441 Lecture 11

Embed Size (px)

Citation preview

  • 8/18/2019 441 Lecture 11

    1/25

    Spacecraft and Aircraft Dynamics

    Matthew M. PeetIllinois Institute of Technology

    Lecture 11: Longitudinal Dynamics

  • 8/18/2019 441 Lecture 11

    2/25

    Aircraft DynamicsLecture 11

    In this Lecture we will cover:

    Longitudinal Dynamics:• Finding dimensional coefficients from non-dimensional coefficients• Eigenvalue Analysis• Approximate modal behavior

    short period modephugoid mode

    M. Peet Lecture 11: 2 / 25

  • 8/18/2019 441 Lecture 11

    3/25

    Review: Longitudinal Dynamics

    Combined Terms

    ∆ u̇ + ∆ θg cos θ0 = X u ∆ u + X w ∆ w + X δ e δ e + X δ T δ T

    ∆ ẇ + ∆ θg sin θ0 − u 0 ∆ θ̇ = Z u ∆ u + Z w ∆ w + Z ẇ ∆ ẇ + Z q ∆ θ̇ + Z δ e δ e + Z δ T δ T ∆ θ̈ = M u ∆ u + M w ∆ w + M ẇ ∆ ẇ + M q ∆ θ̇ + M δ e δ e + M δ T δ T

    M. Peet Lecture 11: 3 / 25

  • 8/18/2019 441 Lecture 11

    4/25

    Force CoefficientsForce/Moment Coefficients can be found in Table 3.5 of Nelson

    M. Peet Lecture 11: 4 / 25

  • 8/18/2019 441 Lecture 11

    5/25

    Nondimensional Force CoefficientsNondimensional Force/Moment Coefficients can be found in Table 3.3 of Nelson

    M. Peet Lecture 11: 5 / 25

  • 8/18/2019 441 Lecture 11

    6/25

    State-Space

    From the homework, we have a state-space representation of form

    ∆ u̇∆ ẇ∆ θ̇

    ∆ q̇

    = A

    uwθ

    q

    + B δ eδ T

    Where we get A and B from X u , Z u , etc.

    Recall:• Eigenvalues of A dene stability of ẋ = Ax .• A is 4 × 4, so A has 4 eigenvalues.• Stable if eigenvalues all have negative real part.

    M. Peet Lecture 11: 6 / 25

  • 8/18/2019 441 Lecture 11

    7/25

    Natural Motion

    We mentioned that A is• Stable if eigenvalues all have negative real part.

    Now we say more: Eigenvalues have the form

    λ = λR ± λ I ı

    If we have a pair of complex eigenvalues, then we have two more concepts:1. Natural Frequency:

    ωn = λ 2R + λ2I 2. Damping Ratio:

    d = −λRωn

    M. Peet Lecture 11: 7 / 25

  • 8/18/2019 441 Lecture 11

    8/25

    Natural Frequency

    Natural frequency is how fast the the motion oscillates.

    Closely related is theDenition 1.The Period is the time take tocomplete one oscillation

    τ = 2πωn

    M. Peet Lecture 11: 8 / 25

  • 8/18/2019 441 Lecture 11

    9/25

    Damping Ratio

    Damping ratio is how much amplitude decays per oscillation.• Even if d is large, may decay slowly is ωn is small

    Closely related is

    Denition 2.The Half-Life is the time taken for theamplitude to decay by half.

    γ = .693|λR |

    M. Peet Lecture 11: 9 / 25

  • 8/18/2019 441 Lecture 11

    10/25

    State-SpaceExample: Uncontrolled Motion

    C172: V 0 = 132 kt , 5000f t .

    ∆ u̇∆ ẇ∆ q̇ ∆ θ̇

    =− .0442 18.7 0 − 32.2− .0013 − 2.18 .97 0.0024 − 23.8 − 6.08 0

    0 0 1 0

    uwq θ

    M. Peet Lecture 11: 10 / 25

  • 8/18/2019 441 Lecture 11

    11/25

    State-SpaceExample: Uncontrolled Motion

    Using the Matlab command [u,V] = eigs(A) , we nd the eigenvalues as

    Phugoid (Long-Period) Modeλ 1 , 2 = − .0209 ± .18ı

    and Eigenvectors

    ν 1 ,2 =

    − .1717

    − .0748.9131− .1038

    ±

    .2826

    .16850

    .1103ı

    Short-Period Modeλ 3 , 4 = − 4.13 ± 4.39ı

    and Eigenvectors

    ν 3 , 4 =

    1− .0002

    .001− .0008

    ±

    0.0000001.0000011

    .0055

    ı

    Notice that this is hard to interpret. Lets scale u and q by equilibrium values.M. Peet Lecture 11: 11 / 25

  • 8/18/2019 441 Lecture 11

    12/25

    State-SpaceExample: Uncontrolled Motion

    After scaling the state by the equilibrium values, we nd the eigenvaluesunchanged (Why?) asPhugoid (Long-Period) Mode

    λ 1 , 2 = − .0209 ± .18ı

    but clearer Eigenvectors

    ν 1 ,2 =

    − .629.0218

    − .0016.138

    ±

    .0213

    .0007

    .0001.765

    ı

    Natural Frequency: ωn = .181rad/sDamping Ratio: d = .115Period: τ = 34 .7sHalf-Life: γ = 33 .16sMotion dominated by variables u and θ.

    M. Peet Lecture 11: 12 / 25

  • 8/18/2019 441 Lecture 11

    13/25

    Modal Illustration

    M. Peet Lecture 11: 13 / 25

  • 8/18/2019 441 Lecture 11

    14/25

    State-SpaceExample: Long Period Mode

    M. Peet Lecture 11: 14 / 25

  • 8/18/2019 441 Lecture 11

    15/25

    State-SpaceExample: Uncontrolled Motion

    Using the Matlab command [u,V] = eigs(A) , we nd the eigenvalues asShort-Period Mode

    λ 3 , 4 = − 4.13 ± 4.39ı

    and Eigenvectors

    ν 3 ,4 =

    − .0049− .655− .396− .006

    ±

    .004

    .409

    .495.0423

    ı

    Natural Frequency: ωn = 6 .03rad/s

    Damping Ratio: d = .685Period: τ = 1 .04sHalf-Life: γ = .167sMotion dominated by variables w and q .

    M. Peet Lecture 11: 15 / 25

  • 8/18/2019 441 Lecture 11

    16/25

    Modal Illustration

    M. Peet Lecture 11: 16 / 25

  • 8/18/2019 441 Lecture 11

    17/25

    State-SpaceExample: Short Period Mode

    M. Peet Lecture 11: 17 / 25

  • 8/18/2019 441 Lecture 11

    18/25

    State-SpaceModal Approximations

    Now that we know that longitudinal dynamics have two modes:• Short Period Mode• Phugoid Mode (Long-Period Mode)

    Short Period Mode:• x u = 0 and w = 0 .• study variation in θ and q .• Similar to Static Longitudinal Stability

    Long Period Mode:• x q = 0 and w = 0 .• study variation in θ and u.

    Now we develop some simplied expressions to study these modes.

    M. Peet Lecture 11: 18 / 25

    h d

  • 8/18/2019 441 Lecture 11

    19/25

    Short Period Approximation

    For the short period mode, we have the following dynamics:

    u 0q̇ =

    Z α

    u 0 1M α + M α̇ Z αu 0 M q + M ̇α

    w

    u 0q +

    Z δ e

    u 0M δ e +

    M α̇ + Z δ eu 0

    δ e

    = A spθq + Bsp δ e

    • To understand stability, we need the eigenvalues of Asp .• Eigenvalues are solutions of det( λI − Asp ) = 0 .

    Thus we want to solve

    det( λI − Asp ) = λ2 − (M q + Z α

    u0+ M ̇α )λ + (

    Z α M q

    u0− M α ) = 0

    We use the quadratic formula (Lecture 1):

    λ 3 , 4 = 12

    (M q + M ̇α + Z αu0

    ) ± 12 (M q + M α̇ + Z αu0 )2 − 4(m q Z αu0 − M α )

    M. Peet Lecture 11: 19 / 25

    Sh P i d A i i

  • 8/18/2019 441 Lecture 11

    20/25

    Short Period ApproximationFrequency and Damping Ratio

    λ 3 , 4 = 12

    (M q + M ̇α + Z αu0

    ) ± 12 (M q + M α̇ + Z αu0 )2 − 4(m q Z αu0 − M α )

    This leads to the Approximation Equations :• Natural Frequency:

    ωsp = M qZ αu0

    • Damping Ratio:

    dsp = − 12M q + M α̇ + Z αu 0

    ωsp

    M. Peet Lecture 11: 20 / 25

    Sh P i d M d A i i

  • 8/18/2019 441 Lecture 11

    21/25

    Short Period Mode ApproximationsExample: C127

    Approximate Natural Frequency:

    ωsp = − 481∗ −431219 + 27 .7 = 6 .10rad/sTrue Natural Frequency:

    ωsp = 6 .03rad/s

    Approximate Damping Ratio:

    dsp = −4.32 − 2.20 − 1.81

    2∗6.10 = .683rad/s

    True Damping Ratio:dsp = .685rad/s

    So, generally good agreement.

    M. Peet Lecture 11: 21 / 25

    L P i d A i ti

  • 8/18/2019 441 Lecture 11

    22/25

    Long Period Approximation

    Long period motion considers only motion in u and θ.u̇θ̇ =

    X u − g− Z uu 0 0

    This time, we must solve the simple expression

    det( λI − A) = λ 2 − X u λ − Z uu0

    g = 0

    Using the quadratic formula, we get

    λ 1 , 2 = X u ± X

    2u + 4

    Z uu 0 g

    2

    M. Peet Lecture 11: 22 / 25

    L g P i d A i ti

  • 8/18/2019 441 Lecture 11

    23/25

    Long Period Approximation

    λ 1 , 2 =X u ± X 2u + 4 Z uu 0 g2

    This leads to the Approximation Equations :• Natural Frequency:

    ωlp = − Z u gu0• Damping Ratio:

    dlp = − X u2ωlp

    M. Peet Lecture 11: 23 / 25

    Long Period Mode Approximations

  • 8/18/2019 441 Lecture 11

    24/25

    Long Period Mode ApproximationsExample: C127

    Approximate Natural Frequency:ωlp = .181rad/s

    True Natural Frequency:ωlp = .208rad/s

    Approximate Damping Ratio:

    dlp = .115rad/s

    True Damping Ratio:dlp = .106rad/s

    So, generally good, but not as good. Why?

    M. Peet Lecture 11: 24 / 25

    Conclusion

  • 8/18/2019 441 Lecture 11

    25/25

    Conclusion

    In this lecture, we covered:• How to nd and interpret the eigenvalues and eigenvectors of a state-space

    matrixNatural FrequencyDamping Ratio

    • How to identifyLong Period Eigenvlaues/MotionShort Period Eigenvalues/Motion

    • Modal ApproximationsPhugoid and Short-Period Modes

    Formulas for natural frequencyFormulae for damping ratio

    M. Peet Lecture 11: 25 / 25