50999264FGX0_Digital Signal Processing Applications_Soution Manual

Embed Size (px)

Citation preview

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    1/38

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    2/38

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    3/38

    Solutions of Examples for Practice

    Example 1.4.7

    Solution :  The frequency of the sinusoid is,

    W    = 100 Hz

    The sampling frequency is,   f s  = 240 Hz.

    Here   f W s 2 i.e. 240 > 200. Hence there is no aliasing.

    The minimum sampling rate is given as,

     f s     2W

    We know that   f T s s

      1

    and W T 

     1

    . Then above equation becomes,

    1T s

      2T 

      Here T is the period of  x t( )

      T s     T 2Thus sampling period should be less than or equal to half period of the signal.

    Example 1.4.8

    Solution : i)  x t e j t ( ) 25   500 

    Here     = 500  

      2  f    =   500    f   250 Hz

      Nyquist rate = 500 Hz

    ii)    x t t t ( ) ( ) 1 0.1 sin 200 cos 2000  =   cos . sin cos2000 01 200 2000  t t t

    =   cos   . sin( ) sin( )2000   0 12

      1800 2200  t t t

    =   cos . sin . sin2000 0 005 1800 0 05 2200  t t t

    Here   max   =   2200 

      f max   = 1100 Hz

      Nyquist rate = 2200 Hz

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM(1 - 1)

    1   Introduction to DSP

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    4/38

    iii)  x t t ( ) 10 sinc 5

    =   105

    5

    sin    

    t

    t

    Here     =   5 

      2  f    = 5    f   52

      Nyquist rate = 5 Hziv)  x(t) =  2 sinc (50  t ) sin   ( 5000   t )

    =   2  5050

      5000sin

    sin 

        t

    t  t  =   1

    2512

      4950 5050    t  t t cos cos

    Here   max   =   5050 

    2  f max   = 5050    f max  2525 Hz

      Nyquist rate = 2 25 25 5050   HzExample 1.4.9

    Solution : i)  Here   1   2000   and   2   4000

      f 1   = 

      

     1

    2

    2000

    2   = 1000 Hz and   f 2   =

      

      

    2

    2

    4000

    2   = 2000 Hz

      W    =   f f max  2  = 2000 Hz

      Nyquist rate = 2 2 2000 4000W     samples/sec

    Nyquist interval =   12

    14000W 

        = 0.25 msec

    ii) Here   x t( ) =sin ( )

    ( )

    ( cos ) /

    ( )

    2

    2 2

    4000 1 8000 2 

     

     

     

    t

    t

    t

    t

     

      = 80002

    8000

       

      

     f W    = 4000 Hz

      Nyquist rate = 2 2 4000W    = 8000 samples/sec

    Nyquist interval =   12

    18000W 

        = 0.125 msec.

    Example 1.4.10

    Solution : i)  g t 1 ( ) = sinc (200   t )

    =sin 200

    200

      

    t

    t

    Here   max   = 200  

      f max   = 100 Hz

    Digital Signal Processing Applications 1 - 2 Introduction to DSP  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    5/38

      Nyquist rate = 2 ×   f max  = 200 Hz

    and Nyquist interval =  1

    2 f max=

      1200

     = 0.005 sec

    ii)  g t 2 ( ) = sinc2

    (200  t )

    =sin 200

    200

    2  

    t

    t   =( cos ) /

    ( )

    1 400 2

    200   2

     

    t

    t

    =1 400

    2 200   2 cos

    ( )

     

     

    t

    t

    Here   max   = 400     f max  = 200

      Nyquist rate = 2   f max  = 2 × 200 = 400 Hz

    And Nyquist interval =  1

    2 f max=

      1400

     = 2.5 msec

    iii)  g t 3 ( ) = sinc (200 t) + sinc3 (200 t)

    =sin   sin200

    200200

    200

    2  

      

    t

    tt

    t

    =sin   cos

    ( )

    200

    2001 400

    2 200   2 

      

     

    t

    tt

    t

     

    Here   1   = 200     and   2   = 400  

      f 1   = 100 Hz and   f 2   = 200 Hz

      f max   = 200 Hz

      Nyquist rate = 2 f max   = 2 200   = 400 Hz

    and Nyquist rate =  1

    2 f max=

      1400

     = 2.5 msec

    Example 1.5.6

    Solution : i) ( ) ( )

      1 2kk

    t k

    The given signal can be expressed as,

    ( ) ( )

      1 2k k 

    t k    =

    ( )

    ( )

    t 2k 

    t 2k 

    for odd values of k

    for even values of k

    The above signal is shown in the Fig. 1.1. Observe that the signal is

    periodic with period  T  = 4

    Digital Signal Processing Applications 1 - 3 Introduction to DSP  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    6/38

    ii)  x n( ) =  ( )1   n

    = 1 1 1 1 1 10 1 2 3 4 5( ) ( ) ( ) ( ) ( ) ( )

    , , , , , , .....n n n n n n

    This signal is periodic with period N  = 2 samples

    iii)  x t ( ) =   w t kk

    ( )

      25

    5

    From above Fig. 1.2 (a), observe that  x t( ) exists from  k  = – 11 to 11 only. Hence it is

    non periodic signal.

    iv) x(t) =   w t kk

    ( )

      3

    Above signal is shown in the Fig. 1.2 (b). Observe that the signal is

    periodic with period 3.

    Digital Signal Processing Applications 1 - 4 Introduction to DSP  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    (t + 4)k = –2

     –k(t + 2)

    = –1

     –6

     –5 –4 –3 –1

     –2

    (t)= 0k

     –k(t – 2)

    = 1

    (t – 4)= 2k

     –k(t – 6)

    = 3

    2

    0   1 3 4 5

    6

    7 8  t

    Fig. 1.1 Sketch of ( ) ( )

      1 2k k 

    t k 

    1 2   3   4   5   6 7 8 9 10   11 –1 –2 –3 –4 –5 –6 –7 –8 –9 –10 –11

    1 2   3   4   5   6 7 8 9 10   11 –1 –2 –3 –4 –5 –6 –7 –8 –9 –10 –11 –12 –13 12 13

    x(t) = w (t –2k)

    k = –5

    5

    x(t) = w (t –3k)

    k = –

    k

    k

    (b)

    (a)

    Fig. 1.2 Sketches of example 1.5.6

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    7/38

    Example 1.5.7

    Solution :   i)   x(n)  =   lm e jn    4

    =   lm  n

     j  n

    cos sin  4 4

    , since   e

     j = cos sin  j

    = sin

     n 4

    Compare this equation with  x n f n( ) sin   2    , hence 24

      

     f nn

      f   18

     cycles/sample. Since

     f   k 

     18

    . There will be 8 samples in one period of DT sine wave.

    Fig. 1.3 shows the waveform of   x n( ) = sin n 

    4  and its even and odd parts are also shown.

    Even and odd parts are given as,

    Even part,   x ne ( )   =  1

    2{ ( ) ( )}x n x n   and

    Odd part,   x no ( )   =  1

    2 { ( ) ( )}x n x n

    ii)  x(t) =t t 

    t t 

    0 1

    2 1 2

    This is a triangular pulse as shown in the Fig. 1.4. It's odd and even parts are also shown

    in the Fig. 1.4.

    Digital Signal Processing Applications 1 - 5 Introduction to DSP  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    x (n) =e   [x(n) + x(–n)] =012

      x (n) =o   [x(n) – x(–n)]12

    Zero even part

    Odd part

    0 1 2 3 4

    5 6 7 8n

    x(n)

    1   N = 8

    n

    x(n)

    n

    n

    n

    x(–n)x(–n)

    sin n

    4

    Even part of x(n) Odd part of x(n)

    n

    Fig. 1.3 Even and odd parts of   x n( )

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    8/38

    iii)  x(t) =  cos22

     t 

     

    x t( ) =  1

    2cos t

    , since cos2  = 1 2

    2cos  

    =  1

    212

      cos( ) t

    Digital Signal Processing Applications 1 - 6 Introduction to DSP  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    t

    x(t)

    10

    1

    2

    t

    x(–t)

     –1 0

    1

     –2

    1 2  t

    Even part

     –1 0 –2

    0.5

    x (t) =e12

      [x(t) + x(–t)]

    Odd part

    t –1

    0

    0.5

    0.5

    1 2

     –2

    x (t) =o12

      [x(t) – x(–t)]

    Fig. 1.4 Odd and even parts of traingular pulse

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    9/38

    Here 2  ft   =  t    f   =  12

      or   T   = 2. The waveform   x t( ) and its odd and even parts are

    shown in the Fig. 1.5.

    Example 1.5.8

    Solution : i)   x(n)  =cos( n) for n

    otherwise

     

    4 4

    0

    This signal is given only for |n|   4. Hence it is not periodic. Let us calculate its energydirectly,

    Digital Signal Processing Applications 1 - 7 Introduction to DSP  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    t

    [Zero odd part]

    x (t) =o   [x(t) – x(–t)] = 012

    DC shift of 12

    t

    t0

    0

    0

    0

    t

    x(t)

    x(–t)

    1

    1

    1

    T = 2

    12

    cos t

    x (t) =e   [x(t) + x(–t)12

    Even part

    Fig. 1.5 Odd and even parts of   x(t ) =   cos22

     t 

     

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    10/38

    E   =   x(n)n – 

    2

      =   cos ( n)2n –4

    4

     

    Here  cos2 (  n) = 1   for any value of n. Hence,

    E =   1

    n 4

    4

      = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 9

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    11/38

    E   =

    | ( )|x t dt2

    Let us change the limits of integration as T T 2 2

    , and take limT 

    . This will not change

    meaning of above equation.i.e.,

    E  = lim | ( )|T 

    x t dtT 

    2

    22 = lim | ( )|

    T T 

    T   x t dt

    1

    2

    22  by rearranging

    = lim lim | ( )|T 

    T T    T 

      x t dtT 

    1

    2

    22 = lim

    T T P

      since quantity inside brackets is P.

    =  By taking limits as T 

    Thus, energy of the power signal is infinite over an infinite time.

    Example 1.5.10

    Solution : i)   x(n)  = 1 cos2

     

    This signal is periodic, and it has a DC shift. It's frequency is,

    2 f     n   =  n

    2  f 

      14

    k N 

      N 4

    Power is,   P   =  1

    2N 1  | x(n)|

    n N 

    N 2

    Here   1 cos

      n2

     

    =   2 cos  n

    42  

      , hence above equation becomes,

    P   =  1

    9  2 cos

      n4

    n 4

    42

    2

     =

      49

      cos  n

    4n 4

    44

     

    =   49

      cos cos  3

    4  cos

    2  cos

    44 4 4 4

     

     

       

     

     

     

     

     

     

     

      1 cos

    4  cos

    2  cos

      34

      cos4 4 4 4  

     

    Since   cos x   = cos (x),

    P   =   49

      1 2 cos 2 cos  3

    4  2 cos

    2  2 cos

    44 4 4 4

     

     

    =  4

    9  1 2

      12

      0  1

    2169

     

    Digital Signal Processing Applications 1 - 9 Introduction to DSP  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    12/38

    Example 1.7.3

    Solution : i)  x n( )3 1

      This waveform is obtained by precedence rule of time shifting and scaling. Fig. 1.6 (a)

    shows the sketch of  x n( ).

      Shifting :   First   x n( )   is shifted/delayed by '1' sample to obtain   x n( )1 . This signal isshown in the Fig. 1.6 (b).

      Scaling :   The time shifted signal   x n( )1 of the Fig. 1.6 (a) is time scaled by 3 samples.

    This means it is compressed by 3 samples. This signal gives  x n( )3 1   . It is shown in theFig. 1.6 (c).

    ii) y n( )1

    Fig. 1.6 (d) shows   y n( )   and (e) shows   y n( )   . Then   y n( )1   =    y n ( )1   is obtained bydelaying y n( )   by '1' sample. It is shown in the Fig. 1.6 (f).

    Digital Signal Processing Applications 1 - 10 Introduction to DSP  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    1 2 3 –1 –2  n

    1

    23

    1

    23

    (b)

    x (n–1)

    40

    1 2 3n

     –3

     –2

     –1

    2   (e)y (–n)

    1

    3

     –3   –2   –1

    1 2 3 –1 –2  n

    2   (c)

    x (3n–1)

    0 4

    1

    1 2 3 –1 –2 –3  n

    1

    2

    3

    1

    2

    3

    (a)

    x(n)

    1 2 3

     –1 –2 –3n

    1

    2

    3

     –1

     –2

     –3

    (d)

    y (n)

    1

    2 3n

     –1

     –2

     –3

    2   (f)

    y (1–n)

    1

    3

    4

     –2   –1

    Fig. 1.6 Sketches of   x n( )3 1   ,   y n( )1

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    13/38

    iii)  x n y n( ) ( )2 4 Fig. 1.7 (a) shows   x n( )2   . Note that   x n( )2

    is obtained by time compression of   x n( )

     by the factor of '2'. Fig. 1.7 (b) shows

     y n( ) 4 . The addition   x n y n( ) ( )2 4   isshown in the Fig. 1.7 (c).

    Example 1.8.4

    Solution :

    i)   The system is   memoryless, since   y(n)   depends upon   x(n)   i.e. present sample value

    only.

    ii) Since sine function is multivalued, it is not invertible. Hence system is  noninvertible.

    iii) System is  causal,  since  y(n)  depend on  x(n)  only.

    iv)  When  x(n)   0, y(n) = sin 00

      = 1   by L'Hospital's rule.

    Hence it is  stable  system.

    v) Response of system to delayed input by 'k ' samples will be,

     y (n, k) =    

    T x n k  

    x n k 

    x n k 

     

    sin

    Digital Signal Processing Applications 1 - 11 Introduction to DSP  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    4n

     –1

     –2

     –3

    (b)y (n–4)

    5   6   7

    321

    3

    2

    1

    1

    3

     –1  n

    3

    2

    (c)x (2n) + y (n–4)

    4 5 6 7

    2

    1

    2

    1

     –2

     –3

    1 –1  n

    22   (a)

    x (2n)

    Fig. 1.7 Sketched of   x n y n( ) ( )2 4

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    14/38

    Let us delay the output by replacing 'n' by 'n – k',

     y n k    =

    sin   x n k 

    x n k 

    since    y n, k    =    y n k    system is   time invariant

    vi)  The output of the system to inputs x n1( ) and x n2 ( ) will be,

     y n1   =    

    T x nx n

    x n11

    1

    sin... (1)

     y n2   =    

    T x nx n

    x n22

    2

    sin... (2)

    The linear combination of two outputs will be,    y (n)3   =   a y (n) a y ( n)1 1 2 2

    =   ax (n)

    x (n)  a

    x (n)

    x (n)11

    1  2

    2

    2

    sin sin   By equations (1) and (2) ... (3)

    Now the output due to linear combination of two inputs will be,

     y n3   =   T a x n a x n1 1 2 2   =

    sin   a x n a x n

    a x n a x n1 1 2 2

    1 1 2 2

      ... (4)

    Here from equations (3) and (4),

     y n3 ( )  y n3 ( ), the system is  nonlinear.

      The presence of 'sine' function makes the system nonlinear.

    Example 1.8.5

    Solution : y(n) =   x n( )   Output is magnitude of present input, hence the system is static or memoryless.

      Magnitude operation is not linear. Hence the system is nonlinear.

      Delaying the input by ' 'k  samples, output will be,

     y n k ( , ) =   T x n k  ( )   =   x n k ( )And the delayed output will be,

     y n k ( )   =   x n k ( )

    Since y n k y n k  ( , ) ( )   , the system is  shift invariant.

      Output is magnitude of present input. Hence the system is causal.

      As long as   x n( ) is bounded, its magnitude will also be bounded. Hence the system is

    stable.

    Example 1.8.6

    Solution : i) Dynamic  system, since output depend upon previous inputs.

    ii) Causal system, since output depends upon present and past inputs.

    iii) Stable   system, since  y n( )  is bounded as long as  x n( )  is bounded.

    iv) Time invariant,  since  y n( )  is not direct function of time 'n'.

    Digital Signal Processing Applications 1 - 12 Introduction to DSP  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    15/38

    Example 1.8.7

    Solution :

    i) Memory :   It is  dynamic  (requires memory) since the term  x(n+1) is present.

    ii) Stability :   Value of cosine function is between (–1, 1). Hence   y(n) is bounded as

    long as  x(n) is bounded. Hence the system is   stable.

    iii) Causality :  The system is noncausal   since  x(n+1) requires future input.

    iv) Linearity :  Presence of 'cosine' function makes the system  nonlinear.

    v) Time invariance :   System is   time invariant,   since there is no time index

    manipulation.

    Example 1.8.8

    Solution : i)  y t ( ) = sin [ ( )] x t 2

    This system is  not memoryless, noncausal, stable. y (t)1   =   sin [x (t 2)]1  

     y (t)2   =   sin [x (t 2)]2   Linear combination of two outputs,

     y t3 ( ) =   a y t a y t1 1 2 2( ) ( )   =  a x t a x t1 1 2 22 2sin [ ( )] sin [ ( )] Response to linear combination of inputs,

     y t3 ( ) =   f a x t a x t[ ( ) ( )]1 1 2 2   = sin [ ( ) ( )]a x t a x t1 1 2 22 2 Here    y t3 ( )  y t3 ( )  hence system is  nonlinear.

    Response to delayed input will be,

     y t t( , )1   =   f x t t[ ( )] 1   = sin [ ( )]x t t 2 1Let us delay an output itself,

     y t t( ) 1   =   sin [ ( )]x t t 2 1

    Here  y t t( , )1   =  y t t( ) 1   , hence this is   time invariant  system.

    ii) y n( ) =  x n[ ]2This system is  not memoryless, noncausal and stable.

     y n1( ) =   x n1  2[ ]

     y n2 ( )   =   x n2   2[ ]

    Linear combination of the two outputs, y n3 ( ) =   a y n a y n1 1 2 2( ) ( )   =  a x n a x n1 1 2 22 2( ) ( )

    Response to linear combination of inputs,

     y n3 ( ) =   f a x n a x n[ ( ) ( )]1 1 2 2   =  a x n a x n1 1 2 22 2( ) ( )

    Here  y n3 ( ) =    y n3 ( ) hence the system is  linear.

    Response to delayed input by 'k ' samples will be,

     y n k ( , ) =   f x n k  [ ( )]   =  x n k ( )2

    Digital Signal Processing Applications 1 - 13 Introduction to DSP  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    16/38

    Let us delay an output itself by 'k ' samples,

     y n k ( )   =   x n k [ ( )]2   =  x n k [ ]2 Here  y n k ( , )  y n k ( )   , hence this system is  time variant.

    Example 1.10.8

    Solution :x n1( ) = 1 1 1

    x n2 ( )   = 1 1 1

    _________________

    1 1 1

    1 1 1

    1 1 1 _________________

    x n x n1 2( ) ( )  1 2 3 2 1

    Example 1.10.9

    Solution :   i)   y n u n   *   u n 3n  

     y(n)   =   k 

    h k x n k  

        =   k 

    n k u k u n k  

      3  

    Here   u k  3 = 1 for  k  3 and   u n k    = 1 for n k    , hence

    u k u n k   3 = 1 for 3 k n   .

      y(n)   =k 

    nn k 

    nn k 

    3 3

        =    

    n

    n   k 1

     

    3

    =    

     

    n

    n 11 1

    1  1

    3

     

     

     

    sincek N 

    N 2k 

    N N 

        1

    1 2   1

       

    =

      

     

      

    nn

     

    32

    1

    1  1

    1

    1

    Digital Signal Processing Applications 1 - 14 Introduction to DSP  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    17/38

    ii)     y n u n * n p p

    0

    4

     y(n)   =     u n n p p

    *

      0

    4   =      p

    u n n p

      0

    4*  

    We know that     x n n n x n n0 0*   from properties of impulse function

    Therefore     u n n p u n p* 4 4   . Then above equations will be,

     y(n)   =    p 0

    u n p

      4

    Example 1.10.10

    Solution :

    Convolution is given as,

      x(n) y n x k y n k  k 

    Here   nxl   = –  2 and   n yl   1

    similarly   nxh   =   1 and   n hy     2The index of summation will be,

    n n n n nxl yl xh yh (–  2  –  1) n (1  +  2)   i.e.  –  3 n 3

    x(n)   y(n)  =   x k y n k andk 

      ( )   n3 3

    The value of   n   is varied from 0 to 3 in Fig. 1.8 (c) (d) (e) and   (f )   respectively. The

    corresponding output is shown in Fig. 1.8 (j), (k), (l) and (m). For  n 4,  there is no overlap between x(k)  and  y (n – k)  Hence convolution becomes zero.

    The index is varied from   n = – 1 to   – 3 in Fig. 1.8 (g), (h) and (i) respectively. The

    corresponding output is shown in Fig. 1.8 (n) (o) and (p). For   n  –   4,   there is no overlap between x(h)  and  y (n – k). Hence convolution becomes zero.

    Thus the convolution of two sequences becomes,  x(n)   y(n)  = { , , , , – , – , – }1 2 1 0 1 2 1

    Digital Signal Processing Applications 1 - 15 Introduction to DSP  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    18/38

    Example 1.12.5

    Solution : i) Stability

    Here   h(n) = ( ) u(n )n0.99 3   = ( )n0.99 for n3

    Consider   |h(k)|k =

      =   ( )0.993

    k =

    Digital Signal Processing Applications 1 - 16 Introduction to DSP  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    x(k)

     –2 –1 0 1k

    (a)

    y(k)

     –1 0

    1 2 k

    n = 0   y(–k)

    (b)

    (c)

    (d)

    (e)

    (f)

    (g)

    (h)

    (i)

    (j)

    (k)

    (l)

    (m)

    (n)

    (o)

    (p)

    n = 1

    n = 2

     –1 –2

    0   1  k

    k

    k

    k

    k

    k

    k

    y(1–k)

    y(2–k)

     –1

    0   1 2

    y(3–k)n = 3

    n = –1

    n = –2

    n = –3

    y(–1–k)

    y(–2–k)

    y(–3–k)

    01

    2 3

    2

    3

    10

    4

    0

     –1

     –2 –3

    0

     –2

     –3

     –1

     –4

    0 –1 –2 –3

     –4 –5

    x(k) y(–k)

    x(k) y(1–k)

    x(k) y(2–k)

    x(k) y(3–k)

    x(k) y(–1–k)

    x(k) y(–2–k)

    x(k) y(–3–k)

     –2 –1

    0   1  k

    k

    k

    k

    k

    k

    k

     –4 –3 –2 –1

     –4 –3 –2 –1 –5

     x(k)y(–k)= –1 –1 + 1 + 1= 0

     x(k)y(1–k)= 0 –1 – 1 + 1 + 0= –1

     x(k)y(2–k)= 0 + 0 –1 – 1 + 0 + 0= –2

     x(k)y(3–k)= 0 + 0 + 0 – 1 + 0 + 0 + 0= –1

     x(k)y(–1–k)= 0 – 1 +1 + 1 + 0= 1

     x(k)y(–2–k)= 0 + 0 + 1+ 1 + 0 + 0= 2

     x(k)y(–3–k)= 0 + 0 + 0+ 1 + 0 + 0 + 0= 1

    Fig. 1.8 Convolution of   x (n) and   y (n) using graphical method

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    19/38

    = (0.99) (0.99) (0.99) 0.993

    2 10

    ( ) k 

    k =

    = (0.99) (0.99) (0.99)  1

    1 0.993

    2 1 , since   ak 

    k = 0

      =   11 a

    = 103 0, upper limit of 'k ' will be '0'. If  n  < 0, upper limit of 'k ' will be 'n'

    Case - I :  For  n  > 0,   y n( ) =  1

    2

    0

     

      k 

    k = –

    =  1

    20

     

      k 

    k =

    By adjusting the sign

    = 20

    k =

      = 

    Digital Signal Processing Applications 1 - 17 Introduction to DSP  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    20/38

    Case - II :  For  n  < 0   y n( ) =  1

    2

     

      k n

    k =

    =  1

    2

     

      k 

    nk =

    By adjusting the sign

    =   2 k 

    nk =

      = 

    Thus the step response is "infinity" since the system is unstable.

    Digital Signal Processing Applications 1 - 18 Introduction to DSP  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    21/38

    Solutions of Examples for Practice

    Example 2.1.7

    Solution :  The given difference equation is,

     y n( )   =

      1

    2

    1

    2   1x n x n( ) ( )   ... (1)The linear convolution of unit sample response  h n( ) and input  x n( ) gives output  y n( ). i.e.,

     y n( )   =k 

    h k x n k  

      ( ) ( )

    This equation can be expanded as,

     y n( ) = .... +  h x n h x n h x n h x n( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .... 1 1 0 1 1 2 2

    On comparing above equation with equation (1) we find that,

    h ( )0   =  1

    2   and   h ( )1   = 12

    And all the other terms are absent, hence they are considered zero. Consider,

     H ( )    =k 

     j k h k e

      ( )  

    This is Fourier transform of unit sample response and it is called transfer function. Putting

    for  h h( ) and ( )0 1 ,

     H ( )    =   h e h e j j( ) ( )0 10 1  

    =

      1

    2

    1

    e  j 

    =     1

    2   1

      1

    2   1

    e j j 

      cos sin

    =   12

      1  1

    2 cos sin   j   ... (2)

      Real part of    H H R( ) ( ) ( cos )  12

      1   = cos22

     

    Imaginary part of  H H I ( ) ( ) sin   12

      = sin cos  2 2

      Magnitude of  H H H H  R I ( ) ( ) ( ) ( )  2 2

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM(2 - 1)

    2  DTFT, DFT and FFT 

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    22/38

    = cos sin cos42

    2 2 2 

        = cos sin cos4 2 2

    2 2 2 

    =   cos cos sin2 2 22 2 2

     

      =   cos 2

    = cos 2

      ... (3)

    Phase of  H ( )    =      H tan  H  H 

    R( ) ( )

    ( )     

    1

    = tansin cos

    cos

     

    1

    2

    2 2

    2

     

        = tan tan

      1

    =  2

      ... (4)

    Table 2.1 shows the calculations of magnitude and phase of  H ( )    for few values of   .

     Magnitude

     H ( ) cos 

     

    2

    Phase   H ( )  

    2

      0   2

    23    0.5  

    3

     2

    1

    2

     4

     3

    32

     6

    0 1 0

     3

    32

     6

     2

    1

    2

     4

    23    0.5

     3

        0  

    2

    Table 2.1 Calculation of    H H ( ) and ( ) 

    Fig. 2.1 (a) shows the magnitude and Fig. 2.1 (b) shows the phase plot of transfer function

     based on calculations in above table.

    Here note that transfer function   H ( )    is the continuous function of   ' '    in the range of    . Hence magnitude and phase plots in this figure are continuous.

    Digital Signal Processing Applications 2 - 2 DTFT, DFT and FFT  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    23/38

    Comments on magnitude and phase plots of  H  ( )    :

    1. The magnitude and phase plots are continuous function of ' '    for nonperiodicsequences.

    2. The magnitude plot is even symmetric around   0, where as phase plot has oddsymmetry. i.e.,

     H 

     H 

    ( )

    and ( )

     

     

     H 

     H 

    ( )

    ( )

     

     ... (5)

    3. The magnitude and phase plots are periodic with period   2   . Readers can verify thisstatement by actually calculating magnitude and phase transfer functions of the

    preceding example.

    Example 2.2.8

    Solution : To obtain DFT

    X 4   =   [ ]W x4 4

    ( )

    ( )

    ( )

    ( )

    0

    1

    2

    3

    =

    1 1 1 1

    1 1

    1 1 1 1

    1 1

     j j

     j j

    1

    1

    0

    0

    =

    2

    1

    0

    1

     j

     j

    Digital Signal Processing Applications 2 - 3 DTFT, DFT and FFT  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    0

    0

     –

     –

    1

     –

    (a) Magnitude plotof the transfer function

    (b) Phase plotof the transfer function

    |H( )|

    H( )

    Fig. 2.1 Magnitude and phase plots of the transfer function   H e   j ( )      12

      1

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    24/38

    To obtain IDFT

    xN    =   1N 

      W X N N 

      x4   =   14   4 4

    W X 

    x

    x

    x

    x

    ( )

    ( )

    ( )

    ( )

    0

    1

    2

    3

    =  1

    4

    1 1 1 1

    1 1

    1 1 1 1

    1 1

     j j

     j j

    2

    1

    0

    1

     j

     j

    =  1

    4

    4

    4

    0

    0

    =

    1

    1

    0

    0

    Thus the original sequence is obtained back.

    Example 2.2.9

    Solution :   Here bandwidth,   W =   4 kHz

    Resolution = 50 Hz

    i) To obtain minimum sampling rate

    By Nyquist theorem,

    Fs   =   2 2 4 8 W    kHz kHz

    ii) To obtain minimum number of DFT samples

    Let the DFT samples be   N . These samples are equally spread over the frequency range of 

    0 to 2 . In analog domain 2    corresponds to   f s    8000 Hz. In other words 'N ' samples will be equally spread over 0 to 8000 Hz.   Since minimum spacing between the samples

    (Resolution) should be 50 Hz,

    50  8000 8000

    50  160

    N   or N    samples.

    It is given that   N =   2m point DFT is used. Hence, let us calculate value of   m   for   N   160.Thus,

    m   =   loglog

    log

    log

    log  .2

    10

    10

    10

    102

    160

    2  7 322N 

    Here 'm' must be taken nearest higher integer.

      m     8

      N    =   2 2 2568m

      samples.Thus the DFT must have 256 samples.

    iii) To obtain minimum duration

    Since 8000 samples are taken in 1 sec. 256 samples will require,

    Minimum duration =  2568000

      32   msec.

    Digital Signal Processing Applications 2 - 4 DTFT, DFT and FFT  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    25/38

    Example 2.4.8

    Solution :   X (0) = 0.25

    X(1)   = 0.125 – j 0.3018

    X(2)   = 0

    X(3)   = 0.125 – j 0.0518

    X(4)   = 0

    For real valued sequence,  X(N – k)  = X k  ( )

      X k ( )8   =   X k 

      X ( )5   =   X ( )8 3   = X ( )3   = 0.125 + j 0.0518

    X(6)   =   X ( )8 2   = X ( )2 = 0

    X ( )7   =   X ( )8 1   = X ( )1   = 0.125 + j 0.3018

    Example 2.5.3

    Solution :  Here,   h n   =   2 2 1, , i.e.   M    3

    Input segments length is  N    = 8.

    Since   N    =   M L 1

    8 = 3 1 L   L   6Let us form the segments of input sequence as follows :

    x n1   =

    3 0 2 0 2 1 0 01

    , , , , , , ,' '

    L samples of x n   M zeros  

    x n2   = 0 2 1 0 0 0, , , , ,

    ' '

    Thesetwozerosare apperedtomake L sampl

    es

    L samples of x n M zeros

    ' '

    , ,0 0

    1

    And   h n   = 2 2 1 0 0 0 0 0

    1

    , , , , , , ,

    ' ' M samples L zeros  

    Now let us calculate

     y n1   =   x n h n1   8

     y n2   =   x n h n2   8

    Digital Signal Processing Applications 2 - 5 DTFT, DFT and FFT  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    26/38

     y

     y

     y

     y

     y

     y

     y

     y

    1

    1

    1

    1

    1

    1

    1

    1

    0

    1

    2

    3

    4

    5

    6

    7

    =

    3 0 0 1 2 0 2 0

    0 3 0 0 1 2 0 2

    2 0 3 0 0 1 2 0

    0 2 0 3 0 0 1 2

    2 0 2 0 3 0 0 1

    1 2 0 2

      0 3 0 0

    0 1 2 0 2 0 3 0

    0 0 1 2 0 2 0 3

    2

    2

    1

    0

    0

    0

    0

    0

    6

    6

    1

    4

    2

    6

    4

    1

    Similarly,

     y n2   = 0 2 1 0 0 0 0 0, – , – , , , , ,   8 2 2 1 0 0 0 0 0, , , , , , ,

    = 0 4 6 4 1 0 0 0, – , – , – , – , , ,Last  M – 1 samples of     y n1   are added to first  M – 1 sample of     y n2   .

     y n1     6 6 –1 – 4 2 6 4 1

     y n2     0   – 4 – 6 – 4 –1   0 0 0

     y n     6 6 –1 – 4 2 6 4 – 3 – 6 – 4 –1 0 0 0

    Actually    y n   should contain samples of    x n   + samples of    h n   – 1 12   . The last two zeroin above    y n   are obtained due to two zeros appended in   x n2   . Hence last two zeros can

     be discarded.

    Thus the output will be,

     y n   =   6 6 1 4 2 6 4 3 6 4 1 0, , – , – , , , , – , – , – , – ,

    Digital Signal Processing Applications 2 - 6 DTFT, DFT and FFT  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    27/38

    Solutions of Examples for Practice

    Example 3.1.7   Kept this unsolved example for student's practice.

    Example 3.1.8

    Solution : i)   y n u nn

     

    1

    2

    We know that   a u naz

     z an  z

      1

    1   1–,

      12

    1

    1  1

    2

    121

         

    n z

    u n z

     z–

    ,–

    or   Y z   =  1

    1

      1

    2

    121

    ,–

     z

     z  

    ii)   y n n x n

    We have   x n  z

     z z

     z  

    2

    2 164

    –,

    Differentiation in z-domain property states :   n x n z  d

    dzX z

     z      –

      n x n z  d

    dz

     z

     z

     z   

    2

    2 16

     z

     z z

     z   

    – .–

    32

    162  2

      , Here  d

    dx

    uv

      =

    v dudx

      u dvdx

    v

    2

     z   z

     z   

      32

    16

    2

    2   2–

    or   Y z   =

    32

    164

    2

    2   2

     z

     z z

    –,  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM(3 - 1)

    3   z-Transform

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    28/38

    Example 3.2.9

    Solution :  x(n)  =  

     

     

     

     

     

    1

    5  5

      1

    2  1

    n n

    u(n) u n( )

    Rearranging the given x(n),

    x(n)   =         15   5 2 11n nu(n) u( n ) , Here   1

    2  2   1  

    = ( 0.2) 5(2) ( 1) n nu(n) u n

    =   ( 0.2) 5[ 2 1)] n nu n u n( ) (

    By using standard  z-transform pairs,

    X(z)   =  1

    1 0.2

    5

    1 21 1

     z zfor| | z   > 0.2 and| | z   < 2

    or ROC : 0.2

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    29/38

    = z

     z j z j

    1

    12

    12   1

    212

    = 12

    32

     j

    and   A2

      =   z jX z

     z  z j

     

    1

    2

    1

    2   12

    12

    ( )

    = z

     z j z j

    1

    12

    12   1

    212

    = 12

    32

     j

    Key Point   Here note that   A 1   =   A 2* . This is always true. Hence value of only A1   is

    sufficient to determine A2 .

      X z

     z

    ( )=

    12

    32

    12

    12

    12

    32

    12

    12

     j

     z j

     j

     z j

    Step 3 :   X ( z) =

    12

    32

    1  1

    212

    12

    32

    1  1

    212

    1 1

     

     

     j

     j z

     j

     j z

    Step 4 :  Here causal sequences are assumed. Taking inverse z-transform of above equation,

    x n( ) =

      1

    2

    3

    2

    1

    2

    1

    2

    1

    2

    3

    2

    1

    2

    1

    2

     

     

     

     j j u n j j

    n

    ( )

    n

    u n( )

    Simplification of above equations :   Convert all the term to their polar form. It can be

    converted with the help of P-R function on calculator. i.e.,

    x(n)  = (1.58  – 71.56º) (0.707  45º)n u(n) + (1.58  71.56º) (0.707  – 45º)n u(n)

    = 1 58 0 707 1 58 0 70771 56 45 71 56. ( . ) ( ) . ( .. .e e u n e e j j n j    j n u n45 ) ( )

    = [ . ( . ) . ( . ). .1 58 0 707 1 58 0 70771 56 45 71 56e e e e j n j n j n j   45n u n] ( )

    = 1 58 0 707   45 71 56 45 71 56. ( . ) [ ] ( )( . ) ( . )n j n j ne e u n

    = 1 58 0 707 2 45 71 56. ( . ) cos( . ) ( )n n u n   By Euler's identity

    = 3 16 0 707 45 71 56. ( . ) cos( . ) ( )n n u n

    Example 3.5.14

    Solution : i)   y n y n y n x n x n 1 0 5 2 1.

      Y z   =    z Y z z Y z X z z X z 1 2 10 5.

       H z   =

    Y z

    X z

     z

     z z

     

    1

    1 0 5

    1

    1 2.

    Digital Signal Processing Applications 3 - 3 z-Transform

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    30/38

    =  z z

     z z

    2

    2 0 5

      .

    =

     z z

     z j z j

    1

    0 5 0 5 0 5 0 5. . . .

    Zeros :   z z1 20 1 ,

    Poles :   p j p j1 20 5 0 5 0 5 0 5 . . , . .

    Fig. 3.1 shows the pole zero plot.

    ii)   y n y n y n x n x n 0 7 1 0 1 2 2 2. .

      Y z   =   07 01 21 2 2. . z Y z z Y z X z z X z

       H z   =

    Y z

    X z

     z

     z z

     

    2

    1 0 7 0 1

    2

    1 2. .

    =2 1

    0 7 01

    2  1

    2

    0 7 01

    2

    2

    2

    2

     z

     z z

     z

     z z

     

    . . . .

    =

     z z

     z z

     

     

     

    1

    2

    1

    2

    0 5 0 2. .

    Zeros :   z z1 21

    2

    1

    2 ,

    Poles :   p p1 20 5 0 2 . , .

    Fig. 3.2 shows the pole-zero plot.

    Example 3.5.15

    Solution :    y z   =    z X z

    x n   =   3 2 1 0 1 2 3, , , , , ,

      X z   = 3 2 0 2 33 2 1 2 3 z z z z z z

      Y z( )   =   z z z z z z z{ }3 2 0 2 33 2 1 2 3

    = 3 2 0 1 2 34 3 2 1 2 z z z z z

       y n   =   3 2 1 0 1 2 3, , , , , ,

    Digital Signal Processing Applications 3 - 4 z-Transform

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    Im(z)

    Re(z)

    z2

     –1

    z1

    p2

    p1

    0.5   10

    Fig. 3.1 Pole zero plot of (i)

    Re (z)

    Im(z)

    z2

     –12   12

    0

    p2   p1   z1

    0.2 0.5

    Fig. 3.2 Pole zero plot of (ii)

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    31/38

    Example 3.5.16

    Solution :   First let us convert powers of z in  H z( ) to positive values. i.e.,

     H z( )   =  z

     z

     z

     z z

    2

    2

    1

    1 2

    3 4

    1

     

    3.5 1.5

    = z z

     z z

    ( )3 42

    3.5 1.5

      H z

     z

    ( )=

    3 42

     z

     z z

    3.5 1.5... (1)

    The denominator polynomial is quadratic (i.e. second order). Hence it will have two roots.

    They are given as,

     p p1 2,   = b b ac

    a

    2 4

    2

    Here   b c a 3.5 1.5, and 1.

      p p1 2,   =3.5 (3.5) 4 (1) (1.5)

    2 (1)

    2

    =  3.5 2.5

    2

    = 3, 0.5

    Thus  p p1 23 0 5 and .   . Hence we can write equation (1) as,

      H z

     z

    ( )=

      3 4

    3

     z

     z z

    ( ) ( )0.5

    = A

     z

     A

     z1 2

    3   0.5 A A1 2and   can be obtained as follows :

     A1   =    z H z

     z   z

    3

    3

    ( )

    =  3 4

    23

     z z   z

      0.5

    and   A2   =    z

     H z

     z   z 0.5 0.5

    ( )

    =  3 4

    3  1

     z z   z

      0.5

    Thus the partial fraction expansion is, H z

     z

    ( )=

      23

    1 z z   0.5

    The system has two poles and they are at   p j p j1 23 0 0 5 0 and . . Thus both thepoles have real part only. We can further rearrange above equation as,

    Digital Signal Processing Applications 3 - 5 z-Transform

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    32/38

     H z( ) =2

    3

     z

     z z

     z   0.5

    =  2

    1 3

    1

    11 1

     z z0.5... (2)

    i) To determine ROC and  h n

    ( )  for stable system :Since the system is stable, the ROC of   H z( )   must include the unit circle. The system has

    one pole at  p1   3   and second pole at p2   0 5   . . Hence the ROC must be

    ROC : 0.5 || z   3 which includes|| z 1 i.e. unit circle.

    Thus the above specified ROC of 0.5 || z   3 includes the unit circle of|| z 1 but does notinclude the poles at   p p1 23 and 0.5. Since the ROC is the ring or annular region, theunit sample response   h n( ) will be two sided. Since 0 5. ||  z   or || . z 0 5, the second term of equation (2) will correspond to causal part of  h n( ). Hence,

    IZT   z

    1

    1   1

    0.5=   ( ) ( )0.5   n u n   for ROC :|| z 0.5

    Similarly since || z 3, the first term of equation (2) will correspond to anticausal part of h n( ). Hence,

    IZT  z

    1

    1 3   1

      =   ( ) ( )3 1n u n   for ROC :|| z 3

    Hence the unit sample response can be obtained as inverse z-transform of   H z( )   of 

    equation (2). i.e.,

    h n( )   =

      IZT H z( )

    =   2 3 1( ) ( ) ( ) ( )n nu n u n0.5

    This is required unit sample response for stable system.

    ii) Causal system :

    The poles of this system are at   p p1 23 and 0.5. For the causal system the ROC is theexterior of the circle. The ROC should not contain any poles. Hence ROC will be || z 3.The unit sample response can be obtained by taking inverse z-transform of equation (2)

    i.e.,

    h n( )   =   IZT H z IZT   z

    IZT  z

    ( )  

    2

    1 3

    1

    11 10.5  

    Since ROC is || z 3   and causal system we can obtain the inverse z-transform of aboveequation as,

    h n( )   =   2 3( ) ( ) ( ) ( )n nu n u n   0.5

    Here since ROC is || z 3, it does not include unit circle of || z 1. Hence this system isunstable.

    Digital Signal Processing Applications 3 - 6 z-Transform

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    33/38

    iii) Anticausal system :

    The poles of the system are at  p p1 23 0 5 and .  . We know that ROC is the interior of thecircle for anticausal system. Hence the ROC will be || z 0.5. Here note that ROC won't be

    || z 3, since it is also the exterior of || z 0.5. Therefore ROC of | | z   < Magnitude of polenearest to origin is considered. The unit sample response   h n( )   can be obtained by taking

    inverse z-transform of equation (2). i.e.,

    h n( )   =   IZT H z IZT   z

    IZT  z

    ( )  

    2

    1 3

    1

    11 10.5  

    For ROC of|| z 0.5 we obtain inverse z - transform of above equation as follows,h n( ) =   2 3 1 0 5 1( ) ( ) ( . ) ( )n nu n u n

    Since the ROC of this system is for| | . z 0 5, it does not include unit circle at || z 1. Hencethis system is unstable.

    Example 3.5.17

    Solution :   The given difference equation is,

     y n y n 12

      1   =     2 1 0x n y,   Whenever initial conditions are given we must use unilateral z-transform.

    Here since    y   1 0, we can use z-transform also. Taking unilateral z-transform of aboveequation,

        Y z z Y z y X z 12

      1 21

    Putting    y   1 0, above equation becomes same as z-transform, Y z z Y z  

    12

    1 =   2X z

     H z   =

    Y z

    X z

    =  2

    1  1

    21    z

    Here we use IZT     1

    1   1

     p z p u n

    k k 

    n

    , hence we get,

    h n   =   2  1

    2

     

    n

    u n

    This is the unit sample response of the given difference equation.

    Digital Signal Processing Applications 3 - 7 z-Transform

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    34/38

    Solutions of Examples for Practice

    Example 4.3.4   Kept this unsolved example for student's practice.

    Example 4.3.5   Kept this unsolved example for student's practice.

    Example 4.4.6

    Solution :

    i)   y n . (x(n) + x(n ) 0 5 1   =     0 5 0 5 1. x n . x n –  

    Fig. 4.1 (a) shows direct form - I and Fig. 4.1 (b) shows direct form - II structure. Here

    b0 0.5   and b 1 0.5

    ii)   3y n – 2y n – 1 y n – 2 4x n – 3x n – 1 2x n – 2

      3 y n   =   2y n – 1 – y n – 2 4x n – 3x n – 1 2x n – 2

       y n   =   23   1

      13   2

      43   1

      23   2 y n y n x n x n x n– – – – – –

    Here   a123

    –   ,   a213

      ,   b043

      ,   b1   1 –   ,   b223

      .

    Fig. 4.2 shows the direct form-I and direct form-II

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM(4 - 1)

    4  Digital Filter Structures

    z –1

    +

    x(n)

    0.5 0.5

    y(n)

    (a)

    z

     –1

    +x(n)b = 0.50

    y(n)

    (b)

    b = 0.51

    Fig. 4.1 Direct form - I and II implementation of example 4.4.6 (i)

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    35/38

    iii)   y n – y n – x n( ) ( ) ( )5 1 7    y n   =   5 1 7 y n x n–  

    Fig. 4.3 shows direct form I and II.

    Example 4.4.7

    Solution :

    i)   y n y n – – y n – 2 x n x n – 1 0.5 1 0.25 0.4

    Digital Signal Processing Applications 4 - 2 Digital Filter Structures

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    (b) Direct form -  II

    +

    b =04

    —3

    x(n) y(n)

     –a =1 2—3

    +

    +

    z –1

    b = –11

     –a = –21

    —3

      b =22

    —3

    +

    z –1

    Fig. 4.2 Direct form-I and II implementation of example 4.4.6 (ii)

    +

    z –1

    b =04

    —3

    b = –11

    z –1

    x(n)

    +

          +

    z –1 –a =1

    z –1

          +

     –a = –21

    —3

    2—3

    y(n)

    b =22

    —3

    (a) Direct form -   I

    +

    z –1

    y(n)x(n)7

    5

    (a) Direct form -   I

    +

    z –1

    y(n)x(n)

    5

    7

    (b) Direct form -  II

    Fig. 4.3 Direct form - I and II realization of example 4.4.6 (iii)

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    36/38

    ii)   y n y n – y n x n x n– 0.1 + 0.2 – 2 3 3.6 – 1 0.6 – 2 1   x n

    Digital Signal Processing Applications 4 - 3 Digital Filter Structures

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    +

    z –1

    +

    z –1

    +

    0.5

     – 0.25

    0.4

    1y(n)x(n)

    Direct form -  II

    Fig. 4.4 Direct form I and II realizations of 4.4.7 (i)

    +   +

    z –1

    z –1

    +

    z –1

    3.6

    3

     – 0.1

    0.2

    x(n) y(n)

    Direct form - I+

    z –1

    0.6

    ++

    z –1

    +3.6

    3

     – 0.1

    0.2

    x(n) y(n)

    Direct form - II+

    z –1

    0.6

    Fig. 4.5 Direct form-I and II realizations of 4.4.7 (ii)

    +   +

    z –1

    z –1

    +

    z –1

    0.4

    1

    0.5

     – 0.25

    x(n) y(n)

    Direct form -  I

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    37/38

    iii)   y n – y n – + y n – x n x n –   0.1 0.72 0.7 0.2521 2 2

    Example 4.4.8

    Solution :Direct form - I and II

    Here  b 0 0.7, b 1   0   , b 2 0.2 and  a1   01   . ,  a2 0.72

    Digital Signal Processing Applications 4 - 4 Digital Filter Structures

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    +

    z –1

    +

    z –1

    0.7

     – 0.1

    0.72

    x(n) y(n)

    Direct form -  II

     – 0.252

    +

    Fig. 4.6 Direct form-I and II realizations of 4.4.7 (iii)

    +   +

    z –1

    z –1

    +

    z –1

    0.7

     – 0.1

    0.72

    x(n) y(n)

    Direct form -  I

    z –1

     – 0.252

    +

    +

    y (n)x (n)   +

    z –1

    z –1

    z –1

    z –1

    0.7

     – 0.2

     – 0.1

     – 0.72

    Fig. 4.7 Direct form - I realization

  • 8/18/2019 50999264FGX0_Digital Signal Processing Applications_Soution Manual

    38/38

    Cascade structure Y z   =   0 1 0 72 0 7 0 21 2 2. . . . z Y z z Y z X z z X z

     

     H z   Y zX z

      = 0 7 0 21 0 1

    2

    1 2. .

    .

     z

     z z0. 72=   0.7z 0.2

     z 0.1 z 0.72

    22

    = 0.7 z 0.285

     z 0.1z 0.72

    2

    2

    = 0.7 0 . 53 0 . 53

    0 . 1 0.722 z z

     z z

    =

    0.7 1 0 . 53z 1 0 . 53z1 0.1z 0.72 z

    1 1

    1 2

    = 0.7  1 0 . 53

    1 0 . 1 0 . 721 0 . 53

    1

    1 2

     z

     z z z 1 =    H z H z1 2

    Here,    H z1   = 0.7   1 0 53

    1 0 1 0 72

    1

    1 2  2

    .

    . .

     z

     z z

     H zand = 1 + 0.53  z–1

    Fig. 4.8 shows the cascade realization of     H z1   and    H z2   .

    Digital Signal Processing Applications 4 - 5 Digital Filter Structures

    +   y (n)+

    +

    z –1

    z –1

    0.7

     – 0.1

     – 0.72 – 0.2

    Fig. 4.7 (a) Direct form - II realization

    + +   y (n)x (n)   +

    +

    z –1

    z –1

    z –1

    1 1

     – 0.1 – 0.53 0.53

     – 0.72

    0.7

    Fig. 4.8 Cascade realization