33
e a n M o d e a r c h C o m r a i n -F o l l o w M o d e l i n g 4D Variational Data Assimilation 4D Variational Data Assimilation Observation Operators Observation Operators 4D Variational Data Assimilation 4D Variational Data Assimilation Observation Operators Observation Operators Hernan G. Arango Hernan G. Arango

4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango

Embed Size (px)

Citation preview

Page 1: 4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango

ean M od

earch C o m

r a i n - F o l l o w

M o d e l i n g

4D Variational Data Assimilation4D Variational Data AssimilationObservation OperatorsObservation Operators

4D Variational Data Assimilation4D Variational Data AssimilationObservation OperatorsObservation Operators

Hernan G. ArangoHernan G. Arango

Page 2: 4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango

ROMS 4DVAR ALGORITHMS

• Strong Constraint Conventional (S4DVAR): outer loop, NLM, ADM Incremental (IS4DVAR): inner and outer loops, NLM, TLM, ADM (Courtier et al.,

1994) IS4DVAR_OLD: inefficient old conjugate gradient algorithm

(is4dvar_ocean_old.h, descent.F) IS4DVAR: new conjugate gradient algorithm, CONGRAD, Fisher 1997

(is4dvar_ocean.h, cgradient.h) IS4DVAR, LANCZOS: conjugate gradient and Lanczos algorithm, Fisher

1997 (is4dvar_ocean_lanczos.h, cgradient_lanczos.h)

• Weak Constraint Indirect Representer Method (W4DVAR): inner and outer loops, NLM, TLM,

RPM, ADM (Egbert et al., 1994; Bennett et al, 1997) Physical Space Statistical Analysis (W4DPSAS): inner and outer loops, NLM,

TLM, ADM (Courtier, 1997)

Page 3: 4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango

Strong Constraint, Incremental 4DVAR

Let’s introduce a new minimization variable v, such that:

J(vk) = ½(vk)Tvk + ½(Hxk – dk-1)TO-1(Hxk – dk-1)

v J = vk + BT/2HTO-1(Hxk – dk-1) = vk + BT/2x Jo => vk + W -1/2LT/2GS

B = SCS => S(GL1/2W -1/2)(W

-1/2LT/2G)S

xk = B1/2vk + xk-1 – xb

xk = B-1/2(xk + xk-1 – xb)

yielding

The gradient of J in minimization-space, denoted v J, is given by:

The background-error covariance matrix can be factored as:

where S is the background-error standard deviations, C is the background-error correlations which can be factorized as C = C1/2CT/2, G is the normalization matrix which ensures that the diagonal elements of C are equal to unity, L is a 3D self-adjoint filtering operator, and W is the grid cell area or volume.

Page 4: 4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango

Basic IS4DVAR Procedure

(1) Choose an x(0) = xb(0)

(2) Integrate NLROMS t [0, ] and save x(t) (NLM at OBS)

(a) Choose a x(0)

(b) Integrate TLROMS t [0, ] and compute J (TLM at OBS)

(c) Integrate ADROMS t [0, ] to yield (ADM forcing at OBS) (d) Compute

(e) Use a descent algorithm to determine a “down gradient”

correction to x(0) that will yield a smaller value of J

(f) Back to (b) until converged

(3) Compute new x(0) = x(0) + x(0) and back to (2) until converged

Out

er

Loop

Inne

r Lo

op

Page 5: 4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango

• Given a first guess (a forward trajectory)…• And given the available data…

Incremental, Strong Constraint 4DVar(IS4DVAR)

Page 6: 4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango

Incremental, Strong Constraint 4DVar(IS4DVAR)

• Given a first guess (a forward trajectory)…• And given the available data…• IS4DVAR computes the changes (or increments) to the

initial conditions so that the forward model fits the observations.

Page 7: 4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango

4DVAR Observations NetCDF 4DVAR Observations NetCDF FileFile

• Utility/obs_initial.F• Utility/obs_read.F• Utility/obs_write.F• Utility/obs_scale.F• Utility/obs_depth.F• Utility/extract_obs.F• Adjoint/ad_extract_obs.F• Adjoint/ad_misfit.F

Page 8: 4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango

Metadata

Dimensions:

survey Number of different timeweight Number of interpolation weightdatum Observations counter, unlimited dimension

Variables:

Nobs(survey) Number of observations per time survey survey_time(survey) Survey time (days) obs_type(datum) State variable ID associated with observation obs_time(datum) Time of observation (days) obs_lon(datum) Longitude of observation (degrees_east) obs_lat(datum) Latitude of observation (degrees_north) obs_depth(datum) Depth of observation (meters or level) obs_Xgrid(datum) X-grid observation location (nondimensional) obs_Ygrid(datum) Y-grid observation location (nondimensional) obs_Zgrid(datum) Z-grid observation location (nondimensional) obs_error(datum) Observation error, assigned weight obs_value(datum) Observation value

Page 9: 4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango

Observations NetCDFdimensions:

survey = 1 ; tate_variable = 7 ; datum = UNLIMITED ; // (79416 currently)

variables:

char spherical ; spherical:long_name = "grid type logical switch" ; int Nobs(survey) ; Nobs:long_name = "number of observations with the same survey time" ; double survey_time(survey) ; survey_time:long_name = "survey time" ; survey_time:units = "days since 2000-01-01 00:00:00" ; survey_time:calendar = "365.25 days in every year" ; double obs_variance(state_variable) ; obs_variance:long_name = "global (time and space) observation variance" ; obs_variance:units = "squared state variable units" ; int obs_type(datum) ; obs_type:long_name = "model state variable associated with observation" ; obs_type:units = "nondimensional" ; double obs_time(datum) ; obs_time:long_name = "time of observation" ; obs_time:units = "days since 2000-01-01 00:00:00" ; obs_time:calendar = "365.25 days in every year" ; double obs_depth(datum) ; obs_depth:long_name = "depth of observation" ; obs_depth:units = "meter" ; double obs_Xgrid(datum) ; obs_Xgrid:long_name = "x-grid observation location" ; obs_Xgrid:units = "nondimensional" ; double obs_Ygrid(datum) ; obs_Ygrid:long_name = "y-grid observation location" ; obs_Ygrid:units = "nondimensional" ; double obs_Zgrid(datum) ; obs_Zgrid:long_name = "z-grid observation location" ; obs_Zgrid:units = "nondimensional" ; double obs_error(datum) ; obs_error:long_name = "observation error, assigned weight, inverse variance" ; obs_error:units = "inverse squared state variable units" ; double obs_value(datum) ; obs_value:long_name = "observation value" ; obs_value:units = "state variable units" ; 2

1

3

5

4

8

6

7

(i1,j1,k1)

(i2,j2,k2)

Variable IDζ 1u 2v 3u 4v 5

temp 6salt 7

Page 10: 4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango

Processing

• Use hindices, try_range and inside routines to transform (lon,lat) to (,)

• Find how many survey times occur within the data set (survey dimension)

• Count observations available per survey (Nobs) and assign their times (survey_time)

• Sort the observation in ascending time order and observation time for efficiency

• Save a copy of the observation file

• Several matlab scripts to process observations

Page 11: 4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango

ROMS GRIDROMS GRID

• Horizontal curvilinear orthogonal coordinates on an Arakawa C-grid

• Terrain-following coordinates on a staggered vertical grid

Page 12: 4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango

Curvilinear Transformation

Page 13: 4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango

Staggered C-Grid, RHO-points

Page 14: 4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango

Staggered C-Grid, U-points

Page 15: 4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango

Staggered C-Grid, V-points

Page 16: 4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango

Vertical Terrain-following Coordinates

Dubrovnik(Croatia)

Vieste(Italy)

Longitude

Depth(m)

Page 17: 4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango

Parabolic Splines Reconstruction

Page 18: 4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango

}

} Nx

Ny

PARALLEL TILE PARTITIONS

8 x 8

Page 19: 4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango

East-West MPI Communications

With RespectTo Tile R

Nonlinear

Adjoint With RespectTo Tile R

ad_V

ad_V

ad_V

ad_V

ad_V

L

L

L

L

R

R

R

R

i

i

i

i

i

i

i

i1 1 11

=

=+ + + +

ad_V

ad_V

+

+

;

;

0

0

=

=

ad_V

ad_V

ad_V

ad_V

ad_V

ad_V

R

R

R

R

L

L

L

L

i

i

i

i

i

i

i

i1 1 11

2 2 2 2=

=

-

-

-

-

-

-

-

-

ad_V

ad_V

+

+

;

;

0

0

=

=

i-2 i-1 i i+1

Istr Iend

Jstr

Jend

i-2 i-1 i i+1

Istr Iend

Jstr

Jend

ad_receive

ArecvE AsendW

ad_send

AsendE ArecvWTILE L TILE R

-

--

-V

VR

R L

L

i i

i i1 1

=

V

V2 2

=

V

V V

VRLii

+1

=

=L Ri +1i

i-2 i-1 i i+1

Istr Iend

Jstr

Jend

i-2 i-1 i i+1

Istr Iend

Jstr

Jend

send

ArecvE AsendW

receive

AsendE ArecvWTILE L TILE R

Page 20: 4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango

ad_V

ad_V

ad_V

ad_V

ad_V

T

T

T

T

B

B

B

B

j

j

j

j

j

j

j

j1 1 11

=

=- - - -

ad_V

ad_V

+

+

;

;

0

0

=

=

ad_V

ad_V

ad_V

ad_V

ad_V

ad_V

B

B

B

B

T

T

T

T

j

j

j

j

j

j

j

j1 1 11

2 2 2 2=

=

+

+

+

+

+

+

+

+

ad_V

ad_V

+

+

;

;

0

0

=

=

j+2

j+1

j

j-1Jend

Jstr

Istr Iend

j+2

j+1

j

j-1

Jend

Jstr

Istr Iend

ad_receive

ArecvS

AsendN

ad_send

AsendS

ArecvN

TILE B

TILE T

V

V V

V BTjj

-1

=

=T Bj -1j

+

++

+V

VB

B T

T

j j

j j1 1

=

V

V2 2

=

j+2

j+1

j

j-1Jend

Jstr

Istr Iend

j+2

j+1

j

j-1

Jend

Jstr

Istr Iend

send

ArecvS

AsendN

receive

AsendS

ArecvN

TILE B

TILE T

North-South MPI CommunicationsN

onlin

ear

Adjo

int

With Respect to Tile B

Page 21: 4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango

Observations

Page 22: 4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango

L o n g B e a c h

B e a c h H a v e n

K ilo m ete rs

0 1 2

L itt le E g g In le t

C a b l e

N o d e AN ode B

L E O -1 5 R es ea rch

A rea

B r ig a n tin e

F ie ld S t a t io n

Mullica R iver

G r e a t

B a y

L E O -15 R esearch S ta tion s

B rigan tin eIn let

L an d andW etla nds1 m ete r 3 m ete rs6 m e ters10 m ete rs14 m ete rs16 m e ters18 m eters22 m ete rs

D ep th

LEO-15 LEO NJSOS

Longterm Ecosystem Observatory

30km x 30km 1998-2001

New Jersey ShelfObserving System

Satellites, Aircraft, SurfaceRADAR, Glider AUVs 300km x 300km

Beginning 2001

RUTGERSTHE STATE UNIVERSITY OF NEW JERSEY

3km x 3km1996-Present

Station Field

Page 23: 4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango

Assumptions

• All scalar observations are assumed to be at RHO-points.

• All vector observations are assumed to be rotated to curvilinear grid, if applicable. Vector observations are always measured at the same location.

• All observation horizontal locations are assumed to be in fractional curvilinear grid coordinates.

• Vertical locations can be in fractional levels (1:N) or actual depths (negative values).

• Removal of tidal signal?

• Filtering of non-resolved processes?

Page 24: 4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango

Observation Operators

• Currently, all observations must be in terms of model state variables (same units):– 2D configuration: zeta, ubar, vbar

– 3D configuration: zeta, u, v, T, S, …

• There is not a time interpolation of model solution at observation times:

time - 0.5*dt < ObsTime < time + 0.5*dt

• There is not observations quality control (screening) inside ROMS, except ObsScale.

• No observation constraints are implemented (Satellite SST measurements)

Page 25: 4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango

Observation Interpolation

• Only spatial linear interpolation is coded.

• If land/sea masking, the interpolation coefficients are weighted by the mask.

• If shallower than z_r(:,:,N), observations are assigned to the surface level.

• If deeper than z_r(:,:,1), observations are assigned to bottom level.

Page 26: 4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango

Recommedations

• Create a NetCDF file for each observation type.

• Use a processing program to meld NetCDF observation files (nc_4dvar_meld.m).

• Keep a master copy of each observation file, in case that you are running your application at different resolutions.

• Decimation of observations. Finite volume representation?

Page 27: 4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango

BACKGOUNDERROR COVARIANCE

Page 28: 4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango

Model/Background Error Covariance, B

• Use a generalized diffusion squared-root operator (symmetric) as in Weaver et al. (2003):

B = S C S = S (G L1/2

W-1/2

) (W-1/2

LT/2

G)

• The normalization matrix, G, ensure that the diagonal elements of the correlation matrix, C, are equal to unity. They are computed using the exact (expensive) or randomization (cheaper) methods.

• The spatial convolution of the self-adjoint filtering operator, L1/2

, is split in horizontal and vertical components and discretized both explicitly and implicitly.

• The model/background standard deviation matrix, S, is computed from long (monthly, seasonal) simulations.

• The grid cell area or volume matrix, W-1/2

, is assumed to be time invariant.

Page 29: 4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango

Model/Background Error Correlation (C)

Horizontal

Hdecay = 100 km

Vdecay = 100 m

Vertical (implicit)

Page 30: 4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango

Model/Background Error Correlation NormalizationCoefficients (G)

SSH Temperature

Bottom Level

EAC EAC

Page 31: 4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango

job_is4dvar.sh

Page 32: 4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango

build.sh

Page 33: 4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango

s4dvar.in