15
5 Special Relativity 5.5 Energy-momentum tensor components of stress tensor force area of cross‐section normal to cross‐section provides relation between the forces and the cross‐sections these are exerted on for fluid in thermodynamic equilibrium: (no shear stresses) pressure complement to energy density momentum density stress mass density in fluid rest frame: energy‐momentum tensor 62

5.5 Energy-momentum tensor - University of St Andrewsstar-hz4/gr/GRlec7+8+9.pdf · 2012. 10. 4. · 5.5 Energy-momentum tensor components of stress tensor force area of cross‐section

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 5.5 Energy-momentum tensor - University of St Andrewsstar-hz4/gr/GRlec7+8+9.pdf · 2012. 10. 4. · 5.5 Energy-momentum tensor components of stress tensor force area of cross‐section

5 Special Relativity

5.5 Energy-momentum tensor

components of stress tensor

force area of cross‐section normal to cross‐section

provides relation between the forces and the cross‐sections these are exerted on

for fluid in thermodynamic equilibrium: (no shear stresses)

pressure

complement to energy density

     momentum density

stress                mass density

in fluid rest frame:

energy‐momentum       tensor

62

Page 2: 5.5 Energy-momentum tensor - University of St Andrewsstar-hz4/gr/GRlec7+8+9.pdf · 2012. 10. 4. · 5.5 Energy-momentum tensor components of stress tensor force area of cross‐section

5 Special Relativity 5.5 Energy-momentum tensor

non‐relativistic limit:

       (continuity equation) (↔ Newton’s law)

63

Page 3: 5.5 Energy-momentum tensor - University of St Andrewsstar-hz4/gr/GRlec7+8+9.pdf · 2012. 10. 4. · 5.5 Energy-momentum tensor components of stress tensor force area of cross‐section

6 General Relativity

6.1 Principles

   experiments cannot distinguish between:          • virtual forces present in non‐inertial frames

         • true forces

   non‐inertial frames can be described by

     space‐time metric

⤿ true forces can be described by

     space‐time metric 

⤿ gravitation becomes property of space‐time

     with particles moving on geodesics

   local free‐falling frame is inertial frame,      where  only remaining issue: relation between              and Newton’s law

                                          → Einstein’s field equations 64

Page 4: 5.5 Energy-momentum tensor - University of St Andrewsstar-hz4/gr/GRlec7+8+9.pdf · 2012. 10. 4. · 5.5 Energy-momentum tensor components of stress tensor force area of cross‐section

6 General Relativity 6.1 Principles

General Relativity summarized in 6 points

The laws of physics are the same for all observers,            irrespective of their motion

The laws of physics take the same form in all coordinate systems

We live in a 4‐dimensional curved metric space‐time

The curvature follows the energy‐momentum tensor      as described by Einstein’s field equations

The laws of Special Relativity apply locally          for all inertial observers

Particles move along geodesics

65

Page 5: 5.5 Energy-momentum tensor - University of St Andrewsstar-hz4/gr/GRlec7+8+9.pdf · 2012. 10. 4. · 5.5 Energy-momentum tensor components of stress tensor force area of cross‐section

6 General Relativity

6.2 Einstein’s field equations

independence on choice of coordinates

  ⤿ formulate theory by means of tensor fields

matter is completely described by 2nd‐rank tensor

         (energy‐momentum tensor)

description of curvature by 2nd‐rank tensor

         (Einstein tensor)

⤿ ?

if non‐relativistic limit reproduces Newton’s law,      ⤿ this is not necessarily the only possible theory,    but the most simple one that conforms to the principles

66

Page 6: 5.5 Energy-momentum tensor - University of St Andrewsstar-hz4/gr/GRlec7+8+9.pdf · 2012. 10. 4. · 5.5 Energy-momentum tensor components of stress tensor force area of cross‐section

6 General Relativity 6.2 Einstein’s field equations

non‐relativistic limit ( , ):

dominating

Einstein’s field equations:

⤿

67

Page 7: 5.5 Energy-momentum tensor - University of St Andrewsstar-hz4/gr/GRlec7+8+9.pdf · 2012. 10. 4. · 5.5 Energy-momentum tensor components of stress tensor force area of cross‐section

6 General Relativity 6.2 Einstein’s field equations

with ⤿

⤿

⤿

⤿

68

Newton:

Page 8: 5.5 Energy-momentum tensor - University of St Andrewsstar-hz4/gr/GRlec7+8+9.pdf · 2012. 10. 4. · 5.5 Energy-momentum tensor components of stress tensor force area of cross‐section

6 General Relativity 6.2 Einstein’s field equations

[note: Einstein’s orignal sign convention for the Ricci tensor differs from ours]                                        69

Page 9: 5.5 Energy-momentum tensor - University of St Andrewsstar-hz4/gr/GRlec7+8+9.pdf · 2012. 10. 4. · 5.5 Energy-momentum tensor components of stress tensor force area of cross‐section

6 General Relativity

6.3 Cosmological constant

modified Einstein tensor

also fulfills

measurements suggest

Solar neighbourhood baryonic matter in the Universe

negligible correction, unless huge length scales are considered

    effective repulsion

(dark) “vacuum” energy ??

theories modifying the law of gravity provide alternative models

70

Page 10: 5.5 Energy-momentum tensor - University of St Andrewsstar-hz4/gr/GRlec7+8+9.pdf · 2012. 10. 4. · 5.5 Energy-momentum tensor components of stress tensor force area of cross‐section

6 General Relativity

6.4 Time and distance

Laws of physics — described by tensors —

    do not depend on coordinates

 ⤿ coordinates do not have immediate physical meaning

 ⤿ What is the time and distance?

are not completely arbitrary

can be locally transformed to

⤿ eigenvalues of matrix with

    have signs

corresponding to 1 time‐like and 3 space‐like coordinates

⤿

71

Page 11: 5.5 Energy-momentum tensor - University of St Andrewsstar-hz4/gr/GRlec7+8+9.pdf · 2012. 10. 4. · 5.5 Energy-momentum tensor components of stress tensor force area of cross‐section

6 General Relativity 6.4 Time and distance

time interval      given by

between two events at the same location

⤿ proper time

in general,   the relation between the proper time interval      depends on the location

⤿ cannot define spatial distance by means of     for neighbouring events at the same time

72

and

Page 12: 5.5 Energy-momentum tensor - University of St Andrewsstar-hz4/gr/GRlec7+8+9.pdf · 2012. 10. 4. · 5.5 Energy-momentum tensor components of stress tensor force area of cross‐section

6 General Relativity 6.4 Time and distance

GR‐conform definition of (infinitesimal) spatial distance: time elapsed between emitting a light signal and receiving it back

spatial metric

holds for the case

definition of finite distance as

requires

73

only

not to depend on time

Page 13: 5.5 Energy-momentum tensor - University of St Andrewsstar-hz4/gr/GRlec7+8+9.pdf · 2012. 10. 4. · 5.5 Energy-momentum tensor components of stress tensor force area of cross‐section

6 General Relativity 6.4 Time and distance

Spatial metric

emit signal at point B with spatial coordinates receive it at point A at , and send it back to B

Light ray has to fulfill

⤿

A B

⤿

⤿

74

Page 14: 5.5 Energy-momentum tensor - University of St Andrewsstar-hz4/gr/GRlec7+8+9.pdf · 2012. 10. 4. · 5.5 Energy-momentum tensor components of stress tensor force area of cross‐section

6 General Relativity

6.5 Synchronisation

exchange light signals between neighbouring points

at infinitesimal distance

emit signal at point B with spatial coordinates

receive it at point A at synchronous

, and send it back to B

sychronisation means shift in time coordinate

A B

along trajectory (and depends on it)

if ⤿

75

Page 15: 5.5 Energy-momentum tensor - University of St Andrewsstar-hz4/gr/GRlec7+8+9.pdf · 2012. 10. 4. · 5.5 Energy-momentum tensor components of stress tensor force area of cross‐section

6 General Relativity 6.5 Synchronisation

if ⤿ global synchronisation possible

depends on location) (with regard to time coordinate, but measured

coordinate transformation can always provide (at cost of time‐dependent )

(synchronized reference frame) everywhere

) is geodesic coordinate line of (i.e.

76