19
5/3/2011 1 1 John M. Boone, Ph.D., FAAPM, FSBI, FACR Professor and Vice Chair of Radiology Professor of Biomedical Engineering University of California Davis Medical Center Updating Image Quality and Dose Metrics in CT 2 John M. Boone, Ph.D., FAAPM, FSBI, FACR Chair, AAPM Science Council Member TG-111 Member TG-200 Co-chair TG-204 Chair, ICRU Committee on CT Updating Image Quality and Dose Metrics in CT 3 Introduction CTDI 100 -based metrics Image Quality and CT Dosimetry Phantom CT Dose versus Scan Length Correction for Patient Size CT Scanner Output Summary Updating Image Quality and Dose Metrics in CT AAPM Report-96 ICRU & AAPM TG-200 ICRU & AAPM TG-111 ICRU & AAPM TG-204 ICRU 4 Corporate Disclosures (required by UC Davis): Varian Imaging Systems, Consultant Artemis, Consultant Varian Imaging Systems, Research Funding Hologic Corporation, Research Funding Fuji Medical Systems, Research Funding Stanford Research Institute, Research Funding (R21 subcontract) Creativ Microtech, Research Funding (R21 subcontract) California BCRP 7EB-0075 California BCRP 11I-0114 R21 CA89260 R01 EB002138- (BRP) R01 CA089260- R01 CA012955- Susan G. Komen Foundation University of Pittsburgh Acknowledgements:

5/3/2011 - AAPM

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

5/3/2011

1

1

John M. Boone, Ph.D., FAAPM, FSBI, FACR

Professor and Vice Chair of Radiology

Professor of Biomedical EngineeringUniversity of California Davis Medical Center

Updating Image Quality

and Dose Metrics in CT

2

John M. Boone, Ph.D., FAAPM, FSBI, FACR

Chair, AAPM Science CouncilMember TG-111

Member TG-200

Co-chair TG-204

Chair, ICRU Committee on CT

Updating Image Quality

and Dose Metrics in CT

3

Introduction

CTDI100-based metrics

Image Quality and CT Dosimetry Phantom

CT Dose versus Scan Length

Correction for Patient Size

CT Scanner Output

Summary

Updating Image Quality

and Dose Metrics in CT

AAPM Report-96

ICRU & AAPM TG-200

ICRU & AAPM TG-111

ICRU & AAPM TG-204

ICRU

4

Corporate Disclosures (required by UC Davis):

• Varian Imaging Systems, Consultant

• Artemis, Consultant

• Varian Imaging Systems, Research Funding

• Hologic Corporation, Research Funding

• Fuji Medical Systems, Research Funding

• Stanford Research Institute, Research Funding (R21 subcontract)

• Creativ Microtech, Research Funding (R21 subcontract)

California BCRP 7EB-0075

California BCRP 11I-0114

R21 CA89260

R01 EB002138- (BRP)

R01 CA089260-

R01 CA012955-

Susan G. Komen Foundation

University of Pittsburgh

Acknowledgements:

5/3/2011

2

5

Introduction

CTDI100-based metrics

Image Quality and CT Dosimetry Phantom

CT Dose versus Scan Length

Correction for Patient Size

CT Scanner Output

Summary

Updating Image Quality

and Dose Metrics in CT

6

7

Use of CT: USA & UC Davis Trends

Boone, J M et al J Am Col Radiology, 2008;5(2): 132–138

Brenner, D J et New Eng J Med, 2007;357: 2277-2284

1990: Helical CT

1998: Multi-Slice CT

8

Evolution of CT Scanners and Dosimetry

19901970 1980 2000 2010

1994: mA modulation

2006: Dual

Source CT

1989: Helical/Spiral CT

1972: First

clinical CT brain

scan

1974: 4th

generation CT

1974: First whole-

body CT scanner

1992: Dual Slice CT

1997: 4 Slice CT

2000: 8-40 Slice CT

2000: 64 Slice CT

2007: Adaptive

Dose Shield

2004: Flying

Focal Spot

1981: CTDI

1984:

CTDIFDA

1995:

CTDI100

1995: CTDIw

1999:

CTDIvol

2010: TG111

2011: TG200

2011: TG204

5/3/2011

3

9

Introduction

CTDI100-based metrics

Image Quality and CT Dosimetry Phantom

CT Dose versus Scan Length

Correction for Patient Size

CT Scanner Output

Summary

Updating Image Quality

and Dose Metrics in CT

10

CTDI100 Dose Metrics and Its Derivatives

CTDI100

(peripheral)

CTDI100 (center)

16 and 32 cm diameter PMMA

11

CTDIw = CTDI100,center + CTDI100,periphery

CTDIvol = CTDIw / pitch

Dose Length Product (DLP) = L × CTDIvol

Effective Dose ≈ DLP × k

scan location k

Head

Chest

Body

Abd-Pelvis

Pelvis

0.0021

0.014

0.015

0.015

0.015

13

23

12

32 cm

r = 1.19

47”

119 cmwaistline

28 cm≈34”

86 cmwaistline

5/3/2011

4

13

Introduction

CTDI100-based metrics

Image Quality and CT Dosimetry Phantom

CT Dose versus Scan Length

Correction for Patient Size

CT Scanner Output

Summary

Updating Image Quality

and Dose Metrics in CT

14

CTDI100 Dose Metrics and Its Derivatives

10 cm15 cm

CT dosimetry phantom

CT dosimetry probe

40 cm

CT scatter tails

15

20 cm

60 cm

13.4 kg29.5 lb

30 cm

TG-200

16

5/3/2011

5

17

An Integrated CT Image Quality / Dosimetry Phantom

modulation transfer function (MTF)

noise power spectrum (NPS)

dosimetry

18

three sections of the TG-200/ICRU phantom

section A section B section C

19

section A section B section C

MTF insert

20

section A section B section C

NPS Section

5/3/2011

6

21

Previous Era of CT

22

Modulation Transfer Function Assessment in CT

oversampled slit LSF MTF

23

Modulation Transfer Function Assessment in CT

effect of kernel

effect of slice thickness

24

Traditional method for noise / low contrast

detectability assessment in CT

5/3/2011

7

25

120 kV

400 mAs

Pitch ≈ 1.0

step 1:

120 kV

xxx mAs

Pitch ≈ 1.0

step 3: step 4:

Measure

NPS(f)

Read out dose

adjust mAs

20 mGy

step 2:

Noise Power Spectra Assessment of Noise in CT

26

2D NPS 3D NPS

Noise Power Spectra Assessment of Noise in CT

27

2

2

2

1

[ ( , )1( , )

2

Ni iD

D

i x y

DFT DI x y DI x yNNPS u v

N N N

2D Noise Power Spectrum

CT image of phantom

2D Fourier Transform

region of interest

28

sagittal

RAMP

apodizing filter

f=0 f=fNf=fN

Noise Power Spectra Assessment of Noise in CT

5/3/2011

8

29

2D NPS

1D NPS

Noise Power Spectra Assessment of Noise in CT

30

effect of technique

effect of kernel

effect of slice thickness

Noise Power Spectra Assessment of Noise in CT

31

Noise Power Spectra (3D)

32

Noise Power Spectra (3D)

5/3/2011

9

33 34

CT image quality evaluation

Old Era New Era

phantom

analysis

results

simple more sophisticated

2( )

( )

( )

ifxLSF x e dx

M TF f

LSF x dx

complicated basic

useful & quantitativeperfunctory

35

Introduction

CTDI100-based metrics

Image Quality and CT Dosimetry Phantom

CT Dose versus Scan Length

Correction for Patient Size

CT Scanner Output

Summary

Updating Image Quality

and Dose Metrics in CT

36

TG-111

5/3/2011

10

37

ac

x-ray beam profile along z

38

DL(z)

L

b

-L/2 +L/2f(z)

Axial CT Scanning

39f(z) D(z)

L

-L/2 +L/2

Helical CT Scanning

40

Dose profiles as a function of Scan Length

scan length

5/3/2011

11

41

Equilibrium Dose as a function of Scan Length

Deq

D(L

)

42

TG-111 Method

43

TG-111 Method

44

TG-111 Method

5/3/2011

12

45

TG-111 Method

Extensions to TG-111 Concepts

47 48

weighted bi-exponentialdose spread functions

5/3/2011

13

49

h = scatter / primary

PP S

50

51

Gd2O2S scintillator

fiber optic bundle

photodiode

electronics

Real Time X-ray Probe

time

volt

age

0.2 – 1.0 ms

52

Dose Probe Isotropy

• Projection irradiation @ 120 kVp/7 mA• τ = 5 s • N = 4• Average % error = 0.80%

x-ray tube

x-ray detector

dose probe

isocenterprobe rotation

5/3/2011

14

53

Dose Probe Linearity

• Projection irradiation @ 80 kVp and 120 kVp• Varied tube current at a constant tube potential

r2=0.999

54

ICRU Method

55beam profile 56

Co

rre

ctio

n F

acto

r

5/3/2011

15

57

Introduction

CTDI100-based metrics

Image Quality and CT Dosimetry Phantom

CT Dose versus Scan Length

Correction for Patient Size

CT Scanner Output

Summary

Updating Image Quality

and Dose Metrics in CT

58effective diameter

Rel

ativ

e d

ose

CTDIvol

59

• Pediatric patient scanned initially with a Siemens scanner in outpatient clinic

• CareDose 4D used

• CTDIvol = 4.78

30.4 cm

20.5 cm

Example Case of Size Specific Dose Estimation

32 cm PMMA Dose Reference Phantom 60

Example Case of Size Specific Dose Estimation

• Post-surgery, patient scanned in-patient GE scanner using “Auto mA”

• GE auto mA used

• CTDIvol = 17.7

16 cm PMMA Dose Reference Phantom

5/3/2011

16

61

TG-204 Size conversion factors for CTDIvol

30.4 cm

20.5 cm

30.4 cm

20.5 cm

62

Uncorrected data from scanners:

17.7 mGy-cm / 4.78 mGy-cm ≈ 3.7× difference in CTDIvol

TG-204 SSDE Corrections:

17.7 mGy-cm (16 cm PMMA reference) x 0.71 ≈ 12.5 mGy-cm

4.8 mGy-cm (32 cm PMMA reference) x 1.47 ≈ 7.1 mGy-cm

12.5 / 7.1 ≈ 1.7× difference in CTDIvol

63

Introduction

CTDI100-based metrics

Image Quality and CT Dosimetry Phantom

CT Dose versus Scan Length

Correction for Patient Size

CT Scanner Output

Summary

Updating Image Quality

and Dose Metrics in CT

64

F(q)

F(z)

CT Scanner Output Measures along z-axis

Influence of beam width / collimation / penumbra

5/3/2011

17

65

D(z

)

z

CT Scanner Output Measures along z-axis

Influence of beam width / collimation / penumbra

66

F(q)

F(z)

CT Scanner Output Measures versus Fan Angle

Influence of Bow Tie Filter

67time

sign

al

CT Scanner Output Measures versus Fan Angle

Influence of Bow Tie Filter

68

time

sign

al

CT Scanner Output Measures versus Fan Angle

Influence of Bow Tie Filter

5/3/2011

18

69

F(q)

F(z)

CT Scanner Output Measure

ICRU CT REPORT CHAPTER 4F(z)

F(q)70

Introduction

CTDI100-based metrics

Image Quality and CT Dosimetry Phantom

CT Dose versus Scan Length

Correction for Patient Size

CT Scanner Output

Summary

Updating Image Quality

and Dose Metrics in CT

71

organ dosesCT scan & patient parameters

Monte Carlo modeling should be

the basis for patient CT dosimetry

Monte Carlo

72

Real time air kerma probe

CT beam profile

f(z) f(q)

useful beam characterization

data needed for MC simulation

5/3/2011

19

73

practical methods to correct dosimetry estimates for CT scan length

74

practical methods to correct dosimetry estimates for patient size

75

Introduction

CTDI100-based metrics

Image Quality and CT Dosimetry Phantom

CT Dose versus Scan Length

Correction for Patient Size

CT Scanner Output

Summary

Updating Image Quality

and Dose Metrics in CT