28
ATOMIC AND MOLECULAR PHYSICS 15 March 2011 Dr. Tatjana Curcic Program Manager AFOSR/RSE Air Force Office of Scientific Research AFOSR Distribution A: Approved for public release; distribution is unlimited. 88ABW-2011-0752

4. Curcic -Atomic and Molecular

  • Upload
    afosr

  • View
    221

  • Download
    2

Embed Size (px)

Citation preview

Page 1: 4. Curcic -Atomic and Molecular

ATOMIC AND MOLECULAR

PHYSICS15 March 2011

Dr. Tatjana Curcic

Program Manager

AFOSR/RSE

Air Force Office of Scientific Research

AFOSR

Distribution A: Approved for public release; distribution is unlimited. 88ABW-2011-0752

Page 2: 4. Curcic -Atomic and Molecular

2

2011 AFOSR SPRING REVIEW2301D PORTFOLIO OVERVIEW

NAME: Tatjana Curcic

BRIEF DESCRIPTION OF PORTFOLIO:

Understanding interactions between atoms, molecules, ions, and

radiation.

LIST SUB-AREAS IN PORTFOLIO:

Cold/ultracold quantum gases (atomic and molecular); precision

measurement; AMO-based quantum information science;

ultrafast/ultraintense laser science.

Page 3: 4. Curcic -Atomic and Molecular

3

AMO Program: Overview

• Degenerate

quantum gases

• Strongly-interacting

quantum gases

• New phases of

matter

• Ultracold

molecules

• Precision

measurement

• Atom

interferometry

• Cold/ultracold

plasmas

• Relativistic

optics

• Attosecond

pulse generation

• Extreme light

diagnostics

• Filamentation

• Quantum simulation

• Quantum communication

• Quantum metrology and sensing

• Quantum control

Page 4: 4. Curcic -Atomic and Molecular

4

Scientific and Transformational Opportunities

Scientific Opportunities Transformational Opportunities

Ultracold Molecules • Novel phases of matter

• Ultracold chemistry

Relativistic Optics • Compact affordable x-ray and directed particle

beam sources (“desk-top” FEL)

Quantum Memories and Interfaces • Long-distance quantum communication

Quantum Simulation • High-Tc superconductivity

• Novel phases of matter

Quantum Metrology and Sensing • Ultra-high-precision clocks

• High-resolution, high-sensitivity magnetometry

• High-sensitivity gravimetry

Atom Chips, Atom Interferometry • Precision inertial navigation in GPS-denied

environments

Page 5: 4. Curcic -Atomic and Molecular

5

Outline

Ultracold Molecules

• Ultracold chemistry in the quantum regimeFirst ultracold chemistry experiment demonstrating quantum effects

S. Ospelkaus, et al, Science 327, 853 (2010)

• Dipolar interactions of polar moleculesElectric field effects on chemical reaction rates

K.-K. Ni, et al, Nature 464, 1324 (2010)

• Control of ultracold reactions rates in an optical latticeEffect of dimensionality and molecular orientation on chemical reaction rates

M. H. G. de Miranda, et al, arXiv:1010.3731 (submitted)

• Laser cooling of a diatomic moleculeFirst laser cooling of a molecule

E. S. Shuman, et al, Nature 467, 820 (2010)

Quantum Communication: Quantum Memory with Telecom InterfaceFirst demonstration of a long-lived quantum memory with telecom-freq conversion

A. G. Radnaev, et al, Nature Physics 6, 894 (2010)

Atom Interferometry for Precision Inertial NavigationIn-house atom-chip development; 6.2 transition

Matthew B. Squires, et al, accepted in Rev. Sci. Instr. (2011)

Page 6: 4. Curcic -Atomic and Molecular

6

H2CO

OHH2O

HCO

QEDe- e-

e- e-

Quantum

dipolar gas

Precision

test

Ultracold

chemistry

Quantum

information

processing

Ultracold MoleculesFY09 MURI

Participating universities: U. Maryland/JQI, U. Colorado/JILA, U. Chicago,

Kansas State U., U. Connecticut, Yale, Harvard, MIT, Temple U., U.

Durham (England), U. Innsbruck (Austria)

Page 7: 4. Curcic -Atomic and Molecular

7

Outline

Ultracold Molecules

• Ultracold chemistry in the quantum regimeFirst ultracold chemistry experiment demonstrating quantum effects

S. Ospelkaus, et al, Science 327, 853 (2010)

• Dipolar interactions of polar moleculesElectric field effects on chemical reaction rates

K.-K. Ni, et al, Nature 464, 1324 (2010)

• Control of ultracold reactions rates in an optical latticeEffect of dimensionality and molecular orientation on chemical reaction rates

M. H. G. de Miranda, et al, arXiv:1010.3731 (submitted)

• Laser cooling of a diatomic moleculeFirst laser cooling of a molecule

E. S. Shuman, et al, Nature 467, 820 (2010)

Quantum Communication: Quantum Memory with Telecom InterfaceFirst demonstration of a long-lived quantum memory with telecom-freq conversion

A. G. Radnaev, et al, Nature Physics 6, 894 (2010)

Atom Interferometry for Precision Inertial NavigationIn-house atom-chip development; 6.2 transition

Matthew B. Squires, et al, accepted in Rev. Sci. Instr. (2011)

Page 8: 4. Curcic -Atomic and Molecular

8

Ultracold Chemistry

Collisions of atoms and molecules in

their lowest-energy internal states

Inelastic collisions between spin-polarized

or different spin-state fermionic molecules

in the rovibronic ground state of 40K87Rb

Reaction rates enhancement of 10-100X

observed depending on the internal

quantum state of the reacting species

S. Ospelkaus, et al, Science 327, 853 (2010)

Page 9: 4. Curcic -Atomic and Molecular

9

Dipolar Collisions of Polar Molecules

mL = ±1

mL = 0

Effective intermolecular potential

• Modest applied electric fields can drastically alter

molecular interactions

• Strong spatial anisotropy in inelastic collisions observed

K.-K. Ni, et al, Nature 464, 1324 (2010)

Page 10: 4. Curcic -Atomic and Molecular

10

Quantized Stereodynamics of

Chemical ReactionsM. H. G. de Miranda, et al, arXiv:1010.3731 (submitted)

• Chemical rate suppression by ~100x!

• Pathway towards quantum degeneracy

Loss rate constants

Collision potentials

Page 11: 4. Curcic -Atomic and Molecular

11

0.00 0.05 0.10 0.15 0.20

10-12

10-11

10-10

10-9

3D

D

D(

cm

3s

-1)

Dipole moment (D)E

Chemical Reaction Rates

from 3D to 2D

Pathway to quantum degeneracy!

Page 12: 4. Curcic -Atomic and Molecular

12

Outline

Ultracold Molecules

• Ultracold chemistry in the quantum regimeFirst ultracold chemistry experiment demonstrating quantum effects

S. Ospelkaus, et al, Science 327, 853 (2010)

• Dipolar interactions of polar moleculesElectric field effects on chemical reaction rates

K.-K. Ni, et al, Nature 464, 1324 (2010)

• Control of ultracold reactions rates in an optical latticeEffect of dimensionality and molecular orientation on chemical reaction rates

M. H. G. de Miranda, et al, arXiv:1010.3731 (submitted)

• Laser cooling of a diatomic moleculeFirst laser cooling of a molecule

E. S. Shuman, et al, Nature 467, 820 (2010)

Quantum Communication: Quantum Memory with Telecom InterfaceFirst demonstration of a long-lived quantum memory with telecom-freq conversion

A. G. Radnaev, et al, Nature Physics 6, 894 (2010)

Atom Interferometry for Precision Inertial NavigationIn-house atom-chip development; 6.2 transition

Matthew B. Squires, et al, accepted in Rev. Sci. Instr. (2011)

Page 13: 4. Curcic -Atomic and Molecular

13

Laser Cooling of a Diatomic Molecule: SrF

Only 3 lasers needed to scatter >105 photons

(enough to stop cryogenic beam of SrF)

X 2S v=0

v=1

v=2663 nm

98%

A 2P v=0

1/50686 nm

1 v2500

685 nm

v=1

v ≥3

<1/105

t=25 ns

E. S. Shuman, et al, Nature 467,

820 (2010)

Page 14: 4. Curcic -Atomic and Molecular

14

Experimental approach: 1D transverse cooling

• Long interaction region necessary for cooling with lowered scattering rate

• Laser-induced fluorescence (LIF) gives the spatial distribution of the

molecular beam

Page 15: 4. Curcic -Atomic and Molecular

15

Laser Cooling of SrF

Laser-Induced Fluorescence─ without cooling lasers

─ with cooling lasers and red-

detuned pump laser

─ with cooling lasers and blue-

detuned pump laser

Transverse temperature of

SrF reduced to a few mK

First laser cooling of a molecule!

Page 16: 4. Curcic -Atomic and Molecular

16

Outline

Ultracold Molecules

• Ultracold chemistry in the quantum regimeFirst ultracold chemistry experiment demonstrating quantum effects

S. Ospelkaus, et al, Science 327, 853 (2010)

• Dipolar interactions of polar moleculesElectric field effects on chemical reaction rates

K.-K. Ni, et al, Nature 464, 1324 (2010)

• Control of ultracold reactions rates in an optical latticeEffect of dimensionality and molecular orientation on chemical reaction rates

M. H. G. de Miranda, et al, arXiv:1010.3731 (submitted)

• Laser cooling of a diatomic moleculeFirst laser cooling of a molecule

E. S. Shuman, et al, Nature 467, 820 (2010)

Quantum Communication: Quantum Memory with Telecom InterfaceFirst demonstration of a long-lived quantum memory with telecom-freq conversion

A. G. Radnaev, et al, Nature Physics 6, 894 (2010)

Atom Interferometry for Precision Inertial NavigationIn-house atom-chip development; 6.2 transition

Matthew B. Squires, et al, accepted in Rev. Sci. Instr. (2011)

Page 17: 4. Curcic -Atomic and Molecular

17

Quantum Networks

Quantum

Repeater

Site A

Site BEntanglement

Entanglement

Requirements

• Light-matter interface

• Quantum memory

• Elementary quantum gatesH.-J. Briegel, et al, Phys. Rev. Lett. 81,

5932 (1998)

Page 18: 4. Curcic -Atomic and Molecular

18

A. G. Radnaev, et al, Nature Physics 6, 894 (2010)

Demonstration of a long-lived (>0.1s) quantum memory

interfaced with telecom light

Quantum Memory with

Telecom-wavelength Conversion

Page 19: 4. Curcic -Atomic and Molecular

19

Classical and Quantum Light Storage

931 nm:

lattice

lattice

1/e lifetime = 0.17 s!

07.00.0)ms60(

12.018.0)s1.0(

Storage of single photons

Storage of coherent lightStark shift compensated lattice

Page 20: 4. Curcic -Atomic and Molecular

20

pItpIIs kkkk

Frequency Conversion to and from

Telecom Band

5S1/2 F = 1

6S1/2 F=1

5P1/2 F=25P3/2 F=2

pump II

1324 nm

telecom

1367 nm

signal

795 nm

pump I

780 nm

pItpIIs

1367 nm

795 nm

up

1367 nm

795 nm

down

Page 21: 4. Curcic -Atomic and Molecular

21

Bandwidth

30 MHz

Semiconductor detector

Rb upconversion detector

High-Efficiency Low-Noise

Frequency Conversion

Telecom frequency conversion:

• Intrinsic conversion efficiency >50%

• Ultra-low-noise telecom single-photon detector

Page 22: 4. Curcic -Atomic and Molecular

22

Outline

Ultracold Molecules

• Ultracold chemistry in the quantum regimeFirst ultracold chemistry experiment demonstrating quantum effects

S. Ospelkaus, et al, Science 327, 853 (2010)

• Dipolar interactions of polar moleculesElectric field effects on chemical reaction rates

K.-K. Ni, et al, Nature 464, 1324 (2010)

• Control of ultracold reactions rates in an optical latticeEffect of dimensionality and molecular orientation on chemical reaction rates

M. H. G. de Miranda, et al, arXiv:1010.3731 (submitted)

• Laser cooling of a diatomic moleculeFirst laser cooling of a molecule

E. S. Shuman, et al, Nature 467, 820 (2010)

Quantum Communication: Quantum Memory with Telecom InterfaceFirst demonstration of a long-lived quantum memory with telecom-freq conversion

A. G. Radnaev, et al, Nature Physics 6, 894 (2010)

Atom Interferometry for Precision Inertial NavigationIn-house atom-chip development; 6.2 transition

Matthew B. Squires, et al, accepted in Rev. Sci. Instr. (2011)

Page 23: 4. Curcic -Atomic and Molecular

23

Atom Interferometry Based Precision Navigation

Atom versus light based interferometry

Cold atoms provide far more

sensitivity than light.

10105.6

photon

atom

• Cold atom INS: potentially provide

orders of magnitude better

performance than light based INS,

and accuracy comparable to GPS

for GPS-denied environments

• Miniaturization critical for certain

applications

Page 24: 4. Curcic -Atomic and Molecular

24

• Standard lithography used to precisely place wires on chips for tailored magnetic fields. Also results in reduced power dissipation. Confinement has potential for compact devices.

• New RVBY developed atom chip substrate

– Uses standard direct bonded copper (DBC)

– Simplified, Rapid (10x), & Reduced cost (20-50x)

– Improved power handling (>10x)

– Improved electrical connections

• Atom chips installed in RVBY CA system

Atom ChipsKey In-house Developed AFRL Technology

RVBY designed atom chip

(RYHC fabrication)RVBY designed and fabricated DBC atom chips.

RVBY CA system

In-house atom chip development

Page 25: 4. Curcic -Atomic and Molecular

25

Harmonic Chip Improvements

• Edges of chip are bent to

form leads better optical

access

• Harmonic Trapping Potential

uses dual layer chip to

improve harmonic purity

• AlN Substrate and direct

contact provide substantial

heat conduction

• Trapeze Wires are first step

in developing an optical

baffle

Harmonic Chip Experiment Overview

Transverse wires

Longitudinal wires

Origami Cuts

Completed Assembly

Trapeze Wires

http://arxiv.org/abs/1007.4851

Page 26: 4. Curcic -Atomic and Molecular

26

Atom Interferometry Experiment

Page 27: 4. Curcic -Atomic and Molecular

27

New CRDF (pending):Single Axis Unconfined Gyro/Accelerometer

AFRL Focus: Demonstrate exquisite accuracy and high

reliability at lower development and maintenance cost.

Page 28: 4. Curcic -Atomic and Molecular

28

Interactions with Other Agencies

Agency/Group POC Scientific Area

ARO Peter Reynolds

Paul Baker

Cold Quantum Gases

(CQG)

TR Govindan Quantum Information

Science (QIS)

Rich Hammond Ultrafast/Ultraintense

Phenomena (UUP)

ONR Charles Clark CQG, QIS

Ralph Wachter QIS

DARPA Jamil Abo-Shaeer CQG, QIS

Jag Shah QIS

Matt Goodman QIS

NSF Bob Dunford CQG, QIS, UUP

DoE Jeff Krause CQG, UUP

IARPA Michael Mandelberg QIS

QISCOG >20 program managers from

~10 agencies/institutions

QIS