10
4. Designing and validating primers DESIGN: When designing primers, consideration should be given to the area of the target gene being amplified (target sequence) and the thermodynamic properties of the primers themselves. All of these properties factor into the efficiency and specificity of target gene amplification. Forward and reverse primer pairs for qPCR should amplify unique target sequences between 70-150 bp long, that are areas of low secondary structure (GC content < 60%). The primers themselves should follow the guidelines for good primer design, but briefly, their length is typically 15-20 bp long, their GC content should be approximately 50-55% with low secondary structure (hairpins, loops etc..) but primers should be “anchored” with a G/C at the 5’ end of the sequence and their melting temperature is approximately 5 ° C higher than the annealing temperature (60 ° C) in your proposed qPCR run profile (therefore, optimally 65 ° C). Keep in mind that all the primers used in a single qPCR reaction should have similar annealing/extension temperatures. There are many good on-line sites for primer design: Primer BLAST http://www.ncbi.nlm.nih.gov/tools/primer-blast/ Primer 3 http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi/ IDT SciTools http://www.idtdna.com/pages/scitools Sample read-out from “Primer BLAST” primer design program IT IS CRITICAL TO “BLAST” (nucleotide) THE PROPOSED PRIMER SEQUENCE TO ENSURE SPECIFICITY FOR THE TARGET (amplified) GENE. Once your primers arrive, if they are lyophilized, it is recommended to make a 100 uM stock and make a working stock (10 uM) from this. The 100 uM stock should be kept at -20 ° C and opened only to create new working stocks. This will reduce the possibility of contamination. VALIDATION: It is recommended to purchase the top two predicted primer pairs and perform the validation on both primers. Depending on the availability of your template (i.e. whether your samples are readily obtained from experimental animals or cell culture or whether they are precious human samples) you may wish to validate your primers on a commercially available universal cDNA. For example, for human primers you can validate on Clontech Laboratories Human Universal Reference

4. Designing and validating primers - St. Michael's Hospitalstmichaelshospitalresearch.ca/wp-content/uploads/2015/10/... · 2019-06-15 · 4. Designing and validating primers DESIGN:

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 4. Designing and validating primers - St. Michael's Hospitalstmichaelshospitalresearch.ca/wp-content/uploads/2015/10/... · 2019-06-15 · 4. Designing and validating primers DESIGN:

4.DesigningandvalidatingprimersDESIGN:Whendesigningprimers,considerationshouldbegiventotheareaofthetargetgenebeingamplified(targetsequence)andthethermodynamicpropertiesoftheprimersthemselves.Allofthesepropertiesfactorintotheefficiencyandspecificityoftargetgeneamplification.ForwardandreverseprimerpairsforqPCRshouldamplifyuniquetargetsequencesbetween70-150bplong,thatareareasoflowsecondarystructure(GCcontent<60%).Theprimersthemselvesshouldfollowtheguidelinesforgoodprimerdesign,butbriefly,theirlengthistypically15-20bplong,theirGCcontentshouldbeapproximately50-55%withlowsecondarystructure(hairpins,loopsetc..)butprimersshouldbe“anchored”withaG/Catthe5’endofthesequenceandtheirmeltingtemperatureisapproximately5°Chigherthantheannealingtemperature(60°C)inyourproposedqPCRrunprofile(therefore,optimally65°C).KeepinmindthatalltheprimersusedinasingleqPCRreactionshouldhavesimilarannealing/extensiontemperatures.Therearemanygoodon-linesitesforprimerdesign:PrimerBLAST http://www.ncbi.nlm.nih.gov/tools/primer-blast/Primer3 http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi/IDTSciTools http://www.idtdna.com/pages/scitools

Sampleread-outfrom“PrimerBLAST”primerdesignprogramITISCRITICALTO“BLAST”(nucleotide)THEPROPOSEDPRIMERSEQUENCETOENSURESPECIFICITYFORTHETARGET(amplified)GENE.Onceyourprimersarrive,iftheyarelyophilized,itisrecommendedtomakea100uMstockandmakeaworkingstock(10uM)fromthis.The100uMstockshouldbekeptat-20°Candopenedonlytocreatenewworkingstocks.Thiswillreducethepossibilityofcontamination.VALIDATION:Itisrecommendedtopurchasethetoptwopredictedprimerpairsandperformthevalidationonbothprimers.Dependingontheavailabilityofyourtemplate(i.e.whetheryoursamplesarereadilyobtainedfromexperimentalanimalsorcellcultureorwhethertheyareprecioushumansamples)youmaywishtovalidateyourprimersonacommerciallyavailableuniversalcDNA.Forexample,forhumanprimersyoucanvalidateonClontechLaboratoriesHumanUniversalReference

Page 2: 4. Designing and validating primers - St. Michael's Hospitalstmichaelshospitalresearch.ca/wp-content/uploads/2015/10/... · 2019-06-15 · 4. Designing and validating primers DESIGN:

TotalRNA(cat#639653/54).WhiletheremaybesomevariabilityinyourtargetgeneexpressionbetweenthiscDNAandthatobtainedfromyourbiopsy/sample,itis“asgoodasyoucanget”withoutwastingyourprecioussamplesonvalidation.

Ideally,themultipleprimersyouwilluseforqPCRallhaveareasonableefficiencyatthesameannealing/extensiontemperature(usually60°C).Youwillhavefactoredthisintothedesignoftheprimerbyspecifyingmelttemperatures(between63-68°C)asoneofthevariables.BeforeperformingaqPCRreactionandusingexpensiveSYBRMasterMix,itisrecommendedtofirstcheckthespecificityofyourprimersbyrunninganendpointPCRreactionfirstandrunningtheproductsonaDNAacrylamidegel.Inthisreaction,youshouldincludeano-templatecontrol(NTC)totestforcontaminationofyourbuffersandsolutionsaswellastheprevalenceofprimer-dimerformation.YoushouldalsoperformmultiplePCRreactionstodeterminetheoptimalconcentrationofprimerstouseforamplification(usuallybetween100-500nM). Sampleend-pointreaction:(50ulfinalvolume)

40ul UPW(ultrapurewater)1ul forwardprimer(10uMstock)1ul reverseprimer(10uMstock)5ul 10XTaqbuffer(whichincludesMgCl2)1ul dNTPmix(2.5mMstock)1ul template(UniversalcDNAortargetcDNA–10-50ng/ulstock)(ORWATER,IFA

NO-TEMPLATECONTROL)1ul Taqpolymerase

PCRParameters:

95oC 2:00minutes

40cyclesof:

95oC 60seconds(denature)

60oC 30seconds(anneal)

4oC hold

RunproductsonanacrylamideDNAgel,preparedasfollows:

8.10mlUltrapureH2O

4.17ml29:1Acrylamide:Bis(30%;Bioradcat#1610156)

0.25ml50xTAEsolution

62.5μlAPS

6.25μlTEMED

Page 3: 4. Designing and validating primers - St. Michael's Hospitalstmichaelshospitalresearch.ca/wp-content/uploads/2015/10/... · 2019-06-15 · 4. Designing and validating primers DESIGN:

Using a SDS-PAGE gel apparatus (i.e. vertical electrophoresis) set up plates and fill entirely with thissolution (i.e., there is no stacking/separating gel). Top with either 10 or 15 well comb. Allowpolymerization,removecomb, flushwellswithwaterand loadPCRsamplewith6X loadingbuffer (forDNA agarose gels NOT sample buffer for protein gels) diluted to 1X. Load DNA ladder according topredictedsizeofproducts.Thegelrequires30-45minutestorun(at120V).Whenlowerloadingdyeis¾of thewaydown thegel, remove fromplatesand incubategel inethidiumbromidebath (250mlH2Owith5μlEthidiumBromidestocksolution(10mg/ml; Invitrogencat#15585-011)) forupto60minutesandthenwashwithwaterforupto60minutes.

*

Figure2.End-pointPCRwithreferencecDNAtoconfirmampliconsize(A)ReferencecDNA(universalhumancDNA)wasutilizedastemplateforend-pointPCRtoverifytheabilityofprimerstoamplifyaSINGLEampliconofpredictedsizeaswellasnobackground(*)incDNAnegativecontrol.

Onceyouhaveconfirmedthatyourprimersrenderasingleproductwithnobackgroundandthe

productmigratesatthepredictedsize,youcanusethisprimersetinaqPCRreactionformelt-curveanalysisandgeneratingastandardcurvetoevaluatePCRefficiency.

Initially,tryonlyafewprimers(i.e.housekeeperssuchasGAPDHandHMBS)togetusedtotheequipment,proceduresandpipetting. It’snotdifficultonceyougetusedto it,butpipettingafull384wellplateisnottrivialforabeginner.It isrecommendedtousea6pointstandardcurve,using1:5or1:10 serial dilutions (in triplicate) of your cDNA template along with NTC and NRT (no reversetranscription)controls,eachintriplicate.

The total reaction volume per well is 10μl (8 ul master mix plus 2 ul template), following a similarformulaforthisSAMPLEofmastermixcalculations:

Negativ

100bp 1 2 3 4 5 6 7 8 9

*Negative Controls (no cDNA)

Page 4: 4. Designing and validating primers - St. Michael's Hospitalstmichaelshospitalresearch.ca/wp-content/uploads/2015/10/... · 2019-06-15 · 4. Designing and validating primers DESIGN:

Reagent [Stock] Volume/rxn samples MasterVol. Finalconcentration

SYBRGreenMix 2x 5.00μl 21 105μl 1x

Primermix(FWD/REV) 10μM 0.40μl 21 8.4μl 400nM(i.e.determinedprior)

H2O(RNase/DNasefree) 2.60μl 21 54.6μl N/A

Total: 8.00μl 168μl

Forserialtemplate(cDNA)dilutions:CommercialhumancDNA(Clontechcat#636693)orexperimentalcDNAwasseriallydiluted1:10enoughfor6wells(perconcentration):i.e.2μlofstockcDNAwasdilutedin18μlH2Oandthenseriallyinthesamemanner(6times)to1:1,000,000.Eachconcentrationwasdonein triplicate foreachprimer2μlof thecDNAwasdispensed intoeachwell. Ofnote,whendispensingintothemicroplate,thepipettetipshouldbeplacedonthesideofthewell: theplatewillbespuntobringeverythingtogether.ThisisaSAMPLEofwhatthe384wellplatewilllooklike.

Mastermixandtemplatearedispensedwitharepeatelectronicpipettor(foraccuracy)intoa384-wellplate. Once the plate is loaded, it must be sealed with an optical cover (ABI4311971) to preventevaporativeloss.Spintheplatefor2minutesat1200rpmandthenruntheqPCRreaction.

Themelt-curveperformedattheendoftheqPCRcyclesisimportantinconfirmingthespecificityoftheprimerannealing.Thecurveshoulddisplayasinglepeakwithnoshouldering(seebelow).

Page 5: 4. Designing and validating primers - St. Michael's Hospitalstmichaelshospitalresearch.ca/wp-content/uploads/2015/10/... · 2019-06-15 · 4. Designing and validating primers DESIGN:

ThestandardcurveisusedtocalculatetheefficiencyoftheqPCRreaction,orhowwellthepolymeraseisabletoamplifythetargetcDNAgiventheprimersequencesandthereactionconditions.Inaperfectlyefficient(100%)reaction,thereisaproductdoublingeverycycle,butreactionefficienciescanbeeitherhigherorlowerthan100%duetoinhibitoryfactorsinthecDNApreparation,ineffectiveprimerbinding,secondarystructureinthetargetgene,ampliconorprimers,oldreagentsandenzymeorsub-optimalannealing/extensiontemperatures.Thestandardcurvewillalsoinformyouoftheoptimaltemplateconcentrationtousesothatyourtargetgenesamplifywithintheoptimalrange(Ct18-25).

Slope:-3.566Y-inter:22.282R2:0.992Eff%:90.737

Page 6: 4. Designing and validating primers - St. Michael's Hospitalstmichaelshospitalresearch.ca/wp-content/uploads/2015/10/... · 2019-06-15 · 4. Designing and validating primers DESIGN:

Theefficiencyiscalculatedbyplottingthetemplatequantityvs.theCtvalue.Theslopeofthe(linearregression)bestfitlinereflectstheefficiencyofthereaction.Thereactionefficiency,shouldalwaysbebetween90-110%anditisimportantthattheefficienciesofalltheprimersusedintheqPCRreactionareapproximatelyequalforaccuratecomparison.TheR2valuerepresentshowwellthedatafittheregressionlineorwhethertheefficienciesaredifferentatanypointintherangeoftemplateconcentrations.ThisR2valueshouldbeascloseto1.0aspossiblewithanacceptablerangebetween0.98-1.0.Ifthevalueissignificantlylower,checkthevariabilitybetweenyourtechnicalreplicatesanddiscardanydatapointsthatfalloutsideof0.5Ctofeachother.Forexample,withtheplotabove,thetriplicatesforthehighestconcentrationofcDNA(22.174,22.471,24.349)wereassessedandtheoutlier(24.349)wasomittedfromtheanalysis.Forstandardcurvesinwhicha1:10dilutionisperformed,thehighestandlowestconcentrationsofthestandardcurvemayhavetobeeliminatedforaccuracyastheCtvaluesmaystart“fallingoffthecurve”withincreasingdlution.Forexample,takethisvalidationscenariousingaGAPDHprimer:

Assessment: (i)optimaldilutionofcDNA(Ct18-25)withfirst3dilutions

(ii)Firstfoursetsofreplicatesaregood,butthenvariabilityishighwhencDNAistoodilute

Canrepeatexperimentanddostandardcurvewithlowerdilution(1:5)tobewithindynamicrange

(iii)Calculatedefficiency(79%)isborderlineacceptable;shouldbe80-110%

(iv)R2=0.998whichisgoodcorrelation

(v)Meltcurvegood–singleproduct,noshouldering

Onceyourprimershavebeenvalidatedforefficiency,R2,andspecificity,youMUSTensurethatyouselectaproperhousekeepinggene(s)foryourexperimentalsystem.Again,referencegenesnormalizethedatabycorrectingfordifferencesinstartingquantitiesofcDNAandtherefore,CANNOTCHANGEINEXPRESSIONLEVEL(CtVALUE)BETWEENEXPERIMENTALCONDITIONS/TIMEPOINTS.Thefinalvalidationstep,therefore,istocomparetheCtvalueatagivenconcentrationofcDNAacrossallyourdifferent

Slope: -3.953 R2: 0.998 Efficiency: 79%

Page 7: 4. Designing and validating primers - St. Michael's Hospitalstmichaelshospitalresearch.ca/wp-content/uploads/2015/10/... · 2019-06-15 · 4. Designing and validating primers DESIGN:

experimentalconditions.Itisalsousefultonotethatoften,onehousekeepinggeneisnotenoughforaccuratedeterminationofgeneexpressionchanges.Vandesompeleetal.(2002)wroteanexcellentarticleoutliningthatthegeometricmeanofmultiplecarefullyselectedhousekeepinggeneswasthemostaccuratenormalizationfactor.Therearealsomanygoodon-linealgorithmstoassessthevariabilityinyourhousekeepersexpressionlevelsforpropernormalization;thesecanbefoundontheGeneQuantificationwebsite(http://www.gene-quantification.info/).

Forpre-validatedhuman,mouseandrathousekeeper(i.e.GAPDH,HMBS,HPRT,CyclophilinA,G6PD)primersequencesseeAppendixIbeloworvisitthefollowingsiteshostedattheUniversityofGhentandHarvard(http://medgen.ugent.be/rtprimerdb/,http://pga.mgh.harvard.edu/primerbank/).Remember,youitisstillagoodideatovalidatethese“pre-validated”primersinyourexperimentalsystembeforeyouusethem!

Page 8: 4. Designing and validating primers - St. Michael's Hospitalstmichaelshospitalresearch.ca/wp-content/uploads/2015/10/... · 2019-06-15 · 4. Designing and validating primers DESIGN:

AppendixI:ValidatedHousekeepingGenesUsedforqPCR(withaccessionnumbers)

•ALWAYS“BLAST”(nucleotide)yourprimersequencesbeforeorderingtocheck!)

•AlsocheckformorevalidatedqPCRprimersin:http://pga.mgh.harvard.edu/primerbank/index.html

HUMAN:

hGAPDH(Glyceraldehyde-3-phosphatedehydrogenase-NM_002046):

Forward5’-CAATGACCCCTTCATTGACC-3’

Reverse5’-GACAAGCTTCCCGTTCTCAG-3’

hG6PD(Glucose-6-phosphatedehydrogenase-NM_000402.3):

Forward5’-GAGGCCGTGTACACCAAGAT-3’

Reverse5’-TCAGGGAGCTTCACGTTCTT-3’

hHMBS(Hydroxymethylbilanesynthase-BC019323.1):

Forward5’-TGCAACGGCGGAAGAAAA-3’

Reverse5’-AGCTGGCTCTTGCGGGTAC-3’

hHPRT1(Hypoxanthineguaninephosphoribosyltransferase1-NM_000194):

Forward5’–CCTGGCGTCGTGATTAGTGAT-3’

Reverse5’–AGACGTTCAGTCCTGTCCATAA-3’

MOUSE:

mGAPDH(Glyceraldehyde-3-phosphatedehydrogenase-NM008084.2):

Page 9: 4. Designing and validating primers - St. Michael's Hospitalstmichaelshospitalresearch.ca/wp-content/uploads/2015/10/... · 2019-06-15 · 4. Designing and validating primers DESIGN:

Forward5’-AGGTCGGTGTGAACGGATTTG-3’

Reverse5’-TGTAGACCATGTAGTTGAGGTCA-3’

mG6PD(Glucose-6-phosphatedehydrogenase-NM008062):

Forward5’–CACAGTGGACGACATCCGAAA–3’

Reverse5’-AGCTACATAGGAATTACGGGCAA-3’

mHMBS(Hydroxymethylbilanesynthase-NM013551.2):

Forward5’-AAGGGCTTTTCTGAGGCACC–3’

Reverse5’-AGTTGCCCATCTTTCATCACTG-3’

mHPRT1(Hypoxanthineguaninephosphoribosyltransferase1-NM_013556):

Forward5’–TCAGTCAACGGGGGACATAAA–3’

Reverse5’–GGGGCTGTACTGCTTAACCAG–3

RAT:

rGAPDH(Glyceraldehyde-3-phosphatedehydrogenase–AF_106860):

Forward5’-GTGCAGTGCCAGCCTCGTC–3’

Reverse5’-GGCAGCACCAGTGGATGCAG–3’

rHPRT(Hypoxanthineguaninephosphoribosyltransferase1-XM_343829):

Forward5’-GCCGACCGGTTCTGTCAT–3’

Reverse5’-TCATAACCTGGTTCATCATCACTAATC–3’

rCycloB(PeptidylprolylisomeraseB(cyclophilinB)-NM_022536):

Page 10: 4. Designing and validating primers - St. Michael's Hospitalstmichaelshospitalresearch.ca/wp-content/uploads/2015/10/... · 2019-06-15 · 4. Designing and validating primers DESIGN:

Forward5’-GGGCTCCGTTGTCTTCCTTT–3’

Reverse5’-GACTTTAGGTCCCTTCTTCTTATCGTT–3’

rHMBS(Hydroxymethylbilanesynthase-NM_013168):

Forward5’-GGCTCAGATAGCATGCAAGAGA–3’

Reverse5’-TGGACCATCTTCTTGCTGAACA–3’