24
5. Boltzmann statistic Basel, 2008

5. Boltzmann statistic - unibas.chepc/huber/PCIpdfs/5-Boltzmann.pdf · Applications of Boltzmann relation ... Web tutorial: Statistik und Datenauswertung. 1. Introduction Almost all

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 5. Boltzmann statistic - unibas.chepc/huber/PCIpdfs/5-Boltzmann.pdf · Applications of Boltzmann relation ... Web tutorial: Statistik und Datenauswertung. 1. Introduction Almost all

5. Boltzmann statistic

Basel, 2008

Page 2: 5. Boltzmann statistic - unibas.chepc/huber/PCIpdfs/5-Boltzmann.pdf · Applications of Boltzmann relation ... Web tutorial: Statistik und Datenauswertung. 1. Introduction Almost all

Summary

References:1. P. Atkins, P. Atkins, J. de Paula,

“Atkins‘ Physical Chemistry”, Oxford Univ. Press, Oxford, 8th ed., 2006, Chapter 16.

2. Tinoco, K. Sauer, J.C. Wang, J.D. Puglisi “Physical Chemistry, Principles and applications in biological sciences”, Prentice-Hall, New Jersey, 4th ed. 2002, Chapter 11

1. Introduction

2. The most probable configuration

3. Boltzmann relation

4. Statistical thermodynamics

5. Applications of Boltzmann relation

Supplementary material:German version for this chapter (Prof. Huber lecture from 2007).

Web tutorial: Statistik undDatenauswertung

Page 3: 5. Boltzmann statistic - unibas.chepc/huber/PCIpdfs/5-Boltzmann.pdf · Applications of Boltzmann relation ... Web tutorial: Statistik und Datenauswertung. 1. Introduction Almost all

1. Introduction

Almost all chemical properties can be understood by considering the manner in which the molecules are occupying the energy levels. The total energy of a system formed by N particles/molecules, E is shared between the particles/molecules due to their collisions, which:

- redistribute the energy between the molecules

- redistribute the energy between their mode of movement (rotation, vibration, etc).

Population of the state: each state of the system is characterised by a number of molecules, Ni with an energy Ei

Aim: to calculate the populations of states for any type of molecules, in any mode of movement, at any temperature.

Page 4: 5. Boltzmann statistic - unibas.chepc/huber/PCIpdfs/5-Boltzmann.pdf · Applications of Boltzmann relation ... Web tutorial: Statistik und Datenauswertung. 1. Introduction Almost all

1.1 Population of states: characteristics

Characteristics of the populations of states:

- Remain almost constant, even if the identity of the molecules in each state may change at every collision.

- The molecules are independent (we neglect the intermolecular interactions)

- Principle of a priori probabilities: all possibilities for the distribution of energy are equally probable. Vibration states with Ei are equally populated as the rotational ones, with Ei.

Total energy of the system is: ∑=i

iEE

Population of states depend only on one parameter: temperature !

(5.1)

Page 5: 5. Boltzmann statistic - unibas.chepc/huber/PCIpdfs/5-Boltzmann.pdf · Applications of Boltzmann relation ... Web tutorial: Statistik und Datenauswertung. 1. Introduction Almost all

1.2 Instantaneous configurationsAt any instant the system contains: N0 molecules with E0, N1 with E1, N2with E2 ...

Instantaneous configuration of the system: a set of populations N0, N1, N2, ...Nk, specified as {N0, N1, ...}, and which has E0, E1, ... energies.

E0 – zero-point energy (reference energy, by convention) : E0 = 0

Ei – energy of each molecule

A system of molecules has a very large number of instantaneous configurations, which fluctuate with time due to the populations change:

{N, 0, 0, 0, ...}, {N-1, 1, 0, 0, ...}, {N-1, 0, 1, 0, ...}, {N-2, 2, 0, 0, ...}, {N-2, 0, 2, 0, ...},

All molecules ingroundstate

One molecule is excited

Two molecules are excited

Page 6: 5. Boltzmann statistic - unibas.chepc/huber/PCIpdfs/5-Boltzmann.pdf · Applications of Boltzmann relation ... Web tutorial: Statistik und Datenauswertung. 1. Introduction Almost all

Weight of the configuration

A system free to switch between groundstate and an excited state will show properties characteristic almost exclusive to the second configuration, as it is a more likely state (when the number of molecules, N is high).

A general configuration {N0, N1, ...} can be achieved in W different ways.

Weight of configuration, W: the way in which a configuration can be achieved.

W = N! /(N0!N1!…Nr!)

Example: Calculate the weight of a configuration in which 20 molecules are distributed in the arrangement: 0,1,5,0,8,0,3,2,0,1.

101019.4!1!0!2!3!0!8!0!5!1!0

!20×==W

(5.2)

Page 7: 5. Boltzmann statistic - unibas.chepc/huber/PCIpdfs/5-Boltzmann.pdf · Applications of Boltzmann relation ... Web tutorial: Statistik und Datenauswertung. 1. Introduction Almost all

2. The most probable configuration

The most probable configuration is the one which has such a high weight hat the system will be always found in it and with properties characteristic for this configuration.

Find the dominating configuration: W = maximum > dW = 0

Conditions:

- Total energy criterion: take into account only configurations which correspond to a constant total energy of the system, E:

-Total number criterion: total number of molecules is fixed, N.

∑=i

iNN

ii

iENE ∑=

(5.3)

(5.4)

(5.5)

Page 8: 5. Boltzmann statistic - unibas.chepc/huber/PCIpdfs/5-Boltzmann.pdf · Applications of Boltzmann relation ... Web tutorial: Statistik und Datenauswertung. 1. Introduction Almost all

2.1 Find the most probable configuration

To find a criterion for which W is maximum, is simpler to use lnW and find its maximum.

( ) ∑−=++−==i

irr

NNNNNNNNN

NW !ln!ln!ln!ln!ln!ln!!!

!lnln 1010

KK

We simplify the factorials, using Sterling‘s approximation: ln(n!) = n ln n - n

The approximate expresion of the weight of the configuration is:

( ) ( ) ∑∑ −=−−−=i

iii

iii NNNNNNNNNNW lnlnlnlnln

When a configuration changes so that all Ni Ni+dNi, lnW lnW +d(lnW).

( ) ii i

dNNWWd ∑ ⎟

⎠⎞⎜

⎝⎛= δδ lnln

(5.6)

(5.7)

(5.8)

(5.9)

Page 9: 5. Boltzmann statistic - unibas.chepc/huber/PCIpdfs/5-Boltzmann.pdf · Applications of Boltzmann relation ... Web tutorial: Statistik und Datenauswertung. 1. Introduction Almost all

Find the most probable configuration

At a maximum: d(lnW) = 0

and 5.4 and 5.5 are subject to constraints:

0

0

=

=

ii

ii

i

dN

dNE

(5.10)

(5.11)

We will use Lagrange method of undetermined multipliers (α, β) to 5.9.

( )

ii

ii

ii

ii

iii i

dNENW

dNEdNdNNWWd

∑∑∑

⎭⎬⎫

⎩⎨⎧ −+⎟

⎠⎞⎜

⎝⎛=

−+⎟⎠⎞⎜

⎝⎛=

βαδδ

βαδδ

ln

lnln(5.12)

As d(Ni) are treated as independent, in order to satisfy 5.10 it is necessary that for each i:

0ln =−+⎟⎠⎞⎜

⎝⎛

ii

ENW βαδ

δ

(5.13)

(5.14)

Then Ni have their most probable value!

Page 10: 5. Boltzmann statistic - unibas.chepc/huber/PCIpdfs/5-Boltzmann.pdf · Applications of Boltzmann relation ... Web tutorial: Statistik und Datenauswertung. 1. Introduction Almost all

Find the most probable configuration

Since N is a constant, the diferentiation with respect to Ni gives (using 5.8):

∑⎭⎬⎫

⎩⎨⎧

⎟⎠⎞

⎜⎝⎛−≈⎟

⎠⎞⎜

⎝⎛

j j

jj

i NNN

NW

δδδδ lnln (5.15)

By differentiating the product of the denominator in 5.15 we obtain :

{ }1lnln +−=⎟⎠⎞⎜

⎝⎛

ii

NNW

δδ (5.16) Because when:

i = j

i ≠ j

⎟⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛=⎟

⎠⎞⎜

⎝⎛

=⎟⎠⎞

⎜⎝⎛=⎟

⎠⎞

⎜⎝⎛

i

j

ji

J

j

j

i

j

NN

NNN

NN

NN

δδ

δδ

δδ

δδ

1ln

1

0=⎟⎠⎞

⎜⎝⎛

i

jN

δEquation 5.14 becomes:( ) 01ln =−++− ii EN βα

iEi eeN βα −−= 1The most probable population of the state of

energy, Ei is:

(5.17)

(5.18)

(5.19)(5.20)

(5.21)

Page 11: 5. Boltzmann statistic - unibas.chepc/huber/PCIpdfs/5-Boltzmann.pdf · Applications of Boltzmann relation ... Web tutorial: Statistik und Datenauswertung. 1. Introduction Almost all

2.2 Boltzmann distributionFinal step: to evaluate constants α and β:

- We use total number criterion 5.5 >

- We introduce 5.22 in 5.21 and obtain the number of molecules in a state (Boltzmanndistribution:

iE

iii eeNN βα −−∑∑ == 1

(5.22)

∑ −

=

i

E

E

i i

i

eNeN β

β

(5.23)

The constant β can be obtained from the mean energy of one molecule, by taking into account the translation movement of the molecule,

(Ei = pxi2 / 2m):

<E> = ΣNi Ei / N = Σ Ei e- βEi / Σ e - βEi (5.25)

(5.24)

kTE

21

21 == β

(5.26) ∑−

=

i

kTE

ikTiE

i

e

NeN

(5.27)

Page 12: 5. Boltzmann statistic - unibas.chepc/huber/PCIpdfs/5-Boltzmann.pdf · Applications of Boltzmann relation ... Web tutorial: Statistik und Datenauswertung. 1. Introduction Almost all

2.3 Molecular partition function

∑ −=i

Eieq β

The molecular partition function, q represents the summ in the denominator of the Boltzmann expression for the most probable population (5.27):

This function contains all the thermodynamic information about a system of independent particles/molecules at thermal equilibrium.

(5.28)The sum is over the states of an individual molecule

If several states, gi have the same energy,Ei, the expression for the molecular partition function is:

∑ −=i

Ei

iegq β (5.29)gi – multiplicity of the states

Page 13: 5. Boltzmann statistic - unibas.chepc/huber/PCIpdfs/5-Boltzmann.pdf · Applications of Boltzmann relation ... Web tutorial: Statistik und Datenauswertung. 1. Introduction Almost all

3. Boltzmann relation

En << kT : Nn ≈ No

En >> kT : Nn ≈ 0

En = kT : N = N0/e

The distribution of particles energy as function of temperature in a system formed by a high number of particles:

at T = 0 all particles have the groundstate energy

at T > 0 there are particles with a higher energy than the groundstate-one.

Nn =Noe−En kT

Boltzmann relation for the number of particles(molecules) in a state, En as function of the number of particles in the groundstate:

N0 = number of particles with E0 = 0

Nn = number of particles with En

k = Boltzmann constant

(5.30) (5.31)

(5.32)

(5.33)

Page 14: 5. Boltzmann statistic - unibas.chepc/huber/PCIpdfs/5-Boltzmann.pdf · Applications of Boltzmann relation ... Web tutorial: Statistik und Datenauswertung. 1. Introduction Almost all

Total number of molecules

N = N0 + N1 + N2 +…= Ni

i=0

∑ = Noe−Ei kT

i=0

∑ = No e−Ei kT

i=0

N n

N= e − E n kT

e − E i kT

i = 0

Using Boltzmann relation 5.30 we obtain the ratio of molecules which are in the state with the energy En:

Total number of molecules of a system, N, in thermal equilibrium is:

(5.35)

(5.34)

When gn =1

Page 15: 5. Boltzmann statistic - unibas.chepc/huber/PCIpdfs/5-Boltzmann.pdf · Applications of Boltzmann relation ... Web tutorial: Statistik und Datenauswertung. 1. Introduction Almost all

3.1 Proportion of isomers in a system

n gauche( )n anti( )

=g gauche( )

g anti( )⋅e

−∆E

kT

≡ e−

∆ E

kT = e−

∆ E molar

RT ≤ 1

∆ E molar = 5 kJ / mol

Which is the probability of each isomer to be found in the system?

Br

F

Br

F

Br

F

gauche gaucheanti

0 60 120 180 240 300 3600

2

4

ϕ

V(ϕ)

∆E

Using 5.30 and taking into account gi we obtain:

gi- number of states with the same energy, Ei (states multiplicity)

Boltzmann factor

Example:

T = 300Kn gauche( )

n anti( )=

2

1e

−5000

8.314⋅300 = 0.269 21% gauche 79% anti

If the temperature is increasing, exp(-∆E/kT) is decreasing and thus more „gauche“ isomers are present !

(5.36)

1-Br-2-F-ethane

R = kT ngauche + nanti = 100%

Page 16: 5. Boltzmann statistic - unibas.chepc/huber/PCIpdfs/5-Boltzmann.pdf · Applications of Boltzmann relation ... Web tutorial: Statistik und Datenauswertung. 1. Introduction Almost all

4. Statistical thermodynamics

THERMODYNAMICS

STATISTICAL THERMODYNAMICS

QUANTUM CHEMISTRY

GLOBAL SIMULATIONS

Calculations of the fundamental constants (c, Planck constant), definitions for fundamental properties (nuclear mass)

Micro-domain: atoms, molecules, bonds, intermolecular interactions...

Chemical & physical properties (frozen point, melting point, etc)

Page 17: 5. Boltzmann statistic - unibas.chepc/huber/PCIpdfs/5-Boltzmann.pdf · Applications of Boltzmann relation ... Web tutorial: Statistik und Datenauswertung. 1. Introduction Almost all

4.1 Population distribution-rotation levels

ni

n0

=gi

g0

e−

∆Ei

kT

ntot = n j

j= 0

ni =n0

g0

⋅ gi ⋅e−

∆Ei

kT

n i

n tot

ϕ E( ) = n i

n tot

= n i

n j

j = 0

∑=

n 0

g 0g ie

− ∆ E ikT

n 0

g 0g j e

−∆ E j

kT

j = 0

∑= g ie

− ∆ E ikT

q

no

n1

n2

n3

∆E1

∆E2

∆E3

The distribution of molecules with different energy values (discrete energy levels, equidistant), as function of the population of the groundstate, n0 :

gi- number of states with the same energy, Ei

ni – number of molecules with Ei

n0 – number of molecules with E0 = 0

Relative occupancy of every energy level, :

Where: ∑∆

−=

i

kTE

i

i

egq

(5.37) (5.38)

(5.40)

(5.39)

(5.41)

Example: vibration energy levels of a diatomic molecule in the harmonicapproximation, or rotation energy levels

Page 18: 5. Boltzmann statistic - unibas.chepc/huber/PCIpdfs/5-Boltzmann.pdf · Applications of Boltzmann relation ... Web tutorial: Statistik und Datenauswertung. 1. Introduction Almost all

5. Applications of Boltzmann relation

P = P0e−

Mgh

RT

k = k0e−

∆E A

RT

> Variation of the pressure as function of high (Barometer formula):

> Temperature dependence of the reaction rates (Arrhenius law):

g - gravitation acceleration

P – pressure at high h

P0 – pressure at the see level

(5.43)

(5.42)

k - rate constant of the reaction

Ea- activation energy

k0 – pre-exponential factor

Page 19: 5. Boltzmann statistic - unibas.chepc/huber/PCIpdfs/5-Boltzmann.pdf · Applications of Boltzmann relation ... Web tutorial: Statistik und Datenauswertung. 1. Introduction Almost all

Applications of Boltzmann relation

> Fraction of molecules in a gas with velocity components vx in the domain vxto vx+dvx : one-dimension Maxwell-Boltzmann distribution of molecules speeds (at a temperature and energy):

ϕ v x( ) =M

2πRTe

−Mv x

2

2 RT

(5.44)

(5.45)

M – molecular mass

T- temperature

R = kT

ϕ v( ) = 4π M

2πRT

⎛ ⎝ ⎜

⎞ ⎠ ⎟

32

v 2e−

Mv 2

2 RT

> Fraction of molecules in a gas in the velocity range: vx to vx+dvx vy to vy+dvyand vz to vz+dvz : three-dimension Maxwell-Boltzmann distribution of molecules speeds (at a temperature and energy):

Page 20: 5. Boltzmann statistic - unibas.chepc/huber/PCIpdfs/5-Boltzmann.pdf · Applications of Boltzmann relation ... Web tutorial: Statistik und Datenauswertung. 1. Introduction Almost all

Applications of Boltzmann relation

i - Butan n - Butan i - Butan n - Butan

Low Temperature High Temperature

> The populations of the energy levels of two isomers (i-Butane and n-Butane) as function of the temperature:

> Microscopic temperature definition:

0

lnnnk

ETi

i∆−= (5.46)

Page 21: 5. Boltzmann statistic - unibas.chepc/huber/PCIpdfs/5-Boltzmann.pdf · Applications of Boltzmann relation ... Web tutorial: Statistik und Datenauswertung. 1. Introduction Almost all

5.1 Occupancy of the energy levels

High temperatures: kT = 2∆EEi

gi = 1 gi = i

39%

3%

9%

5%

14%

24%

15%

8%

14%

11%

17%

19%

At high temperatures the energy levels with higher multiplicity of the states have a higher occupancy degree, than in the case of energy levels with multiplicity 1.

(5.47)

When the ∆E is increasing, the occupancy of the higher energy levels is decreasing.

- 5%

< 5%

Page 22: 5. Boltzmann statistic - unibas.chepc/huber/PCIpdfs/5-Boltzmann.pdf · Applications of Boltzmann relation ... Web tutorial: Statistik und Datenauswertung. 1. Introduction Almost all

Occupancy of the energy levels

Low temperatures: kT = 0.5∆E

Normal temperatures: kT = ∆E

63%

3%

9%

23%

40%

8%

16%

29%

Ei

Ei1%

12%

86%

4%

20%

75%

gi = 1

gi = 1

gi = i

gi = i

(5.48)

(5.49)

- 5%

< 5%

- 5%

< 5%

Page 23: 5. Boltzmann statistic - unibas.chepc/huber/PCIpdfs/5-Boltzmann.pdf · Applications of Boltzmann relation ... Web tutorial: Statistik und Datenauswertung. 1. Introduction Almost all

Populations of the rotational energy levels

Example: The relative populations of the rotational energy levels of Co2

• Only states with even J values are occupied

• The full line shows the smoothed, averaged population of levels.

Relative populations of the rotational energy levels

Page 24: 5. Boltzmann statistic - unibas.chepc/huber/PCIpdfs/5-Boltzmann.pdf · Applications of Boltzmann relation ... Web tutorial: Statistik und Datenauswertung. 1. Introduction Almost all

To understand and learn- Was ist der Boltzmannfaktor?

-Wann wird im Exponent k, wann R verwendet? Warum?

-Wie hängen k und R zusammen?

-Was kommt in der Boltzmannformel zusätzlich zum Boltzmannfaktor vor?

-Befinden sich bei hoher oder tiefer Temperatur mehr Teilchen in oberen Zuständen?

-Befinden sich bei kleinen oder grossen Quantenabständen mehr Teilchen in oberen Zuständen?

-Was ist die Zustandssumme? Als was kann sie bei der Boltzmann-Verteilung betrachtet werden?

-Wie sieht die Normierungsbedingung bei einer kontinuierlichen bzw. diskreten Verteilung aus?

-Nennen Sie mindestens 3 Anwendungen der Boltzmann-Formel!

-Welche Energie finden Sie im Exponenten der Barometerformel?

-Welche Energie finden Sie im Exponenten der Arrheniusgleichung?

-Welche Energie finden Sie im Exponenten der Maxwell-Boltzmann-Verteilung?

-Worauf beruht der zusätzliche Faktor 4πv2 in der 3- gegenüber der 1-dimensionalen MB-Verteilung?

-Diskutieren Sie die Temperaturabhängigkeit des Gleichgewichts n-Butan i-Butan!

-Warum sind im i-Butan die Niveaux weiter auseinander als im n-Butan?

-Wie ist die mikroskopische Temperatur definiert?

-Wie sind die rotatorische, vibratorische und elektronische Temperatur definiert?

-Was bedeutet es, wenn diese nicht gleich sind?

-Nennen Sie ein Beispiel, wo negative Temperaturen hergestellt werden können! Verletzt das den nullten Hauptsatz der Thermodynamik?

-Worauf beruht die Boltzmann-Verteilung statistisch gesehen?