5g Waveform Comparative Study Below 6ghz Ktenas Cea Leti

Embed Size (px)

DESCRIPTION

5G Technology

Citation preview

  • Comparative study of 5G waveformcandidates for below 6GHz air interface

    Dimitri Ktenas

    R. Gerzaguet & D. Ktenas & N. Cassiau & J-B. Dore

    CEA-Leti

    01/28/2016

  • Table of Contents

    1. Context and issues2. Waveforms2.1 CP-OFDM & SC-FDMA2.2 Filter bank multicarrier (FBMC)2.3 Universal Filtered Multicarrier (UFMC)2.4 Generalized Frequency Division Multiplexing

    (GFDM)3. Comparizon between waveforms4. Multi-user access scenario5. Conclusion

  • 5G ContextI 4G massively rolled out but will soon reaches its limits

    I RAN 5G Workshop 09/15 : New non backward compatible Radio AccessTechnology as part of 5G

    I Aggregation of non contiguous network is consideredI Spectrum agility : need to study alternative multicarrier waveforms

    I Sporadic access & MTCI Strong traffic overhead (fast dormancy)I Massive number of devices : Use relaxed synchronism

    I Several candidates have been independently introduced in the past few yearsI Classic CP-OFDM shows its limits : Spectral efficiency, frequency leakage, need

    of tight synchronisationI We propose a comparative study of 5G waveform candidates for below

    6GHz air interface

    ETSI presentation Dimitri Ktenas 01/28/2016 3 - 16

  • Context and objectives

    Considering several candidates for 5G physical layerI Baseline for comparison : OFDM and SC-FDMAI Filter bank multicarrier (FBMC) [3]I Universal Filtered Multicarrier : UFMC (or UF-OFDM) [9]I Generalized Frequency Division Multiplexing (GFDM) [6]

    A fair comparison between waveforms in literature is lacking

    Considering several metrics for comparisonI Spectral Efficiency (SE)I Peak To Average Power Ratio (PAPR)I Power spectral Density (PSD)

    Also consider the asynchronous multi-user scenario [1, 11]

    ETSI presentation Dimitri Ktenas 01/28/2016 4 - 16

  • CP-OFDM & SC-FDMA

    Modulateddata

    stream

    Serialto

    parallel

    DFT& pilot

    insertionIFFT

    Parallelto

    Serial

    CPInsertion

    ak

    x(n)

    Basebandto RF Channel

    RF tobaseband

    CPremoval

    Serialto

    ParallelFFT

    CHEST&

    Equa.IDFT

    Parallelto

    serial

    modulateddecodedstream

    OFDM & SC-FDMA (additional stages in dash) transceiver scheme

    I Multicarrier modulations, serves as physical layers for 3GPP-LTE or802.11.a/g/n

    I Efficient implementation (IFFT/FFT), simple equalization schemesI Spectral efficiency loss due to Cyclic Prefix (CP) insertion to handle

    multipath channelI For SC-FDMA : DFT/IDFT precoding stages to reduce PAPR (3GPP-LTE

    uplink : DFT-spread OFDM)

    ETSI presentation Dimitri Ktenas 01/28/2016 5 - 16

  • Filter bank multicarrier (FBMC)I Set of parallel data through bank of modulated filters

    I Good spectral location,orthogonality and spectralefficiency kept with OQAMmodulation

    I Prototype filter in frequencydomain (FS) [2]

    I Overlapping factor KI Filter defined in frequency

    domain (K=4)H0 = 1H1 = H1 = 0.971960

    H2 = H2 =22

    H3 = H3 =1H21

    Modulateddata stream

    S/P

    OQAMmodu-lation

    Spreading Frequency

    filteringIFFT Overlapand sum

    FBMC Tx stage

    CP-OFDM (top) and FBMC(bottom) frames

    ETSI presentation Dimitri Ktenas 01/28/2016 6 - 16

  • Universal Filtered Multicarrier (UFMC)

    I Derivative of OFDM wherea group of subcarriers (RB)is filtered with aDolph-Chebyshev filter withlength L and attenuationfactor [9]

    I B subbands are generatedand combined

    I On Rx side, Zero padding isapplied before a 2N FFT

    I Possibility to add awindowing process on theRx side (asynchronousmulti-user scenario)

    +xk

    Modulateddatastream

    Serialto

    parallel

    IDFTspreader& PS

    FilterF1k withlength L

    a1kx1k

    Modulateddatastream

    Serialto

    parallel

    IDFTspreader& PS

    FilterF2k withlength L

    a2kx2k

    Modulateddatastream

    Serialto

    parallel

    IDFTspreader& PS

    FilterFBk withlength L

    aBkxBk

    Basebandto RF

    Channel

    RF tobaseband

    Windowing& Serialto parallel2 NFFT

    pointsFFT

    Zero padding

    FrequencyDomainprocessing(subcarrier

    equ.)

    UFMC transceiver

    ETSI presentation Dimitri Ktenas 01/28/2016 7 - 16

  • Generalized Frequency Division Multiplexing (GFDM)I Based on time-frequency

    filtering of data blocks of sizeP M

    I Shaping filter : Root RaisedCosine filter (RRC)

    I Non orthogonal waveform :interference in time andfrequency domains

    I A CP is added at eachsymbols (P subsymbols)

    I Possibility to add awindowing process to reducethe ACL

    I Parametrized by P,M androll-off factor

    Modulateddatastream

    Reshapingin blockK M

    TimeFrequencyfiltering

    Parallelto

    Serial

    CPInsertion& win-dowingak

    x(n)

    Basebandto RF

    Channel

    RF tobaseband

    CPremoval

    Serialto

    Parallel

    Rx stageZF - MF

    Parallelto

    serial

    modulateddecodedstream

    ak

    GFDM transceiver

    I On Rx side, different architectures :MF, ZF, MMSE [7]

    I With MF, need to add InterferenceCancellation (IC) scheme

    I With ZF, no self-interference butnoise enhancement

    ETSI presentation Dimitri Ktenas 01/28/2016 8 - 16

  • Simulation parameters & Spectral EfficiencyOverall parameters

    FFT size NFFT 1024Bit per Symbol m 2

    Resource block size NRB 12

    Number of active RBs N1Re 3 for User 1

    N2Re 9 for User 2Sampling frequency Fe 15.36 MHz

    OFDM and SC-FDMA parametersCyclic prefix NCP 72 samples

    UFMC parametersFilter length L 73

    Stop band attenuation 40 dBGFDM parameters

    Number of subsymbols P 15FFT size M 1024

    Roll Off factor 0.1FBMC parameters

    Spreading factor K 4Asynchronous access parameters

    Guard carriers [0, 1, 2, 5]Timing Offset [-0.25 :0.25]

    Carrier Frequency Offset 0 ; 10%

    I We consider 2 users forasynchronous multi-user accessscheme [1]

    I 3 RBs for user 1 (12 carriers)I 9 RBs for user 2 (36 carriers)

    I Same FFT size for all users : 1024

    I Parameters are based on LTE10MHz

    I Length of UFMC filter has been setto have same Spectral Efficiency forUFMC and OFDM : L = NCP + 1

    ETSI presentation Dimitri Ktenas 01/28/2016 9 - 16

  • Power Spectral Density

    Power Spectral Density of wave-forms :

    I OFDM : high ACL due tosinc in freq. domain

    I UFMC has lower ACL thanGFDM (circular convolution)

    I GFDM with windowing :Better OOB than GFDM andcomparable to UFMC

    I Best frequency location isobtained with FBMC

    1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 280

    70

    60

    50

    40

    30

    20

    10

    0

    Frequency [MHz]

    Power

    Spectraldensity

    [dBc/Hz]

    OFDMUFMCFBMCwGFDMGFDM

    Power spectral density of waveforms

    I 2 users of 3 RBs with 1 RB of guardcarriers to better stress ACL impact

    ETSI presentation Dimitri Ktenas 01/28/2016 10 - 16

  • Spectral Efficiency

    Spectral Efficiency for eachwaveform [bit/s/Hz]

    I OFDM = mNFFTNFFT+NCP

    I UFMC = mNFFTNFFT+L1

    I GFDM = mPMPM+NCP

    I FBMC = mSS+K 12

    UFMC and OFDM have sameSEGFDM SE depends on sizeblock

    0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 300.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    2

    Duration of a burst [ms]

    Spectral

    efficiency

    [b/s/H

    z]form=

    2

    Spectral Efficiency for 5G candidates

    OFDMFBMCGFDMUFMC

    Comparaison between SE of waveforms

    FBMC SE depends on burst duration : If burstduration > 3ms, better SE than UFMC andOFDM

    ETSI presentation Dimitri Ktenas 01/28/2016 11 - 16

  • Peak to Average Ratio

    PAPR computed on a 3ms burst :

    I PAPR = max[|y[k]|2]

    E[|y[k]|2]

    I We computeComplementary CumulativeDensity ProbabilityFunction (CCDF)

    I Low PAPR only obtainedwith SC-FDMA

    I All multicarrier modulationshave a comparable PAPR(gap around 0.5 dB)

    3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11103

    102

    101

    100

    PAPR [dB]

    CCDFof

    PAPR

    PAPR for 5G waveforms : Burst = 3 ms

    OFDMUFMCSC-FDMAFBMCGFDM

    PAPR measured on 3ms burst

    ETSI presentation Dimitri Ktenas 01/28/2016 12 - 16

  • Multi-user access scenarioComparison in a multi-user asynchronous access scenario between 2 users [1]I First user is perfectly synchronised and second user interferes with the first

    one (due to time delay error and CFO)I Performance measured in terms of Mean Squared Error (MSE), with different

    number of guard carriers (0, 1, 2 and 5)

    Time

    Frequency

    User 1 : per-fectly sync

    User 2 : coarsesync : CFO andtiming offset

    Timing OffsetCFO

    Frequency

    PSD User 1 GC User 2

    I Several 5G candidates with specific parametrisation (best case) :1. CP-OFDM (SC-FDMA has the same MSE)2. UFMC with windowing approach [10]3. GFDM with windowing [8] ; with MF receiver and IC [4]4. And FBMC

    ETSI presentation Dimitri Ktenas 01/28/2016 13 - 16

  • Multi-user access scenario : No CFOI 0 < Delay error NCP : no

    interference for OFDMI No GC, GFDM with

    windowing has betterperformance

    I No GC, Small delay value :UFMC with windowing hasgood performance

    I wGFDM > wUFMC if atleast one GC

    I At least one GC inserted :FBMC has the bestperformance : no interference(Phydyas filter + OQAM[5]) !

    0.2 0.1 0 0.1 0.2

    60

    40

    20

    Time delay error (n/nFFT)

    MSE

    [dB]

    Guard carrier = 0

    0.2 0.1 0 0.1 0.2

    60

    40

    20

    Time delay error (n/nFFT)

    MSE

    [dB]

    Guard carrier = 1

    0.2 0.1 0 0.1 0.2

    60

    40

    20

    Time delay error (n/nFFT)

    MSE

    [dB]

    Guard carrier = 5

    OFDMFBMCwUFMCwGFDM

    0.2 0.1 0 0.1 0.2

    60

    40

    20

    Time delay error (n/nFFT)

    MSE

    [dB]

    Guard carrier = 2

    ETSI presentation Dimitri Ktenas 01/28/2016 14 - 16

  • Multi-user access scenario : 10% CFOI CFO breaks OFDM

    orthogonality and lowersperformance for all waveforms

    I No GC, wGFDM has sameperformance as FBMC

    I No GC, Small delay value :UFMC with windowing hasthe best performance

    I wGFDM > wUFMC if atleast one GC is inserted butimpact of CFO

    I At least one GC inserted :FBMC has the bestperformance : no interference(Phydyas filter + OQAM) !

    0.2 0.1 0 0.1 0.2

    60

    40

    20

    Time delay error (n/nFFT)

    MSE

    [dB]

    Guard carrier = 0

    0.2 0.1 0 0.1 0.2

    60

    40

    20

    Time delay error (n/nFFT)

    MSE

    [dB]

    Guard carrier = 1

    0.2 0.1 0 0.1 0.2

    60

    40

    20

    Time delay error (n/nFFT)

    MSE

    [dB]

    Guard carrier = 5

    OFDMFBMCwUFMCwGFDM

    0.2 0.1 0 0.1 0.2

    60

    40

    20

    Time delay error (n/nFFT)

    MSE

    [dB]

    Guard carrier = 2

    ETSI presentation Dimitri Ktenas 01/28/2016 15 - 16

  • ConclusionFair comparison for several repre-sentative criteria :I Spectral Efficiency, PAPR,

    PSD comparisonI Mean Square Error in

    multi-user access scenario

    Comparison between 5G wave-form candidates that outperformCP-OFDM :I UFMC offers LTE backward

    compatibilityI GFDM and FBMC go

    furtherBUT still open questions :short packet, MIMO, . . .

    0

    0,5

    1

    1,5

    2

    2,5

    3

    3,5

    4

    4,5

    5

    Spectral Efficiency

    Spectral Efficiency ShortPacket

    ACLR

    PAPRMUAC (no GC)

    MUAC (1 GC)

    Complexity

    CP-OFDM SC-FDMA UFMC GFDM FBMC

    Comparison between waveforms

    ETSI presentation Dimitri Ktenas 01/28/2016 16 - 16

  • References I

    [1] 5G-Now. Deliverable D3.2 : 5G waveform candidate selection. Technical report, 5G Now(5th Generation Non-Orthogonal Waveforms for Asynchronous Signalling), 2015.

    [2] M. Bellanger. FS-FBMC : An alternative scheme for filter bank based multicarriertransmission. In 5th International Symposium on Communications Control and SignalProcessing (ISCCSP), pages 14, May 2012.

    [3] M. Bellanger and al. FBMC physical layer : a primer, 06 2010.

    [4] R. Datta, N. Michailow, M. Lentmaier, and G. Fettweis. GFDM interference cancellation forflexible cognitive radio PHY design. In Proc. IEEE Vehicular Technology Conference (VTCFall), pages 15, Sept 2012.

    [5] J.-B. Dore, V. Berg, N. Cassiau, and D. Ktenas. FBMC receiver for multi-user asynchronoustransmission on fragmented spectrum. EURASIP Journal on Advances in Signal Processing,2014(1) :41, 2014.

    [6] G. Fettweis, M. Krondorf, and S. Bittner. GFDM - generalized frequency divisionmultiplexing. In Proc. IEEE 69th Vehicular Technology Conference (VTC), pages 14, April2009.

    ETSI presentation Dimitri Ktenas 01/28/2016 17 - 16

  • References II

    [7] N. Michailow, S. Krone, M. Lentmaier, and G. Fettweis. Bit error rate performance ofgeneralized frequency division multiplexing. In Proc. IEEE Vehicular Technology Conference(VTC Fall), pages 15, Sept 2012.

    [8] N. Michailow, M. Matthe, I. Gaspar, A. Caldevilla, L. Mendes, A. Festag, and G. Fettweis.Generalized frequency division multiplexing for 5th generation cellular networks. IEEETransactions on communications,, 62(9) :30453061, Sept 2014.

    [9] V. Vakilian, T. Wild, F. Schaich, S. ten Brink, and J.-F. Frigon. Universal-filteredmulti-carrier technique for wireless systems beyond LTE. In Proc. IEEE GlobecomWorkshops (GC Wkshps), pages 223228, Dec 2013.

    [10] T. Wild, F. Schaich, and Y. Chen. 5G air interface design based on universal filtered(UF-)OFDM. In 19th International Conference on Digital Signal Processing (DSP), pages699704, Aug 2014.

    [11] G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar,N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk,B. Eged, P. Vago, and F. Wiedmann. 5GNOW : non-orthogonal, asynchronous waveforms forfuture mobile applications. Communications Magazine, IEEE, 52(2) :97105, February 2014.

    ETSI presentation Dimitri Ktenas 01/28/2016 18 - 16

    Context and issuesWaveformsCP-OFDM & SC-FDMAFilter bank multicarrier (FBMC)Universal Filtered Multicarrier (UFMC)Generalized Frequency Division Multiplexing (GFDM)

    Comparizon between waveformsMulti-user access scenarioConclusion