianquan Jiao, Ganzu Tan and Xianda Yu. Rapid N-Alkylation

of Carbazole, Phenothiazlne and Acridone under Microwave Irradiation. Oppi Briefs, 2000, 32,

284-287.

559. Bernard Hulin, Linda S. Newton, Diana M. Lewis, Paul E. Genereux, E. Michael Gibbs, and

David A. Clark. Hypoglycemic Activity of a Series of α-Alkylthio and α-Alkoxy Carboxylic

Acids Related to Ciglitazone. J. Med. Chem. 1996, 39, 3897-3907.

560. Hisashi Shinkai, Syoji Onogi, Masahiro Tanaka, Tsutomu Shibata, Megumi Iwao,

Korekiyo Wakitani, and Itsuo Uchida. Isoxazolidine-3,5-dione and Noncyclic 1,3-Dicarbonyl

Compounds as Hypoglycemic Agents. J. Med. Chem. 1998, 41, 1927-1933.

561. Takashi Sohda, Katsutoshi Mizuno, Yu Momose, Hitoshi Ikeda, Takeshi Fujita, and Kanji

Meguro. Studies on antidiabetic agents. 11. Novel thiazolidinedione derivatives as potent

hypoglycemic and hypolipidemic agents. J. Med. Chem., 1992, 35, 2617-2626.

562. Brad R. Henke, Steven G. Blanchard, Marcus F. Brackeen, Kathleen K. Brown, Jeff E.

Cobb, Jon L. Collins, W. Wallace Harrington, Jr., Mir A. Hashim, Emily A. Hull-Ryde, Istvan

Kaldor, Steven A. Kliewer, Debra H. Lake, Lisa M. Leesnitzer, Ju¨ rgen M. Lehmann, James M.

Lenhard, Lisa A. Orband-Miller, John F. Miller, Robert A Mook, Jr., Stewart A. Noble, William

Oliver, Jr., Derek J. Parks, Kelli D. Plunket, Jerzy R. Szewczyk, and Timothy M. Willson . N-(2-

Benzoylphenyl)-L-tyrosine PPARγ Agonists. 1. Discovery of a Novel Series of Potent

Antihyperglycemic and Antihyperlipidemic Agents. J. Med. Chem. 1998, 41, 5020-5036.