25
4029 u-du: Integrating Composite Functions AP Calculus

4029 u-du : Integrating Composite Functions AP Calculus

Embed Size (px)

Citation preview

Page 1: 4029 u-du : Integrating Composite Functions AP Calculus

4029 u-du: Integrating Composite Functions

AP Calculus

Page 2: 4029 u-du : Integrating Composite Functions AP Calculus

(5 𝑥5+4 𝑥3+3𝑥+2 )5

Find the derivative

5 (5 𝑥5+4 𝑥3+3 𝑥+2 )4 (25 𝑥4+12 𝑥2+3 )

dx/du-part of the antiderivative

Page 3: 4029 u-du : Integrating Composite Functions AP Calculus

u-du SubstitutionIntegrating Composite Functions

(Chain Rule)Revisit the Chain Rule

If let u = inside function

du = derivative of the inside

becomes

2 3( 1)d

xdx

2 3 2 2( 1) 3( 1) (2 )d

x x xdx

3 2( ) = 3( )d duu u dxdx

¿ 𝑥2+1

2 𝑥𝑑𝑥

Page 4: 4029 u-du : Integrating Composite Functions AP Calculus

A Visual Aid

USING u-du Substitution a Visual AidREM: u = inside function du = derivative of the inside

let u =

becomes now only working with f , the outside function

2 23( 1) 2x xdx 23u du

𝑥2+12 𝑥𝑑𝑥

(𝑥2+1 )𝑑𝑢=¿ 2 𝑥𝑑𝑥

3 (𝑢3

3 )+𝑐𝑢3+𝑐

(𝑥2+1 )3+𝑐

Page 5: 4029 u-du : Integrating Composite Functions AP Calculus

Example 1 : du given

Ex 1:2 3(5 1) *10x xdx 𝑢=5 𝑥2+1

𝑑𝑢=10𝑥𝑑𝑥𝑢3𝑑𝑢𝑢4

4+𝑐

14

(5 𝑥2+1 )4+𝑐 proof

14

(5 𝑥2+1 )4+𝑐

4( 14 ) (5 𝑥2+1 )3 (10 𝑥 )

(5 𝑥2+1 )3 (10 𝑥 )

Page 6: 4029 u-du : Integrating Composite Functions AP Calculus

Example 2: du given

Ex 2:  

1 22 33 ( 1)x x dx 𝑢=𝑥3+1𝑑𝑢=3 𝑥2𝑑𝑥

(𝑥3+1 )12 3 𝑥2𝑑𝑥

𝑢12 𝑑𝑢

𝑢32

32

+𝑐

23𝑢

32+𝑐

𝑦=23

(𝑥3+1 )32 +𝑐

Page 7: 4029 u-du : Integrating Composite Functions AP Calculus

Example 3: du given

Ex 3:  

2

2*

1

xdx

x 𝑢=(𝑥2+1 )

𝑑𝑢=2𝑥𝑑𝑥

(𝑥2+1 )− 1

2 2 𝑥𝑑𝑥

𝑢− 1

2 𝑑𝑢𝑢

12

12

+𝑐

2𝑢12 +𝑐

2 (𝑥2+1 )12 +𝑐

Page 8: 4029 u-du : Integrating Composite Functions AP Calculus

Example 4: du given

Ex 4:  

2( ) sec ( )tan x x dx

Both ways !

𝑢=tan(𝑥¿)¿𝑑𝑢=𝑠𝑒𝑐2(𝑥)𝑑𝑥

𝑢𝑑𝑢𝑢2

2+𝑐

12𝑡𝑎𝑛2(𝑥)+𝑐

𝑢=sec (𝑥)𝑑𝑢=sec (𝑥 ) tan (𝑥 )

𝑢𝑑𝑢𝑢2

2+𝑐

12𝑠𝑒𝑐2 (𝑥 )+𝑐

1+𝑡𝑎𝑛2 (𝑥 )=𝑠𝑒𝑐2(𝑥)

Derivative only

𝑠𝑒𝑐2 (𝑥 )𝑑𝑥

Function and derivative

tan (𝑥 ) 𝑠𝑒𝑐2 (𝑥 )𝑑𝑥

Page 9: 4029 u-du : Integrating Composite Functions AP Calculus

Example 5: Regular Method

Ex 5:  

2

cos

sin

xdx

x cos (𝑥) (sin (𝑥 ))−2𝑑𝑥

(sin (𝑥 ))−2 cos (𝑥 )𝑑𝑥𝑢−2𝑑𝑢𝑢−1

−1+𝑐 −𝑢−1+𝑐

−sin (𝑥 )−1+𝑐

−1

sin (𝑥 )+𝑐=−csc (𝑥 )+𝑐

𝑢=sin(𝑥 )𝑑𝑢=cos (𝑥 )𝑑𝑥

cos (𝑥)sin (𝑥)

∗ 1sin (𝑥 )

= cot (𝑥 ) csc (𝑥 )𝑑𝑥

− csc (𝑥 )+𝑐

Page 10: 4029 u-du : Integrating Composite Functions AP Calculus

Working with Constants < multiplying by one>

Constant Property of Integration

 ILL. let u =

du = and

becomes =

 Or alternately = =

5cos 5 cosx dx x dx

4(1 2 )x dx (1 2 )x

4 1( )

2u du

41( )

2u du

2dx

42(1 2 )

2x dx 41

( )2

u du

1

2du dx

41(1 2 ) 2

2x dx

Page 11: 4029 u-du : Integrating Composite Functions AP Calculus

Example 6 : Introduce a Constant - my method

2* 9x x dx

𝑢=9 −𝑥2

𝑑𝑢=−2 𝑥𝑑𝑥

−2−2𝑥 √9− 𝑥2𝑑𝑥

−12−2

−12 (9−𝑥2 )

12 − 2𝑥𝑑𝑥

−12𝑢

12 𝑑𝑢

−12 (𝑢

32

32

)+𝑐−

13𝑢

32 +𝑐

−13

(9−𝑥2 )32 +𝑐

Page 12: 4029 u-du : Integrating Composite Functions AP Calculus

Example 7 : Introduce a Constant

2sec (3 )x dx𝑢=3 𝑥𝑑𝑢=3𝑑𝑥

33 𝑠𝑒𝑐2 (3 𝑥 ) 𝑑𝑥

13 𝑠𝑒𝑐2 (3 𝑥 ) 3𝑑𝑥13 𝑠𝑒𝑐2 (𝑢)𝑑𝑢13

tan (𝑢)+𝑐

13

tan (3 𝑥 )+𝑐

Page 13: 4029 u-du : Integrating Composite Functions AP Calculus

sec (𝑥 ) tan (𝑥 )𝑑𝑥 𝑢=sec 𝑥𝑑𝑢=sec 𝑥 tan𝑥

sec 𝑥sec 𝑥 sec (𝑥 ) tan (𝑥 )𝑑𝑥

1sec 𝑥 sec 𝑥 tan𝑥 sec 𝑥 𝑑𝑥

1sec 𝑥𝑢𝑑𝑢

1sec 𝑥

𝑢2

2+𝑐

( 1sec𝑥 ) 𝑠𝑒𝑐

2𝑥2

+𝑐

12

sec𝑥+𝑐

Page 14: 4029 u-du : Integrating Composite Functions AP Calculus
Page 15: 4029 u-du : Integrating Composite Functions AP Calculus

Example 8 : Introduce a Constant << triple chain>>

4sin (2 )cos(2 )x x dx 𝑢=sin(2𝑥)𝑑𝑢=cos (2 𝑥 )2𝑑𝑥

12 𝑠𝑖𝑛4 (2𝑥 ) cos (2𝑥 )∗2𝑑𝑥12𝑢4𝑑𝑢12 (𝑢

5

5 )+𝑐𝑢5

10+𝑐

110

𝑠𝑖𝑛5 (2𝑥 )+𝑐

Page 16: 4029 u-du : Integrating Composite Functions AP Calculus

Example 9 : Introduce a Constant - extra constant

<< extra constant>

You is what You is inside5 (3 𝑥+4 )5𝑑𝑥

𝑢=3 𝑥+4𝑑𝑢=3𝑑𝑥

13

5 (3 𝑥+4 )5 3𝑑𝑥53𝑢5𝑑𝑢

53 (𝑢

6

6 )+𝑐5

18(3 𝑥+4 )6+𝑐

Page 17: 4029 u-du : Integrating Composite Functions AP Calculus

Example 10: Polynomial

2 4

3 1

(3 2 1)

xdx

x x

𝑢=(3 𝑥2− 2𝑥+1 )𝑑𝑢=(6 𝑥−2)𝑑𝑥

12 2(3 𝑥−1)

(3 𝑥2− 2𝑥+1 )4𝑑𝑥

12𝑢− 4𝑑𝑢  

12 (𝑢

−3

− 3 )+𝑐−

16

(3 𝑥2− 2𝑥+1 )− 3+𝑐

Page 18: 4029 u-du : Integrating Composite Functions AP Calculus

Example 11: Separate the numerator

2

2 1

1

xdx

x

𝑢=𝑥2+1𝑑𝑢=2𝑥𝑑𝑥

2 𝑥𝑥2+1

𝑑𝑥+ 1

𝑥2+1

𝑑𝑢𝑢

+ 1

𝑥+12

ln|𝑢|+arctan(𝑥)+𝑐

𝑢−1𝑑𝑢+ 1

𝑥2+1

¿ 𝑢0

0

Page 19: 4029 u-du : Integrating Composite Functions AP Calculus

Formal Change of Variables << the Extra “x”>> 

 ILL: Let

Solve for x in terms of u then

and  becomes

2 6 *2x x dx (2 6)u x

6

2

ux

2du dx6

* *2

uu du

¿ 1

2 (𝑢

32 − 6𝑢

12 )𝑑𝑢

12𝑢3 /2𝑑𝑢−

126𝑢1/2𝑑𝑢= 1

2 (𝑢5/2

52 )

−( 12 )6(𝑢

3 /2

32 )= 1

5𝑢5 /2 −2𝑢3 /2

15

(2 𝑥+6 )52 −2 (2𝑥−6 )3/2+𝑐

Page 20: 4029 u-du : Integrating Composite Functions AP Calculus

Formal Change of Variables << the Extra “x”>> 

Rewrite in terms of u - du

2 1

3

xdx

x

(2𝑢−7 )𝑢− 1

2 𝑑𝑢

𝑢=𝑥+3𝑑𝑢=𝑑𝑥

𝑥=𝑢−3

2 𝑥=2𝑢− 6

2 𝑥−1=2𝑢− 7

(2𝑢−32 −7𝑢

−12)𝑑𝑢

2∗ 25𝑢

52 −7∗2𝑢

12 +𝑐

45𝑢

52 −14𝑢

12+𝑐

45

(𝑥+3 )52 −14 (𝑥+3 )

12 +𝑐

Page 21: 4029 u-du : Integrating Composite Functions AP Calculus

Assignment

Day 1 Worksheet Larson HW 4029

Day 2 Basic Integration Rules Wksht

extra x Larson 4029 58f

anti for tan /cot Text p. 338 # 18 - 52 (3x)

Page 22: 4029 u-du : Integrating Composite Functions AP Calculus

Integrating Composite Functions(Chain Rule)

( 1)( ) = n( ) *n ndu u u

dx

Remember: Derivatives Rules

Remember: Layman’s Description of Antiderivatives

( 1)( ) n nn u du u c

*2nd meaning of “du” du is the derivative of an implicit “u”

Page 23: 4029 u-du : Integrating Composite Functions AP Calculus

Development

  

must have the derivative of the inside in order to find

the antiderivative of the outside 

*2nd meaning of “dx” dx is the derivative of an implicit “x” more later if x = f then dx = f /

( ( )) '( ( ))* '( )d

f g x f g x g xdx

( ( )) '( ( ))* '( )d

f g x f g x g xdx

( ( )) [ '( ( ))* '( )]d f g x f g x g x dx

( ( )) '( ( ))* '( )f g x f g x g x dx

Page 24: 4029 u-du : Integrating Composite Functions AP Calculus

Development

from the layman’s idea of antiderivative  

“The Family of functions that has the given derivative”

must have the derivative of the inside in order to find

---------- the antiderivative of the outside 

( ( )) '( ( ))* '( )d

f g x f g x g xdx

( ( )) '( ( ))* '( )d

f g x f g x g xdx

( ( )) '( ( ))* '( )f g x f g x g x dx

3( )d

udx

23( ) * u du

Page 25: 4029 u-du : Integrating Composite Functions AP Calculus

Working With Constants: Constant Property of Integration

With u-du Substitution

REM: u = inside function du = derivative of the inside

Missing Constant?

2 2 2 23( 1) *2 = 3 ( 1) *2x xdx x xdx 23 u du

Worksheet - Part 1

5cos 5 cosx dx x dx

4(1 2 )x dx u = du =

4 4 42 1 1(1 2 ) = (1 2 ) 2 = ( )

2 2 2x dx x dx u du