48
5 Combustion of Ener getic Materials Richard A. Yetter Penn State University PrincetonCombustion Institute 2018 Summer School on Combustion June 2529, 2018 Princeton NJ Princeton, NJ 1

5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

  • Upload
    others

  • View
    7

  • Download
    1

Embed Size (px)

Citation preview

Page 1: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

5

Combustion of Energetic gMaterials

Richard A. YetterPenn State Universityy

Princeton‐Combustion Institute 2018 Summer School on Combustion

June 25‐29, 2018Princeton NJPrinceton, NJ

1

Page 2: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

M l C b iMetal Combustion

2

Page 3: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Heats of Oxidation of Several Materials

120

140Gravimetric (kJ/gm

fuel)

80

100

120 fuel

Volumetric (kJ/cm3fuel

)

idat

ion

40

60

Hea

t of O

x

0

20

Al)

B) e) C) e) Li) g) S

i) Ti)

W)

Zr)

lum

inum

(A

Bor

on (B

Ber

yliu

m (B

e

Car

bon

(C

Iron

(F

Lith

ium

( L

gnes

ium

(Mg

Sili

con

(S

Tita

nium

(T

Tung

sten

(W

ircon

ium

(Z

A B

Mag T Zi

3

Page 4: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Thermodynamic Considerations• The determination of which metals will burn in the vapor phase or heterogeneously can be made from knowledge of the thermodynamic and physical properties of the metal andthe thermodynamic and physical properties of the metal and its oxide product.

• For oxygen containing environments, early studies ( )(Glassman, Von Grosse and Conway) recognized– The importance of the volatility of the metal vs the metal oxide– The relationship between the energy required to gasify the metal– The relationship between the energy required to gasify the metal or metal oxide and the overall energy available from the oxidation reaction – a limiting flame temperature

Δ Q ( ) ΔΔHvap‐dissoc > QR – (HoT,vol – Ho

298) = ΔHavail

QR = heat of reaction(Ho Ho ) th l i d t i th d t id t it(Ho

T,vol – Ho298) = enthalpy required to raise the product oxide to its 

volatilization temperatureΔHvap‐dissoc = heat of vaporization‐dissociation 4

Page 5: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Thermodynamic Considerations –OxidesOxides

Metal Tbp(K)

Oxide Tvol(K)

ΔHf,298(kJ/mol)

ΔHvol(kJ/mol)

HTvol-H298 + ΔHvol

(kJ/ l)(kJ/mol)

Al 2791 Al2O3 4000 -1676 1860 2550B 4139 B2O3 2130 -1272 360 6402 3

Be 2741 BeO 4200 -608 740 1060Cr 2952 Cr2O3 3280 -1135 1160 1700Fe 3133 FeO 3400 -272 610 830Hf 4876 HfO2 5050 -1088 1014 1420Li 1620 Li2O 2710 -599 400 680

Mg 1366 MgO 3430 -601 670 920Mg 1366 MgO 3430 601 670 920Si 3173 SiO2 2860 -904 606 838Ti 3631 Ti3O5 4000 -2459 1890 2970Zr 4703 ZrO2 4280 -1097 920 1320Zr 4703 ZrO2 4280 1097 920 1320

Glassman, Combustion, Academic Press, 3rd Edition, 1996 5

Page 6: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Classification of Metal Combustion

I Volatile Product Nonvolatile ProductII V l til t l N l til t l V l til M t l N l til M t lII Volatile metal

Gas‐phase combustion

Nonvolatile metalSurface combustion

Volatile MetalGas‐phase combustion

Nonvolatile MetalSurface or condensed phase combustioncombustion

III Soluble Nonsoluble Soluble Nonsoluble Soluble Nonsoluble Soluble Nonsoluble

Product No flux of Product may No product If product Disruption Metal may ProductProduct may dilute metal during burning d

No flux of product to metal

Product may build up in metal during burning

No product penetration into metal

If product returns to metal it may dilute it and 

Disruption strongly favored if product returns to 

l

Metal may diffuse through growing  product l l

Product coating makes ignition difficult

and cause disruption if its BP exceeds that of 

cause disruption

metal layer, purely condensed phase combustion possible

metalp

F.A. Williams, "Some Aspects of Metal Particle Combustion," Physical and Chemical Aspects of Combustion: A Tribute to Irv Glassman, F.L. Dryer and R.F. Sawyer, eds., Gordon and Breach, The Netherlands, 1997, pp. 267‐289. 6

Page 7: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Thermodynamic Considerations – Effect of Pressure and OxidizerPressure and Oxidizer

6000

2Al+1.5O2

(K) 5000

2Al 1.5O2

2Al+1.5(O2+3.76N2)

pera

ture

4000

2Al+3CO2,Reactants at 298K

Tem

p

30002Al+3H2O(g),

0 1 1 10 1002000

Al vaporization2Al+3H2O(l),Reactants at 298K

2 (g)Reactants at 398K

Pressure (atm)0.1 1 10 100

Glassman and Yetter, Combustion, Academic Press, 4th Edition, 2008 7

Page 8: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Micron Aluminum Particle CombustionOxidizer Effects Pressure Effects

Air

60 t2 t 60 atm2 atm1 atm

R.A. Yetter and F.L. Dryer, in Fire in Free Fall: Microgravity Combustion, H. Ross, Ed., Academic Press, Chapter 6, 2001. 8

Page 9: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Equilibrium Product Composition and Temperature vs Input EnthalpyTemperature vs. Input Enthalpy

1 4500

Stoichiometric Mixture of Al and O2 at 298 K and 1 atm

0.8

1

4000

4500

T

TAl2O

3(l)

0.63500

4000

Frac

tion

Tempera

O

0 2

0.4

3000

Mol

e F ture (K)

Al

AlO

O

0

0.2

2500-15 -10 -5 0 5 10 15

O2

Al2O

-15 -10 -5 0 5 10 15

Assigned Enthalpy (kJ/g)Glassman, Combustion, Academic Press, 3rd Edition, 1996 9

Page 10: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Flame Structure of Micron Aluminum Particle Burning in AirParticle Burning in Air

ctio

ns

1 0 ]Natural Luminosity

Mol

e Fr

ac

0.60.81.0

erat

ure

[K]

3500

4000

T AlO

Simulated

AlO PLIF

Al2O3 EPMA

rmal

ized

M

0 00.20.4

Tem

pe

2000

2500

3000

Al2O3

T PLIF

AlO PLIF

r / rp

1 2 3 4 5 6 7 8 9 10Nor 0.0 2000AlO PLIF

Burn interrupted particleon silicon waferr / rp on silicon wafer

Bucher, P., et al. Proc. Combust. Inst., 27, 2421, 1998.

EPMA

10

Page 11: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Predicted burning rates as a function of pressure for aluminum combustion in 21% O2 and 79% Ar2

2 20d d tβ= −

4000

5000

)

1.2T Flame (Limit)

T Al B il

T (K

)

2000

3000

mm

2 /s)

0.8T Al Boil

T Particle Surface

T

1000

2000

β (

0.4

symbols - exp.lines - modelβ

P (atm)1 10 100

0 0.0symbols exp.

P (atm)Also shown are the particle surface and maximum flame temperatures and the vaporization/decomposition temperatures of Al and Al2O3 11

Page 12: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Modes of Particle Combustion

11

Diffusion‐Controlled with Envelope Flame

Diffusion‐Controlled without Envelope Flame

Kinetically‐Controlled

T/T’

T/T’1

T/T’fuel

products

1 T/T1

oxidizerproducts

∞s0

oxidizer

products

∞s0

oxidizerfuel

products

∞s0ss

12

Page 13: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Diffusion vs Kinetic Control

dρ 20 dρ 2

Diffusion controlled combustion with vaporization or surface reaction

B)1(ρD8dρ

t 0pb,diff +

=ln )iY1(ρD8

dρt

O,

0pb,diff

∞+=

ln

Kinetic controlled surface reaction

= 0pb kin kPXMW2

dρt

Kinetic controlled surface reaction

∞O,pb,kin kPXMW2

Transition may be defined through a Damköhler number

)iY1(ρD4XkPdMW

tt

Da O,0pb,diff ∞

+==

l )iY1(ρD4t O,b,kin ∞+ln

13

Page 14: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Burning Times of Boron Particlese

and

X O2

(ms)

1000

10000ur

ning

Tim

xyge

n, t b

X

10

100

d2 - law

ct o

f the

Bu

ctio

n of

Ox

0.1

1 P = 1 atmd - law

Pro

duc

Mol

e Fr

ac

0.001

0.01 P = 35 atmd1 - law

Particle Diameter, d (μm)

0.1 1 10 100 1000

Li, S.C. and Williams, F.A. Proc. Combust. Inst. 23, 1147‐1154, 1991.14

Page 15: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Effect of Particle Diameter on Al Burning TimeBurning Time  

100000Wilson and Williams [7]Wong and Turns [2]Prentice [4]

Davis [8]Parr et al. [9] (T=1500 K)Parr et al. [9] (T=2000 K)

1000

10000Prentice [4]Olsen and Beckstead [1]Hartman [3]Friedman and Macek [5,6]

Parr et al. [9] (T 2000 K)Park et al. [10] (T=1173 K)Eisenreich et al. [11] (T=900 K)

me

[ms]

100

urni

ng T

im

1

10Bu

d1.8T = 1500K

0.10.01 0.1 1 10 100 1000

Diameter [μm]

T = 2000K

T. Bazyn, H. Krier, and N. Glumac, Proc Combust. Inst. 31 (2007) 2021 & Combust. Flame 145 (2006) 703.Y.L. Shoshin and E.L. Dreizin, Combust. Flame 145 (2006) 714. 15

Page 16: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Effect of Particle Diameter on Al Ignition TemperatureTemperature

3500Parr et al. [20]

3500Derevyaga et al. [34]

e,K

3000

[ ]Bulian et al. [38]Assovskiy et al. [40]Yusasa e tal. [37,39]Brossard et al. [36]Ermakove tal. [35]

e,K

3000

y g [ ]Merzhanov et al. [33]Friedman et al. [31,32]Trunov et al. [26]CurveFit

Tem

pera

ture

2000

2500

Tem

pera

ture

2000

2500

Igni

tion

T

1000

1500

Igni

tion

T

1000

1500

i l i10-2 10-1 100 101 102 103 104500

1000

i l i10-2 10-1 100 101 102 103 104500

1000

Particle Diameter, μmParticle Diameter, μm

16

Page 17: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

N i l C b iNanoparticle Combustion

17

Page 18: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Surface to Bulk Atom Ratio for Spherical Iron CrystalsCrystals 

100

60

80 bulk atoms

40

60

0

20 surface atoms

00 5 10 15 20 25 30

particle size (nm)

K.J. Klabunde, J. Stark, O. Koper, C. Mohs, D.G. Park, S. Decker, Y. Jiang, I. Lagadic and D.J. Zhang, J. Phys. Chem. 100, (1996) 12142‐12153.

18

Page 19: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Melting Point and Normalized Heat of Fusion for Tin NanoparticlesFusion for Tin Nanoparticles

480

500

4050

60

440

460

2030

40

4200 20 40 60 80 100

particle diameter (nm)

100 20 40 60 80 100

particle diameter (nm)

S.L. Lai, J.Y. Guo, V. Petrova, G. Ramanath, and L.H. Allen, Phys. Rev. Lett. 77 (1996) 99‐102.

For aluminum particles:Al i S d Th D L JPC A 110 1518 2006Alavi, S. and Thompson, D.L., JPC A 110, 1518, 2006.Puri, P. and Yang, V., JPC C 110, 11776, 2007. Also AIAA 2008‐938 and AIAA 2007‐1429.

19

Page 20: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Other Features of Nanoparticles

• Increased specific surface area• Increased specific surface area• Increased reactivity• Increased catalytic activity• Increased catalytic activity• Lower melting temperatures• Lower sintering temperatures• Lower sintering temperatures• Superparamagnetic behavior• Superplasticity• Superplasticity

20

Page 21: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Energy Content as a Function of Particle DiameterDiameter

1

0.8

0.6 2 nm

3

0 2

0.4 3 nm

0

0.2

9 8 7 610-9 10-8 10-7 10-6

particle diameter (m)21

Page 22: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

A Brief History of Nanoenergetic MaterialsnAl RESS nRDX

• Synthesis of Energetic Nanoparticles– Nanoscale particles readily available– Simple substitution for micron sized

100nm40 nmSimple substitution for micron sized materials

• Assembly of Energetic MaterialsV i bl d dditi

Fe0‐AOTL‐ALEX

1

A. Cortopassi, T. Wawiernia, J. T. Essel, P. Ferrara, K. K. Kuo, and R. M. Doherty, 8‐ISICP, 2009

Nanotechnology

20 nm

– Various assembly and additive manufacturing processes: self assembly, sol‐gel chemistry, ink‐jetting, vapor deposition processes electro and cold C.E. Bunker and J.J. Karnes, 

1 μm

10 nm

T. Sippel and S.F. deposition processes, electro and cold spray, arrested reactive milling, supercritical processing

– Multilayer foils, core shell structures,Al‐C13F27COOH CL‐20/NC Cryogel

,JACS 126, 10852, 2004Son, TEM of palmitic

acid coated ALEX

Multilayer foils, core shell structures, reactive nanowires, directly assembled particles, dense nanocomposite powders produced by arrested reactive milling, 

200nmT. B. Brill, B. C. Tappan and J. Li (2003). MRS Proceedings,800, 

100nm

R.J. Jouet, A.D. Warren, D.M. Rosenberg, V.J. 

nanoporous particles and substrates, clusters

( ) g , ,AA2.1doi:10.1557/PROC800AA2.1

g,Bellitto, K. Park, and M.R. Zachariah, Chem. Mater. 17 (2005) 2987‐2996.

22

Page 23: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Nanometer ParticlesAnother length scale of importance to the combustion of small particles is the mean g p pfree path in the surrounding gas‐phase. A comparison of this length scale to the particle diameter defines whether continuum conditions exist (i.e., the particle may be distinguished separately from the gas molecules). The key dimensionless group that defines the nature of the surrounding gas to the particle is the Knudsen numberdefines the nature of the surrounding gas to the particle is the Knudsen number,

pdλ2Kn =

where λ is the mean free path of the gas phase

Nπσ21λ 2=

where λ is the mean free path of the gas‐phase

21MW8μ2λ /⎞⎛

=

where σ is the molecular diameter of the molecule and N is the gas concentration (number density)

RTMW8P

/

⎟⎠⎞

⎜⎝⎛π

where μ is the gas viscosity and MW is the molecular weight of the gas. At atmospheric pressure particles of 100 nm and smaller are characterized by Kn numbers greater thanpressure, particles of 100 nm and smaller are characterized by Kn numbers greater than unity for the entire temperature range from room to combustion flame temperatures, indicating that they can no longer be considered as macroscopic particles in a continuum gas. 

23

Page 24: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Nanometer ParticlesFor Kn numbers of the order of 1,  expressions used to model heat and mass transfer in the continuum limit are no longer applicable.• appearance of a discontinuity in temperature, velocity, and concentration profiles at 

the gas‐surface interface often referred to as slip or jumpthe gas surface interface, often referred to as slip or jump.   • magnitude of slip depends on the efficiency of exchange of energy and momentum 

between the gas and surface. • efficiency is quantified in accommodation coefficients α of a gas‐surface interface.  For 

example, the thermal accommodation coefficient αT is defined as:

f gs g

s g

( , )T

T TT T

T T−

=−

α

where Ts is the surface temperature, Tg is the temperature of the gas incident on the surface, and Tf is the temperature of the gas after scattering from the surface.   The value of αT depends on the gas and surface temperatures in addition to the nature of the gas d f Th ti h t t f ffi i t h th b l t d t i thand surface.  The convective heat transfer coefficient h can then be related to αT in the 

transition regime by1

8 1T

g

PchT

α γγ+

=−

where c is the mean speed of the gas.   

g γ

24

Page 25: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Nanometer ParticlesNanometer Particles• Experimental measurements of thermal accommodation coefficients 

suggest that α values at elevated temperatures for some systems are ofsuggest that αT values at elevated temperatures for some systems are of the order of 0.1, and some may be much lower.   

• As the Knudsen number increases, heat and mass transfer are reduced significantly by non‐continuum effects.  g y y

• In the kinetic limit, transport of mass (and heat for Le ~ 1) is rapid, and concentration and temperature profiles are relatively flat.  

• However, for isolated burning of nanoparticles, particle temperatures can rise hundreds of degrees above ambient during combustion at elevated pressures, while for lower pressures the temperature overshoot (as well as the combustion rate) is reduced. Th b i h l h h K 1 f i l• These observations suggest that although Kn > 1 for some nanoparticle systems, the combustion has not reached the kinetic limit due to inhibited transport in the non‐continuum regime. Such particles can be considered to be burning in a “transition” regime between the diffusion and kineticto be burning in a  transition  regime between the diffusion and kinetic limit, in which neither the d2 nor d burning rules apply.

25

Page 26: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Shrinking Core Model for Spherical Particles of Unchanging Size

Product Unreactedcore

Low HighUnreacted

core

Unchanging SizeDiffusion through Product Layer Controls

tion of 

reactant Typical position 

in diffusion region

Lowconversion conversion

Time Time

Product

Reactionzone

R Rrc rc0

Concen

trat

gas‐ph

ase r

CAg

CA

0 r

region

ntratio

n of

reactant

Product Unreactedcore

Radial position

R R R R R R00 0

Concen

solid

 

Chemical Reaction Controls

entration of 

ase reactant

CAg

Radial position

R R R R R R00 0

Radial positionR Rrc rc0

Conce

gas‐ph

a

See for example, Levenspiel, O., Chemical ReactionEngineering, Third Edition, J. Wiley and Sons, 1999

26

Page 27: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Shrinking Core Model for Spherical Particles of Unchanging Size

2pRρ

τ =pRρ

τ =

Diffusion through Product Layer Controls Chemical Reaction Controls

Unchanging Size

Ag2 3

2 / 3

6bDCt r r1 3 2

R Rt

τ

⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟τ ⎝ ⎠ ⎝ ⎠

Ag

1/ 3

bkCt r1

Rt 1 (1 X)

= −τ=

1 1 0

2 / 3t 1 3(1 X) 2(1 X)= − − + −τ

1 (1 X)= − −τ

Radius vs. Time Conversion vs. TimeRate of Change of 

Conversion vs. Conversion

0.6

0.8

R

0.6

0.8

X

-0.4

-0.2

/d(t/τ)

Diff i

Diffusion‐controlled

Kinetic‐controlled

Kinetic‐controlled

0.2

0.4

r/R

0.2

0.4

1-X

-0.8

-0.6d(1-

X)/Diffusion‐

controlled

Diffusion‐controlled

Kinetic‐controlled

00 0.2 0.4 0.6 0.8 1

t/τ

00 0.2 0.4 0.6 0.8 1

t/τ

-10 0.2 0.4 0.6 0.8 1

X

See for example, Levenspiel, O.,Chemical Reaction Engineering, Third Edition, J. Wiley and Sons, 1999 27

Page 28: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Schematic of Melt‐Dispersion Mechanism of Combustion of Nano Aluminum Particles at HighCombustion of Nano Aluminum Particles at High 

Heating Rate (>106 K/s)

Al i dAluminum core covered by initial alumina shell

Fast melting of Al leads to Unloading wave propagatesFast melting of Al leads to spallation of the alumina shell

Unloading wave propagates to the center of Al molten core and generates tensile pressure which disperses 

Levitas, Combust. Flame, 156, 2, 543, 2009

p psmall Al custers

28

Page 29: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Molecular dynamic simulation snapshots of the central slice of a 26 nm Al particle covered with an oxide shell 3 nm thick

•Oxidation starts after core & shell heated to 1100 K

•As oxidation begins, due to expansion of molten core, the size grows

•Oxidation dynamics starts with the Al-NP at the corewith the Al NP at the core shell interface when molten Al reacts with alumina shell taking Ο to f Al h Al O lform Al rich AlxOy clusters, which generates heat

• Shell does not break or shatter, only deforms, y

•When T ~ 2900 K, the alumina shell melts and Al ejections occur from Al-NPi t i t

Blue = envirnomental oxygenRed = core Al atomsBl k h ll Al tinto oxygen environment 

producing oxygen rich AlxOy clusters

Black = shell Al atomsGreen = shell O atoms

Li et al., J. Applied Phys. 114, 13, 134312, 2013 29

Page 30: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Thermal Gravimetric Analysis of Nanoaluminum with CONanoaluminum with CO2

1 6

1.8 7

38nm

1.2

1.4

1.6

5

6

Mass (TG)

10μm

3μm

108nm

45nm (2.5nm)45nm (3.6nm)

1.0

3

4

45nm (2.5nm oxide)38nm

10μm

1

2

nergy (DSC)

3μm108nm

45nm (3.6nm oxide)

( )

250 450 650 850 1050 12500

1

En10μm

Temperature (oC)

K. Brandstadt, D. L. Frost, and J. A. Kozinski, in Advancements in Energetic Materials and Chemical Propulsion, ed. K.K. Kuo and J. de Dios Rivera, Begall House, 2007.Il’in AP, Gromov AA, and Yablunovskii GV (2001) Combustion, explosion, and shock waves, 37 n.4: 418‐422. 30

Page 31: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Polymorphic Phase Transformations in Al2O3 LayerAl2O3 Layer

M. A. Trunov, M. Schoenitzand E. L. Dreizin, Combustion Theory and Modelling, 10, 2006, 603–623

31

Page 32: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Aluminum Nanoparticle Oxidation with Single Particle Mass Spectrometry

2

Particle Mass SpectrometryIncreased rate constant with 

decreasing particle size Shrinking core model

0.5

0.6

0.7

rsio

n, s

T = 700oC0

2

sec)

< 50 nmE ~ 32kJ/ l

0 2

0.3

0.4

for h

alf c

onve

r

t ~ r1.58

-4

-2

(Kco

nv),

Ln(1

/s

50 - 100 nm

Ea ~ 32kJ/mol

0

0.1

0.2

0 5 10 15 20 25 30 35

Tim

e f

time(s) = 0.0025r(nm)1.582

-8

-6

Ln(

Ln(Kconv

) = 17.8 - 21000(1/T)

Ln(Kconv

) = 5.2 - 6847(1/T)

Ln(Kconv

) = 3.2 - 3824(1/T)100 -150 nm

Ea ~ 95kJ/mol

radius, nm-80.0008 0.0009 0.001 0.0011 0.0012

1/T (1/K)

Effective diffusion coefficient (De) of oxygen in ash layer = 10‐9 ~ 10‐8 cm2/s for < 50 nm particlesAt temperatures above ~ 1000oC hollow particles formedAt temperatures above ~ 1000oC, hollow particles formed.

K. Park, D. Lee,† A. Rai, D. Mukherjee, and M. R. Zachariah,J. Phys. Chem. B 2005, 109, 7290‐7299A. RAI, K. PARK, L. ZHOU and M. R. ZACHARIAH, Combustion Theory and Modelling, Vol. 10, No. 5, October 2006, 843–859 32

Page 33: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Combustion of Aluminum Particles inCombustion of Aluminum Particles in Energetic Materials

33

Page 34: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Combustion of Aluminum Particles in Energetic MaterialsEnergetic Materials

• Aluminum is used as an ingredient in solid propellants because of its high energy density, high heat release during oxidation, low cost, and relative safety

• Because most unaluminized propellants are already fuel rich, it might seem counterproductive to add more fuel (Al)

• However oxidation reduces the oxidizer vapors (H2O and CO2) to H2 and CO, better propulsive fluids

• This in combination with a large increase in temperature,This in combination with a large increase in temperature, results in an increase in Isp of around 10% and a net gain in propellant mass fraction in the motor of typically 15%

• Aluminum in even the modest amounts suppressesAluminum in even the modest amounts suppresses combustion instability problems common in motor development programs

• There are also problems with use of aluminum such asThere are also problems with use of aluminum, such as smoky, luminous exhaust trails, two‐phase flow, and slag accumulation

34

Page 35: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Combustion of Aluminized Solid Propellants• Aluminum does not turn into vapor at the propellant 

surface like other primary ingredients (BPAl = 2467oC, usually  propellant Ts ~ 600oC, which is ~ 60 deg below the y p p s , g660oC MP of Al; ρAl = 2.7 g/cm3 which is ~ 1.38 times that of AP and 3 times that of HC binders)

• Its reaction or ignition on the surface is inhibited by theIts reaction or ignition on the surface is inhibited by the refractory oxide coatings on the particle surfaces (MPAl2O3=2072oC; Al2O3 constitutes about 0.5% of the particle mass for 25 μm particles)μ

• The particles tend to adhere to the surface in binder melts, leading to locally higher concentrations

• At temperatures between the Al and Al2O3 melting points,At temperatures between the Al and Al2O3 melting points, leaking of Al from the oxide coating can lead to sintering in assemblages of particles into sintered accumulates. The leakage can be so great that the Al engulfs the entire g g gassemblage to form spherical agglomerates.

35

Page 36: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Combustion of Aluminized Solid Propellants• When aluminum particles are heated the oxide structure 

changes, and the aluminum expands. The coefficient of expansion of the oxide skin is less so that it must be stressed. At the melting point of Al, it expands in volume about 6%, thereby stressing the oxide skin further and potentially causing cracks.

• The concentrations of typically 20 μm particles can lead to coalescence into large droplets (e.g., typically 200 μm containing 103 original particles). 

• Large droplets leave the surface and burn in the gas flow field (typically with H2O and CO2), whereas any original particles that leave the surface individually burn up within 1 t 2 f th f ( ith di t1 to 2 mm of the surface (with a corresponding greater effect on the propellant burning)

• In small motors, large droplets may not burn up completely, d i Ireducing Isp

36

Page 37: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Aluminum Particle Combustion

Image from a small sample of the space shuttle propellant

Magnified video image from a small sample of a nitraminepropellant

oxide cap

streamer

Al agglomerate

oxide cap

Al2O3

approximate

flow direction

200μm1 mmapproximate

surface location

37

Page 38: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Accumulation and AgglomerationOxide skins on particles dropped on 1400oC 

Sintered accumulate, quenched in transition to an agglomerate. Note spherical structures where

p ppplate showing crack pattern and bridging between particles.

spherical structures where coalescence of liquid Al has started.

Agglomerate quenched before complete transition to a molten droplet. Al surface t i h d d th l t i ttension had drawn the accumulate into a sphere, but not yet closed the surface. Un‐melted oxide shells still visible in openings.

38

Page 39: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Particle Packing• The stoichiometry of an AP/binder system dictates that a maximum achievable content of AP be used with required propellant processing and mechanicalrequired propellant processing and mechanical properties

• Typically, a coarse (e.g. 200μm) AP portion is combined with finer particles to fill the spaces left in the coarsewith finer particles to fill the spaces left in the coarse particle array

• By careful blending of sizes (e.g., using trimodalparticle size), formulations are processed with 86‐88% AP by weight (still fuel rich), yielding cured propellants with acceptable mechanical properties

• When Al is added (typically 10‐30 μm), a corresponding volume of fine AP is removed

• Thus the Al particles are preconcentrated in pockets of• Thus the Al particles are preconcentrated in pockets of coarse AP packing pattern

39

Page 40: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Progression of burning front into an aluminized propellantaluminized propellant

The size distribution of agglomerates on the surface depends on• The structural features of the Al particle packing• The surface retention characteristics of the binder (e.g., particle adhesion in a binder melt layer, retention in a carbonaceous surface structure, direct adhesion to underlying Al particles, centrifugal force in spinning motors)

• The susceptibility of individual particles to ignition• Possible connective processes between concentrating particles that lead to groupPossible connective processes between concentrating particles that lead to group behavior

• Evolution of the underlying structure and hot overlying gas flamelets that lead to detachment‐ignition events 40

Page 41: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Effect of pressure on mass‐average agglomerate size for bimodal propellantagglomerate size for bimodal propellant

Coarse/fine AP of /ratio 8/2

Coarse size 390 μmCoarse size 390 μm

Fine size as indicated

41

Page 42: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Typical burn‐out oxide distribution

• Generally, the distribution below 2 μm results from the Al2O3 formed in the cloud around the burning particles (smoke), whereas the larger sizes result from Al2O3 accumulation on the original Al particles

• From a practical viewpoint, a mean size distribution of 10‐25μm is ideal for stabilizing combustor instabilities in the 200‐400 Hz range 42

Page 43: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Factors influencing agglomerates• Large agglomerates result in large residual oxide droplets• High aluminum content in the propellant leads to large 

agglomeratesagglomerates• Factors that increase burning rate reduce the amount and 

size of agglomerates• Ingredient particle size distributions that yield large 

concentrations of aluminum in the propellant particle packing pattern give large agglomerates

• Use of burning rate suppressants and binders that produce increased melts and carbonaceous residue on the burning surface usually lead to increased agglomeration and 

l t iagglomerate size• Modification of the aluminum particles in a way to 

minimize inter‐particle sintering reduces agglomeration ( i f idi i i i id i )(e.g. coatings for aiding ignition, pre‐oxidation)

• Cross‐flow environments tend to decrease agglomeration43

Page 44: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Example of burning propellants with nanometer and micron sized Al particlesnanometer and micron sized Al particles

2~1.8 ×’s increase in rb

1.5 rb = 2.538P0.618

9% nAl (ALEX) / 9% μAl

0.5

1

43 μm Al 80 nm Al

5 mms

s

00 0.5 1 1.5 2

rb = 2.092P0.390

18% μAlCombustion of μm Al far from surface

Combustion of nm Al close to surface

log (P) [MPa]T. R. Sippel, S. F. Son, L. J. Groven, Aluminum agglomeration reduction in a composite propellant using tailored Al/PTFE particles, Combustion and Flame 161 (2014) 311–321.Mench, M.M., Yeh, C.L., and Kuo, K.K., “Propellant Burning Rate Enhancement and Thermal Behavior of Ultra‐fine Aluminum Powders (ALEX),” in P f th 29th A l C f f ICT 1998 30 1 30 15Proc. of the 29th Annual Conference of ICT, 1998, pp. 30‐1 – 30‐15.G. V. Ivanov, and F. Tepper, Challenges in Propellants and Combustion 100 Years after Nobel, pp.636‐645, (Ed. K. K. Kuo et al., Begell House, 1997).

44

Page 45: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Al Burning Times

10000

Experiment

100

1000m

s]1173 K

1

10

00

ng T

ime

[m

d21500 K

0 01

0.1

1

Burn

i

d1

2000 K

Anticipated

0.001

0.01

0.01 0.1 1 10 100 1000

d AnticipatedTimes

Diameter [μm]

45

Page 46: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Example of Burning Propellants: the SurfaceSurface

aggregate of nmAlμmAl agglomerate

surface

50 μm500 μm

50‐250 nmAl emerging from surface as aggregates (pre‐

50 μmAl spherical agglomerateformed by inflammation of an 

agglomerate)aluminized aggregate

L. T. De Luca, L. Galfetti, F. Severini, L. Meda, G. Marra, A. B. Vorozhtsov, V. S. Sedoi, and V. A. Babuk, Burning of Nano‐Aluminized Composite Rocket Propellants, Combustion, Explosion, and Shock Waves, Vol. 41, No. 6, pp. 680–692, 2005

46

Page 47: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Why n ~0.3Why n  0.3

• Surface roughness and presence of cracks inSurface roughness and presence of cracks in oxide layer may alter relationship between dpand A for chemical reactions (Buckmaster andand As for chemical reactions (Buckmaster and Jackson, Comb Theory Model 17, 335, 2013)

fracDd⎛ ⎞ frac

pref

ref

dA A

D⎛ ⎞

= ⎜ ⎟⎜ ⎟⎝ ⎠

• n varies from 1 to 0 as Dfracchanges from 2 to 3

3

2 3f

frac

D

D⎝ ⎠

< <g

• For non‐fractal surfaces, tb ~ d

3 fracDb pt ~ d −

47

Page 48: 5 Combustion of Energetic Materials - Princeton University · sol‐gel chemistry, ink‐jetting, vapor depositionprocesses electroandcold C.E. Bunker and J.J. Karnes, μm 10 nm ,

Sintering and reaction times are close that nanostructure is lost before it can be utilized

Sintering of NanoAluminum

0.68( 1)Dfpd

CoalescenceTime N= −ησ

t t d d t i it

• Sintering time consists of two times: time to heat the particles and the fusion time

η – temperature dependent viscositydp – particle diameterσ – surface tensionDf – aggregate fractal dimensionN ‐ number of primaries

P. Chakraborty and M. Zachariah, Combustion and Flame 161 (2014) 1408.

• Sintering time consists of two times: time to heat the particles and the fusion time • Loss of nanostructure (surface area) in < 20 μs• Experimental burning times 50‐500 μs

Wh i d dWhat is needed:• Approaches that enable smaller length scales, disable sintering, and enable distribution  48