5.2 Orthogonal Complements and Projections

Embed Size (px)

Citation preview

  • 7/29/2019 5.2 Orthogonal Complements and Projections

    1/17

    $ 5.2 # 1

    5.2 Orthogonal Complements and projections

    Orthogonal complements

    Definition Let Wbe a subspace ofRRRRn and let x RRRRn.

    (a) x is orthogonal to W x W w Wx w w Wx w 0.(b) W the orthogonal complement of W

    the set of all vectors in RRRRn that are orthogonal to W. x RRRRn : x W x RRRRn : w Wx w x RRRRn : w Wx w 0.

    Theorem (5.9) Let Wbe a subspace ofRRRRn. Then:

    (a) W is also a subspace ofRRRRn.(b) W W, 0 .

    (c) ifW spanw 1, w 2, , wk thenW v RRRRn : v w i 0 for i 1, 2, ,k .

    1. Proof

    (a) . W,

    is not empty:w W0 w 0 0 W W

    . W, is closed under addition:

    x Wand y W

    w Wx w 0and w Wy w 0

    w W x y w x w y w 0 0 0

    x y W.

    . W, is closed under scalar multiplication:

  • 7/29/2019 5.2 Orthogonal Complements and Projections

    2/17

    $ 5.2 # 2

    k RRRR and x W

    w Wx w 0

    w W k x

    w

    kx

    w

    k0

    0 k x W.

    (b) . 0 W W, :

    0 W and 0 W,The trivial space 0 is a subspace

    for every subspace ofW

    0 W W,.

    . W W, 0 :

    x W W,

    x Wand x W,

    x Wand w Wx w 0

    x x 0

    x 0

    x 0 .

    (c) W spanw 1, w 2, , wk W v RRRRn : i v w i 0 :

    x W

    spanw 1, w 2, , wk

    ,

    x , W spanw 1, w 2, , wk

    x , w 1, w 2, , wk

    x w i 0 for i 1, 2, ,k

    x v RRRRn : v w i 0 for i 1, 2, ,k

  • 7/29/2019 5.2 Orthogonal Complements and Projections

    3/17

    $ 5.2 # 3

    Notation Let A be an m n matrix. Then:

    (a) RSA rowA the row space of A.(b) CSA colA the column space of A.(c) NSA nullA the null space ofA.

    Theorem (5.10) Let A be an m n matrix. Then:(a) RSA, NSA.(b) CSA, NSAT.

    Proof(a)

    x RSA

    ,

    x , RSA

    x , every row ofA

    A x 0

    x NSA.

    (b)

    CSA, RSA, NSAT, by part (a).

    Example 1. Given that

  • 7/29/2019 5.2 Orthogonal Complements and Projections

    4/17

    $ 5.2 # 4

    A

    1 1 3 1 6

    2 1 0 1 1

    3 2 1 2 1

    4 1 6 1 3

    1 0 1 0 1

    0 1 2 0 3

    0 0 0 1 4

    0 0 0 0 0

    RREFA

    AT

    1 2 3 4

    1 1 2 1

    3 0 1 6

    1 1 2 1

    6 1 1 3

    1 0 0 1

    0 1 0 6

    0 0 1 3

    0 0 0 0

    0 0 0 0

    RREFAT

    a. Determine the dependency equation(s) of the columns in A.

    Solution The linear dependence or independence in RREFA

    correspondingly determines the linear dependence or independence

    in A. All the columns in RREFA containing leading 1s are linearlindependent, that is, c 1, c 2 and c 4 in RREFA are linearly

    independent. The columns c 3 and c 5 are linearly dependent on

    c 1, c 2 and c 4 as follows:

    c 3 1c 1 2c 2 0c 4

    c 5 1c 1 3c 2 4c 4.

    Therefore the columns dependency equations in A are:

    col3A col1A 2col2A

    col5A col1A 3col2A 4col4A .

    Check:

  • 7/29/2019 5.2 Orthogonal Complements and Projections

    5/17

    $ 5.2 # 5

    col1A 2col2A

    1

    2

    3

    4

    2

    1

    1

    2

    1

    3

    0

    1

    6

    col3A

    col1A 3col2A 4col4A

    1

    2

    3

    4

    3

    1

    1

    2

    1

    4

    1

    1

    2

    1

    6

    1

    1

    3

    col5A.

    b. Determine the dependency equation(s) of the rows in A.

    Solution

    c 4 c 1 6c 2 3c 3 in RREFAT

    col4AT col1AT 6col2AT 3col3AT

    row4A row1A 6row2A 3row3A

    Check:

  • 7/29/2019 5.2 Orthogonal Complements and Projections

    6/17

    $ 5.2 # 6

    row1A 6row2A 3row3A

    1 1 3 1 6 6 2 1 0 1 1 3 3 2 1 2

    4 1 6 1 3 row4A.

  • 7/29/2019 5.2 Orthogonal Complements and Projections

    7/17

    $ 5.2 # 7

    c. Determine a basis in RREFA for RSA.

    Solution RSA RSRREFA row1,row2,row3 is a basi

    for RSA in RREFA.d. Determine a basis in A for RSA.

    Solution col1,col2,col3 are linearly independent in

    RREFAT col1AT,col2AT,col3AT is a basis for CSAT

    in AT row1A,row2A,row3A is a basis for RSA in A sinc

    RSA CSAT.

    e. Determine a basis in A for CSA.

    Solution col1A,col2A,col4A

    f. Determine a basis in RREFAT for CSA.

    Solution row1,row2,row3 is a basis for CSA in RREFAT.

    g. Determine a basis for NSA.

    Solution

    NSA

    x3 x5

    2x3 3x5

    x3

    4x5

    x5

    span

    1

    2

    1

    0

    0

    ,

    1

    3

    0

    4

    1

    h. Determine a basis for NSAT.

    Solution

  • 7/29/2019 5.2 Orthogonal Complements and Projections

    8/17

    $ 5.2 # 8

    NSAT

    x4

    6x4

    3x4

    x4

    span

    1

    6

    3

    1

    i. Show that RSA, NSA.

    Solution It is enough to show that each basis vector of RSA is

    orthogonal to each basis vector of NSA :

    1 0 1 0 1

    0 1 2 0 3

    0 0 0 1 4

    1 1

    2 3

    1 0

    0 4

    0 1

    0 0

    0 0

    0 0

    or

    1 1 3 1 6

    2 1 0 1 1

    3 2 1 2 1

    1 1

    2 3

    1 0

    0 4

    0 1

    0 0

    0 0

    0 0

    j. CSA, NSAT.

    Solution It is enough to show that each basis vector of CSA is

    orthogonal to each basis vector of NSAT :

  • 7/29/2019 5.2 Orthogonal Complements and Projections

    9/17

    $ 5.2 # 9

    1 2 3 4

    1 1 2 1

    1 1 2 1

    1

    6

    3

    1

    0

    0

    0

    or

    1 0 0 1

    0 1 0 6

    0 0 1 3

    1

    6

    31

    0

    0

    0

  • 7/29/2019 5.2 Orthogonal Complements and Projections

    10/17

    $ 5.2 # 10

    Example 2. Let Wbe the subspace ofR5 spanned by

    w 1

    1

    3

    5

    0

    5

    , w 2

    1

    1

    2

    2

    3

    w 3

    0

    1

    4

    1

    5

    Find a basis for W.

    Example Solution Let

    A w 1 w 2 w 3

    1 1 0

    3 1 1

    5 2 4

    0 2 1

    5 3 5

    Now,

    W CSA RSAT

    W CSA, RSAT, NSAT NS RREFAT .

    Therefore,

    AT

    1 3 5 0 5

    1 1 2 2 3

    0 1 4 1 5

    1 0 0 3 4

    0 1 0 1 3

    0 0 1 0 2

    RREFAT

    so that

  • 7/29/2019 5.2 Orthogonal Complements and Projections

    11/17

    $ 5.2 # 11

    W

    3x4 4x5

    x4 3x5

    2x5

    x4

    x5

    span

    3

    1

    01

    0

    ,

    4

    3

    20

    1

  • 7/29/2019 5.2 Orthogonal Complements and Projections

    12/17

    $ 5.2 # 12

    Orhtogonal projections

    Definition Let v and u 0 in n. Then:

    the component v parallel to u

    the projection of v onto u

    proj u v v uu u

    u

    and

    the component of v orthogonal to u

    perp u v

    Remark Since

    v proj u v perp u v

    it follows that

    perp u v v proj u v .

    IfW span u , then w proj u v W and

    w, proj u v ,

    perp u v W,. Therefore, there is a decompostion

    of v into the sum v w w, such that w W and w, W,.

    Definition Let S u 1, u 2, , u k be an orthogonal basis for thesubspace Win n. For any v in n,

    the component of v in W

    projW v

    v u 1

    u 1 u 1u

    1

    v u 2

    u 2 u 2u

    2

    v u k

    u k u ku

    k

    proj u 1 v proj u 2 v proj uk v

    and

  • 7/29/2019 5.2 Orthogonal Complements and Projections

    13/17

    $ 5.2 # 13

    the component of v orthogonal to W

    perpW v

    projW,

    v

    projW v

    ,

    v projW v .

    Example (1.) PPPP

    x

    y

    z

    : x y 2z 0 is a plane in 3 and let

    v 31

    2

    . Find the orthogonal prjection of v onto PPPPand the

    component of v orthogonal to PPPP.

    Solution (1.)

    PPPP,n

    1

    1

    2

    Therefore,

  • 7/29/2019 5.2 Orthogonal Complements and Projections

    14/17

    $ 5.2 # 14

    the component of v orthogonal to PPPP

    projPPPP, v perpPPPP v projn v v n

    n nn

    3

    1

    2

    1

    1

    2

    1

    1

    2

    1

    1

    2

    1

    1

    2

    43

    1

    1

    2

    43

    43

    83

    and

    the component of v in PPPP

    projPPPP v v perpPPPP v

    3

    1

    2

    43

    43

    83

    53

    13

    23

    13

    5

    1

    2

    Solution (2.)

    PPPP

    y 2z

    yz

    span u 1

    1

    10

    , u 2

    1

    11

    ,

    hence, PPPPhas an orthogonal basis Look at Example 5.3, page 367-36

    Therefore,

  • 7/29/2019 5.2 Orthogonal Complements and Projections

    15/17

    $ 5.2 # 15

    the component of v in PPPP

    projPPPP v proj u 1 v proj u 2 v

    v u 1u 1 u 1 u 1

    v u 2u 2 u 2 u 2

    3

    1

    2

    1

    1

    0

    1

    1

    0

    1

    1

    0

    1

    1

    0

    3

    1

    2

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    0

    23

    1

    1

    1

    53

    13

    23

    13

    5

    1

    2

    and

    the component of v orthogonal to PPPP

    projPPPP, v perpPPPP v v projPPPP v

    3

    1

    2

    53

    13

    23

    43

    43

    83

    43

    1

    1

    2

    .

    Check:

  • 7/29/2019 5.2 Orthogonal Complements and Projections

    16/17

    $ 5.2 # 16

    w w, projPPPP v perpPPPP v 13

    5

    1

    2

    43

    1

    1

    2

    3

    1

    2

    Theorem (5.11) The Orthogonal Decomposition Theorem Let Wbe a

    subspace ofn and let v n. Then there are unique vectors w in Wandw, in W, such that

    v w w,.

    Proof

    (a) . Show that the decomposition exists, that is,w W w, W, v w w, : Let S u 1, u 2, , u k be anorthogonal basis for the subspace Win n and let v n. Let

    w projW v v u 1

    u 1 u 1u 1

    v u 2u 2 u 2

    u 2 v u k

    u k u ku k

    i1

    k

    v u iu i u i

    u i

    and let

    w, perpW v v projW v .

    Then

    w w, projW v perpW v projW v v projW v v .

    . w W :

    w projW v

    v u 1

    u 1 u 1u 1

    v u 2u 2 u 2

    u 2 v u k

    u k u ku k spanS

    . w, W, : i,

  • 7/29/2019 5.2 Orthogonal Complements and Projections

    17/17

    $ 5.2 # 17

    w , u i v projW v u i

    vv u 1

    u 1 u 1u 1

    v u ku k u k

    u k u i

    v u iv u i

    u i u iu i u i,

    u i uj 0 if i j

    u i2 uj

    20 if i j

    v u i v u i 0,

    which implies thatw S w spanS W w W, Theorem 5.

    (b) Show that the uniqueness of the decomposition exists, that is,

    x W y W, v x y x w and y w :

    a Wand b W, such that v a b

    w w, a b

    w a b w,, where w a Wand b w, W,

    w a b w, 0 , since W W, 0

    a w and b w,.

    Theorem (5.12)