30
4.1 Studying Atoms 4-1 notes Make a chart like the one below Scientist Theory/ discovery Experiment/ evidence Model Democritus x x Aristotle x x Dalton Thomson Rutherford

4.1 Studying Atoms 4-1 notes Make a chart like the one below ScientistTheory/discoveryExperiment/ evidence Model Democritus xx Aristotle xx Dalton Thomson

Embed Size (px)

Citation preview

Page 1: 4.1 Studying Atoms 4-1 notes Make a chart like the one below ScientistTheory/discoveryExperiment/ evidence Model Democritus xx Aristotle xx Dalton Thomson

4.1 Studying Atoms

4-1 notes• Make a chart like the one belowScientist Theory/discovery Experiment/

evidenceModel

Democritus x xAristotle x xDalton

Thomson

Rutherford

Page 2: 4.1 Studying Atoms 4-1 notes Make a chart like the one below ScientistTheory/discoveryExperiment/ evidence Model Democritus xx Aristotle xx Dalton Thomson

4.1 Studying Atoms

Studying the structure of atoms is a little like studying wind. Because you cannot see air, you must use indirect evidence to tell the direction of the wind. Atoms pose a similar problem because they are extremely small. Even with a microscope, scientists cannot see the structure of an atom.

Page 3: 4.1 Studying Atoms 4-1 notes Make a chart like the one below ScientistTheory/discoveryExperiment/ evidence Model Democritus xx Aristotle xx Dalton Thomson

4.1 Studying Atoms

If you cut a piece of aluminum foil in half, you have two smaller pieces of the same shiny, flexible substance. You could cut the pieces again and again. Can you keep dividing the aluminum into smaller pieces? Greek philosophers debated a similar question about 2500 years ago.

Ancient Greek Models of Atoms

Page 4: 4.1 Studying Atoms 4-1 notes Make a chart like the one below ScientistTheory/discoveryExperiment/ evidence Model Democritus xx Aristotle xx Dalton Thomson

4.1 Studying Atoms

1. Democritus

a. Created the term called atoms- all matter consisted of extremely small particles that could not be divided.

2. Aristotle

a. Stated that all substances were made of only four elements—earth, air, fire, and water.

I. Studying AtomsA. Ancient Greek Models of Atoms

Page 5: 4.1 Studying Atoms 4-1 notes Make a chart like the one below ScientistTheory/discoveryExperiment/ evidence Model Democritus xx Aristotle xx Dalton Thomson

4.1 Studying Atoms

Aristotle did not think there wasa limit to the division of matter. For many centuries, most people

accepted Aristotle’s views on the structure of matter. By the 1800s, scientists had enough experimental data to support an atomic model.

Page 6: 4.1 Studying Atoms 4-1 notes Make a chart like the one below ScientistTheory/discoveryExperiment/ evidence Model Democritus xx Aristotle xx Dalton Thomson

4.1 Studying Atoms

B. Dalton’s Atomic Theory

1. Evidence for Atoms

a. Dalton proposed the theory that all matter is made up of individual particles called atoms, which cannot be divided.

b. Dalton measured masses of elements that combine when compounds form and noticed the ratio of the masses of the elements in each compound was always the same. (compounds have a fixed composition).

Page 7: 4.1 Studying Atoms 4-1 notes Make a chart like the one below ScientistTheory/discoveryExperiment/ evidence Model Democritus xx Aristotle xx Dalton Thomson

4.1 Studying Atoms

When magnesium burns, it combines with oxygen. In magnesium oxide, the ratio of the mass of magnesium to the mass of oxygen is always about 3 : 2. Magnesium dioxide has a fixed composition.

Dalton’s Atomic Theory

Page 8: 4.1 Studying Atoms 4-1 notes Make a chart like the one below ScientistTheory/discoveryExperiment/ evidence Model Democritus xx Aristotle xx Dalton Thomson

4.1 Studying Atoms

a. All elements are composed of atoms.

b. All atoms of the same element have the same mass, and atoms of different elements have different masses.

c. Compounds contain atoms of more than one element.

d. In a particular compound, atoms of different elements always combine in the same way.

2. Dalton’s Atomic Theory

Page 9: 4.1 Studying Atoms 4-1 notes Make a chart like the one below ScientistTheory/discoveryExperiment/ evidence Model Democritus xx Aristotle xx Dalton Thomson

4.1 Studying Atoms

Dalton made these wooden spheres as a model to represent the atoms of different elements. A tiny, solid sphere with a different mass represents each type of atom.

Dalton’s Atomic Theory

Page 10: 4.1 Studying Atoms 4-1 notes Make a chart like the one below ScientistTheory/discoveryExperiment/ evidence Model Democritus xx Aristotle xx Dalton Thomson

4.1 Studying Atoms

A theory must explain the data from many experiments. Because Dalton’s atomic theory met that goal, the theory became widely accepted.

Over time, scientists found that not all of Dalton’s ideas about atoms were completely correct. They revised the theory to take into account new discoveries.

Dalton’s Atomic Theory

Page 11: 4.1 Studying Atoms 4-1 notes Make a chart like the one below ScientistTheory/discoveryExperiment/ evidence Model Democritus xx Aristotle xx Dalton Thomson

4.1 Studying Atoms

When some materials are rubbed, they gain the ability to attract or repel other materials. Such materials are said to have either a positive or a negative electric charge.

• Objects with like charges repel, or push apart. • Objects with opposite charges attract, or pull

together.

Thomson’s Model of the Atom

Page 12: 4.1 Studying Atoms 4-1 notes Make a chart like the one below ScientistTheory/discoveryExperiment/ evidence Model Democritus xx Aristotle xx Dalton Thomson

4.1 Studying Atoms

Amber is the hardened form of a sticky, viscous liquid that protects trees from insects and disease. If amber is rubbed with wool, it becomes charged and can attract a feather.

Thomson’s Model of the Atom

Page 13: 4.1 Studying Atoms 4-1 notes Make a chart like the one below ScientistTheory/discoveryExperiment/ evidence Model Democritus xx Aristotle xx Dalton Thomson

4.1 Studying Atoms

Thomson’s Experiments

In his experiments, Joseph John Thomson used a sealed tube containing a very small amount of gas.

Thomson’s Model of the Atom

Sealed tube filled with gas at low pressure

Glowing beam

Metal disk Source of electric current

Metal disk

Metal disk Source of electric current

Page 14: 4.1 Studying Atoms 4-1 notes Make a chart like the one below ScientistTheory/discoveryExperiment/ evidence Model Democritus xx Aristotle xx Dalton Thomson

4.1 Studying Atoms

Thomson’s Experiments

In his experiments, Joseph John Thomson used a sealed tube containing a very small amount of gas.

Thomson’s Model of the Atom

Sealed tube filled with gas at low pressure

Glowing beam

Metal disk Source of electric current

Metal disk

Metal disk Source of electric current

Positive plate

Negative plate

Page 15: 4.1 Studying Atoms 4-1 notes Make a chart like the one below ScientistTheory/discoveryExperiment/ evidence Model Democritus xx Aristotle xx Dalton Thomson

4.1 Studying Atoms

1. Thomson’s Experiment- provided the first evidence that atoms are made of even smaller particles.

a. He used a sealed tube containing a very small amount of gas. When a current was turned on, the disks became charged, and a glowing beam appeared in the tube.

1) He hypothesized that the beam was a stream of charged particles that interacted with the air in the tube and caused the air to glow.

2) He observed that the beam was repelled by the negatively charged plate and attracted by the positively charged plate.

C. Thomson’s Model of the Atom

Page 16: 4.1 Studying Atoms 4-1 notes Make a chart like the one below ScientistTheory/discoveryExperiment/ evidence Model Democritus xx Aristotle xx Dalton Thomson

4.1 Studying Atoms

2. Evidence for Subatomic Particles

a. Thomson concluded that the particles in the beam had a negative charge because they were attracted to the positive plate. He hypothesized that the particles came from inside atoms.

1) no matter what metal Thomson used for the disk, the particles produced were identical.

2) the particles had about 1/2000 the mass of a hydrogen atom, the lightest atom.

Page 17: 4.1 Studying Atoms 4-1 notes Make a chart like the one below ScientistTheory/discoveryExperiment/ evidence Model Democritus xx Aristotle xx Dalton Thomson

4.1 Studying Atoms

3. Thomson’s Model

a. The atom has neither a positive nor a negative charge, but there must always be some positive charge in the atom.

b. The atom is filled with a positively charged mass of matter that has negative charges evenly scattered throughout it.

Page 18: 4.1 Studying Atoms 4-1 notes Make a chart like the one below ScientistTheory/discoveryExperiment/ evidence Model Democritus xx Aristotle xx Dalton Thomson

4.1 Studying Atoms

Thomson’s model is called the “plum pudding” model. Today, it might be called the “chocolate chip ice cream” model.

The chips represent negatively charged particles, which are spread evenly through a mass of positively charged matter—the vanilla ice cream.

Thomson’s Model of the Atom

Page 19: 4.1 Studying Atoms 4-1 notes Make a chart like the one below ScientistTheory/discoveryExperiment/ evidence Model Democritus xx Aristotle xx Dalton Thomson

4.1 Studying Atoms

1. Rutherford’s Hypothesis

a. Based on Thomson’s model, Rutherford hypothesized that the mass and charge at any location in the gold would be too small to change the path of an alpha particle.

b. He predicted that most particles would travel in a straight path from their source to a screen that lit up when struck.

D. Rutherford’s Atomic Theory

Page 20: 4.1 Studying Atoms 4-1 notes Make a chart like the one below ScientistTheory/discoveryExperiment/ evidence Model Democritus xx Aristotle xx Dalton Thomson

4.1 Studying Atoms

2. Gold Foil Experiment-

a. Rutherford designed an experiment to find out what happens to alpha particles (fast-moving, positively charged particles) when they pass through a thin sheet of gold

Page 21: 4.1 Studying Atoms 4-1 notes Make a chart like the one below ScientistTheory/discoveryExperiment/ evidence Model Democritus xx Aristotle xx Dalton Thomson

4.1 Studying Atoms

The Gold Foil Experiment

Rutherford’s Atomic Theory

Beam of alpha particles

Source of alpha particles

Slit

Deflected particle

Undeflected particle

Screen

Gold atoms

Alpha particles

Alpha particles

Nucleus

Page 22: 4.1 Studying Atoms 4-1 notes Make a chart like the one below ScientistTheory/discoveryExperiment/ evidence Model Democritus xx Aristotle xx Dalton Thomson

4.1 Studying Atoms

Discovery of the Nucleus

The alpha particles whose paths were deflected must have come close to another charged object. The closer they came, the greater the deflection.

However, many alpha particles passed through the gold without being deflected. These particles did not pass close to a charged object.

Page 23: 4.1 Studying Atoms 4-1 notes Make a chart like the one below ScientistTheory/discoveryExperiment/ evidence Model Democritus xx Aristotle xx Dalton Thomson

4.1 Studying Atoms

3. Discovery of the Nucleus

a. Thomson’s model did not explain all of the evidence from Rutherford's experiment. Rutherford proposed a new model.

1) The positive charge of an atom is not evenly spread throughout the atom.

2) Positive charge is concentrated in a very small, central area.

3) The nucleus of the atom is a dense, positively charged mass located in the center of the atom.

Page 24: 4.1 Studying Atoms 4-1 notes Make a chart like the one below ScientistTheory/discoveryExperiment/ evidence Model Democritus xx Aristotle xx Dalton Thomson

4.1 Studying Atoms

The Houston Astrodome occupies more than nine acres and seats 60,000 people. If the stadium were a model for an atom, a marble could represent its nucleus. The total volume of an atom is about a trillion (1012) times the volume of its nucleus.

Rutherford’s Atomic Theory

Page 25: 4.1 Studying Atoms 4-1 notes Make a chart like the one below ScientistTheory/discoveryExperiment/ evidence Model Democritus xx Aristotle xx Dalton Thomson

4.1 Studying Atoms

Assessment Questions

1. Dalton’s theory did not include which of the following points? a. All elements are composed of atoms.

b. Most of an atom’s mass is in its nucleus.

c. Compounds contain atoms of more than one element.

d. In a specific compound, atoms of different elements always combine in the same way.

Page 26: 4.1 Studying Atoms 4-1 notes Make a chart like the one below ScientistTheory/discoveryExperiment/ evidence Model Democritus xx Aristotle xx Dalton Thomson

4.1 Studying Atoms

Assessment Questions

1. Dalton’s theory did not include which of the following points? a. All elements are composed of atoms.

b. Most of an atom’s mass is in its nucleus.

c. Compounds contain atoms of more than one element.

d. In a specific compound, atoms of different elements always combine in the same way.

ANS: B

Page 27: 4.1 Studying Atoms 4-1 notes Make a chart like the one below ScientistTheory/discoveryExperiment/ evidence Model Democritus xx Aristotle xx Dalton Thomson

4.1 Studying Atoms

Assessment Questions

2. J. J. Thomson’s experiments provided the first evidence of a. atoms.b. a nucleus.c. subatomic particles.d. elements.

Page 28: 4.1 Studying Atoms 4-1 notes Make a chart like the one below ScientistTheory/discoveryExperiment/ evidence Model Democritus xx Aristotle xx Dalton Thomson

4.1 Studying Atoms

Assessment Questions

2. J. J. Thomson’s experiments provided the first evidence of a. atoms.b. a nucleus.c. subatomic particles.d. elements.

ANS: C

Page 29: 4.1 Studying Atoms 4-1 notes Make a chart like the one below ScientistTheory/discoveryExperiment/ evidence Model Democritus xx Aristotle xx Dalton Thomson

4.1 Studying Atoms

Assessment Questions

1. The concept of an atom as a small particle of matter that cannot be divided was proposed by the ancient Greek philosopher, Democritus.

TrueFalse

Page 30: 4.1 Studying Atoms 4-1 notes Make a chart like the one below ScientistTheory/discoveryExperiment/ evidence Model Democritus xx Aristotle xx Dalton Thomson

4.1 Studying Atoms

Assessment Questions

1. The concept of an atom as a small particle of matter that cannot be divided was proposed by the ancient Greek philosopher, Democritus.

TrueFalse

ANS: T