22
5 142 NON-FOUNDATION Name : Date : Mark : Exponential and Logarithmic Functions 5A 5.1 Integral Indices Key Concepts and Formulae Laws of indices 1. a 0 = 1 (a 0) 2. a a n a n = 1 0 ( ) 3. a m × a n = a m + n 4. a m ÷ a n = a m n (a 0) 5. (a m ) n = a mn 6. (ab) n = a n b n 7. a b n n n a b b = ( ) 0 8. a a n n 1 = (n is a positive integer) 9. a a a m n n m m n = = ( ) (m and n are integers where a > 0, n > 0) Express each of the following in the form x p , where p is a rational number. (1 – 3) 1. x 4 6 Solution x x x x 4 6 4 = = = ( ) ( ( ( ) ) ) 2. 1 3 x Solution 1 1 3 1 3 1 3 x x x = = 3. 1 5 8 x Solution 1 1 1 5 8 5 1 8 5 8 5 8 x x x x = = = ( ) 1 6 4 6 2 3

5 Exponential and Logarithmic NON-FOUNDATION Functions · 625 4 3 1 4 3 1 4 1 1 3 2 3 3 2 3 2 4 9. 144 Number and Algebra ... 5 Exponential and Logarithmic Functions Find the values

  • Upload
    dinhnhi

  • View
    212

  • Download
    0

Embed Size (px)

Citation preview

5

142

NON-FOUNDATION

Name :

Date :

Mark :

Exponential and LogarithmicFunctions

5A

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

5.1 Integral Indices

Key Concepts and Formulae

Laws of indices

1. a0 = 1 (a ≠ 0) 2. a an

a n

− = ≠10 ( )

3. am × an = am + n 4. am ÷ an = am − n (a ≠ 0)

5. (am) n = amn 6. (ab) n = anbn

7. a

b

n n

n

ab

b

= ≠ ( )0 8. a an n

1

= (n is a positive integer)

9. a a am

n n m mn= =( ) (m and n are integers where a > 0, n > 0)

Express each of the following in the form x p,where p is a rational number. (1 – 3)

1. x46

Solution

x x

x

x

46 4=

=

=

( )(

(

(

)

)

)

2. 13 x

Solution

1 13 1

3

1

3

xx

x

=

=−

3. 158

x

Solution

1 1

1

585

1

8

5

8

5

8

xx

x

x

=

=

=−

( )

1

6

4

6

2

3

143

5 Exponential and Logarithmic Functions

Find the values of the following withoutusing a calculator. (4 – 6)

4. 8

27

2

3

Solution

8

27

2

3

2

3

=

=

=

)

)

( )( )

(

(

5. 9

4

3

2

Solution

9

4

9

4

3

2

3

2

27

8

8

27

3

2

23

2

1

3 1

1

32

1

=

=

=

=

=

6. −

−125

64

4

3

Solution

− −

=

=

=

=

=

−−

125

64

125

64

5

4

5

4

625

256

256

625

4

3

4

3

1

4

3

1

4 1

1

3

2

3

3

23

2

4

9

144

Number and AlgebraNumber and Algebra

Simplify and express each of the followingwith positive indices. (7 – 14)

7. a2(−a)3 ÷ a−5

Solution

a2(−a)3 ÷ a−5 = a2 ⋅ (−a( )) ÷ a−5

= −a2 ⋅ a( ) ÷ a−5

= −a ( ) + ( ) − ( )

= −a ( )

9. m n

m n

5

4

1

3

3

3

4

1

Solution

m n

m n

m n

m n

m n

m n

m n

5

4

1

3

3

3

4

1

5

43

1

3

3

4

5

4

12

4

4

12

9

12

7

4

5

12

7

4

5

12

7

4

5

12

1

1

1

1 1

=

=

=

=

=

− − −

− − −

− − −

− × − − × −

( )

( )

( )

( ) ( )

10. ( )( )

xx

x

1

2

4

3

3 5

1

2

÷

Solution

( )( )

xx

x

x

x

x

x

x

x

x

x

x

x

1

2

4

33 5

1

2

1

2

4

3

1

35

1

2

2

3

5

3

1

2

2

3

10

6

3

6

2

3

7

6

4

6

7

6

3

6

1

2

1

2

1

÷ = ÷

=

=

=

=

=

××

− −

− −

=

=

8. ( )a b a b1

2

3

4 23

4

1

2− −

÷

Solution

( )a b a b a b a b

ab a b

a b

a b

a

b

1

2

3

4 2 2 2

1

1

3

4

1

2

1

2

3

4

3

4

1

2

3

2

3

4

1

2

3

4

3

2

1

2

1

4

1

4

− −

− − −

÷ = ÷

= ÷

=

=

=

× − × −

− −

3

3

2 3 −5

10

145

5 Exponential and Logarithmic Functions

11. p pp

451

4

7

31⋅ ⋅

−−

Solution

p p p p

p p p

p

p

p

pp

45 11

4

7

34

5

1

4

7

3

4

5

1

4

7

3

4

5

1

4

7

3

48

60

15

60

140

60

173

60

1⋅ ⋅

−−

− −

+ − +

− +

= ⋅ ⋅

= ⋅ ⋅

=

=

=

( )

12. x y x yy

x

−−

−⋅ ⋅

3

4

2

5

2

1

25 34

Solution

x y x y

x y x y x y

x y

x y

x y

y

x

−−

− −

− + + − +

− +

⋅ ⋅

= ⋅ ⋅

=

=

=

3

4

2

5

2

1

2

3

4

5

2

2

5

3

4

1

8

3

42

3

4

5

2

2

5

1

8

100

40

16

40

5

40

89

40

5 34

2

2

2

13. m

n

n

m

m n38

2 1

5

4

4

3

1

2

1

3

2

5( )

( )−

−−

÷ ⋅

Solution

m

n

m

n

n

m nn

m

m n m n

m n m n m

m n

38

2 1

5

4

4

3

1

2

3

8

2

5

4

1

2

4

3

1

22

5

1

3

3

8

5

8

2

3

2

5

1

3

3

8

5

8

2

5

2

3

1

3

2

5

2

2

( )( )

( )

× − × − − −

− − − −

− − − −

÷ ⋅

= ÷ ⋅

= ÷ ⋅

=

⋅ −

=

1

3

3

5

7

3m n

14. 4 33

4

1

2

1

2 3 4

3

2

4

3

3

21 2p q p qq

p

÷− −

⋅ −( )( )

Solution

4 3

3

32

3

4

1

2

1

2 3 4

3

2

4

3

3

2

3

8

1

4

3

2

4

3

3

2

3

2 3

8

3

2

1

4

4

3

3

2 39

8

43

12

3

2

39

8

43

1 2

3 2

3 2

1

2

3

2

3

2

p q p q

p q p q p q

p q

p q

q

p

p q

÷

= ÷

=

=

=

−−

− − − − −

− − − − − −

− −

( )( )

( )

1212

5

146

NON-FOUNDATION

Name :

Date :

Mark :

Exponential and LogarithmicFunctions

5B

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

5.2 Exponential Equations

Solve the following exponential equations.(1 – 6)

1. 4 64243

x

=

Solution

4 64

2 2

2 2

243

2 243

x

x

x

=

===

( ) ( )

( )

( )

( ) ( )

3. 2x + 1 − 2x = 16

Solution

2x + 1 − 2x = 16

2(2x) − 2x = 16

2x(2 − 1) = 16

2x = 16

2x = 24

∴ x = 4

4. 2(4x) − 3(4x − 2) = 116

Solution

2(4x) − 3(4x − 2) = 116

2(16)(4x − 2) − 3(4x − 2) = 116

32(4x − 2) − 3(4x − 2) = 116

4x − 2 (32 − 3) = 116

4x − 2 = 4

x − 2 = 1

∴ x = 3

2. 3 812

3 +

=x

Solution

3 81

3 3

23

4

6

2

2 4

3

3

+

+

=

=

+ =

=

x

x

x

x∴

6

8x

8

147

5 Exponential and Logarithmic Functions

5. 33x = 27(92x)

Solution

33x = 33(34x)

33x = 33 + 4x

3x = 3 + 4x

∴ x = −3

6. 125(53x) = 25x + 2

Solution

125(53x) = 25x + 2

53(53x) = (52)x + 2

53 + 3x = 52(x + 2)

3 + 3x = 2x + 4

∴ x = 1

Solve the following equations. (7 – 9)

7. 3x + 3 − 3x + 2 − 3x + 1 = 15

Solution

3x + 3 − 3x + 2 − 3x + 1 = 15

9(3x + 1) − 3(3x + 1) − 3x + 1 = 15

5(3x + 1) = 15

3x + 1 = 3

x + 1 = 1

∴ x = 0

8. 52x − 6(5x) + 5 = 0

Solution

52x − 6(5x) + 5 = 0

(5x)2 − 6(5x) + 5 = 0

Let y = 5x, the equation becomes

( )2 − 6( ) + 5 = 0

( )( ) = 0

y = ( ) or y = ( )

∴ 5x = ( ) or 5x = ( )

5x = ( ) or 5x = ( )

∴ x = ( ) or x =

( )

9. 7(72x) − 56(7x) + 49 = 0

Solution

7(72x) − 56(7x) + 49 = 0

7(7x)2 − 56(7x) + 49 = 0

Let y = 7x, the equation becomes

7y2 − 56y + 49 = 0

7(y2 − 8y + 7) = 0

7(y − 1)(y − 7) = 0

y = 1 or y = 7

∴ 7x = 1 or 7x = 7

7x = 70 or 7x = 71

x = 0 or x =

1

y y

y − 1 y − 5

1 5

1 5

50 51

0 1

148

Number and AlgebraNumber and Algebra

Solve the following simultaneous equations.(10 – 12)

10. 2 8

16 4

2

8

x y

y x

+

==

......(1)

......(2)

Solution

From (1),

22x + y = 2( )

∴ 2x + y = ( )

y = ( ) − 2x .......(3)

From (2),

(2( )) y − 8x = 22

2( ) = 22

∴ ( ) = 2 .......(4)

By substituting (3) into (4), we have

( ) = 2

( )x = ( )

x = ( )

By substituting x = ( ) into (3), wehave

y = ( )

= ( )

∴ The solution is x = ( ),

y = ( ).

11. 5 25

81 3

3 7

8

x y

x y

+ =

=

+

......(1)

......(2)

Solution

From (1),

53x + 7y = 52

∴ 3x + 7y = 2 ......(3)

From (2),

( )3 3

3 3

1

2

4 1

1

8

2

2

x y

x y

x y

y x

+

+

=

=

=

= −

+

.......(4)

By substituting (4) into (3), we have

3x + 7(2 − x ) = 2

−4x = −12

x = 3

By substituting x = 3 into (4), we have

y = 2 − 3 = −1

∴ The solution is x = 3, y = −1.

3

3

3

4

4y − 32x

4y − 32x

40 10

12 − 8x − 32x

1

4

1

4

3 2

1

4− ×

5

2

5

2

1

4

149

5 Exponential and Logarithmic Functions

12. 27 93

3 2 1

64

x y

x y

+

− −

=

=

4 ( )

......(1)

......(2)

Solution

From (1),

(33)3x + y = 32

39x + 3y = 32

∴ 9x + 3y = 2 ......(3)

From (2),

4−3(x − 2y) = 4−3

∴ − 3(x − 2y) = −3

x − 2y = 1

∴ x = 2y + 1 ......(4)

By substituting (4) into (3), we have

9(2y + 1) + 3y = 2

21y = −7

y = −

1

3

By substituting y = −

1

3 into (4), we have

x = −

+

=

2 11

3

1

3

∴ The solution is x =

1

3, y = −

1

3.

5

150

NON-FOUNDATION

Name :

Date :

Mark :

Exponential and LogarithmicFunctions

5C

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

5.4A Definition of Logarithms5.4B Properties of Logarithms

Key Concepts and Formulae

1. If y = 10x, then x = log y.

2. If y = ax, then x = log a y.

3. Properties of Logarithms

(a) log a 1 = 0 (b) log a a = 1

(c) log a (MN) = log a M + log a N (d) log a (MN

) = log a M − log a N

(e) log a Mn = n log a M

Find the values of the following logarithmswithout using a calculator. (1 – 2)

1. log 0.000 01

Solution

Q 0.000 01 = 10( )

∴ log 0.000 01 = ( )

2. log ( )3

1

81

Solution

Q

1

81

1

81

3

4

4

3

=

= −

log ( )∴

In each of the following, find the value of xcorrect to 3 significant figures. (3 – 4)

3. 10x = 14

Solution

Q 10x = 14

∴ x = ( )

= ( ) (cor. to 3 sig. fig.)

4. 102x = 0.7

Solution

Q

10 0 7

2 0 7

0 0775

2

0 7

2

x

x

x

=

=

=

= −

.

log .

.

log .

(cor. to 3 sig. fig.)

log 14

−5

−5

1.15

151

5 Exponential and Logarithmic Functions

Find the values of the following expressionswithout using a calculator. (5 – 8)

5. log 5 + log 20

Solution

log 5 + log 20 = log[( ) × ( )]

= log ( )

= log ( )( )

= ( ) log ( )

= ( )

8.−

log ( )

log

33 2

3

12

2

8

Solution

− −

− −=

=

= ×

=

log ( )

log

log

log

log

log

33 2

3

12

3

23

3

32

3

3

2

8

2

2

23

2

32

2

2

3

2

3

4

9

9. Given that log 2 = a and log 5 = b ,express the following in terms of a and b.

(a) log 20 (b) log 200

Solution

(a) log 20 = log[( ) × ( )]

= log ( ) + log ( )

= ( ) log ( ) +

log ( )

= ( )

(b)

log log( )

log( )

log log

log log

200 2 5

2 5

2 5

2 5

3 2

32

1

2

3

2

3

2

3

2

= ×

= ×

= +

= +

= +a b

6. log2 3 − log2 24

Solution

log log log

log

log

log

2 2 2

2

23

2

3 24

2

3 2

3

3

24

1

8

− =

=

=

= −

= −

7. log

log

49

343

Solution

log

log

log

log

log

log

49

343

7

7

2 7

3 7

2

3

2

3=

=

=

2

10

2

100

5 20

2

10

22 5

2a + b

22 5

2

5

2

152

Number and AlgebraNumber and Algebra

Find the values of the following expressionswithout using a calculator. (10 – 12)

10. log log log5 5 516 225

8+ −

Solution

log log log

log ( )

log

log

log

5 5 5

5

5

52

5

16 2

16

25

5

2 5

2

25

8

25

8

1

2

+ −

= × ×

=

=

=

=

11. 7

2

1

812 2 213 48log log log ( )+ − −

Solution

7

2

1

81

1

81

1

81

1

48

1

81

2 2 21

2

72

2 21

2

2

2

22

2

3 48

3 48

27 3

27 3 4 3

4

2

2 2

2

log log log ( )

log log log ( )

log ( )

log ( )

log

log

log

+ −

= + −

= × ÷

= × ×

=

=

=

=

12.0 5 4

2

3125 20 6

2 52

532

. log log log

log log

+ + −

+

Solution

0 5 42

3125 20 6

2 52

532

4 125 20 6

5 32

2 25 20 6

25 4

2 25 20 6

25 4

1000 6

100

3

2

1

2

2

3

2

52

. log log log

log log

log log log

log log

log log log

log log

log( )

log( )

log

log

+ + −

+

+ + −

+

+ + −+

× × −×

=

=

=

=

=

153

5 Exponential and Logarithmic Functions

Simplify the following expressions, wherex > 0, y > 0 and x, y ≠ 1. (13 – 15)

13.2

1

23 2

log

log log

x

x x−

Solution

2 2

2

2

2

1

2

3

2

1

2

3 2 23

2

4

log

log log

log

log log

log

log log

log

log

x

x x

x

x x

x

x x

x

x

− −

=

=

=

= −

14.4

5

2log log

log

x x

x x

Solution

4

2

1

23

4

2

3

5

2

5

23

4

12 4

52

252

32

12

1

2

1

2

log log

log

log( ) log

log( )

log log

log( )

log log

log

log

log

x x

x x

x x

x x

x x

x

x x

x

x

x

− −

=

=

=

=

=

15.

1

326 3

25

log log

log

x yy

xx

Solution

1

32

4

6 3

25

6 3 1 2

2 2

2 2

4

1

3

1

2

2

5

2

5

2

5

2

5

2

5

10

log log

log

log( ) log( )

log

log log

log

log( )

log

log

log

log

log

x yy

x

x

x y x y

x

x y x y

x

x y x y

x

x

x

x

x

÷

=

=

=

=

=

=

5

154

NON-FOUNDATION

Name :

Date :

Mark :

Exponential and LogarithmicFunctions

5D

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

5.4C Logarithmic Equations

Solve the following equations and give youranswers correct to 3 significant figures ifnecessary. (1 – 3)

1. 3x = 32

Solution

3x = 32

log 3x = log 32

( ) log ( ) = log 32

∴ x =

( )( )

= ( ) (cor. to 3 sig. fig.)

2. 5(73x + 2) = 48

Solution

5 7 48

7

3 2

3 2

0 279

3 2

3 2 48

5

( )

( )

.

x

x

x

x

x

+

+

=

=

+ =

+ =

= −

log 7 log48

5

log 48 log 5

log 7

(cor. to 3 sig. fig.)

3. 42x − 3 = 66 − x

Solution

4 6

2 3 6

2 3 6

6 3

2 3 6x x

x

x x

x x

x

− −

− −

=

=

− = −

− = −

+ = +

log 4 log 6

log 4 log 6

log 4 log 4 log 6 log 6

(2 log 4 log 6) log 6 log 4

2 3 6 x

( ) ( )

x =

=

++

6 3

3 27

log 6 log 4

2 log 4 log 6

. (cor. to 3 sig. fig.)

Solve the following equations. (4 – 12)

4. log(1 − 2x) = 1

Solution

Q log(1 − 2x) = 1

∴ 1 − 2x = ( )

2x = ( )

x = ( )

x 3

log 32

log 3

3.15

10

−9

− 9

2

155

5 Exponential and Logarithmic Functions

5. log2 (5x − 6) = 6

Solution

Q log2 (5x − 6) = 6

∴ 5x − 6 = 26

5x − 6 = 64

5x = 70

x = 14

7. log (4x + 2) − log 5 = 1

Solution

Q

log log 5

log 4x + 2

5

( )4 2 1

1

10

4 2 50

4 48

12

4 2

5

x

x

x

x

x

+ − =

=

=

+ =

=

=

+

8. log5 (2x − 3) − log5 (x − 1) = 0

Solution

Q

log log

log

5 5

5

( ) ( )2 3 1 0

0

1

2 3 1

2

2 3

1

2 3

1

x x

x x

x

x

x

x

x

− − − =

=

=

− = −

=

−−

−−

6. log5 (3x − 1) = 0

Solution

Q log5 (3x − 1) = 0

∴ 3x − 1 = 50

3x − 1 = 1

3x = 2

x =

2

3

156

Number and AlgebraNumber and Algebra

9. [log(x + 2)]2 + 5 log (x + 2) + 4 = 0

Solution

Let u = log (x + 2), then the equation [log(x + 2)]2 + 5 log (x + 2) + 4 = 0 becomes

u2 + 5u + 4 = 0

(u + 1)(u + 4) = 0

u = −1 or u = −4

log ( )x

x

x

+ = −

+ =

= −

2 1

21

10

19

10

or

log

999

10 000

( )x

x

x

+ = −

+ =

= −

2 4

21

10 000

19

or

or

10. 2 log(x + 2) − log (2x − 6) − 1 = 0

Solution

2 2 2 6 1 0

2 2 6 1

1

10

4 4 20 60

16 64 0

8 0

8

2

2

2

2

2

2

2

2 6

4 4

2 6

log log

log log

log

(double root)

( ) ( )

( ) ( )

( )

( )

( )

x x

x x

x x x

x x

x

x

x

x

x x

x

+ − − − =

+ − − =

=

=

+ + = −

− + =

− =

=

+−

+ +−

157

5 Exponential and Logarithmic Functions

11. y x

x y

= ++ =

2 1

1log log

......(1)

......(2)

Solution

By substituting (1) into (2), we have

log x + log( ) = 1

log [( )( )] = 1

(x)(2x + 1) = 10

2x2 + x − 10 = 0

(2x + 5)(x − 2) = 0

x = ( ) or x = ( )

By substituting x = ( ) into (1),we have

y = 2( ) + 1

= ( )

By substituting x = ( ) into (1),we have

y = 2( ) + 1

= ( )

∴ The solutions of the simultaneous

equations are ( , ) and

( , ).

12. x y

x y

− =− =

2

2 3 log log2 2

......(1)

......(2)

Solution

From (1), we have

y = x − 2 ……(3)

By substituting (3) into (2), we have

2 2 3

3

2

8 16

8 16 0

4 0

4

2

23

2

2

2

2

2

log log

log

(double root)

2 2

2

x x

x x

x x

x

x

x

x

x

x

− − =

=

=

= −

− + =

− =

=

( )

( )

By substituting x = 4 into (3), we have

y = 4 − 2

= 2

∴ The solution of the simultaneous

equations is (4, 2).

2

−4

− 5

2

5

2

2

− 5

2

− 5

2

−4

5

2

2x + 1

2x + 1x

− 5

2

5

158

NON-FOUNDATION

Name :

Date :

Mark :

Exponential and LogarithmicFunctions

5E

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

5.4D Applications of Logarithms in Real-life Situations

(In this exercise, give your answers correct to 3 significant figures if necessary.)

1. The sound intensity level produced by two concerts A and B are 85 dB and 95 dB respectively.How many times is the sound intensity produced by concert B to that by concert A?

Solution

Let I1 and I2 be the sound intensities produced by concerts A and B respectively.By the definition of sound intensity level, we have

( ) 10 log

and ( ) log

=

=

I

I

I

I

1

0

2

0

10

∴ − =

=

=

=

( ) ( )

( )

( )

( )( )

( )

10 log log

log log

log

2 1

I

I

I

I

I

I

I

I

2

0

1

0

0 0

10

10

∴ The sound intensity produced by concert B is ( ) times as that produced by concert A.

2. How many times is the strength of an earthquake measured 6 to that measured 4 on the Richterscale?

Solution

Let El and E2 be the relative energies released by the earthquakes measured 6 and measured 4

on the Richter scale respectively.

By the definition of the Richter scale, we have

6

10 10

1 2

16

24

= =

= =

log and 4 log

i.e. and

E E

E E

85

95

95 85

10

1

10l2l1

l2

l1

10

159

5 Exponential and Logarithmic Functions

Solution

E

E1

2

6

4

10

10

10

100

2

=

=

=

∴ The strength of the earthquake measured 6 is 100 times to that measured 4 on the Richter

scale.

3. The sound intensity level in Peter’s house is 50 dB at 8:00 pm. When Peter was sleeping, thesound intensity in his house is reduced to 40% of the original. Find the sound intensity level inPeter’s house when he was sleeping.

Solution

Let I be the sound intensity in Peter’s house at 8:00 p.m..

Q The sound intensity level in Peter’s house is 50 dB at 8:00 p.m..

∴ 50 10

0

=

log

I

I

Let β dB be the sound intensity level in Peter’s house when he was sleeping.

β

β

β

β

β

=

− =

− =

− =

= −

=

10

50 10 10

50 100 4

50

50 10

46 0

0 0

0 4

0 0

log

log log

log log .

10 log

log

0.4

5

2

5

2

0

I

I

I

I

I

I

II

II

.

. (cor. to 3 sig. fig.)

∴ The sound intensity level in Peter’s house when he was sleeping is 46.0 dB.

160

Number and AlgebraNumber and Algebra

4. When Grace is playing piano, the sound intensity is increased by 3 times, what is the increaseof the corresponding sound intensity level?

Solution

Let β dB and I be the original sound intensity level and sound intensity respectively.

∴ β =

10 log

I

I0

Let α dB be the sound intensity level when Grace is playing piano.

∴ α =

10

0

log 3I

I

α β

α β

α β

α β

− =

− =

− =

− =

10 10

10

10

4 77

0 0

0 0

log log

log log

log 3

3

3

I

I

I

I

I

I

I

I

. (cor. to 3 sig. fig.)

∴ The increase of the corresponding sound intensity level is 4.77 dB.

5. If the strength of an earthquake is 8 times to that measured 6.5 on the Richter scale, what is themagnitude of the earthquake on the Richter scale?

Solution

Let R be the required magnitude of the earthquake, E be the relative energy released by the

earthquake measured 6.5 on the Richter scale.

Q The strength of the earthquake is 8 times to that measured 6.5 on the Richter scale.

By the definition of the Richter scale, we have

6.5 = log E and R = log 8E

R = log 8E

= log 8 + log E

= log 8 + 6.5

= 7.40 (cor. to 3 sig. fig.)

∴ The magnitude of the required earthquake is 7.40 on the Richter scale.

5

Name :

Date :

Mark :

161

NON-FOUNDATION

5F

Exponential and LogarithmicFunctions

Multiple Choice Questions

1. 8

27

4

3

=

A.4

9B.

32

243

C.16

18D.

2

3

2.x

x

=3

2

5

A. x−

26

5 B. x−

17

10

C. x34

5 D. x−

13

10

3. Simplify m m

m

1

2 3

4 1( )− with positive indices.

A. m15

4 B.1

11

4m

C. m13

4 D. m15

2

4. Simplify x y x y2 3 53

2 with positive

indices.

A. x

y

25

2

B. x y7

2

11

4

C.1

5

2

4

5x y

D. xy5

4

5. Simplify p q p qp q1

2

2

5

1

2

1

2

3

527 33÷ ⋅

−.

A.1

3B.

31

6

q

p

C.q

p

5

6

3D.

q

p

1

6

1

23

6. Solve 6 6 301x x− − = − .

A. x = −1

B. x = 0

C. x = 1

D. x = 2

7. Solve 4(42x) − 65(4x) + 16 = 0.

A. x = 1

4or 16

B. x = −1 or 2

C. x = 1 or −2

D. x = − 1

2or 1

8. Solve 64 165

4x = .

A. x = 5

6

B. x = 5

C. x = 3

2

D. x = 3

4

B

C

A

B

D

C

A

B

162

Number and AlgebraNumber and Algebra

9. Solve 3 1

3 9

6

2

x y

x y

+

==

.

A. x y= = −1

4

2

3,

B. x = 2, y = 0

C. x y= =01

6,

D. x y= = −3

2

1

4,

10. log3 729 ⋅ log4 16 =

A. 3 B. 9

C. 12 D. 18

11. Solve log x2 + 3 log x + 2 = 0.

A. x = 10−2 or 10−1

B. x = −2 or −1

C. x = 102

5−

D. x = 101

2−

12. Solve log2 (x + 3) = 2 + log2 (2x − 1).

A. x = 7 B. x = 5

3

C. x = 1

2D. x = 1

13. If log 3 = a and log 4 = b, expresslog 0.75 in terms of a and b.

A. a + b B.a

b

C. ab D. a − b

14. If log , log a a2310= =

A.3

2. B. 10

3

2 .

C. 15. D. 102

3−

.

15. If log x − log y = 2 + log y, x =

A. 100y2.

B. 2 + y2.

C. 2 + 2y.

D. 200y2.

16. Solve 2 2

2 1

2

log

log

log

.x

x

x

= +

A. x = 10

B. x = 1

C. x = −1 or 1

D. x = − 1

2

17. Simplify log 9 3 − log

log.

27

3 3

A. −1

2log 3 B. − 1

3

C. log 3 D. 3

18. Given that x < 1 and y < 1, which ofthe following MUST be true?

I. log (xy) < 0

II. log1

0y

<

III. log x 3 < 0

A. I and II only

B. I and III only

C. II and III only

D. I, II and III

D

D

C

C

C

A

A

B

B

D

163

5 Exponential and Logarithmic Functions

19. Given that log2 x = y and log3 y = z,express x in terms of z.

A. x = 6 3

B. x = log 6 z

C. x = 2 3 + z

D. x = 2 3z

20. Given that log x = 3.41, find the value

of log logxx

2 1+ .

A. 3.41

B. 10.15

C. 6.82

D. 0.29

21. Which of the following functions can berepresented by the graph shown below?

−4 −3 −2 −1

5

0

10

15

y

x

A. y = 2x

B. y = −2x

C. y = 1

2

x

D. y = −

1

2

x

B.

0

y

x

1

y

0x

C. y

10x

1

y

0x

D.

23. The inverse function of y x= log5 is

A. yx

= 1

5log.

B. y x= 5 .

C. y x= 5.

D. y x= − log .5

22. Which of the following may be a graph

of y a x= ?

A.

D

C

D

B

A