31
ES206 Fluid Mechanics UNIT B: Fluid Statics ROAD MAP . . . B-1: Pressure in a Stationary Fluid B-2: Atmospheric Pressure B-3: Manometry B-4: Hydrostatic Force Unit B-1: List of Subjects Absolute, Gauge, and Vacuum Pressure Pascal’s Law Hydrostatic Pressure

4 Hydrostatic Pressure 4 3DVFDO¶V/DZ B - 4: Hydrostatic Forcemercury.pr.erau.edu/~hayasd87/AE301/ES206_Master_B.pdf · 2017-09-14 · • The pressure of a stationary fluid acts

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 4 Hydrostatic Pressure 4 3DVFDO¶V/DZ B - 4: Hydrostatic Forcemercury.pr.erau.edu/~hayasd87/AE301/ES206_Master_B.pdf · 2017-09-14 · • The pressure of a stationary fluid acts

ES206 Fluid Mechanics

UNIT B: Fluid Statics

ROAD MAP . . .

B-1: Pressure in a Stationary Fluid

B-2: Atmospheric Pressure

B-3: Manometry

B-4: Hydrostatic Force

ES206 Fluid Mechanics

Unit B-1: List of Subjects

Absolute, Gauge, and Vacuum Pressure

Pascal’s Law

Hydrostatic Pressure

Page 2: 4 Hydrostatic Pressure 4 3DVFDO¶V/DZ B - 4: Hydrostatic Forcemercury.pr.erau.edu/~hayasd87/AE301/ES206_Master_B.pdf · 2017-09-14 · • The pressure of a stationary fluid acts

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

Common Abbreviation for Pressure Units

• 1 “Newton per square meter” = 1 N/m2 = 1 “Pascal” = 1 Pa

• 1 “pound per square inch” = 1 lb/in2 = 1 psi

• 1 “pound per square foot” = 1 lb/ft2 = 1 psf

• psi or psf in “gage” pressure = psig or psfg

• psi or psf in “absolute” pressure = psia or psfa

Absolute or Gage “Zero” Pressure

• The pressure in a perfect vacuum is absolute zero pressure (this is only

“theoretical”): there is no such things of “negative psia”

• “Zero psig” means equal to the local atmospheric pressure (1 atm)

Standard Sea-Level Atmospheric Pressure (1 atm)

• 14.7 psi

• 101 kN/m2 (kPa)

• 760 mmHg (barometric pressure)

• 1 bar

Unit B-1Page 1 of 6

Absolute, Gauge, and Vacuum Pressure (1)

Page 3: 4 Hydrostatic Pressure 4 3DVFDO¶V/DZ B - 4: Hydrostatic Forcemercury.pr.erau.edu/~hayasd87/AE301/ES206_Master_B.pdf · 2017-09-14 · • The pressure of a stationary fluid acts

Gage Pressure

• Pressure gage = provides positive gage pressure value (relative to the local

atmospheric pressure)

For example, 5 psig = +5 psi, relative to the local atmospheric pressure

• Vacuum gage = provides negative gage pressure value (relative to the local

atmospheric pressure)

For example, 2 psig (vac.) = 2 psi, relative to the local atmospheric pressure

• If the gage is zero = the pressure is equal to the local atmospheric pressure

(ZERO GAGE pressure)

(IMPORTANT): “negative” gage pressure means vacuum (lower pressure than

the local atmospheric pressure). However, there is no such thing of “negative”

absolute pressure . . .

Unit B-1Page 2 of 6

Absolute, Gauge, and Vacuum Pressure (2)

“ZERO GAGE” Pressure(Local Atmospheric)

Page 4: 4 Hydrostatic Pressure 4 3DVFDO¶V/DZ B - 4: Hydrostatic Forcemercury.pr.erau.edu/~hayasd87/AE301/ES206_Master_B.pdf · 2017-09-14 · • The pressure of a stationary fluid acts

Pascal’s Law

• The pressure of a stationary fluid acts equally in all directions: this is called

Pascal’s Law

• Also, the Pascal’s Law states that a pressure in a closed system can be

transmitted within the system: larger force can be created by changing the cross

section of the acting pressure

So, the pressure within the system is everywhere constant?

Unit B-1Page 3 of 6

Pascal’s Law

Unit B-1Page 3 of 6

Pascal’s Law

Pressure = p (constant everywhere?)

Page 5: 4 Hydrostatic Pressure 4 3DVFDO¶V/DZ B - 4: Hydrostatic Forcemercury.pr.erau.edu/~hayasd87/AE301/ES206_Master_B.pdf · 2017-09-14 · • The pressure of a stationary fluid acts

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

Hydrostatic Pressure Variation

Let us apply the static force equilibrium equation in the direction:

0F : sin 0p A p p A A

sin 0p A A sin 0p

Note that: sinz

0z

p

0p z p z

p

z

For the limit 0z : dp

dz

Unit B-1Page 4 of 6

dd

Hydrostatic Pressure (1)

h: depth(positive downward)

z: height (positive upward)

(0)

(1)

(2)

(pressure = p1)

(pressure = p2)

+

Page 6: 4 Hydrostatic Pressure 4 3DVFDO¶V/DZ B - 4: Hydrostatic Forcemercury.pr.erau.edu/~hayasd87/AE301/ES206_Master_B.pdf · 2017-09-14 · • The pressure of a stationary fluid acts

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

Hydrostatic Pressure Variation for Incompressible Fluid (Liquid)

Note: specific weight () is a function of height (z) or depth (h)

dp

zdz

pressure “decreases” with height

or dp

hdh

pressure “increases” with depth

For incompressible fluid (liquids): constant

dp

dz dp dz

1 1

2 2

p z

p z

dp dz

1 2 1 2p p z z 2 1 1 2p p p z z z

Alternatively, dp

dh dp dh

2 2

1 1

p h

p h

dp dh

2 1 2 1p p h h 2 1 2 1p p p h h h

The pressure at an arbitrary depth h is:

p h (“gage” pressure) or 0p h p (“absolute” pressure)

Unit B-1Page 5 of 6

Hydrostatic Pressure (2)

zdz

dp 2 1 1 2p p p z z z

(gage)p h

dph

dh

0 (absolute)p h p

2 1 2 1p p p h h h

Page 7: 4 Hydrostatic Pressure 4 3DVFDO¶V/DZ B - 4: Hydrostatic Forcemercury.pr.erau.edu/~hayasd87/AE301/ES206_Master_B.pdf · 2017-09-14 · • The pressure of a stationary fluid acts

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

At the open standpipe (75 ft above the ground), the pressure is equal to the

atmospheric pressure:

standpipe 0p p

In order to feed water, the fire hydrant (ground level), must maintain the

hydrostatic pressure of:

fire hydrant standpipe 0p p h p h

In terms of gage pressure: 0 0p

2

3

fire hydrant

1 ft62.4 lb/ft 75 ft

12 inp h

= 32.5 psi, gage

Also, in kPa: 2 2

2

lb 4.448 N 12 in 1 ft32.5

in 1 lb 1 ft 0.3048 m

= 224,068 N/m2 (224 kPa), gage

Unit B-1Page 6 of 6

Class Example Problem

Related Subjects . . . “Hydrostatic Pressure”

Page 8: 4 Hydrostatic Pressure 4 3DVFDO¶V/DZ B - 4: Hydrostatic Forcemercury.pr.erau.edu/~hayasd87/AE301/ES206_Master_B.pdf · 2017-09-14 · • The pressure of a stationary fluid acts

ES206 Fluid Mechanics

UNIT B: Fluid Statics

ROAD MAP . . .

B-1: Pressure in a Stationary Fluid

B-2: Atmospheric Pressure

B-3: Manometry

B-4: Hydrostatic Force

ES206 Fluid Mechanics

Unit B-2: List of Subjects

Isothermal Pressure Variation

U.S. Standard Atmosphere

Mercury Barometer

Page 9: 4 Hydrostatic Pressure 4 3DVFDO¶V/DZ B - 4: Hydrostatic Forcemercury.pr.erau.edu/~hayasd87/AE301/ES206_Master_B.pdf · 2017-09-14 · • The pressure of a stationary fluid acts

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

Hydrostatic Pressure Variation for Compressible Fluid (Gas)

Now, let us consider hydrostatic pressure variation in gas: z

dp

zdz

=> dp

z g zdz

(Note that: g )

(1) let’s assume that constantg (near sea-level, low altitude):

dp pg

dz RT =>

dp g dz

p R T

Integrating the equation: 2 2

1 1

p z

p z

dp g dz

p R T =>

2

1

2

1

ln

z

z

p g dz

p R T

The solution of this equation depends on the variation of temperature:

(2) if we assume constant temperature (isothermal condition: 0T T )

2 1

0

2 1

g z z

RTp p e

Unit B-2Page 1 of 7

Isothermal Pressure Variation

0

1212

)(exp

RT

zzgpp

Page 10: 4 Hydrostatic Pressure 4 3DVFDO¶V/DZ B - 4: Hydrostatic Forcemercury.pr.erau.edu/~hayasd87/AE301/ES206_Master_B.pdf · 2017-09-14 · • The pressure of a stationary fluid acts

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

If the temperature is constant (“isothermal”):

2 1

0

2 1

g z z

RTp p e

If the air is assumed to be “incompressible”: 1 2p p h

(a) Assuming the air to be at a common temperature of 59 F (isothermal)

2

2 12

o

1 0

32.2 ft/s 1,250 ftexp exp

1,716 ft lb/slug R 59 F 460 R

g z zp

p RT

= 0.956

(b) Assuming the air to be incompressible

1 2p p h (hydrostatic equation)

or, 2 1 2 1p p z z

Therefore,

3

2 12

2

1 1 2

0.0765 lb/ft 1,250 ft1 1

12 in14.7 lb/in

1 ft

z zp

p p

= 0.955

Unit B-2Page 2 of 7

EXAMPLE 2.2

Incompressible and Isothermal Pressure–Depth Variations

Textbook (Munson, Young, and Okiishi), page 46

Page 11: 4 Hydrostatic Pressure 4 3DVFDO¶V/DZ B - 4: Hydrostatic Forcemercury.pr.erau.edu/~hayasd87/AE301/ES206_Master_B.pdf · 2017-09-14 · • The pressure of a stationary fluid acts

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

Troposphere (Sea-Level => 11 km)

Temperature decreases linearly with altitude (z):

aT T z

From hydrostatic pressure variation: dp dz gdz

dp gdz gdz

p RT RT

=>

0a

p z

p

dp g dz

p R T

Note that: aT T z means dT dz => dT

dz

, thus:

a a

p T

p T

dp g dT

p R T => ln ln

a a

p g T

p R T =>

g

R

a a

p T

p T

Substituting the temperature variation ( aT T z ) yields:

1

g

R

a

a

zp p

T

, where:

aT & ap = Temperature & pressure at Sea-Level

= Lapse Rate (0.0065 K/m or 0.00357 R/ft)

Unit B-2Page 3 of 7

U.S. Standard Atmosphere (1)

Page 12: 4 Hydrostatic Pressure 4 3DVFDO¶V/DZ B - 4: Hydrostatic Forcemercury.pr.erau.edu/~hayasd87/AE301/ES206_Master_B.pdf · 2017-09-14 · • The pressure of a stationary fluid acts

Stratosphere (11 km => 20.1 km)

• Temperature remains constant (isothermal condition: 0T T ) 2 1

0

2 1

g z z

RTp p e

Cruise Altitude of a Jet Airliner

• At the edge of the troposphere (11 km or 36,000 ft)

• Temperature / Pressure = 56.6 C / 22.6 kPa

An example of the pressure calculation, based on the U.S. standard atmosphere

model involves:

(1) Starting from standard sea-level conditions: pa = 101.3 kPa / Ta = 15 C

(2) Apply Troposphere equation (0 => 11 km)

1 1aT T z 11 1

g

R

a

a

zp p

T

(determine T1 and p1 at 11 km altitude)

(3) Apply Stratosphere equation (11 km => 20.1 km):

2 1

0

2 1

g z z

RTp p e

Unit B-2Page 4 of 7

U.S. Standard Atmosphere (2)

“Gradient”

Region

“Isothermal”

Region

Page 13: 4 Hydrostatic Pressure 4 3DVFDO¶V/DZ B - 4: Hydrostatic Forcemercury.pr.erau.edu/~hayasd87/AE301/ES206_Master_B.pdf · 2017-09-14 · • The pressure of a stationary fluid acts

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

The stratosphere is the isothermal region ( o56.5 CT : constant):

2 12

1 0

expg z zp

p RT

At the edge of the troposphere:

1 11 kmz , 1 22.6 kPap

Also, for standard air: 287 J/kg KR

From the textbook table C.2 in Appendix C (page 765):

12.11 kPap and 30.1948 kg/m

Therefore:

2 1

2 1

0

expg z z

p pRT

2

3

o

9.77 m/s 15,000 m 11,000 m22.6 10 Pa exp

287 J/kg K 56.5 C 273 K

= 12.05103 Pa (12.05 kPa)

Also, applying the equation of state: p

RT

3

22 o

2

12.05 10 Pa

287 J/kg K 56.5 C 273 K

p

RT

= 0.1939 kg/m3

Unit B-2Page 5 of 7

Class Example Problem

Related Subjects . . . “U.S. Standard Atmosphere”

Page 14: 4 Hydrostatic Pressure 4 3DVFDO¶V/DZ B - 4: Hydrostatic Forcemercury.pr.erau.edu/~hayasd87/AE301/ES206_Master_B.pdf · 2017-09-14 · • The pressure of a stationary fluid acts

Barometric Pressure

• It is conventional to measure and specify atmospheric pressure in terms of the

height of liquid, called Barometric Pressure (head)

• Applying hydrostatic equation: vapor Mercury atmp h p

atm vapor

Mercury

p ph

=> atm

Mercury

ph

( atm vaporp p )

• 1 atm is approximately 760 mm Hg or 29.9 inches Hg

(standard sea-level barometric pressure)

Unit B-2Page 6 of 7

Mercury Barometer

(pvapor = 0.000023 lb/in.2 (abs) at 68 F)

atm vapor atm

Mercury Mercury

p p ph

Page 15: 4 Hydrostatic Pressure 4 3DVFDO¶V/DZ B - 4: Hydrostatic Forcemercury.pr.erau.edu/~hayasd87/AE301/ES206_Master_B.pdf · 2017-09-14 · • The pressure of a stationary fluid acts

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

A barometric pressure of 29.4 in means: atm

Hg

29.4 in Hg (barometric pressure)p

This corresponds to:

2

3

atm Hg 2

1 ft lb 1 ft29.4 in 29.4 in 847 lb/ft 2,075.15

12 in ft 12 inp

= 14.41 psi

In pascals, 99.35 kPa

Also, in terms of column of water:

2

2

2

atm

3

H O

12 in14.41 lb/in

1 ft

62.4 lb/ft

p

= 33.26 ft in H2O

Unit B-2Page 7 of 7

Class Example Problem

Related Subjects . . . “Mercury Barometer”

Page 16: 4 Hydrostatic Pressure 4 3DVFDO¶V/DZ B - 4: Hydrostatic Forcemercury.pr.erau.edu/~hayasd87/AE301/ES206_Master_B.pdf · 2017-09-14 · • The pressure of a stationary fluid acts

ES206 Fluid Mechanics

UNIT B: Fluid Statics

ROAD MAP . . .

B-1: Pressure in a Stationary Fluid

B-2: Atmospheric Pressure

B-3: Manometry

B-4: Hydrostatic Force

ES206 Fluid Mechanics

Unit B-3: List of Subjects

Concept of Manometers

Differential U-Tube Manometer

Differential Manometer

Inclined U-Tube Differential Manometer

Page 17: 4 Hydrostatic Pressure 4 3DVFDO¶V/DZ B - 4: Hydrostatic Forcemercury.pr.erau.edu/~hayasd87/AE301/ES206_Master_B.pdf · 2017-09-14 · • The pressure of a stationary fluid acts

Piezometer Tube

• The simplest type of manometer: the pressure at point A can be given by a series

of hydrostatic pressure variation applications as follows:

Starting from the location (A): pressure is Ap

Location (1): pressure, relative to A is: 1 Ap p

Open-end of the tube: pressure is “zero gauge,” and relative to 1 is: 1 1 10 p h

1 1Ap h

U-Tube Manometer

• The similar application of hydrostatic pressure variation, starting from the open

end (open to the local atmosphere: zero gage) yields:

2 2 1 10 Ah h p 2 2 1 1Ap h h

• If the fluid ( 1 ) is gas, since 1 2gas liquid :

2 2Ap h

Unit B-3Page 1 of 6

Concept of Manometers

11hpA

PiezometerTube

1122 hhpA

U-Tube Manometer

Page 18: 4 Hydrostatic Pressure 4 3DVFDO¶V/DZ B - 4: Hydrostatic Forcemercury.pr.erau.edu/~hayasd87/AE301/ES206_Master_B.pdf · 2017-09-14 · • The pressure of a stationary fluid acts

Differential Manometer

• This manometer cannot measure actual pressure: only measures pressure

difference ( p )

• Starting from one end of the manometer:

1 1 2 2 3 3A Bp h h h p 2 2 3 3 1 1A Bp p h h h

Manometer Equations

• It is clear now, that each manometer, depending on the shape and type of the

choices of fluids, comes with a unique equation to describe the pressure being

measured: this is called the “manometer equation.”

• Manometer equation is purely dependent upon the hydrostatic pressure

variation.

Unit B-3Page 2 of 6

Differential U-Tube Manometer

113322 hhhpp BA

Page 19: 4 Hydrostatic Pressure 4 3DVFDO¶V/DZ B - 4: Hydrostatic Forcemercury.pr.erau.edu/~hayasd87/AE301/ES206_Master_B.pdf · 2017-09-14 · • The pressure of a stationary fluid acts

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

Recall the hydrostatic pressure variation: p h

Applying the hydrostatic pressure equation from one end to the other end:

Oil Mercury Water4 in 3 in 12 in 12 in 3 inA Bp p

Hence,

3 31 ft 1 ft57 lb/ft 4 in 3 in 847 lb/ft 12 in

12 in 12 inAp

3 1 ft62.4 lb/ft 12 in 3 in

12 inBp

The pressure difference is:

A Bp p = 802.25 lb/ft2

Unit B-3Page 3 of 6

Class Example Problem

Related Subjects . . . “U-Tube Manometer”

Page 20: 4 Hydrostatic Pressure 4 3DVFDO¶V/DZ B - 4: Hydrostatic Forcemercury.pr.erau.edu/~hayasd87/AE301/ES206_Master_B.pdf · 2017-09-14 · • The pressure of a stationary fluid acts

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

Note: pressure differential (1 2p p ) is given: 0.5 lb/in2.

Applying the hydrostatic pressure equation from 1p to

2p :

2 21 H O 1 gf H O 1 2p h h h h p

or, 21 H O gf 2p h h p

Therefore,

2

2

2

1 2

3 3

gf H O

12 in0.5 lb/in

1 ft

112 lb/ft 62.4 lb/ft

p ph

= 1.452 ft

Unit B-3Page 4 of 6

Class Example Problem

Related Subjects . . . “U-Tube Manometer”

Page 21: 4 Hydrostatic Pressure 4 3DVFDO¶V/DZ B - 4: Hydrostatic Forcemercury.pr.erau.edu/~hayasd87/AE301/ES206_Master_B.pdf · 2017-09-14 · • The pressure of a stationary fluid acts

Inclined U-Tube Differential Manometer

• One leg of the manometer is inclined at an angle , and differential reading 2 is

measured along the inclined tube:

2 2 3 3 1 1sinA Bp p h h

• If A and B are gases, 2 2 sinA Bp p

• Inclined U-tube manometers can have a “higher measurement resolution” than

regular (vertical tube) U-tube manometers.

• Also, the inclination angle ( ) can be “adjusted,” so that the measured length

(gage reading) can conveniently be interpreted as a specific standard liquid’s

liquid column height (equivalent).

(for example . . . 10 inches of water)

• Inclined U-tube manometers are commonly used (combined with “Pitot-static

probe”) for airspeed measurement.

Unit B-3Page 5 of 6

Inclined U-Tube Differential Manometer (1)

sin22 BA pp

Page 22: 4 Hydrostatic Pressure 4 3DVFDO¶V/DZ B - 4: Hydrostatic Forcemercury.pr.erau.edu/~hayasd87/AE301/ES206_Master_B.pdf · 2017-09-14 · • The pressure of a stationary fluid acts

Airspeed Measurements

• Inclined U-Tube Differential Manometer is typically used to measure small

pressure differences in gas.

• Pitot-static probe is usually combined with this type of manometer for airspeed

measurement (for example, the figure shows the setup in a wind tunnel test

section airspeed measurement).

• pt: the “total” pressure – this is the pressure measured at the location of zero

airspeed (called, the “stagnation point.”).

• ps: the “static” pressure – this is the pressure of a local atmosphere given at

the condition of the wind tunnel test section.

• t sp p p : the pressure difference between above two is called the

“dynamic” pressure (q):

21

2q V

• Obviously, this pressure difference can be determined by using the

differential U-tube (usually inclined) manometer. sinp

Unit B-3Page 6 of 6

Inclined U-Tube Differential Manometer (2)

Page 23: 4 Hydrostatic Pressure 4 3DVFDO¶V/DZ B - 4: Hydrostatic Forcemercury.pr.erau.edu/~hayasd87/AE301/ES206_Master_B.pdf · 2017-09-14 · • The pressure of a stationary fluid acts

ES206 Fluid Mechanics

UNIT B: Fluid Statics

ROAD MAP . . .

B-1: Pressure in a Stationary Fluid

B-2: Atmospheric Pressure

B-3: Manometry

B-4: Hydrostatic Force

ES206 Fluid Mechanics

Unit B-4: List of Subjects

Hydrostatic Force

Hydrostatic Force on an Inclined Plane Surface of Arbitrary Shape

Geometric Properties of Some Shapes

Page 24: 4 Hydrostatic Pressure 4 3DVFDO¶V/DZ B - 4: Hydrostatic Forcemercury.pr.erau.edu/~hayasd87/AE301/ES206_Master_B.pdf · 2017-09-14 · • The pressure of a stationary fluid acts

Unit B-4Page 1 of 8

Hydrostatic Force

UNIT BUNIT B--44SLIDE SLIDE 11

Hydrostatic ForceHydrostatic Force

Textbook (Munson, Young, and Okiishi), page 58

➢ The resultant force of a static fluid on a plane surface is due to the hydrostatic pressure distribution on the surface

➢ The resultant force acts through the centroid of the surface

pAFR hp (Hydrostatic Pressure) (Resultant Force)

?UNIT BUNIT B--44SLIDE SLIDE 11

Hydrostatic ForceHydrostatic Force

Textbook (Munson, Young, and Okiishi), page 58

➢ The resultant force of a static fluid on a plane surface is due to the hydrostatic pressure distribution on the surface

➢ The resultant force acts through the centroid of the surface

pAFR hp (Hydrostatic Pressure) (Resultant Force)

?h

3/h

1

2RF h A

RF h A

The resultant force does not act through the centroid of the surface

Page 25: 4 Hydrostatic Pressure 4 3DVFDO¶V/DZ B - 4: Hydrostatic Forcemercury.pr.erau.edu/~hayasd87/AE301/ES206_Master_B.pdf · 2017-09-14 · • The pressure of a stationary fluid acts

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

Differential force (dF) developed on a differential area (dA) is: dF hdA

Also, the relationship between h and y is: sinh y or siny h

Unit B-4Page 2 of 8

Hydrostatic Force on an Inclined Plane Surface of Arbitrary Shape (1)

Reference Line

UNIT BUNIT B--44SLIDE SLIDE 44

Hydrostatic Force on an Inclined Hydrostatic Force on an Inclined

Plane Surface of Arbitrary ShapePlane Surface of Arbitrary Shape (2)(2)

➢ Resultant force due to hydrostatic pressure is:

➢ Define the first moment of the area:

➢ Define the hydrostatic pressure at centroid:

AAA

R ydAdAyhdAF sinsin

AyydA c

A

AhAyF ccR sin

cc hp

ApAhF ccR (Hydrostatic Resultant Force)

Page 26: 4 Hydrostatic Pressure 4 3DVFDO¶V/DZ B - 4: Hydrostatic Forcemercury.pr.erau.edu/~hayasd87/AE301/ES206_Master_B.pdf · 2017-09-14 · • The pressure of a stationary fluid acts

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

Taking the moment at point O: 2sinR R

A A

F y ydF y dA

(moment around the x-axis)

=>

2 2 2sin sin sin

sinA A A

R

R c c

y dA y dA y dA

yF h A y A

Dividing by sin : =>

2

AR

c

y dA

yy A

Unit B-4Page 3 of 8

Hydrostatic Force on an Inclined Plane Surface of Arbitrary Shape (2)

Hydrostatic

Resultant Force

ApF cR

UNIT BUNIT B--44SLIDE SLIDE 66

Hydrostatic Force on an Inclined Hydrostatic Force on an Inclined

Plane Surface of Arbitrary ShapePlane Surface of Arbitrary Shape (4)(4)

➢ Resultant force do not act through the centroid:

➢ Since resultant force is given as:

➢ Define the second moment of the area (moment of inertia):

sincR AyF

Ay

dAy

Ay

dAy

yc

A

c

AR

22

sin

sin

AA

RR dAyydFyF 2 sin

A

x dAyI 2

Page 27: 4 Hydrostatic Pressure 4 3DVFDO¶V/DZ B - 4: Hydrostatic Forcemercury.pr.erau.edu/~hayasd87/AE301/ES206_Master_B.pdf · 2017-09-14 · • The pressure of a stationary fluid acts

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

Unit B-4Page 4 of 8

Hydrostatic Force on an Inclined Plane Surface of Arbitrary Shape (3)

Location of Resultant Force

(Center of Pressure)

Watch Out!Resultant force do not act through the centroid, but

Center of Pressure

Ay

Iyy

c

xccR

UNIT BUNIT B--44SLIDE SLIDE 77

Hydrostatic Force on an Inclined Hydrostatic Force on an Inclined

Plane Surface of Arbitrary ShapePlane Surface of Arbitrary Shape (5)(5)

➢ The location of resultant force is:

➢ Using parallel axis theorem: 2

cxcx AyII

Ay

AyIy

c

cxcR

2

Ay

I

Ay

dAy

yc

x

c

AR

2

Ay

Iyy

c

xccR

Location of Resultant Force (Center of Pressure)

Page 28: 4 Hydrostatic Pressure 4 3DVFDO¶V/DZ B - 4: Hydrostatic Forcemercury.pr.erau.edu/~hayasd87/AE301/ES206_Master_B.pdf · 2017-09-14 · • The pressure of a stationary fluid acts

Taking, once again, the moment at point O (moment around the y-axis):

sinR R

A A

F x xdF xydA

Unit B-4Page 5 of 8

Hydrostatic Force on an Inclined Plane Surface of Arbitrary Shape (4)

Location of

Resultant Force

(Center of

Pressure)

Watch Out!If cross section is

symmetric along vertical

(y) axis (Ixyc = 0), centroid

and center of pressure

will coincide

Ay

Ixx

c

xyc

cR

UNIT BUNIT B--44SLIDE SLIDE 99

Hydrostatic Force on an Inclined Hydrostatic Force on an Inclined

Plane Surface of Arbitrary ShapePlane Surface of Arbitrary Shape (7)(7)

➢ Similarly, the x-coordinate location of resultant force can be determined as:

➢ Using parallel axis theorem:

A

RR xydAxF sinAy

I

Ay

xydA

xc

xy

c

AR

ccxycxy yAxII

Ay

yAxIx

c

ccxyc

R

Ay

Ixx

c

xyc

cR

Location of Resultant Force (Center of Pressure)

Page 29: 4 Hydrostatic Pressure 4 3DVFDO¶V/DZ B - 4: Hydrostatic Forcemercury.pr.erau.edu/~hayasd87/AE301/ES206_Master_B.pdf · 2017-09-14 · • The pressure of a stationary fluid acts

Centroid (C) is a geometric center of an object

Centroid = center of gravity (CG), if the object is perfectly homogeneous

Center of Pressure (CP) is where a resultant force (due to the distribution of

hydrostatic pressure) acts on an object

CP location is usually not equal to the centroid (only exception is the case that the

plane surface is horizontally submerged under the liquid: means that = 0)

Unit B-4Page 6 of 8

Geometric Properties of Some Shapes

UNIT BUNIT B--44SLIDE SLIDE 11

Hydrostatic ForceHydrostatic Force

Textbook (Munson, Young, and Okiishi), page 58

➢ The resultant force of a static fluid on a plane surface is due to the hydrostatic pressure distribution on the surface

➢ The resultant force acts through the centroid of the surface

pAFR hp (Hydrostatic Pressure) (Resultant Force)

?

Page 30: 4 Hydrostatic Pressure 4 3DVFDO¶V/DZ B - 4: Hydrostatic Forcemercury.pr.erau.edu/~hayasd87/AE301/ES206_Master_B.pdf · 2017-09-14 · • The pressure of a stationary fluid acts

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

(a) The magnitude and location of the resultant force exerted on the gate by the

water

23 39.80 10 N/m 10 m 4 m

4R c cF p A h A

= 1,230103 N (1.23 MN)

xcR c

c

Iy y

y A where,

4

4xc

RI

, and

10 m

sin 60cy

Hence,

4

2

2 m 4 10 m

sin 6010 m sin 60 4 4 mRy

= 11.63 m

(b) The moment that would have to be applied to the shaft to open the gate

0cM : 3 10 m1,230 10 N 11.63 m

sin 60R R cM F y y

= 102,083 Nm

Unit B-4Page 7 of 8

EXAMPLE 2.6Textbook (Munson, Young, and Okiishi), page 61

Hydrostatic Pressure Force on a Plane Surface

Page 31: 4 Hydrostatic Pressure 4 3DVFDO¶V/DZ B - 4: Hydrostatic Forcemercury.pr.erau.edu/~hayasd87/AE301/ES206_Master_B.pdf · 2017-09-14 · • The pressure of a stationary fluid acts

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

Hydrostatic resultant force is:

3 3 4 m9.80 10 N/m 2 m 1 m

sin 51.3R cF h A

= 100103 N

Static equilibrium 0xF :

osin 51.3R fF F N (eqn. 1)

Also, 0yF :

cos 51.3RN W F (eqn. 2)

where, concrete concreteW V and

3

concrete

4 m 5 m2 m 5 m 1 m 20 m

2V

Hence, from eqn. 2:

3 3 3 323.6 10 N/m 20 m 100 10 N cos 51.3N = 534,524 N

From eqn. 1: 3100 10 N sin 51.3sin 51.3

534,524 N

RF

N

= 0.146

Unit B-4Page 8 of 8

Class Example Problem

Related Subjects . . . “Hydrostatic Force”

Unit B-4Page 8 of 8

Class Example Problem

Related Subjects . . . “Hydrostatic Force”

W FR

N

Ff

1 o5tan 51.3

4