39
dCt /2s/D l322 1 Zp _ ; 4/ V //Fa/MCE OF T/NE OA/ Sr -,SR/ -S/-R/v / /ooko/ycho / 24. hxzo P /.2 CA VC (64 2. 4 4viwr- I , £f/d' h22 '3,,C £ ' '- ' ' 2' , 2.4 4. oc o. / 2 3 / gng ^ Szcond Qiy Con-ssoi 3./ 4)?/7 +rC nQ fraCA4 . 3114/56 9G ~ 4 3.4 h~t/luk#sa e/(>z<4e Ct/fSS i. D. 4,/ Or,U -4 t C/IuC t s O, pw 4 C 7 4,3 CKU/Sc ra Scce2 /k'8 on 8 1'4 /3 , /hy-S4uJ' ( -I ; /2 .s J /3 SAidt A/ 2 3 D2hAN S/4X.LtS. (19%)#.w CUC -* j L44c0C) |) Su a sJ BC I I

4 CA VC 4viwr- - MIT OpenCourseWare...0.0 Start of Shear Peak Shear Stress 0.1 0.2 0.3 Normalized shear stress, q/ s ' vm 1 1 2 2 4 4 8 8 0.0 0.1 0.2 0.3 0 5 10 15 Norm. Excess Pore

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

dCt /2s/D l322 1 Zp _

; 4/ V //Fa/MCE OF T/NE OA/ Sr -,SR/ -S/-R/v/ /ooko/ycho /24. hxzo P

/.2 CA VC (642. 4 4viwr-I , £f/d' h22 '3,,C £ ' '- ' ' 2'

, 2.4 4. oc o. / 23 / gng ^ Szcond Qiy Con-ssoi

3./ 4)?/7 +rC nQ fraCA4 . 3114/56 9G ~ 43.4 h~t/luk#sa e/(>z<4e Ct/fSS i. D.

4,/ Or,U

-4 t C/IuC t s O, pw 4 C 7

4,3 CKU/Sc ra S cce2 /k'8 on 8

1'4 /3 , /hy-S4uJ' ( -I ; /2

.s J /3

SAidt A/ 2 3 D2hAN S/4X.LtS. (19%)#.w CUC -* j L44c0C)|) Su a 4· sJ BC

I

I

CC. Z // ,322 7 D | a

5 4/nc/rasnc/ Crzp

/ /4 -

5,4 GCfOyt&7LC. /?

fez S14~.a4~ 20

5.6 21

5> M Sk a ry , CO r/

,, o~,~ d, 22

6,.3 1dcal 2

sld C/, 2 a, t , v "

w w us-: 000

InooCos

Hee

- -rrC4 C4('4

(dei

b.

CCL 4/3/8 4/86 1/7 /,322 ZD$9 4/g9 4/6

YD: /NFivES CE OF 7-ME OV 5rESS-S AI- SreC*

68EAMIoM OF CL4yv Ove/4I oA12oe/qA1o SE94e!

-1 /ATKo,9UvcoAo

r,l Den/AI

a) t C e~t W (6/0). 7%lXo A

b) 4t cowt - (co,): tagcij Dtndo) t

2) Du-ing SAear (n dramind)

e) R 6&1 f jra,, £, 4 Zn4LA

b) 7z aj4,. ?4p*4 g~ =

c) It t E l ,ae

A12 CO rmcnrn DrlTNtcJ SeCXaVcr

F^ ge ,ffi, S X 6 (n^+) Llud keitt -J/ ,~ c' for od/#aqc/ays.

.d *otri At k,5f ggh b 5 ,drd Cme dgys - Jec SC Chm .4

l tilxreopy (f&SdCl, /o .973; Ov'el,198)-n / fr . kX~J~ 83) wt M/T~r;

-- %l; - ' , WvtrV . - t

'.4)wId,~ ,'zt4 ~c1 a94 Lccc

1-1

_ _

UX

,n~uc- zuco

il = z>4.tw .

2,5

(

I

I 1z I kletnniflo& lvtg 40n"- , d Atlk SU

.

cOC 4/ 3,/p #/ h. 1,322f46 4/- eE

f794 4l7 1/Bq

V 2 Baveor masare/ n t 5re

/) /3a4 at· C4tpLs .4

'3

I

Oiq MX C

2) CV-.0 st fL 14Ad IdcAanp43 rftg, -, kno,

f 72-o Co4WLA 7,S = , ) /.rt(') &,a A

Ybp, bk /., "i / C "y d r-,hal t, " pnato,,, 7LC~ lj I

Pase2/dmenkec /3 SC!

/) tZ ep-qt4dr 4

PI 4L 4 tv 5 / 1it (/5)

II' / c · p Tp -/, (te3 /h-n -- 6-, --,4,.3 S

0 2 . ,* /,?

k-i( = I /ksc' tsc7 oc,11/ n~dab!~d L avc o ske

r / 2yrA -1.393IWb

2) vDwa4 gt44:u aA

* 4t 4 t - ,"4t . e4 ?EC CkC/

ol/ _eAn*tA y /ore/y d o zu,(scc p 2a)

, W W

1 - II

0=OO -n,2.

__.'.

0Ilk 94

,/'/

,.I iV/ c -.lqd o( 8~ hoe 0O,, OS)

iB:

w1a

MI s' (ks

- - - - - - · I · __ · · _/_ · _=1 _C I YL

;Z. 3 O.IAI e/ C 16: - 13he vio o 61ock S mplc4Oo

I -.1. -Z -

I . i

,v-

A

CCL /.32 z - 2 A

elB0

Of 0~~~~~~~~~~

N 1%4 : .; . : N: C:z (ZoJ/ dw ,

V1UJ6y) 1 D z

.,

Lao) _

L 0-

cZ0-t o4-,

o w

0>.

a)0

0 01 -. I

o.0w

.4 t

#A39

O ',v//(/as)

/,322 -7TL

(et(COmp -"/o CU C/F(LXRt 1'pir oArp

v

,5vd. 8Cr.vc0.ksc

Ir. gy I '/hcr,

/O

1hO

i la-v

0

/5

0

(4) (b f C)c ka k]

( i, mon)

lop: /hcr, g I/4r/ye c aAetdwya qUs- Mu

()

(4)

(/)

h 1oT .

/I

_----- d-

I I

5o0 loo Zoo

CCL 4/I/87

(Q) (162)

0,•

A0

www

reunvur

000-,

2.

i_ q4-

IZsQ-,,

o S

o hly ctf

f% - -V

U. 0.10

'I,

<1

<I

0 - I

1 2

I I

S` /O z0ts (days)

5'00

I · ·

i Iml I I I

j · · ·

A .I. u

_

i /I

11F

I

!I

'

v -_*w. rCr

m

-

·.

II I

CCI 4/3' /- / 322qs # 4 4 47

2.4 AG/U4 .c£Ctanv op'5

· eC~-c4~lvl d a'o I cLw t - it t40t41 O;4 2n/q ,W a " ¢ p bo' aM 2) i

3,, o Conso//dakyS

.I ) 0t,

e

\ , vo * /o,9. _

de _ _ -04 SLOfP VCL / CqF V, 4.,... 7 g Le. 4 ,:,,. , v c v Iw L , 5, t:

fi~z~c~ (a',-4w Qc" (Ce'. A tK C 004 -t,o .)d· 7CAwc (B 0c 4Hd 'Ckia,

O*~ kwlr ,6 08eZ hvoOC£(''."@ 'CGQ)

.. tyo F. 39 4r0pb

-000oo

"Ioo

' s

CCL fo/8 *. ,32Zt ffP I s

3,2 lnf/Lence on CA UC rTs/4 (Oce/)

(b§Cq i/,/?J4; I 3; V; M Ca.w7

0---- sNA a tO S 7 I

PITV"-~~~~~~~~~~- 6~~u-af.,

live

) &/~~~~~~1. lU-t#4 dl 9-? Ofhli /(.J C.J At-YbX E;/P4c( IL Ul sss~t 60fsoor#/z~~tC o Cl*

C) f

c) 4t1tOEs2) q4 A 4c "I'2 E ) SR:

b) / ii5/i a4* c, du -r e tu : 4

ci4O~nr O~ & Oed -~ j L de Xe?

ap~k ·L A-qA4 AvUU 1~ (4 L1 bI

33 s/r Sbndard fPrachct for s//+fv64;

aY8+n C"o ~alh a ZC Id /t / -x/17 )I) )fl(-awul4 c*dvu dtcAL/ ci) d r*j~

2) 6A..S~Gih L YRIur~" -XL ~$4y Lf14,4 huL44 f

wFw £rnxol w c w 7 U S/,CwsE A A's. a e 4 4 O ce

AIOfFi IAeRa i S simmbsP o A/e o t," ae 4& 444M .

, t4 aN Ad (4) .l ~-

xu I

A 000.A N 9

-(.4

C4 IC4 4/-i(P\

'I

Vdvc

I

*-- -1,t^-

-

Ea, -

E&·

4

CCL 4/z31/22 /,3Z?- 7[ 7/2,/q2 4/f6

3. /of/nce of CnSo 7h^c on CA.OS $f&

I) L(e 3,3, 3S/#4-P CktiI Ac& /YP

ac C411/d.

4; Ot tp (s0P) Cvyr c. Zlt

3) Fs4t c~pr A -d wZ ('ozp9e4WD/,14 4t S4 (ca"W)af ?U S/./r

__ol _ Ic. f (2) ____ / _ W-~ - k--'r

rrs4 k,/J,;,Y/ / day / 0.296A _ _.. A . c -lb

*C~2, ./\e -_- _-

fc 2^t > oS(sLJ, C.v. o;

Z hr /I.t 0.2511d41 , o 02o

Ar 7 9.47 0.2/t1NoO CX10i.2 tOO3,o3

IlUo) qfud44c4ii o.s rs4 d ff (gP)

oIb6t~ s. i~rq~ 4, oc~,- ,"o,,,~,,,,,,~ Q'~i.,

-7 02_ _

-r I=00'00

.-nuJu

-r <

_>>:

zla.

2

14

Cc 4/A96 3 1 PD 6

4. EFFECT cdF TRA//V £ArE

4, Oervitw

I J ,,. 7V. DD . .-I /' UI CO ~~~~~~~ I 'd (E!s,.WA)

-i ---- 4 I_ ,.

/¥ ,, . ~. - ; 2 2-,,,

4) Mft AJGLA (< 170)' CO4.r UC 4C -, MO c

b) 7aut C. c&a, ~ ae C. C 4.

AC 5 /0fi5 t_; fr I 4,-

. C,e 1 1' c/,ru 1, tf> x (o~)A; 6 AC s CL P7 s4f C CAf/fC aO , /0- k- P 30

3) ' A vl 4 i, O K / tf /

b) Aif 20.12 o. · j nf sots% d4 oc" '{ 30-60 t ,' /s -3o 2 Lt-AAO4

Ak '- zI T,o.:oAArPk~ Ct+J CR 40r .- 8

Qa)~~~o, cb.~'~ 1Alr

000oC,-CV_. "- *

_ Lo I"

000

.3.I sl

I

I

J

------ - - I /-^, " 5 fu

RJsul/f4 So# caic la 4, of h rzs: k, En c/ C&AID: a pptu &t/ C A4't 4wy*' '

I) artr #'g~ ( -O 3ui e ccsrrt' T S' I

4 +I. ~

:I ~ -Ja..t-L.% A tl . .

. ... , .,

(SWAI)

2) n os16 Cu, ( Av Wj.e ;a1fS 3, P) )Cl C U.UiP) 0-Fst i(Ar) rip 4

'0- --- Si e(,wv) An "'.

· /2-/

cc, ( w

et) ate& GC/cIa 6d a C

c) 4XssA4 'roe.a4e~ ,Cet 4,Ž h we4 ?; ,. do-p ('r )·

CCL 4/B&. lhr/Q6 /.32t I ff0.l7

. 44

C4 °8_"(_, _

CC 4f 42rl,?f ff '.

- ' , __ ,

W 1 &*"~ -,, s &*W- 1 -. .1

~v~F~

.

1.321 1

0.0

Start of ShearPeak Shear Stress

0.1

0.2

0.3

Nor

mal

ized

shea

r stre

ss, q

/σ' vm

1

12

2

4

4

8

80.0

0.1

0.2

0.3

0 5 10 15

Nor

m. E

xces

s Por

e Pr

essu

re,

(∆u-

∆σ3V

a' vm

)

Axial Strain, εa (%)

OCR

OCR

Typical normalized shear stress and excess pore pressure versus strain for CKoUC tests on resedlmented BBC at reference strain rate (εa = 0.5%/h)

0.5

0.4

0.3

0.2

0.1

0.0

-0.1

OCR =1

OCR =2OCR =3

OCR =4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Nor

mal

ized

shea

r stre

ss, q

/σ' vm

Normalized effective stress, P'/σ'vm

Typical normalized effective stress paths for CKoUC tests on resedlmentedBBC at reference strain rate (εa = 0.5%/h)

Start of Shear

Peak shear stress

Typical Ko loading line

Typical Ko unloading line

Figures by MIT OCW.

0.40

0.35

0.30

0.25

0.20

0.150.01 0.1 1 10 100

Slow Std Fast V.Fast

OCR = 1

OCR = 2

OCR = 4

OCR = 8

(7)

(7)(0)

(0) (0)

(5.5)(3.5)

(3.5)

(8.5)

(10.5)

(6)

(11.5)

Nor

mal

ized

Und

rain

ed S

treng

th, S

u/σ'

vm.

Axial Strain Rate, εa (%/hr)

Normalized sheer strength versus strain rate CKOUC tests, resedimented BBC

Figure by MIT OCW.

CC 4/2s/6 /,3Z2 1 /

43 4.d.

¢4~ ~ 1 A) O b 4 ia -J S ) SUes

* A, g 4 / l r- A t S- f ldAct-(4 o e Fg.za ~a /35,Sg dt8I e

.~~~~~~c I.."4.4~b) f7~ C I GWQA4e EN 1 && £ S" 41 fM -2 Cl 4A /UA- -Xr Alr8

(en0 Flg N/4,;@tB , t

02 LnUa -, knUI 3, f An. 5Z$ 4OCR v , i · Ours XS 5 L, xO ^ 7tAdf ^ 615

.a So IA f liSS2 rss crat L6

I' /

xzz000

--ee-C

C4 Cl 0(lYlt

II4 i ( 44011 r7,f 13 1 IkAI

k

OtR-rZ AIOC: ncpus~dr~ LKCno~ A~EhAV~ou -- i z -4w 0 CR . 4UUla j ·dw- / /30 A 4I 0 .I _4",e (0

-I I /

4.3 C,

0 ..

C)

5) f t/iC 9{/;C~~O~~~~h~ ~')) 8 cn -h 4 L34/N: Oc '4 ZA )4 If o 4 1'z dLLut.4 OOat,44rt A ) j; : t 4

2-) ~ -~~-r~~-) S3~~r/~ Ic{*.'f;,r sZw .£) L£ rri

. W 4,~~~~~~~~~

, fit 0ce X 2 / ffa~ ~us Ad d^ D iij $ h5'X

· sit~ckzC I tzus 6e oei~ 4 dcuu~ elty.~ 4~tc, r~Lxu ~~ r ehEa~d

(-id) 2 Oc/erlo /tt

#A V) V

000ccoC4

4 "

. I410

21 /

('CL 4II /,3z NAC

- 43/ I " J

2 r --"1. # iMAavor of /hA/y XI4clnd (Cenc -Sen,/ -e ) Vs "onairsC/

I) OervaonJ totn /- Csol//ddny 7¶L4R

// poa es a 4LhyS 14

~DstdJ~ B

*, 4 4 AqAst4 c*4b Y C/b C* +· ) Ok~uE ~ C~UA,4 ~cltse 4dd a* .,

* JA4e -S& , VC 4Li± Cox" b /o

4J?{& n / (/~~pr b r C k u) CCL

z) eJ 77 ?Ptoyren-oszof /trylg t y IAeZ4re /iZaeiolS M)* S 46ck ),o /m 3 4gCz, Arp/0 r r0 4 .°

c) CL) 7 4 m /frTR Cr4! I - z (>sl2>

ofn rO 7 uo /55P ' A45z *0 14W- 5s' F44 cb £a ° 4

4 ys "r at4.. ... . , . . .

aihf- # . I A I A-.I jCCe4-AS bQntio ,. V

( " "NZ cc eo /,etS j 911 73P

6) cu 7 P- on STJCaRu-o/ cl/o.) dc > o (suPf? J

A/OrE en% AtA&U Jame (fiP/J,k~d n~4nas.

S

I

-11...000CvuN

tovv

evx

oo.2ooaoeoao1I

-wn I

I

z014 R4zn

Prl 43019, A14

9,I

r

A 32P

0 10 20 30 40 50 60 70 80 90 1000

10

20

30

40

50

p' (σ'1 - σ'3)2

60

70

Ps CLAY (cm/7.1m Depth)Test Symbol Strain Rate

(%/t)

CAUCv-07CAUCv-08CAUCv-08ACAUCv-05

5.000.5

0.50.05

40404040

σ'vc(%) σ'vc(%)

72.1

72.1

7372.3

q' (σ

' 1 - σ

' 3)2

q (k

Pa) Unique!

kouc 35

0.050.5

5

Stress Paths for Structured B6 Clay

140

120

100

80

60

40

20

20

00 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

10

30

B6 Clayσ'vc = 72 to 75kPaσ'vo = 40 kPaCAUC Triaxial TestskPa = Depth

Test Symbol Strain Rate (%/m)

CAUC1CAUC2CAUC3CAUC4

070806A08

5.000.500.500.05

0.5

0.5

5

0.05

Stress strain and pore pressure strain curves for B6 Clay

∆u

Axial depthpressure ε%/hr

σ 1-σ3

.

Figures by MIT OCW.

140

120

100

80

60

40

20

20

00 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

10

30

σ'vc = 72 to 75kPaσ'vo = 40 kPaCAUC Triaxial Tests

Test Symbol Strain Rate (%/m)

Stress strain and pore pressure strain curves for OLGAClay

∆u

Axial depthpressure ε%/hr

σ 1-σ3

φL-P 06φL-P 08φL-P 10φL-P 11

12.300.112.480.10

OLGA CLAY12

2.5

0.5

0.1

.

0 10 20 30 40 50 60 70 80 90 100 110

Test Symbol

φL-P 06φL-P 08φL-P 10φL-P 11

12.300.112.480.10

ε1 (%/m).

OLGA CLAY

0

10

20

30

40

50

q' (σ

' 1 - σ

' 3)2

p' (σ'1 - σ'3)2

s'vc = 17.7 kPaCPUC Traxial Tests

122.5

0.50.1

Figures by MIT OCW.

020406080

100

120140160180200220240260

020406080

100

120140

160180200

0 2 31 4 5 6 7 8 9

Axial depthpressure ε%/hr

∆uσ 1-σ

3Ps CLAY (cm/16.7m Depth)

Test Symbol Strain Rate (%/t)

CAUCv-04

CAUCv-08CAUCv-08

5.00

0.50.05

144

140144287

275

269

σ'vc(%) σ'vc(%)

Stress-strain and pore pressure strain for normally consolidated B6 Clay

0.5

0.05

5

CAU Triaxial Tests

00

40

40

80

80

120

120

160

160

200

200

240

240 280 320 360 400

Ps CLAY (cm/7.1m Depth)

p' (σ'1+σ3')(%)

2

p' (σ

' 1+σ3')(

%)

2

Stress paths for normally consolidated B6 clay

Test Symbol Strain Rate (%/t)

CAUCv-04

CAUCv-08CAUCv-08

5.00

0.800.08

144

140144287

275

269

σ'vc(%) σ'vc(%)

Figures by MIT OCW.

00

20

20

40

40

60

60

80

80

100

100

120

120

140 160 180 200 220

p-18p-14p-13p-12

0.10.52.512.3

Test Symbol Strain Rate (%/t)σ'vc = 137 kPac/u Triaxial test

OLGA CLAY

σ'1+σ'32

( ) (kPa)p'

σ'1+

σ'3

2(

)

(kPa

)p'

Stress paths for Normally consolidated Olga Clay

0

0

20

20

40

40

60

60

80

80

100

100

120

120

140

140160180

0 2 31 4 5 6 7 8 9

Test Symbol Strain Rate (%/m)

φ-18φ-14φ-13φ-12

0.10.52.512.0

Axial depthpressure ε%/hr

Stress-strain and pore pressure-strain curves for normally consolidated Olga clay

∆uσ 1-σ

3

.

1.6

1.4 1.4

1.2 1.2

1.0 1.0

0.8 0.8

0.6 0.6

0.1 1.0 10.0 100.0 1000.0 10000.0

CHANGE OF UNDRAINED STRENGTH RATIO, NORMALIZED TO UNDRAINED STRENGTHRATIO AT ε1 = 1.0%/h, WITH STRAIN RATE FOR ALL INVESTIGATED CLAYS.

Same Intact & Destructured

.

ρ1.0

Expermential Sound

ILC

ε (%/hr)

q f/qf(ε

=%/h

r)

.

.

Figures by MIT OCW.

4*s Corcdudpi Rratf

) ?uAlJe4, £-9 4t r - d 4-

4d w 4#2Pe .a$ L 4$d C. S/* ,b) £Ed 4) I oct -,3e Yo slI~a~ -)wII~ S) M Magw, a t a te4 kx4As -'A dI U , i.gl. 2 /973 CoQC r- r4fvS 6 .

W 'ALjx nWru'ma uitanar~oo 2) Ui4(, d 4* t vsA6Qi 4 .

(4 Ii5 9/v ( 4 (e. >-J /iuL LdAot/kd of

(g)"S~ -a~ v. s 4W N, t . * Cw^lj p3) i 4 -rn -Aya 4 6/nd 4 4 Iv /ta14 Bc4

sh*4 .A Cli 9) Jhw., /A frn C1 tIC -. C4~~~~~~ 4dt StOe). 4v,· 4t At (/ < sa)

0* CGA t C 4 d

a) M '44r.' A .S/LFn rw, acpbrXIy- * ZC·ci1 9

'u~L tL> wh) n O{ a/ Ak C It

~-A b h C k.hv l Ca.h d SW isA F a4, fa u ck) kxrLcpU co""taf / iApts<!tS" 64oo4e

(ClfoA All"4.C A ZA A boA , a1 44t box cvrrdaA^ ao,,4 A L~te2 /kwk44va sAA94JALC

I

CCL 4/3A5- 41 A 322 iD-- A- _7

4/96Ih A

, NA/ORae/1AE C/eEP/ /ocl74tcon (Co d XI q)

V

1) 1Loiqr lt44.. Ltva ( ~i faA, ,)

,5 = de. iJ dLl~.T Ed" E, -,

-7

* Wat irL ,/ FY- /&fitk 3 4pa&,hiU4 Z

2) I/k" /uh, -4 &t p

T

-7

o0a1 5IncodyS/4--&CdA =.PR? -au

i &WA i44 L~CP~,II q" Mtoui W-4 -' " 4P4UA

3) L(LdA,* , 4-- . i.' pO)

- Aw 6aA t &,bt C4t L fAuAmc4, 64dS474 )+..* Po W4 X ~ COXI i kBt 4A

S.

l U]

229,oc-

I tE I

llvI I ooo

c-N

z

V/sS

__

_ . . . . =t#VAVA a4� 4w.�,

r J!j

1b ;

w I - - - -

f/87 4/ 9#/ 1'9~- ' 1. 322 h~~~~~~~~~~~~~~~~~~~ l -A

3 A44,mdt EcQn.

:-C -

O( =

2) <

-dj ldloji_ c/4 i/d5 Aogc/ / .3d/oi>c1JF

g t t DO

1

/oo4

I/00i

k10 t

3) ·Sip-_.r m

WtcI

?/ttjm~v" &&c 4 0an rpperwcym:r~L5 !In,;,4rV m -V c p

(&=/esV * I 44WA( C.O).-Ni

t

I) '" GAe

s-~~C Se MfI~

ap9 ?76,)Po,/ / tjo i~

I -TSMCO

-11<<<

Mooe

I..0s0

arm

I' qoz~n$,qr

4:

4

tA

rI'I16

a:I

4

- -

-

m

I oe two"'a 4U44'tl

5,% 0,3 -0.-d

77'b(y N 4-A. A < /.329 A lie

5-,2 ISf A9 - -0, A

It -ZIUIU t

(16,Nt Al AiJ5 t. 41,4

I

/f /)dd2.~~fPLla~

st fow"" &~!to

n-#,m 0&Utp ;V4 Cp/,4, 4 & k4

(All E* t 14% 1 .f

e; E,-AaW,5~1E-,E, -hem MA/~

CCL 4%S 4/27/Q 1.32.1 72D IIA

4) &6 ,~ ,tr, 4M4 /4g A /f ,ie N Atay o

) P , ¢s4 m .. I ,o.,A C. C. A.D (1t

D- 0 200 Iw lBm II I . 2(2)2§ 20 Ise 1e0 51 I i 111 Im A 28 V 25@ 3 A m

I 1~~~I I I I I I I I I *

. I . .dO 7 .m . . . .

medium clay (Cbi Sid~ Irt

ro@om-mcr10 ~u~C~ ~Mck-- r. *.f .i~~':'·~S::.:?~-~T·~~~ 9C(~LY~r~~YWi~~~R~d;~Z k~

a40

I -20

-'U-1b

-14

.oc,;, : . 30 v?'0 4 7. · I ,sr

COD ) fi a deD.~ ..~ ~ o

s) C v S a, (/qS C6J) u., " 4 - AC M Ca r

* C/LC)mC *CL UC- Ma3r *CKPSCamOS

0) ¶M· j I a-t ________4M ___yl

S-Arn.~ Aa *r &ouS ?<d ,'/CC /r de ec6, oo.4JOf6 /9

CI

s !d 4 4';"3 OA.

I

Iii

. .i. i

i

/,322

5 3 Creep /ipure

'2 4ze 4/3. ! 4 C4 'Mj O i/I,

. ;

/A4h a"W Jvy ;

I * I"- ieA44M

, . . It OC&.4t& 'Wf'404 S / 44k

.at iAA'eg

,ua*j £, ~ Ti~ka~c~ca6 t$ vaw4 *, ,*n a C AItX-

Fi 4 X 4% A- da vX c LtI CsL46 ar

CeuVPIC 4 ex C c47e 3d//i4/i 4d *Ad*4

61 F3 44wwo 60 4&i zI 4" W ~tA( 4,4·I /94~j 'eon 4w* OIY*W*i E5 3 ;. CIlt ^ ·f E 14 ,3) ClSC 4,* A.. a0 4 t§ A /ei.- 4 eOIw¢032ACWCu~f

CCa /2 1lq, "/7

II A I

C 4 4

4(4(I_ Y _ _

�I I

E I j. 0, ;. F '

I

CCe LJ/96 I·.32Z 4 -4 Ad

c -ol ~I°19~ '1 :.

s) X; ,, .. _ ~,, OS). o& C4 (JaCt-)¢'". a4 , -4A - ' 441, £ f 1. ".

944 4 o.

,q wv ' -.

/ 4.w "4: -/O t O./2t, f fj

) Sr4~L~L /h a4-L .) o t t C

i () 0t hm4"tVp 4 ( f c CA

4 I, 444 e/ .Ao-.O,2)),0itJd +^ik4 a4y4t 4 ;,* c) i t Lji4 c4J r l A,4Y c ji I ,

X-CA~4rl~ tt· c ,,,, I-S~~n IprHt~culc 4 A\/~COCk IJI t4uA

4rjA4. 1/&t A/4-4 C Aim Is~r ~ I

-h +i4 4 Aivt/sfratt'&.· · e MtJ

i,

wwwu w x

-C4

- !

jili

I

i

I

Ca 4/9z/ /6 . 2a 1 gD 1 P/9

S,4 CorreelsOSec~

e #, v ' ' · n

~ o ~ &A '.~ .S41~XL~X ale /2t Q1 m~ Xc u.- ~

- ..

-o' Ir /la (c ' ~)e

__/- _ J ~0-'0s~,6 ~/. .36 2/.

3) ,t4 4 * V> Ot r C4, (cE %pl ,

4M CAP

IClc /rc Clay Iit 1+M C"t,., i "

£,E__,?' 1.?( L .t , /5l7 i , 0)0oo_ V..I In i ..a I -v to/ / sON'/

) o, . . I ,' ,,

A j4 (1?3) C 5/2 fe" S fit4,4n 1 / 207-23O

tn 0 0b- b- -w wmu m m

000

1 - 7ric4 A A

'I04ClIf3

TI4/'q~l

I

. I

I

e

hwArrg ~ 4h*QtLmt r n , I~At Cot i a*AJ ; (E

o t 44ffg(S

2) OgtCk.u1c dv.ek SkaA4 ,. /f9i4, &) 67(1

Ali a44te* 8 (at( /4 efrtq A dus#s £(4hU 4.3)n- AL"'Pl=d,.LtLsLO

. .R

7S/r ,r,Stc s/ad of /ao l

q tr

*F' gjvttE ba4 v I Sv E: V/; SAX ,M4 LMp/a.~ ~4 , ,, e~ ~' 'I J 'Er 4,1 OC

,4Audtj' J4 ed j AZu-A ,b 4J Ar m-I / 4r4 ,

S ·?~ri ; P~ /=~,~,~,

CO/ 4/28/eA /.322 I

. R a/x4 .ho,

,)

P26

IttIn AMa Maw

Willl.!xxxIaW ia

000

C44

C4 C4 04e.1)*1

V'g

0

4-4vnl

/0

V__ I·__··I · __ I __ · ·

-

/.322 I77/)

1�2/

s: CrkAc ti /7rh//iy Crtap SUsctp ka/y

o.s

*) P? nt 64 at

2) #(3 i 4 e,/ JDf

Ctu e UC,.;c Ir i;·h~ri cn~ r/{4 p L

Asct61h pt A) utf4t 4/L({X4 ·r @DDr)

1.0

) A/r-v, 444dj r ~;(t 4p~ 4:L t~*4x~ Si-rL /d4~4N wgld~44

* f, . . I t 4 * * 4-

CCL 4/29/6

#A ta VW4- I- -W w w

IA kW A000

E 00-C4

cl Cl C4(4 (4 0.4

* I

I0

go

Li-

I,'' ,A.

UNCONFINED UNCONFIED CUDS8SATURATED WFS 40%8 UF UNFROZEN-18C -18C 091

LE EECLAY/ II , /r1

UNCON 7 EDSATURATED MFS

/ /B U NRCOZENN

CIJO UNFROZENUNCONNED HANEY CLAY DI

POLYCRYSTALULNEICE -40C Ij.... & i iI .

,00.0

� P7 P21

r7?, 7dol Ofe3)-764- 6,,(Io

, -4

CCL #L/-/9 /.3Z I o I .

6. fw4AA i44 ,

6.M PQOaSt Avn&i of Su000 IIo ) 5 I(f l/4)//i)

(Sa a > 6-40/2)L, ceu4. /V s > U3l /1,tvr4

z x

*,I3 Fv ' a/me. (M, CA', £ O 3)

C14* 0os;4 ,DS.S

* I CKCUr, r 44 a(d, 4fMf o .3) un s 7x*p Co , ' tb L. ~, .Ae, ct ru'· r~-

*7X £ h (.~ DS5 d- SCzp,

Ct, >t 02 >1 n 4ct & >

{S2 2Prc/ltrn of tnc/rdnmc Crpey

/ wX~~L~i J 3o X 4n ILFv);) dL~L u.~~- ,0 r .Cf1~~t , 1G . W ~hcr

Ca /Z9/fs /, 324. |_ r' I jP3

.f 3) l,,t/,.) .

4) 4~A C,4~,d ,,.~ 6-

CC14. ,,A& t 3, a

lt3 /.1/¢c//4cc, ,

b ssIA~Ly. H -tld pi>? CC k,4(rr5 s fe/Lb )rC,r/ 43

$- I-n

cooOno*1MWII@00uQO0ri

*- g qq 71c4 N r4r14 4

0.20

0.30

50

50.5

0.05

Nor

mal

ized

She

ar S

tress

, q/σ

vc' 0.40

-0.10.001 0.01

Normalized Shear Stress and Shear-induced Pore Pressure vs. Strain,OCR = 1 CKoUC Tests, Resedimented BBC

0.1

.

Axial Strain, εa (%)

εf

ε

1 10

0.0

0.1

0.2

0.3

0.4

Nor

mal

ized

She

ar-I

nduc

ed P

ore

Pre

ssur

e, ∆

u s/σ

vc

'

∆us=

∆u-

∆σat

= ∆

u-∆σ

a1 3

Symbol εa(%/hr)

0.0510.0510.505.04949

212313331852

Test No..

Nor

mal

ized

She

ar S

tress

, q/σ

vc'

Normalized Effective Stress, p/σvc''

0.4

0.20

0.30

0.40

Peak Shear Stress

Corresponds toAvg. φmin = 32.9o

50

5

0.05

0.9SD+_'

0.5 0.6 0.7 0.8

Normalized Effective Stress Paths, OCR = 1 CKoUC Tests, Resedimented BBC

Symbol εa(%/hr)

0.0510.0510.505.049

2123133352

Test No..

Symbol εa(%/hr)

0.0510.505.05154

3840424160

Test No..

εf

ε

0.1

0.2

0.3

0.4

0.50.05

505

0.5

0.6

Nor

mal

ized

She

ar S

tress

, q/σ

vc'-0.3

0.001 0.01 0.1 1 10

.-0.2

0.0

0.0

0.1

0.2

Normalized Shear Stress and Shear-induced Pore Pressure vs. Strain,OCR = 2 CKoUC Tests, Resedimented BBC

Axial Strain, εa (%)

Nor

mal

ized

She

ar-I

nduc

ed P

ore

Pre

ssur

e, ∆

u s/σ

vc

'

Nor

mal

ized

She

ar S

tress

, q/σ

vc'

Corresponds toAvg. φmax = 32.9o

0.050.5

550

0.4SD+_'

Normalized Effective Stress, p/σvc''

Normalized Effective Stress Paths, OCR = 2 CKoUC Tests, Resedimented BBC

Symbol εa(%/hr)

0.0510.505.05154

3840424160

Test No..

Peak Shear Stress0.2

0.7 0.8 0.8 1.00.6

0.3

0.4

0.5

0.6

1.1 1.2

Figures by MIT OCW.

Adapted from:

a

b

Normalized Shear Stress and Shear-induced Pore Pressure vs. Strain,OCR = 4 CKoUC Tests, Resedimented BBC

Axial Strain, εa (%)

εf

Nor

mal

ized

She

ar-I

nduc

ed P

ore

Pre

ssur

e, ∆

u s/σ

vc

'

0.1

0.2

0.3

0.4

50

50.05 | 5

0.05 | 0.5

505

0.5

0.6

Nor

mal

ized

She

ar S

tress

, q/σ

vc'

-0.60 2 4 6 8 10 12 14

-0.5

-0.4

-0.3

-0.2

16

-0.1

0.0

Symbol εa(%/hr)

0.0510.505.15.052

3529394927

Test No..

Nor

mal

ized

She

ar S

tress

, q/σ

vc' Corresponds to Mean ESE at Peak,OCR = 4 & 5C'/σmin = 0.038 φ = 26.1o

''

Normalized Effective Stress, p/σvc''

Normalized Effective Stress Paths, OCR = 4 CKoUC Tests, Resedimented BBC

Symbol εa(%/hr)

0.0510.505.15.052

3529394927

Test No..

Peak Shear Stress0.2

0.00.6 0.8 1.0

0.4

0.6

0.8

1.0

550

0.05 | 5

1.2 1.4 1.6 1.8

a

b

εf

Normalized Shear Stress and Shear-induced Pore Pressure vs. Strain,OCR = 8 CKoUC Tests, Resedimented BBC

Axial Strain, εa (%)

Nor

mal

ized

She

ar-I

nduc

ed P

ore

Pre

ssur

e, ∆

u s/σ

vc

'

0.0

0.5

Nor

mal

ized

She

ar S

tress

, q/σ

vc'

1.0

1.550

-1.6

-1.2

0 2 4 6 8 10 12 14 16 18

-0.8

-0.4

0.0

Symbol εa(%/hr)

0.0510.515.15150

4447464345

Test No..0.05,0.5 | 5

0.05,0.5 | 5

50

Nor

mal

ized

She

ar S

tress

, q/σ

vc'

Normalized Effective Stress, p/σvc''

Normalized Effective Stress Paths, OCR = 8 CKoUC Tests, Resedimented BBC

Corresponds to Mean ESE at Peak,OCR = 4 & 5C'/σmin = 0.038 φ = 25.1o

50

0.05,0.5 | 5'

'

-0.50.5 1.0

0.0

0.5

1.0

1.5

1.5 2.0 2.5 3.0 3.5

Symbol εa(%/hr)

0.0510.515.15150

4447464345

Test No..

Peak Shear Stress

Figures by MIT OCW.

Adapted from:

OCR = 1

OCR = 2

OCR = 4

OCR = 8

OCR = 2

OCR = 1

30

28

26

24

220.01 0.1 1 10 100

Axial Strain Rate, εa (%/hr)

Fric

tion

Ang

le a

t pea

k, φ

' a (. )

Nor

m. s

hear

-indu

ced

pore

pre

ss, a

t pea

k, ∆

u 3/σ' vc

0.05

0.00

-0.05

-0.10

-0.15

-0.20

Summary plots of Mechanisms: (a) Normalized Shear-induced pore pressure and(b) Friction angle at peak versue strain rate, CKoUC tests, resedimented BBC

Figures by MIT OCW.Adapted from:

0.00.0 0.4 0.8 1.2 1.6 2.0

0.2

App

lied

Stre

ss L

evel

, ∆q/

∆qm

ax

0.4

0.6

0.8

1.0

1.2

0.05

OCR = 1

OCR = 4

OCR = 2

OCR = 8

500.55

0 1 2 3 4 5

0.00 2 4

Axial Strain, εa (%)

Axial Shear Stress Level vs. Strain, CKoUC Tests, Resedimented BBC

Axial Strain, εa (%)6 8 10

0.2

App

lied

Stre

ss L

evel

, ∆q/

∆qm

ax

0.4

0.6

0.8

1.0

1.2

0 2 4 6 8 10

Symbol εa(%/hr)

0.0510.0510.500.505.0504949

2123111333171852

Test No..

Symbol εa(%/hr)

0.0510.505.05154

3840424180

Test No..

Symbol εa(%/hr)

0.0510.0510.500.505.15.052

26351529394927

Test No..

Symbol εa(%/hr)

0.0510.515.15150

4447464345

Test No..

12

10

8Secondary

6

8

4

2

00 30 60 90 120 150 180 210 240

Conventional Isotropic Triaxialq = 0.566

q = 0.596

Primary Tertiary

Plane Strain

Rupture

Elapsed Time, t. Minutes

Triaxial q = 0.550

Axi

al S

train

, Per

cent

ε

q = (σ1-σ2)/σ'3

CIUCε vs. t

CKoUPSC CKoUC

ko

Rupture

6

4

2

00.48 0.52 0.56 0.60 0.64 0.68 0.72

Isotropic Triaxial

Ko Plane StrainKo Triaxial

% A

xial

Stra

in U

ntil

ε min

.

q = (σ1 - σ3)/σ'vc

Axial strain until minimum strain rate as a function of creep stress. D

Figure by MIT OCW.

Figure by MIT OCW.

Figure by MIT OCW.

10010-5

10-4

10-3

10-2

10-1

101 102 103 104 105Elapsed Time, l, Minutes

100 101 102 103 104 105

Elapsed Time, l, Minutes

Axi

al C

reep

Rat

e, %

/ M

inut

e

10-5

10-4

10-3

10-2

10-1

Axi

al C

reep

Rat

e, %

/ M

inut

e

(a) Consolidated Triaxial

CKoUC Em = 0.3%

q =

0.59

4

0.56

40.

550 0.

526

0.50

80.

500

0.49

2

(B) Isotropically consolidated Triaxial

0.51

50.

525

0.54

2

0.56

60.

570

0.59

2

0.61

9

q =

0.63

0 CIUC εm = 2.8%

Log t (min)

Log

ε (%

/ m

in)

.

100 101 102 103 104 105

Elapsed Time, l, Minutes

10-4

10-3

10-2

10-1

100

Axi

al C

reep

Rat

e, %

/ M

inut

e

(C) Ko consolidated Plane Strain

Creep rate behavior of normally consolidated undisturbed Haney clay.

CKoUPSC

q =

0.66

2

0.63

0

0.62

1

0.59

80.

588

0.57

4

0.56

2

10-6

10-7

10-8

10-9

10-10

102

102101100

10-7

10-6

10-5

10-4

103

103

104 105 106

-10o, 1.0 -10o, 1.2

-10o, 0.6

-10o, 0.6

-10o, 0.5

-10o, 0.1

-5o, 0.2

tm-5oC σ1=0.5 MPa

σ1=5.57 MPa

εm-tm.

εm-tm.

Results of unconfined (uniaxial) compressive creep testing of polycrystalline ice.(data by Jacka, see Lile 1979).

εm ~ 1%.~

Polycrystalline ICE

Stra

in ra

te (a

-1)

Time (min)

Time (min)

Results of unconfined (uniaxial) compressive creep testing of 40% saturated,55% relative density Manchester fine sand at - 18.8oC (data from Martin et al. 1981)

7.086.55

6.50

5.26

5.174.92

4.87

6.245.91

3.98

Si = 40% Dr= 55%Frozen Hanchester Fine Sand

εm ~ 2.7 + 0.5%.~

Stra

in ra

te ε

(S-1)

.20% Si MFS40% Si MFS100% Si MFS

Ice

Ice

UnfrozenHaney Clay

UniaxialUniaxial

Uniaxial

Uniaxial

Uniaxial

CIUCCKoUC

CKoUC HANCY CLAY

Martin Ting & Load (1981)

kuo (1972)

Jacka, in Lue (1979)Campanella & Void (1974)

2.8 x 10-4

4.2 x 10-4

8.1 x 10-4

7.9 x 10-5

6.5 x 10-5

1.5 x 10-51.3 x 10-4

-1.2

-1.2

-1.2

-0.8

-1.0

-0.9

-0.8

0.987

0.993

0.996

0.997

0.991

0.987

0.987

7

40

28

7

7

8

8

1

2

3

4

567

No. Material Testing Reference Bo r2γo No. Tests εm (%)

2.1

2.7

4.6

2.8

0.3

10-7

10-6

10-5

10-4

10-3

10-8

100 101 102 103

Time (min)

Min

imum

Stra

in ra

te ε

m (S

-1)

.

.

ε.

1~~

CIUC HANCY CLAY

ICE

1

4

7

5

6 2

3 Frozen MFS

εm = ΒtmγNote:

.

Summary of minimum creep rate: Correlations of time to minimum for various materials

Figures by MIT OCW.

00

2 4 86 10 12

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

Axial Strain, %

Influence of rate strain on undrained stress-strain behavior in constant rate of strain shear.

1.1 x 100 % / min

1.8 x 10-1

1.4 x 10-2

2.0 x 10-38.4 x 10-4

φ =

"q"

= (σ

' 1 - σ

' 3) /σ

' c

0.80

0.60

0.40

0.20

010-4 10-3 10-2 10-1 100 101

-0.1 cm/day for 7 cm high sample

Rate at strain, % / min.

σ'm

= (σ

' 1 -

σ'3)

max

/σ' c

Strain rate dependence of undrained strength in constant rate of strain Shear and constant stress creep

Upper yield

Const. rate at strain shear

Const. stress rate at 5 min ~ 2.5%

100

100

10-1

10-2

10-3

10-4

10-5

101

101 102 103 104 105

0.500

0.4460.374

0.51

6

0.53

0

0.55

2

0.57

20.

586

0.60

0

0.61

8

0.63

8

Variation of creep rate with time in constant stress creepElapsed time, t - min.

Axi

al st

rain

rate

, per

cent

/min

Figures by MIT OCW.

Adapted from:

CTX- Loading (e,%/hr) Relaxation2528

(50)

(50)(0.05)

(0.05)

Nor

mal

ized

Effe

ctiv

e St

ress

, p'/σ

' vc

0.40

0.30

0.20

0.10

5223

Stress-strain curves, relaxation versus constant strain rate CKoUC tests, resedimented BBC: OCR =1Axial Strain, εa (%)

0.001 0.01 0.1 1 10

(10.12.6%)(1%) (0.1%)

CTX- Loading (e,%/hr) Relaxation

28

23

(0.05)

(0.05)

( ) = Relaxation Strain LevelEnd -of-Relaxation State

0.5 0.6 0.7 0.80.1

0.2

0.3

0.4

Nor

mal

ized

She

ar S

tress

, q/σ

' vc

Normalized Effective Stress, p'/σ'vc

Effective stress paths, relaxation versus constant strain rate CKoUC tests, resedimented BBC.OCR = 1,0.05%/h

Figures by MIT OCW.

Adapted from:

0.01 0.1 1 10 100 1000 100000.10

0.15

0.20

0.25

0.30

0.35

0.40

Relaxation Increment Time, t(min)

Shear stress decay with time, CKoUC relaxation tests on resedimented BBC: OCR =1

ε (%/hr).

1

1

Nor

mal

ized

She

ar S

tress

, q/σ

' vc

CTX- Relaxation Strain, %

25

28

50

0.05

0.1

0.1

10

10

15

12.5

q/σ'vc AT t = 0

0.00.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5 0.6

0.6

0.5

0.7 0.8

Solid Symbols: εa < 1.5%Open Symbols: εa < 2.5% AVG. φ' = 25.3o

k = 0.40

AVG. φ' = 19.3o

k = 0.50

Normalized Effective Stress, p'/σ'vm

CTX- OCR ε (%/hr).

25283032

11

14

500.050.05Varies

Nor

mal

ized

She

ar S

tress

, q/σ

' vm

Stabilized stress states at the end of relaxation phases, CKOUC relaxatin tests on resedimented BBC.

Figures by MIT OCW.

Adapted from: