4.2 State Estimation

Embed Size (px)

Citation preview

  • 8/14/2019 4.2 State Estimation

    1/28

    4.2 State estimation

    State

    Estimation

    Model

    of

    external system

    Security

    analysis

    Security constraints:

    met

    not met

    Network

    equivalent

    State vector

    Location of

    bad data

    J(x), E{J(x)}

    Network topology

    Measurements

    Variance of mea-

    surement errorsNetwork parameter

    Contingency set lines

    transformers

    generation units

    Exeeding limits:

    Ith

    Vmin, Vmax

    Imax

    Real-time security analysis

    4.2.1

  • 8/14/2019 4.2 State Estimation

    2/28

    4.2 State estimation

    Definition of State Vector

    =

    k

    k

    V

    V

    V

    x

    M

    M

    i voltage angle

    Vi voltage magnitude

    is called the state vector of the network.

    In a network with i = 1k nodes

    the vector

    4.2.2

  • 8/14/2019 4.2 State Estimation

    3/28

    4.2 State estimation

    State vector in 4-node network

    PG1

    P14 P12

    P23P43

    PL3

    1

    24

    3

    V1,1 = 0 (Slack Node)

    V2, 2< 0

    V3, 3< 0

    V4, 4< 0

    [ ]

    )sin(

    )cos()sin()(

    1

    21

    12

    2112

    21122121122112

    2

    12

    12

    2

    12

    12

    ++

    =

    X

    VVP

    RVVXVVRVXR

    P

    4.2.3

  • 8/14/2019 4.2 State Estimation

    4/28

    4.2 State estimation

    Terms of state estimation

    4.2.4

    x

    true value ofstate variables

    h(x)

    functional relation

    between measurable

    quantities and thestate variables

    v

    measurement

    errors

    Power System

    x ; h(x)

    Measuring

    Instrumentation

    State estimation

    z

    measured valuesz = h(x) + v

    estimated value of

    state variables

    x

    x

  • 8/14/2019 4.2 State Estimation

    5/28

    4.2 State estimation

    Estimation by Weighted Least Squares:

    Measuring equations:

    z = h(x) + v

    z vector of m measurements

    x state vector with n variables (i, Vi)

    h(x) vector of m measurement functions

    v vector of m measurement errors

    m n

    4.2.5

  • 8/14/2019 4.2 State Estimation

    6/28

    4.2 State estimation

    Assumptions in respect to measurements

    v1.vm random variables with Gaussianprobability function

    E{v} = 0 mean value of measurement

    errors = 0

    E { v vt } = R measurement covariance

    matrix

    no interdependence between

    measurement errors

    =2

    m

    2

    1

    0

    0

    R O

    4.2.6

  • 8/14/2019 4.2 State Estimation

    7/28

    4.2 State estimation

    Normal or Gaussian probability functionProbability density function (y) of a random variableY

    estimated value of

    the voltage vector

    ( )2

    y

    2

    1

    e2

    1y

    =

    +

  • 8/14/2019 4.2 State Estimation

    8/28

    4.2 State estimation

    Objective function J(x) and minimization

    =

    =

    =m

    1i 2i

    2

    ii

    1t

    ))x(hz()x(J

    ))x(hz(R))x(hz()x(J

    Necessary condition for the extremum of J(x):

    =

    =

    ==

    n

    m

    1

    m

    n

    1

    1

    1

    1t

    x

    h

    x

    h

    x

    h

    x

    h

    x

    )x(hH

    )1(0))x(hz(RH2

    x

    J

    L

    MM

    L

    H Jacobian matrix of measurement functions.

    4.2.8

  • 8/14/2019 4.2 State Estimation

    9/28

    4.2 State estimation

    Case A: h(x) linear function of x

    vxAz +=

    Necessary condition for extremum:

    Objective function:

    )xAz(R)xAz()x(J 1t =

    0)xAz(RA2x

    J 1t ==

    zRA)ARA(x 1t11t =

    Solution:

    4.2.9

  • 8/14/2019 4.2 State Estimation

    10/28

    4.2 State estimation

    Case B: h(x) nonlinear function of x

    Introducing Taylor expansion in eq. (1) :

    Taylor expansion of h(x) around a starting

    point x0:

    Iterative solution:

    ......)xx)(x(H)x(h)x(hooo

    ++=

    [ ]

    [ ] [ ])x(hzR)x(Hxx)x(HR)x(H

    0)xx)(x(H)x(hzRH2

    x

    J

    010t0010t

    0001t

    =

    ==

    [ ] [ ]

    [ ] [ ])x(hzR)x(H)x(HR)x(Hxx

    )x(hzR)x(H)x(HR)x(Hxx

    1t1

    1t1

    010t1010t01

    +

    +=

    +=M

    4.2.10

  • 8/14/2019 4.2 State Estimation

    11/28

    4.2 State estimation

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    State estimation: Numerical example

    Given:

    Find: Weighted least squares estimates of

    bus voltage measurement

    active power measurement of line flow

    reactive power measurement of line flow

    1 = 0

    R = =

    0

    (0.1)2

    0

    0

    0

    0

    (0.05)2

    0

    0

    0

    0

    (0.05)2

    (0.1)2

    0

    0

    0

    2

    122

    2

    32

    4

    z2 = V2 = 1.0

    z3 = P12 = 3.0

    z4 = Q12 = 0.3

    z1 = V1 = 1.02

    V1 V2

    1 2

    2; V1; V2

    4.2.11

  • 8/14/2019 4.2 State Estimation

    12/28

    4.2 State estimation

    State estimation: Numerical exampleSolution:

    Jacobian-Matrix

    (Slack bus)g12=0; gs12=0; b12=-10; 1=0

    bs12

    =0;

    =

    3

    4

    2

    4

    1

    4

    3

    3

    2

    3

    1

    3

    3

    2

    2

    2

    1

    2

    3

    1

    2

    1

    1

    1

    );(

    x

    h

    x

    h

    x

    h

    x

    h

    x

    h

    x

    h

    x

    h

    x

    h

    x

    h

    x

    h

    x

    h

    x

    h

    VH

    h4(; V) = 10V12- 10V1V2cos 2

    h4(; V) = -V12(b12+bs12) V1V2[g12sin(1- 2) b12cos(1- 2)]

    h3(; V) = -10 V1 V2 sin 2

    h3(; V) = V12(g12+gs12)-V1V2[g12cos(1- 2)+b12sin(1- 2)]

    h2(; V) = V2h1(; V) = V1

    4.2.12

  • 8/14/2019 4.2 State Estimation

    13/28

    4.2 State estimation

    State estimation: Numerical example

    4.2.13

    Iterative solution:

    =;

    21221221

    2122221

    cos10cos1020sin10

    sin10sin10cos10

    100

    010

    )(

    VVVVV

    VVVVVH

    =

    =

    0.1

    0.1

    0

    2

    1

    2

    3

    2

    1

    o

    o

    o

    o

    o

    o

    V

    V

    x

    x

    x

    =

    =

    3.0

    0.3

    0

    02.0

    0

    0

    0.1

    0.1

    3.0

    0.3

    0.1

    02.1

    )V;(hz o

    =

    10100

    0010

    100

    010

    );( oVH

  • 8/14/2019 4.2 State Estimation

    14/28

    4.2 State estimation

    State estimation: Numerical example

    4.2.14

    Ht R-1 (z-h) =

    0

    0

    1

    -10

    0

    0

    0

    10

    -10

    0

    1

    0

    0

    100

    0

    0

    0

    0

    400

    0

    0

    0

    0

    400

    100

    0

    0

    0

    0.02

    0

    3.0

    0.3

    Ht R-1 (z-h) =-12000

    1202

    -1200

    Ht R-1 H = 1040

    4.01

    -4.0

    0

    -4.0

    4.01

    4.0

    0

    0

    (Ht R-1 H) -1 = 10-40

    50.0624

    49.9376

    0

    49.9376

    50.0624

    0.2500

    0

    0

    x1 = x0 + (Ht R-1 H) -1 Ht R-1 (z-h)

  • 8/14/2019 4.2 State Estimation

    15/28

    4.2 State estimation

    State estimation: Numerical example

    4.2.15

    Result of the first iteration step:

    0

    1.0

    1.0

    x11

    x21

    x31

    = + 10-4

    -0.3000

    1.0250

    0.9950

    x11

    x21

    x31

    =

    -0.3000

    0.0250

    -0.0050

    0

    1.0

    1.0

    x11

    x21

    x31

    = +

    -0.3000

    1.0250

    0.9950

    21 =

    V11 =

    V21 =

    0

    50.0624

    49.9376

    0

    49.9376

    50.0624

    0.2500

    0

    0

    -12000

    1202

    -1200

  • 8/14/2019 4.2 State Estimation

    16/28

    4.2 State estimation

    State estimation: Numerical example

    iteration

    = 2

    = 3

    start

    = 1

    = 4

    - 0.298

    - 0.298

    2

    - 0.300

    - 0.298

    0

    1.004

    1.003

    V1

    1.025

    1.003

    1.0

    1.018

    1.018

    V2

    0.995

    1.018

    1.0

    0.018

    0.018

    max|z-h(;V)|

    0.463

    0.018

    3.000

    Final result after = 4 iterations:

    -0.298

    1.003

    1.018

    24 =V1

    4 =

    V24 =

    2 =V1 =

    V2 =

    ^^

    ^

    4.2.16

  • 8/14/2019 4.2 State Estimation

    17/28

    4.2 State estimation

    State estimation:

    - Observability test

    - WLS-algorithm

    - Identification of bad data

    - Suppression of bad data

    Network topology

    Transformer tap

    settings

    Measurements

    Pseudo-measurements

    Variance of

    measurement errors

    network parameters

    Estimated value of state

    vector

    Other quantities derived

    from state vector

    Observed value

    Expected value

    Location of bad data

    )x(J

    ))x(J(E

    Input data and results of state estimation

    4.2.17

  • 8/14/2019 4.2 State Estimation

    18/28

    4.2 State estimation

    Observability1

    6 5

    432

    Slack

    6 (Pij, Qij) measurements

    nodes , not observable4 5

    7 (Pij, Qij) measurements

    all nodes observable

    1 6 5

    432

    Slack

    4.2.17 /1

  • 8/14/2019 4.2 State Estimation

    19/28

    4.2 State estimation

    Pi = 0

    Qi = 0node i : passive

    i

    Pi 0Qi 0

    node i : non passive

    i

    Pseudo-measurements

    4.2.17 /2

  • 8/14/2019 4.2 State Estimation

    20/28

    4.2 State estimation

    Y1, Y2, , Yk independent random variables; with normal distribution;

    mean value zero; variance one;

    2 = Y12 + Y22 + + Yk2

    Mean value ; Variancek2 = k22

    2 =

    20 806040 2

    0.1

    0

    (2)

    k = 20

    k = 50

    k degree of freedom

    2

    , CHI-SQUARE DISTRIBUTION

    4.2.17 /3

  • 8/14/2019 4.2 State Estimation

    21/28

    4.2 State estimation

    Under the assumptions concerning the statistics of measurementerrors, J(x) is a random variable with 2 distribution and degree offreedom k = (m n)

    Mean value J = (m n)

    Variance J2 = 2(m n)

    JJ - 3J J + 3J

    (J(x) )

    J(x)

    4.2.17 /4

  • 8/14/2019 4.2 State Estimation

    22/28

    4.2 State estimation

    Input data of state estimation

    On-Off status quantities of circuit breakers and isolators (network topology)

    Transformer tap settings

    Measurements (bus voltage magnitudes, active and reactive power flows,

    active and reactive power injections)

    Pseudo measurements of passive nodes (Pi = 0, Qi = 0)

    Information regarding the measuring instrumentation (specification and

    location of measurements, variance of measurement errors)

    Network parameters (lines: R, X, G, B; transformers: R, X, G, B, t)

    4.2.18

  • 8/14/2019 4.2 State Estimation

    23/28

    4.2 State estimation

    Estimated value of the state vector of all busses

    (voltage magnitude and voltage phase angle )

    Other quantities derived from the state vector

    ( )

    Observed value of the minimization function

    Expected value of the minimization function

    Location of bad data

    Covariance matrix of the state vector

    Results of state estimation

    x

    x

    i

    iV

    )x(J

    ))x(J(E

    vviiiikikik Q,P,Q,P,I,Q,P,I

    4.2.19

  • 8/14/2019 4.2 State Estimation

    24/28

    4.2 State estimation

    First implementations

    1973 USA: American Electric Power

    765 kV and 345 kV network

    16 busses, 25 branches

    measurements: V1, Pij, Qij

    1976 Germany: RWE

    380 kV and 220 kV network

    150 busses, 250 branches

    measurements: Vi, Pij, Qij, Pi, Qi

    4.2.20

  • 8/14/2019 4.2 State Estimation

    25/28

    4.2 State estimation

    Size of network

    - 280 busses

    - 360 transmission lines

    - 40 transformers

    Total number of measurements

    - 1010 measurements of active and reactive power flow

    - 210 measurements of active and reactive power injections

    - 140 measurements of active and reactive power injections

    (pseudo measurements)

    - 60 measurements of voltage mangnitude

    Redundancy:

    54.1n

    nmr =

    =

    4.2.21

    Data for the application of state estimation (RWE network)

  • 8/14/2019 4.2 State Estimation

    26/28

    4.2 State estimation

    Application of state estimation (RWE network)

    4.2.22

  • 8/14/2019 4.2 State Estimation

    27/28

    4.2 State estimation

    Wednesday, July, 19th 11:30 a.m. Wednesday, January 17th 3:00 a.m.

    State vector

    380 kV State vector

    380 kV

    4.2.23

    Application of state estimation (RWE network)

  • 8/14/2019 4.2 State Estimation

    28/28

    4.2 State estimation

    State estimation: Sources of errors Interruption of data transmission

    (measurements, on-off status quantities, transformer tap settings)

    Bad measurement data (defect of measuring instrumentation, wrong measurementrange, false sign of measurement)

    Network topology (incomplete representation of on-off status quantities)

    Variance of measurement errors (instrument transformer, measuring instrument, A/D-

    converter)

    Network parameter (line length, transformer model)

    Delays in the transmission of data

    4.2.24