383

3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,
Page 2: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

1

SystemVue 2010.072010

3GPP LTE Baseband Verification Library

Page 3: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

2

© Agilent Technologies, Inc. 2000-2010395 Page Mill Road, Palo Alto, CA 94304 U.S.A.No part of this manual may be reproduced in any form or by any means (includingelectronic storage and retrieval or translation into a foreign language) without prioragreement and written consent from Agilent Technologies, Inc. as governed by UnitedStates and international copyright laws.

Acknowledgments Mentor Graphics is a trademark of Mentor Graphics Corporation inthe U.S. and other countries. Microsoft®, Windows®, MS Windows®, Windows NT®, andMS-DOS® are U.S. registered trademarks of Microsoft Corporation. Pentium® is a U.S.registered trademark of Intel Corporation. PostScript® and Acrobat® are trademarks ofAdobe Systems Incorporated. UNIX® is a registered trademark of the Open Group. Java™is a U.S. trademark of Sun Microsystems, Inc. SystemC® is a registered trademark ofOpen SystemC Initiative, Inc. in the United States and other countries and is used withpermission. MATLAB® is a U.S. registered trademark of The Math Works, Inc.. HiSIM2source code, and all copyrights, trade secrets or other intellectual property rights in and tothe source code in its entirety, is owned by Hiroshima University and STARC.

Errata The SystemVue product may contain references to "HP" or "HPEESOF" such as infile names and directory names. The business entity formerly known as "HP EEsof" is nowpart of Agilent Technologies and is known as "Agilent EEsof". To avoid broken functionalityand to maintain backward compatibility for our customers, we did not change all thenames and labels that contain "HP" or "HPEESOF" references.

Warranty The material contained in this document is provided "as is", and is subject tobeing changed, without notice, in future editions. Further, to the maximum extentpermitted by applicable law, Agilent disclaims all warranties, either express or implied,with regard to this manual and any information contained herein, including but not limitedto the implied warranties of merchantability and fitness for a particular purpose. Agilentshall not be liable for errors or for incidental or consequential damages in connection withthe furnishing, use, or performance of this document or of any information containedherein. Should Agilent and the user have a separate written agreement with warrantyterms covering the material in this document that conflict with these terms, the warrantyterms in the separate agreement shall control.

Technology Licenses The hardware and/or software described in this document arefurnished under a license and may be used or copied only in accordance with the terms ofsuch license.

Portions of this product is derivative work based on the University of California PtolemySoftware System.

In no event shall the University of California be liable to any party for direct, indirect,special, incidental, or consequential damages arising out of the use of this software and itsdocumentation, even if the University of California has been advised of the possibility ofsuch damage.

The University of California specifically disclaims any warranties, including, but not limitedto, the implied warranties of merchantability and fitness for a particular purpose. Thesoftware provided hereunder is on an "as is" basis and the University of California has noobligation to provide maintenance, support, updates, enhancements, or modifications.

Portions of this product include code developed at the University of Maryland, for theseportions the following notice applies.

In no event shall the University of Maryland be liable to any party for direct, indirect,special, incidental, or consequential damages arising out of the use of this software and itsdocumentation, even if the University of Maryland has been advised of the possibility ofsuch damage.

The University of Maryland specifically disclaims any warranties, including, but not limitedto, the implied warranties of merchantability and fitness for a particular purpose. thesoftware provided hereunder is on an "as is" basis, and the University of Maryland has noobligation to provide maintenance, support, updates, enhancements, or modifications.

Portions of this product include the SystemC software licensed under Open Source terms,which are available for download at http://systemc.org/ . This software is redistributed byAgilent. The Contributors of the SystemC software provide this software "as is" and offerno warranty of any kind, express or implied, including without limitation warranties orconditions or title and non-infringement, and implied warranties or conditionsmerchantability and fitness for a particular purpose. Contributors shall not be liable forany damages of any kind including without limitation direct, indirect, special, incidentaland consequential damages, such as lost profits. Any provisions that differ from thisdisclaimer are offered by Agilent only.With respect to the portion of the Licensed Materials that describes the software andprovides instructions concerning its operation and related matters, "use" includes the right

Page 4: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

3

to download and print such materials solely for the purpose described above.

Restricted Rights Legend If software is for use in the performance of a U.S.Government prime contract or subcontract, Software is delivered and licensed as"Commercial computer software" as defined in DFAR 252.227-7014 (June 1995), or as a"commercial item" as defined in FAR 2.101(a) or as "Restricted computer software" asdefined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contractclause. Use, duplication or disclosure of Software is subject to Agilent Technologies´standard commercial license terms, and non-DOD Departments and Agencies of the U.S.Government will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than LimitedRights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November1995), as applicable in any technical data.

Page 5: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

4

About 3GPP LTE Wireless Design Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Workspace Migration from LTE 8.6 Version to LTE 8.9 Version . . . . . . . . . . . . . . . . . . . . . . . 8 3GPP LTE System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3GPP LTE Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

C++ Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

LTE_CodeBlkDeseg Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 LTE_CodeBlkDeSeg (LTE Code Block Desegmentation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

LTE_CodeBlkSeg Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 LTE_CodeBlkSeg (LTE Code Block Segmentation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

LTE_ConvCoder Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 LTE_ConvCoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

LTE_CRCDecoder Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 LTE_CRCDecoder (LTE CRC Decoder) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

LTE_CRCEncoder Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 LTE_CRCEncoder (LTE CRC Encoder) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

LTE_DeScrambler Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 LTE_DeScrambler (LTE Downlink and Uplink Descrambler) . . . . . . . . . . . . . . . . . . . . . . . . . . 30

LTE_DL_ChannelCoder Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 LTE_DL_ChannelCoder (LTE Downlink Channel Coder) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

LTE_DL_ChannelDecoder Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 LTE_DL_ChannelDecoder (LTE Downlink Channel Decoder) . . . . . . . . . . . . . . . . . . . . . . . . . 37

LTE_HARQ_Controller Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 LTE_HARQ_Controller (LTE Controller for HARQ closed-loop transmission) . . . . . . . . . . . . . . . 41

LTE_RateDematch Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 LTE_RateDeMatch (LTE Downlink and Uplink Rate Dematching) . . . . . . . . . . . . . . . . . . . . . . 45

LTE_RateMatch Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 LTE_RateMatch (LTE Downlink and Uplink SCH Rate Matching) . . . . . . . . . . . . . . . . . . . . . . . 47

LTE_Scrambler Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 LTE_Scrambler (LTE Downlink and Uplink Scrambler) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

LTE_TurboCoder Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 LTE_TurboCoder (LTE Turbo Encoder) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

LTE_TurboDecoder Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 LTE_TurboDecoder (LTE Turbo Decoder) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

LTE_UL_ChannelCoder Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 LTE_UL_ChannelCoder (LTE Uplink Channel Coder) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

LTE_UL_ChannelDecoder Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 LTE_UL_ChannelDecoder (LTE Uplink Channel Decoder) . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

LTE_UL_ChDeInterleaver Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 LTE_UL_ChDeInterleaver (Uplink PUSCH Channel De-interleaver) . . . . . . . . . . . . . . . . . . . . . 66

LTE_UL_ChInterleaver Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 LTE_UL_ChInterleaver (Uplink PUSCH Channel Interleaver) . . . . . . . . . . . . . . . . . . . . . . . . . 69

LTE_UL_ControlInfo_Controller Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 LTE_UL_ControlInfo_Controller (LTE Uplink Control Information Encoder) . . . . . . . . . . . . . . . 73

LTE_UL_ControlInfoEncoder Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 LTE_UL_ControlInfoEncoder (LTE Uplink Control Information Encoder) . . . . . . . . . . . . . . . . . 75

LTE_BER_FER Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 LTE_BER_FER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

LTE_DL_EVM Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 LTE_DL_EVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

LTE_DL_EVM_Sink Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 LTE_DL_EVM_Sink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

LTE_DL_MIMO_2Ant_Src_RangeCheck Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 LTE_DL_MIMO_2Ant_Src_RangeCheck (Downlink MIMO 2Ant signal source range check) . . . . 100

LTE_DL_MIMO_4Ant_Src_RangeCheck Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 LTE_DL_MIMO_4Ant_Src_RangeCheck (Downlink MIMO 4Ant signal source range check) . . . . 103

LTE_DL_MIMO_EVM_2Ants Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 LTE_DL_MIMO_EVM_2Ants (Uplink EVM Measurement) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

LTE_DL_Src_RangeCheck Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 LTE_DL_Src_RangeCheck (Downlink signal source range check) . . . . . . . . . . . . . . . . . . . . . . 113

LTE_Throughput Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 LTE_Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

LTE_UL_EVM Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 LTE_UL_EVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

LTE_UL_EVM_Sink Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 LTE_UL_EVM_Sink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

LTE_UL_Src_RangeCheck Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 LTE_UL_Src_RangeCheck (Uplink signal source range check) . . . . . . . . . . . . . . . . . . . . . . . . 130

LTE_DL_MIMO_Deprecoder Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 LTE_DL_MIMO_Deprecoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

LTE_DL_MIMO_LayDemapDeprecoder Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 LTE_DL_MIMO_LayDemapDeprecoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

LTE_DL_MIMO_LayerDemapper Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 LTE_DL_MIMO_LayerDemapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

LTE_DL_MIMO_LayerMapper Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 LTE_DL_MIMO_LayerMapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

LTE_DL_MIMO_LayMapPrecoder Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Page 6: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

5

LTE_DL_MIMO_LayMapPrecoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 LTE_DL_MIMO_Precoder Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

LTE_DL_MIMO_Precoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 LTE_DL_PMI_Generator Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

LTE_DL_PMI_Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 LTE_PHICH_Deprecoder Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

LTE_PHICH_Deprecoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 LTE_PHICH_LayDemapDeprecoder Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

LTE_PHICH_LayDemapDeprecoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 LTE_PHICH_LayerDemapper Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

LTE_PHICH_LayerDemapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 LTE_PHICH_LayerMapper Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

LTE_PHICH_LayerMapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 LTE_PHICH_LayMapPrecoder Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

LTE_PHICH_LayMapPrecoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 LTE_PHICH_Precoder Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

LTE_PHICH_Precoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 LTE_Demapper Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

LTE_Demapper (De-mapper) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 LTE_DL_OFDM_Demodulator Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

LTE_DL_OFDM_Demodulator (Downlink MIMO OFDM De-modulator) . . . . . . . . . . . . . . . . . . . 160 LTE_DL_OFDM_Modulator Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

LTE_DL_OFDM_Modulator (Downlink OFDM modulator) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 LTE_FFT_M Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

LTE_FFT_M (Complex fast Fourier transform) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 LTE_FFT Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

LTE_FFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 LTE_Mapper Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

LTE_Mapper (Mapper) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 LTE_MIMO_Mapper Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

LTE_MIMO_Mapper (MIMO mapping for two codewords) . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 LTE_PHICH_Demodulator Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

LTE_PHICH_Demodulator (Downlink PHICH Demodulator) . . . . . . . . . . . . . . . . . . . . . . . . . . 170 LTE_PHICH_Modulator Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

LTE_PHICH_Modulator (Downlink PHICH Modulator) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 LTE_SCFDMA_Demodulator Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

LTE_SCFDMA_Demodulator (LTE SC-FDMA demodulator) . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 LTE_SCFDMA_Modulator Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

LTE_SCFDMA_Modulator (Uplink SC-FDMA modulator) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 LTE_SpecShaping Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

LTE_SpecShaping (LTE Spectrum Shaper) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 LTE_SS_MIMO_Demod Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

LTE_SS_MIMO_Demod (MIMO demodulation for Sync signals PSS and SSS) . . . . . . . . . . . . . 178 LTE_UL_DFT Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

LTE_UL_DFT (Complex Discrete Fourier Transform for Uplink) . . . . . . . . . . . . . . . . . . . . . . . 179 LTE_DL_DemuxFrame Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

LTE_DL_DemuxFrame (Downlink Radio Frame De-multiplexer with Frequency OffsetCompensator) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

LTE_DL_DemuxOFDMSym Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 LTE_DL_DemuxOFDMSym (Downlink OFDM Symbol De-multiplexer in one radio frame) . . . . . 183

LTE_DL_DemuxSlot Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 LTE_DL_DemuxSlot (Downlink Slot De-multiplexer for LTE DL receiver) . . . . . . . . . . . . . . . . 188

LTE_DL_EVM_Adaptor Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 LTE_DL_EVM_Adaptor (Downlink OFDM Symbol De-multiplexer in one radio frame) . . . . . . . . 190

LTE_DL_MIMO_DemuxCIR Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 LTE_DL_MIMO_DemuxCIR (Downlink CIR De-multiplexer in one radio frame) . . . . . . . . . . . . 193

LTE_DL_MuxFrame Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 LTE_DL_MuxFrame (Downlink Radio Frame Multiplexer) . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

LTE_DL_MuxOFDMSym Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 LTE_DL_MuxOFDMSym (Downlink OFDM Symbol Multiplexer for One Radio Frame) . . . . . . . . 197

LTE_DL_MuxSlot Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 LTE_DL_MuxSlot (Downlink Slot Multiplexer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

LTE_UL_DemuxFrame Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 LTE_UL_DemuxFrame (Uplink radio frame de-multiplexer) . . . . . . . . . . . . . . . . . . . . . . . . . . 204

LTE_UL_DemuxSCFDMASym Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 LTE_UL_DemuxSCFDMASym (Uplink SC-FDMA symbol Demultiplexer) . . . . . . . . . . . . . . . . . 206

LTE_UL_DemuxSlot Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 LTE_UL_DemuxSlot (Uplink slot de-multiplexer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

LTE_UL_MuxFrame Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 LTE_UL_MuxFrame (Uplink radio frame multiplexer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

LTE_UL_MuxSCFDMASym Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 LTE_UL_MuxSCFDMASym (Uplink SC-FDMA symbol multiplexer) . . . . . . . . . . . . . . . . . . . . . 213

LTE_UL_MuxSlot Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 LTE_UL_MuxSlot (Uplink slot multiplexer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

LTE_DL_MIMO_2Ant_Rcv Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 LTE_DL_MIMO_2Ant_Rcv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

LTE_DL_MIMO_4Ant_Rcv Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Page 7: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

6

LTE_DL_MIMO_4Ant_Rcv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 LTE_DL_Receiver Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

LTE_DL_Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 LTE_UL_MIMO_2Ant_Rcv Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

LTE_UL_MIMO_2Ant_Rcv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 LTE_UL_MIMO_4Ant_Rcv Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

LTE_UL_MIMO_4Ant_Rcv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 LTE_UL_Receiver Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

LTE_UL_Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 LTE_BCH_Gen Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

LTE_BCH_Gen (Generator for 24 BCH information bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 LTE_DL_CFI Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

LTE_DL_CFI (Downlink Control Format Indicator) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 LTE_DL_DCI_CRC Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

LTE_DL_DCI_CRC (Downlink Control Information CRC Encoder) . . . . . . . . . . . . . . . . . . . . . . 268 LTE_DL_DCI_Gen Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

LTE_DL_DCI_Gen (Downlink Control Information Generator) . . . . . . . . . . . . . . . . . . . . . . . . 270 LTE_DL_DCI_RateMatch Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

LTE_DL_DCI_RateMatch (Downlink Control Information Rate Matcher) . . . . . . . . . . . . . . . . . 278 LTE_DL_HI Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

LTE_DL_HI (HARQ ACK/NACK generator in one radio frame) . . . . . . . . . . . . . . . . . . . . . . . . 280 LTE_PBCH_CRC Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

LTE_PBCH_CRC (PBCH CRC Encoder) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 LTE_PBCH_RateMatch Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

LTE_PBCH_RateMatch (PBCH Rate Matcher) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 LTE_PBCH_Scrambler Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

LTE_PBCH_Scrambler (PBCH Scrambler) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 LTE_PCFICH_Scrambler Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

LTE_PCFICH_Scrambler (PCFICH Scrambler) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 LTE_PDCCH_Interleaver Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

LTE_PDCCH_Interleaver (PDCCH Interleaver) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 LTE_PDCCH_Mux Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

LTE_PDCCH_Mux (PDCCH Multiplexer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 LTE_PDCCH_Scrambler Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

LTE_PDCCH_Scrambler (PDCCH Scrambler) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 LTE_UL_PUCCH_Controller Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

LTE_UL_PUCCH_Controller (uplink control information encoder on PUCCH) . . . . . . . . . . . . . . 293 LTE_UL_PUCCH_Encoder Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

LTE_UL_PUCCH_Encoder (uplink control information encoder on PUCCH) . . . . . . . . . . . . . . . . 295 LTE_UL_PUCCH Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

LTE_UL_PUCCH (PUCCH Generator) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 LTE_UserAllocInfo Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

LTE_UserAllocInfo (Generation of RB-allocation-related information) . . . . . . . . . . . . . . . . . . . 300 LTE_DL_MIMO_2Ant_Src Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

LTE_DL_MIMO_2Ant_Src . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 LTE_DL_MIMO_4Ant_Src Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

LTE_DL_MIMO_4Ant_Src . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 LTE_DL_Src Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

LTE_DL_Src . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 LTE_UL_Src Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

LTE_UL_Src . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 LTE_DL_ChEstimator Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

LTE_DL_ChEstimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 LTE_DL_MIMO_FrameSync Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

LTE_DL_MIMO_FrameSync (Time and frequency synchronizer in time domain) . . . . . . . . . . . . 341 LTE_DL_MIMO_FreqSync Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

LTE_DL_MIMO_FreqSync (Timing and freqency estimation in freqency domain) . . . . . . . . . . . 344 LTE_DL_TimeFreqSync Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

LTE_DL_TimeFreqSync (Frequency and time synchronization for DL) . . . . . . . . . . . . . . . . . . . 346 LTE_IQ_Offset Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

LTE_IQ_Offset (Uplink IQ offset compensation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 LTE_UL_ChEqualizer Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

LTE_UL_ChEqualizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 LTE_UL_ChEstimator Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

LTE_UL_ChEstimator (Uplink Channel Estimator and Interpolator) . . . . . . . . . . . . . . . . . . . . 352 LTE_UL_FrameSync Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

LTE_UL_FrameSync (Uplink time and frequency synchronizer in time domain) . . . . . . . . . . . . 355 LTE_UL_FreqSync Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

LTE_UL_FreqSync (Timing and freqency estimation in freqency domain) . . . . . . . . . . . . . . . . 357 LTE_UL_TimeFreqSync Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

LTE_UL_TimeFreqSync (Frequency and time synchronization for Uplink) . . . . . . . . . . . . . . . . 360 LTE_DL_Pilot Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

LTE_DL_Pilot (Downlink pilot generator) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 LTE_PSCH Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

LTE_PSCH (P-SCH Generator) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 LTE_RACH_Demodulator Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

LTE_RACH_Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

Page 8: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

7

LTE_RACH_HalfCarrierShift Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 LTE_RACH_HalfCarrierShift (PRACH Half carrier shift) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

LTE_RACH Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 LTE_RACH (Uplink non-synchronized Random Access Channel generator) . . . . . . . . . . . . . . . 372

LTE_RACH_PrmGen Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374 LTE_RACH_PrmGen (RACH preamble sequence generator) . . . . . . . . . . . . . . . . . . . . . . . . . . 374

LTE_RACH_SubcMapping Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376 LTE_RACH_SubcMapping (RACH subcarrier mapping) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

LTE_SSCH Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 LTE_SSCH (S-SCH Generator) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

LTE_UL_CAZAC Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380 LTE_UL_CAZAC (Uplink CAZAC sequence generator) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

Page 9: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

8

About 3GPP LTE Wireless DesignLibraryThe Agilent EEsof SystemVue 3GPP LTE Wireless Design Library is provided for the 3GPPlong term evolution (LTE) market. This design library follows 3GPP LTE Release 8(December 2009 version). The 3GPP LTE Design Library is intended to be a baselinesystem for designers to develop an idea of what nominal or ideal system performancewould be. Evaluations can be made regarding degraded system performance due tosystem impairments that may include non-ideal component performance.

The reference documentations for 3GPP LTE Release 8 (December 2009 version) that arereferenced in SystemVue LTE library are

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.3GPP TS 36.213 v8.8.0, "Physical Layer Procedures", September 2009.(1)

(1): no 36.213 documentation for LTE Release 8 (December 2009 version) isavailable, so that the latest 36.213 Release 8 version is referenced.

Workspace Migration from LTE 8.6 Version to LTE 8.9VersionFor old workspaces which are created in SystemVue 2009.08 (LTE 8.6 version), thefollowing upgrading steps are needed for LTE 8.9 Version.

Run UpgradeLTEWorkspaces.exe which is located in SystemVue2010.01\bin, whereSystemVue2010.01 is the SystemVue 2010.01 installation directory.Select a directory that contains LTE workspaces that needs to be updated.Select the LTE from and to version as from 8.6 to 8.9.Click the 'Convert' button to start the conversion.

Note that the conversion tool above is not suitable to the old workspaces which arecreated in SystemVue 2009.05. For those workspaces, manual conversion is needed.

3GPP LTE SystemIn 3GPP LTE system, downlink and uplink transmissions are organized into radio frameswith 10 ms duration. Two radio frame structures are supported:

Type 1, applicable to FDD LTE,Type 2, applicable to TDD LTE.

Frame Structure Type 1

The Frame structure type 1 as shown below is applicable to both full duplex and half

duplex FDD. Each radio frame is long and consists of 20 slots of

length , numbered from 0 to 19 (see the following figure). Asubframe is defined as two consecutive slots where subframe i consists of slots 2i and2i_1.

For FDD, 10 subframes are available for downlink transmission and 10 subframes areavailable for uplink transmissions in each 10 ms interval. Uplink and downlinktransmissions are separated in the frequency domain. In half-duplex FDD operation, theUE cannot transmit and receive at the same time while there are no such restrictions infull-duplex FDD.

Frame Structure Type 1

Frame Structure Type 2

The Frame structure type 2 as shown below is applicable to TDD. Each radio frame of

length consists of two half-frames of length

Page 10: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

9

each. Each half-frame consists of eight slots of length

and three special fields, DwPTS, GP, and UpPTS. The length ofDwPTS and UpPTS is given by Table 1 subject to the total length of DwPTS, GP and UpPTS

being equal to . Subframe 1 in all configurations and subframe 6 inconfigurations 0, 1, 2 and 6 in Table 2 consists of DwPTS, GP and UpPTS. All othersubframes are defined as two slots where subframe i consists of slots 2i and 2i_1.

Frame Structure Type 2

Subframes 0 and 5 and DwPTS are always reserved for downlink transmission.

The supported uplink-downlink allocations are listed in Table 2 where, for each subframein a radio frame, "D" denotes the subframe is reserved for downlink transmissions, "U"denotes the subframe is reserved for uplink transmissions and "S" denotes a specialsubframe with the three fields DwPTS, GP and UpPTS. Both 5 ms and 10 ms switch-pointperiodicity is supported.

In case of 5 ms switch-point periodicity, UpPTS and subframes 2 and 7 are reserved foruplink transmission.In case of 10 ms switch-point periodicity, DwPTS exist in both half-frames while GP andUpPTS only exist in the first half-frame and DwPTS in the second half-frame has a length

equal to . UpPTS and subframe 2 are reserved for uplink transmissionand subframes 7 to 9 are reserved for downlink transmission.

Table 1: Lengths of DwPTS/GP/UpPTS

Table 2: Uplink-downlink allocations

OFDMA

The downlink transmission scheme (OFDMA) is based on conventional OFDM using a cyclic

prefix, with a sub-carrier spacing kHz and a cyclic-prefix (CP) duration

µ (Normal/Extended CP). Assuming that a 10 ms radio frame is dividedinto 20 equally sized slots, this parameter set implies a slot duration Tslot = 0.5 µ . The

basic transmission parameters are then specified in more detail in the following table.

Parameters for Downlink Transmission Scheme

Page 11: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

10

Transmission BW 1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz

Sub-frame duration 1.0 ms

Sub-carrier spacing 15 kHz

Sampling frequency 1.92 MHz(1/2 x 3.84MHz)

3.84 MHz 7.68 MHz (2x 3.84 MHz)

15.36 MHz(4 x 3.84MHz)

23.04 MHz(6 x 3.84MHz)

30.72 MHz(8 x 3.84MHz)

FFT size 128 256 512 1024 1536 2048

Number of ResourceBlocks

6 15 25 50 75 100

Number of occupiedsub-carriers

73 181 301 601 901 1201

Number of OFDMsymbols per sub-frame(Normal/Extended CP)

7/6

CP length(µ/samples)

Normal † (4.69/9) x6,(5.21/10)x 1

(4.69/18)x 6,(5.21/20)x 1

(4.69/36) x6, (5.21/40)x 1

(4.69/72) x6, (5.21/80)x 1

(4.69/108)x 6,(5.21/120)x 1

(4.69/144)x 6,(5.21/160)x 1

Extended (16.67/32) (16.67/64) (16.67/128) (16.67/256) (16.67/384) (16.67/512)

† In one slot, the first OFDM symbol has longer CP length and other 6 OFDM symbols have shorter CP length when Normal

CP.

Physical channels

A downlink physical channel corresponds to a set of resource elements carryinginformation originating from higher layers and is the interface defined between 36.212and 36.211. The following downlink physical channels are defined:

Physical Downlink Shared Channel, PDSCHPhysical Broadcast Channel, PBCHPhysical Multicast Channel, PMCHPhysical Control Format Indicator Channel, PCFICHPhysical Downlink Control Channel, PDCCHPhysical Hybrid ARQ Indicator Channel, PHICH

Physical signals

A downlink signal corresponds to a set of resource elements used by the physical layer butdoes not carry information originating from higher layers. The following downlink physicalsignals are defined:

Reference signalSynchronization signal

SC-FDMA

LTE uplink requirements differ from downlink requirements in several ways. Notsurprisingly, power consumption is a key consideration for UE terminals. The high PAPRand related loss of efficiency associated with OFDM signaling are major concerns. As aresult, an alternative to OFDM was sought for use in the LTE uplink.Single Carrier - Frequency Domain Multiple Access (SC-FDMA) is well suited to the LTEuplink requirements. The basic transmitter and receiver architecture is very similar (nearlyidentical) to OFDMA, and it offers the same degree of multipath protection. Importantly,because the underlying waveform is essentially single-carrier, the PAPR is lower.

Structure for OFDMA/SC-FDMA

Physical channels

An uplink physical channel corresponds to a set of resource elements carrying informationoriginating from higher layers and is the interface defined between 36.212 and 36.211.The following uplink physical channels are defined:

Page 12: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

11

Physical Uplink Shared Channel, PUSCHPhysical Uplink Control Channel, PUCCHPhysical Random Access Channel, PRACH

Physical signals

An uplink physical signal is used by the physical layer but does not carry informationoriginating from higher layers. The following uplink physical signals are defined:

Reference signalSounding reference signal

3GPP LTE LibraryEEsof SystemVue 3GPP LTE library can support both FDD-LTE and TDD-LTE. It includes112 components and 11 test benches.

Component Libraries

This 3GPP LTE Wireless Design Library is organized by the types of behavioral models andsubnetworks.

Channel Coding Components

The channel coding components are for both downlink and uplink channel codec.

LTE_CRCDecoder: LTE CRC DecoderLTE_CRCEncoder: LTE CRC EncoderLTE_CodeBlkDeseg: LTE code block de-segmentationLTE_CodeBlkSeg: LTE code block segmentationLTE_ConvCoder: LTE Convolutional CoderLTE_DL_ChannelCoder: LTE Downlink Channel CoderLTE_DL_ChannelDecoder: LTE Downlink Channel DecoderLTE_DeScrambler: LTE downlink and uplink de-scramblerLTE_RateDematch: LTE downlink and uplink rate dematchingLTE_RateMatch: LTE downlink and uplink SCH rate matchingLTE_Scrambler: LTE downlink and uplink scramblerLTE_TurboCoder: LTE turbo encoderLTE_TurboDecoder: LTE turbo decoderLTE_UL_ChannelCoder: LTE Uplink Channel CoderLTE_UL_ChannelDecoder: LTE Uplink Channel DecoderLTE_UL_ChInterleaver: LTE Uplink Channel InterleaverLTE_UL_ChDeinterleaver: LTE Uplink Channel De-InterleaverLTE_UL_ControlInfoEncoder: LTE Uplink Control Information CoderLTE_UL_ControlInfoController: LTE Uplink Control Information EncoderLTE_HARQ_Controller: LTE HARQ Transmission Controller

MIMO Precoder Components

MIMO precoding/de-precoding, layer mapper/demapper models for downlink transmitdiversity and spatial multiplexing are provided.

LTE_DL_MIMO_Deprecoder: Downlink MIMO De-precoderLTE_DL_MIMO_LayDemapDeprecoder: Downlink MIMO Layer Demapper and De-precoderLTE_DL_MIMO_LayMapPrecoder: Downlink MIMO Layer mapper and PrecoderLTE_DL_MIMO_LayerDemapper: Downlink MIMO Layer DemapperLTE_DL_MIMO_LayerMapper: Downlink MIMO Layer MapperLTE_DL_MIMO_Precoder: Downlink MIMO PrecoderLTE_DL_PMI_Generator: Downlink Precoding Matrix Index generatorLTE_PHICH_Deprecoder: Downlink MIMO De-precoderLTE_PHICH_LayDemapDeprecoder: PHICH MIMO Layer Demapper and De-precoderLTE_PHICH_LayMapPrecoder: PHICH MIMO Layer mapper and PrecoderLTE_PHICH_LayerDemapper: PHICH MIMO Layer DemapperLTE_PHICH_LayerMapper: PHICH MIMO Layer MapperLTE_PHICH_Precoder: PHICH MIMO Precoder

Measurement Components

The measurement models provide basic measurements for both FDD/TDD downlink anduplink, such as EVM and CCDF.

LTE_BER_FER: LTE Bit Error Rate and Frame Error Rate measurementLTE_DL_EVM: Downlink EVM MeasurementLTE_UL_EVM: Uplink EVM (RCE) Measurement

Page 13: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

12

LTE_Throughput: LTE HARQ Throughput MeasurementLTE_DL_Src_RangeCheck: Range Check for LTE Downlink Source with One AntennaPortLTE_DL_MIMO_2Ant_Src_RangeCheck: Range Check for LTE Downlink Source withTwo Antenna PortLTE_DL_MIMO_4Ant_Src_RangeCheck: Range Check for LTE Downlink Source withFour Antenna PortLTE_UL_Src_RangeCheck: Range Check for LTE Uplink Source with One Antenna Port

Modulation Components

The modulation models provide mapping/demapping, OFDM modulation/demodulation,SCFDMA modulation/demodulation both downlink and uplink.

LTE_Demapper: QPSK, 16-QAM and 64-QAM De-mapperLTE_DL_OFDM_Demodulator: Downlink OFDM De-modulatorLTE_DL_OFDM_Modulator: Downlink OFDM ModulatorLTE_FFT: Complex Fast Fourier TransformLTE_FFT_M: Complex Fast Fourier TransformLTE_Mapper: QPSK, 16-QAM and 64-QAM MapperLTE_MIMO_Mapper: MIMO MapperLTE_PHICH_Demodulator: PHICH De-modulatorLTE_PHICH_Modulator: PHICH ModulatorLTE_SCFDMA_Demodulator: SCFDMA De-modulatorLTE_SCFDMA_Modulator: SCFDMA ModulatorLTE_SpecShaping: Spectrum ShapingLTE_SS_MIMO_Demod: MIMO Demodulation for Synchronization Signals (PSCH andSSCH)LTE_UL_ChEqualizer: Uplink channel equalizerLTE_UL_DFT: Uplink Complex Discrete Fourier Transform

Multiplex Components

The multiplex models provide OFDM/SCFDMA symbol multiplexing/de-multiplexing, DL/ULframing/de-framing for DL/UL transceiver.

LTE_DL_DemuxFrame: Downlink Radio Frame De-multiplexer with Frequency OffsetCompensatorLTE_DL_DemuxOFDMSym: Downlink OFDM Symbol De-multiplexer in one RadioFrameLTE_DL_DemuxSlot: Downlink Slot De-multiplexerLTE_DL_MIMO_DemuxCIR: Downlink Channel Impulse Response de-multiplexer inone Radio FrameLTE_DL_MuxFrame: Downlink Radio Frame MultiplexerLTE_DL_MuxOFDMSym: Downlink OFDM Symbol Multiplexer in one Radio FrameLTE_DL_MuxSlot: Downlink Slot MultiplexerLTE_UL_DemuxFrame: Uplink Radio Frame De-multiplexer with Frequency OffsetCompensatorLTE_UL_DemuxSCFDMASym: Uplink SC-FDMA Symbol De-multiplexer in one RadioFrameLTE_UL_DemuxSlot: Uplink Slot De-multiplexerLTE_UL_MuxFrame: Uplink Radio Frame MultiplexerLTE_UL_MuxSCFDMASym: Uplink SC-FDMA symbol multiplexerLTE_UL_MuxSlot: Uplink Slot Multiplexer

Receiver Components

The receiver models are for both downlink and uplink receivers.

LTE DL MIMO_2Ant_Rcv: Downlink Baseband MIMO Receiver with Two ReceiverAntennasLTE_DL_MIMO_4Ant_Rcv: Downlink Baseband MIMO Receiver with Four ReceiverAntennasLTE_DL_Receiver: Downlink Baseband ReceiverLTE_UL_Receiver: Uplink Baseband ReceiverLTE UL MIMO_2Ant_Rcv: Uplink Baseband MIMO Receiver with Two ReceiverAntennasLTE_UL_MIMO_4Ant_Rcv: Uplink Baseband MIMO Receiver with Four ReceiverAntennas

Signaling Components

The Signaling models are provided for downlink and uplink control channels.

LTE_BCH_Gen: BCH Information Bits GeneratorLTE_DL_CFI: Downlink Control Format Indicator

Page 14: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

13

LTE_DL_DCI_CRC: Downlink Control Information CRC EncoderLTE_DL_DCI_Gen: Downlink Control Information GeneratorLTE_DL_DCI_RateMatch: Downlink Control Information Rate MatcherLTE_DL_HI: HARQ ACK/NACK generator in one radio frameLTE_PBCH_CRC: PBCH CRC EncoderLTE_PBCH_RateMatch: PBCH Rate MatcherLTE_PBCH_Scrambler: PBCH ScramblerLTE_PCFICH_Scrambler: PCFICH ScramblerLTE_PDCCH_Interleaver: PDCCH InterleaverLTE_PDCCH_Mux: PDCCH MultiplexerLTE_PDCCH_Scrambler: PDCCH ScramblerLTE_UL_PUCCH: PUCCH GeneratorLTE_UL_PUCCH_Encoder: Uplink Control Information Encoder on PUCCHLTE_UL_PUCCH_Controller: Uplink Control Information Controller on PUCCHLTE_UserAllocInfo: Generation of RB-allocation-related information

Source Components

These models are provided downlink and uplink sources.

LTE_DL_MIMO_2Ant_Src: Downlink baseband 2 antennas MIMO signal sourceLTE_DL_MIMO_4Ant_Src: Downlink baseband 4 antennas MIMO signal sourceLTE_DL_Src: Downlink Baseband Signal SourceLTE_UL_Src: Uplink Baseband Signal Source

Sync Equalization Components

Sync Equalization models provide timing/frequency synchronization, channel estimationand etc for downlink and uplink receiver.

LTE_DL_ChEstimator: Downlink Channel Estimator andInterpolatorLTE_DL_TimeFreqSyncLTE_DL_MIMO_FrameSync: Downlink Timing and Frequency Synchronizer in TimeDomainLTE_DL_MIMO_FreqSync: Downlink Timing and Frequency Synchronizer in FrequencyDomainLTE_DL_TimeFreqSync: Downlink Timing and Frequency SynchronizerLTE_IQ_Offset: Uplink IQ Offset CompensatorLTE_UL_ChEstimator: Uplink Channel Estimator and InterpolatorLTE_UL_FrameSync: Uplink Timing and Frequency Synchronizer in Time DomainLTE_UL_FreqSync: Uplink Timing and Frequency Synchronizer in Frequency DomainLTE_UL_TimeFreqSync: Uplink Timing and Frequency Synchronizer

Sync Signal Components

These models are provided for timing/frequency synchronization and channel estimationfor both downlink and uplink.

LTE_DL_Pilot: Downlink Pilot GeneratorLTE_PSCH: P-SCH GeneratorLTE_RACH: Uplink Non-synchronized Random Access Channel GeneratorLTE_RACH_HalfCarrierShift: PRACH Half carrier shiftLTE_RACH_PrmGen: RACH Preamble GeneratorLTE_RACH_SubcMapping: RACH Subcarrier MapperLTE_RACH_Demodulator: RACH demodulatorLTE_SSCH: Secondary Synchronization Channel Generator.LTE_UL_CAZAC: Uplink CAZAC Sequence Generator

Array Parameter Overview

The array parameters in SystemVue LTE library are quite flexible supporting multiple arraysizes. These parameters can be roughly divided into two categories: subframe-related andUE-related.

The following table lists all array parameters in DL.

Page 15: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

14

Parameter Parametertype

Allowable input sizes

UEs_MIMO_Mode UEs-related 6x1

UEs_CDD_Mode UEs-related 6x1

UEs_CdBlk_Index UEs-related 6x1

UEs_NumOfCWs UEs-related 6x1

UEs_NumOfLayers UEs-related 6x1

OtherUEs_MappingType UEs-related 5x1, 5x2

UEs_Ra UEs-related 6x1

UEs_Rb UEs-related 6x1

UE1_Payload Subframes-related

1x1, 2x1, 10x1, 10x2

UE1_MappingType Subframes-related

1x1, 2x1, 10x1, 10x2

UE1_RB_Alloc subframes-related

2x1, 10x2 when RB_AllocType=StartRB + NumRBs

PDCCH_SymsPerSF subframes-related

1x1, 10x1

PDCCH_UE_AggreLevel subframes-related

1x1, 10x1

PDCCH_Common_AggreLevel subframes-related

1x1, 10x1

PDCCH_UE_DCI_Formats subframes andDCIs-related

6x1, 10x6, where 6 is max number of UE-SpecificPDCCHs in one subframe and 10 the the number ofsubframe in one radio frame

PDCCH_Common_DCI_Formats subframes andDCIs-related

4x1, 10x4, where 4 is max number of CommonPDCCHs in one subframe and 10 the the number ofsubframe in one radio frame

HI subframes-related

1x1, 10x1, Nx1, 10xN, where N is number of PHICHsper PHICH group

UE2_RB_Alloc subframes-related

2x1, 10x2 when RB_AllocType=StartRB + NumRBs

UE3_RB_Alloc subframes-related

2x1, 10x2 when RB_AllocType=StartRB + NumRBs

UE4_RB_Alloc subframes-related

2x1, 10x2 when RB_AllocType=StartRB + NumRBs

UE5_RB_Alloc subframes-related

2x1, 10x2 when RB_AllocType=StartRB + NumRBs

UE6_RB_Alloc subframes-related

2x1, 10x2 when RB_AllocType=StartRB + NumRBs

The following table lists all array parameters in UL.Parameter Parameter

typeAllowable input sizes

Payload subframes-related

1 × 1, 10 × 1

MappingType subframes-related

1 × 1, 10 × 1

RB_Alloc subframes-related

1 × 1, 10 × 1 when RB_AllocType=StartRB + NumRBs

PUSCH_n_DMRS1 subframes-related

1 × 1, 10 × 1

PUSCH_n_DMRS2 subframes-related

1 × 1, 10 × 1

PUCCH_SF_Alloc subframes-related

N × 1, where N is the number of subframes in whichPUCCH is transmitted

PRACH_ResourceIndex subframes-related

N × 1, where N is the number of PRACH opportunities inone frame

PRACH_PrmbleIndex subframes-related

1 × 1, N × 1, where N is the number of PRACHopportunities in one frame

RI_NumInfoBits subframes-related

1 × 1, 10 × 1

RI_BetaOffsetIndex subframes-related

1 × 1, 10 × 1

CQI_NumInfoBits subframes-related

1 × 1, 10 × 1

CQI_BetaOffsetIndex subframes-related

1 × 1, 10 × 1

HARQACK_NumInfoBits subframes-related

1 × 1, 10 × 1

HARQACK_BetaOffsetIndex subframes-related

1 × 1, 10 × 1

Nbundled subframes-related

1 × 1, 10 × 1

Sym_StartPos - 2 × 1

For subframe-related parameters, the allowable array sizes are 1x1, 2x1, 10x1, 10x2

Page 16: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

15

and 10xN, where N is the number of independent items in each subframe. Thecorresponding values in the 10 subframes (one radio frame) for each code word canbe gotten regardless of the actual size of the array parameters.In the following, the parameter UE1_MappingType, which defines the modulation (0means QPSK, 1 means 16-QAM and 2 means 64-QAM) for PDSCH 1 (UE1), is takenas an example to illustrate the meanings for different array sizes.

Array size is 1x1:When the array size is 1x1, the modulation orders for all code words in all 10subframes are the same. The number of code words can be up to 2 in DL and befixed to 1 in UL. In the example shown in the figure below, 16-QAM is set for allcode words in all 10 subframes.

Array size is 2x1:Array size 2x1 is only applicable to the case that two code words are set in DL.The first value is for code word 1 in all 10 subframes, and the second is for codeword 2. In the example shown in the figure below, 16-QAM is set for code word1 in all 10 subframe s and 64-QAM is set for code word 2.

Array size is 10x1:When the array size is 10x1, the modulation orders for each subframe aredifferent, while the modulation orders for the two code words in DL remain thesame. In the example shown in the figure below, the modulation orders for codewords in 10 subframe s are QPSK, 16-QAM, 64-QAM, QPSK, 16-QAM, 64-QAM,QPSK, 16-QAM, 64-QAM, QPSK respectively.

Array size is 10x2:Array size 2x1 is only applicable to the case that two code words are set in DL,in which the modulation order for each code word in each subframe is definedindependently. In the example shown in the figure below, the modulation ordersfor code word 1 in 10 subframe s are QPSK, 16-QAM, 16-QAM, QPSK, QPSK, 16-QAM, QPSK, 16-QAM, 64-QAM, QPSK respectively, and the modulation ordersfor code word 2 in 10 subframes are 64-QAM, 64-QAM, QPSK, 64-QAM, 16-QAM,16-QAM, QPSK, 64-QAM, 16-QAM, 16-QAM respectively.

Array size is Nx1:Array size Nx1 is only applicable to the parameter HI where N represents themaximum number of PHICHs per PHICH group (8 for Normal CP and 4 for extendedCP). In this method, the setting for each one of N is defined independently, whileeach one of N in all 10 subframes remains the same. Set the corresponding value to -1 if users want to disable the transmission of PHICHs.

Array size is 10xN:Array size 10xN is only applicable to the following parameters:PDCCH_UE_DCI_Formats, PDCCH_Common_DCI_Formats and HI. Where N=6,represents the maximum number of UE-Specific PDCCH candidates; N=4,represents the maximum number of Common PDCCH candidates; and N,represents the number of PHICHs per PHICH group in 10 subframesrespectively. In this methods, the setting for each one of N in each subframe isdefined independently. Set the corresponding value to -1 if users want to disablethe transmission of UE-Specific and Common PDCCHs, DCIs or PHICHs.PDCCH_UE_DCI_Formats and PDCCH_Common_DCI_Formats, for eachsubframe, if the aggregation level is set to L, the number of PDCCH candidatesis M_L, and so the first M_L elements of the Mmax elements are active. -1means no DCI (PDCCH) in correspoding candidate. Refer to Table 9.1.1-1 in9.1.1 of 36213-850.

Note that, for TDD (frame structure type2), the values in the subframes allocated toUL for all subframe-related parameters are ignored and discarded in SystemVue LTE

Page 17: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

16

library.For UE-related parameters, the allowable array sizes are Nx1 and Nx2, where N is thenumber of UEs, 2 is for the case of two code words.

Resource Block (RB) Allocation

In SystemVue LTE library, three methods are defined for setting resource block allocationin both DL and UL. The parameter RB_AllocType specifies the allocation method. Theparameters UEx_RB_Alloc (x is 1~6) in DL specify the RB allocation for UE1 to UE6; theparameter RB_Alloc in UL specifies the RB allocation for PUSCH.

RB_AllocType = StartRB + NumRBs:In this method, the parameters UEx_RB_Alloc (x is 1~6) in DL and RB_Alloc in UL aresubframe-related with allowable sizes of 2x1 and 10x2.

When the size is 2x1, the RB allocation in all 10 subframes is the same. The firstvalue represents the start RB index allocated to the UE in all 10 subframes; thesecond represents the number of allocated RBs in all 10 subframes. An exampleis shown in the following figure:

In this example, the allocated RB indices in all 10 subframes are 1, 2, 3, 4, 5.When the size is 10x2, the RB allocation in each subframes are setindependently. An example is shown in the following figure:

In this example, the allocated RB indices in the 10 subframes are:Subframe Index Allcoated RB Indices

Subframe 0 0, 1

Subframe 1 1, 2

Subframe 2 2, 3

Subframe 3 3, 4

Subframe 4 4, 5

Subframe 5 5, 6

Subframe 6 6, 7

Subframe 7 7, 8

Subframe 8 8, 9

Subframe 9 9, 10

RB_AllocType = RB indices (1D):In this method, the values in the parameters UEx_RB_Alloc (x is 1~6) in DL andRB_Alloc in UL represent allocated RB indices in all 10 subframes. The RB allocationin all 10 subframes is the same.An example is shown in the following figure:

In this example, the allocated RB indices in all 10 subframes are 1, 5, 7, 9, 11.RB_AllocType = RB indices (2D):In this method, the values in the parameters UEx_RB_Alloc (x is 1~6) in DL andRB_Alloc in UL represent allocated RB indices in all 10 subframes. An example isshown in the following figure:

Note that the size of RB indices in each subframe should be the same. If the actualsize in each subframe varies across the 10 subframes, set the allocated size to themaximum size in the 10 subframes and set the rest indices to -1 in the subframeswhose size is less than the maximum size.In this example, the allocated RB indices in the 10 subframes are:

Page 18: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

17

Subframe Index Allcoated RB Indices

Subframe 0 0, 2

Subframe 1 1, 2

Subframe 2 2, 3

Subframe 3 3

Subframe 4 4, 2

Subframe 5 5, 2

Subframe 6 6, 2

Subframe 7 7, 2

Subframe 8 8, 2

Subframe 9 9

Relation of Transport Block Sizes, Channel Bits and Code Rates

For a given subframe, the input to the CRC encoder is the transport block given by thesize NTransBlock. The output from the encoding process is the channel bits given by the size

Nbits(see Channel Bits Calculation), which will be sent to Symbol Modulation transmitted in

the given subframe.The code rate (R) for the given subframe isR = NTransBlock / Nbits

In LTE Library, three methods are defined for PDSCH 1 (UE 1) to get the transport blocksizes, channel bits and code rates with the parameters UE1_Config and UE1_Payload, asfollows:

UE1_Config = MCS index:In this method, the settings in UE1_Payload are interpreted as MCS indicesthroughout a frame which is used to get transport block size and modulation order (Qm

) for UE1 according to Table 7.1.7.1-1 of 36.213 for DL and Table 8.6.1-1 of 36.213for UL. For this method, the UE1_MappingType is useless since the modulation order(Qm) is set by MCS index. The number of available channel bits varies across the 10

sub-frames is calculated based on the radio block allocation NRB and modulation

order (Qm) (gotten from MCS index). The number of available channel bits varies due

to PBCH and PSS/SSS overhead. The actual code rates across the 10 sub-frames aregiven in Simulation Log window with the following equation:Coderate = NTransBlock / Nbits

Note that, if users want to disable the transmission in some of the 10 subframes, setUE1_Payload to -1 in corresponding subframes.UE1_Config = Transport block size:In this method, the settings in UE1_Payload are interpreted as the transport blocksize throughout a frame. The number of available channel bits varies across the 10sub-frames is calculated based on the radio block allocation NRB and modulationorder (Qm) (gotten from UE1_MappingType). The number of available channel bits

varies due to PBCH and PSS/SSS overhead. The actual code rates across the 10 sub-frames are given in Simulation Log window with the following equation:Coderate = NTransBlock / Nbits

Note that, if users want to disable the transmission in some of the 10 subframes, setUE1_Payload to 0 in corresponding subframes.UE1_Config = Code rate:In this methods, the settings in UE1_Payload are interpreted as the target code ratethroughout a frame. This methods is useful when users try to get Referencemeasurement channels as defined in Annex A of 36.101.Given a desired coding rate R, modulation order (Qm) (gotten from

UE1_MappingType) and radio block allocation NRB, the algorithm for determining thepayload size follows A.3.1 of 36.101.The following shows an example for how to set Reference channel (Fixed ReferenceChannel QPSK R=1/3) as defined in Table A.3.3.1-1 of 36.101.

Note that, if users cannot be able to disable the transmission in some of the 10subframes when UE1_Payload in corresponding subframes is set to 0. In this case,the minimum transport block size listed in Table 7.1.7.1-1 of 36.101 for DL and Table

Page 19: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

18

8.6.1-1 of 36.101 for UL is used.Note that, if users want to disable the transmission in some of the 10 subframes, setUE1_Payload to -1 in corresponding subframes.

PUSCH in UL has the same relation of transport block sizes, channel bits and code rates asPDSCHs in DL, as described above, with the exception that the corresponding parametersare Payload_Config and Payload, instead of UE1_Config and UE1_Payload.

The actual transport block sizes, channel bits and code rates across the 10 sub-frames aregiven in Simulation Log window when DisplayMsg is set to Simple or Full in DL.

Channel Bits Calculation

Given allocated resource blocks (RBs) for PDSCH in DL and PUSCH in UL, the number ofavailable resource elements (REs) NREs varies across the 10 subframes due to the

overhead of control channels and reference signals.For DL, the overhead includes:

PBSCHPSS/SSSPDCCH (defined by the parameter PDCCH_SymsPerSF)Cell-specific reference signal pattern (determined by the parameter NumTxAnts)

Overall, the following parameters determine the number of available resource elements(REs) across the 10 subframes for PDSCH:

RB_AllocType, UEx_RB_Alloc (x=1~6): determine allocated resource blocks acrossthe 10 subframes. For more information, see Resource Block Allocation.CyclicPrefix: determine the number of symbols per slotPDCCH_SymsPerSF: determine the number of symbols allocated to PDCCHNumTxAnts: determine cell-specific reference signal pattern

For UL, the overhead includes:

Demodulation reference signal for PUSCHSounding reference signal (determined by the parameters SRS_Enable andSRS_SF_Config).When one subframe has sounding reference signal determined by the parametersSRS_Enable and SRS_SF_Config, the last symbol of this subframe is reserved for thetransmission of sounding reference signal.

Overall, the following parameters determine the number of available resource elements(REs) across the 10 subframes for PUSCH:

RB_AllocType, RB_Alloc: determine allocated resource blocks across the 10subframes. For more information, see Resource Block Allocation.CyclicPrefix: determine the number of symbols per slotSRS_Enable and SRS_SF_Config: determine the existence of sounding referencesignal

The number of available channel bits Nbits alse varies across the sub-frames given by

Nbits = NREs * Qm, where Qm is 2 for QPSK, 4 for 16-QAM and 6 for 64-QAM

The actual available resource elements (REs) and channel bits across the 10 sub-framesare given in Simulation Log window.

Closed-loop HARQ Transmission

In LTE library, the closed-loop HARQ transmission for both PDSCH and PUSCH issupported.

For the example on how to simulate closed-loop HARQ transmission for channel codingand decoding, in which no receiver delay is introduced, refer to3GPP_LTE_DL_ChannelCoding (examples).

For the example on how to simulate closed-loop HARQ transmission for LTE system, inwhich one-subframe receiver delay is introduced, refer to3GPP_LTE_DL_MIMO_Throughput (examples).

For the example on how to simulate non-HARQ transmission for channel coding anddecoding, refer to 3GPP_LTE_UL_ChannelCoding (examples).

Page 20: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

19

For the example on how to simulate non-HARQ transmission for LTE system, in which one-frame receiver delay is introduced, refer to 3GPP_LTE_DL_SISO_BER (examples).

For the detailed information on how the closed-loop HARQ transmission simulation isprocessed, refer to LTE HARQ Controller (ltebasever).

Matrix-based Ports

In LTE library, many input and output ports carry matrix data type.It is required that the matrix type used in LTE library is one-dimensional column vector(i.e the matrix size should be Nx1, N is the size of vector). For example, A=[1;2;3;4] issupported in LTE library, while A=[1,2;3,4;] or A=[1,2,3,4] are not supported. Refer toDynamic Data Flow Simulation (sim) for how to set matrix data.

Display Port Rates

If a model has a DisplayPortRates parameter, then the input/output port rates and otheruseful information can be displayed in Simulation Log window when this parameter is setto YES.

Glossary of Terms

Glossary of terms table CCDF complementary cumulative distribution

function

CM cubic metric

CP cyclic prefix

DL downlink

DL downlink

EVM Error vector magnitude

IFFT inverse fast fourier transform

LTE Long Term Evolution

OFDM orthogonal frequency division multiplexing

PBCH physical broadcast channel

PDCCH

physical downlink control channel

PHY physical layer

P-SCH primary synchanization channel

QPSK quadrature phase shift keying

RF radio frequency

RX receive or receiver

RB resource block

S-SCH secondary synchanization channel

TX transmit or transmitter

UL uplink

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.2.3GPP TS 36.213 v8.8.0, "Physical Layer Procedures", September 2009.3.3GPP TS 36.101 v8.6.0 "User Equipment (UE) radio transmission and reception",4.September 2009.3GPP TS 36.104 v8.7.0 "Base Station (BS) radio transmission and reception",5.September 2009.

Page 21: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

20

C++ Code GenerationThe parts listed in this category have a default model that supports C++ Code Generation.If the part has more than one model, the non-default models do not necessarily supportC++ Code Generation. To find out whether a specific model supports C++ CodeGeneration go to its documentation page and look for the C++ Code Generation Supportfield.

For more information about C++ Code generation, refer to C++ Code Generation(algorithm).

ContentsLTE BCH Gen Part (ltebasever)LTE CodeBlkDeseg Part (ltebasever)LTE CodeBlkSeg Part (ltebasever)LTE ConvCoder Part (ltebasever)LTE CRCDecoder Part (ltebasever)LTE CRCEncoder Part (ltebasever)LTE Demapper Part (ltebasever)LTE DeScrambler Part (ltebasever)LTE DL CFI Part (ltebasever)LTE DL ChEstimator Part (ltebasever)LTE DL DCI CRC Part (ltebasever)LTE DL DCI Gen Part (ltebasever)LTE DL DCI RateMatch Part (ltebasever)LTE DL DemuxFrame Part (ltebasever)LTE DL DemuxOFDMSym Part (ltebasever)LTE DL DemuxSlot Part (ltebasever)LTE DL HI Part (ltebasever)LTE DL MIMO 2Ant Src RangeCheck Part (ltebasever)LTE DL MIMO 4Ant Src RangeCheck Part (ltebasever)LTE DL MIMO DemuxCIR Part (ltebasever)LTE DL MIMO Deprecoder Part (ltebasever)LTE DL MIMO FrameSync Part (ltebasever)LTE DL MIMO FreqSync Part (ltebasever)LTE DL MIMO LayerDemapper Part (ltebasever)LTE DL MIMO LayerMapper Part (ltebasever)LTE DL MIMO Precoder Part (ltebasever)LTE DL MuxFrame Part (ltebasever)LTE DL MuxOFDMSym Part (ltebasever)LTE DL MuxSlot Part (ltebasever)LTE DL Pilot Part (ltebasever)LTE DL PMI Generator Part (ltebasever)LTE DL Src RangeCheck Part (ltebasever)LTE FFT Part (ltebasever)LTE FFT M Part (ltebasever)LTE HARQ Controller Part (ltebasever)LTE IQ Offset Part (ltebasever)LTE Mapper Part (ltebasever)LTE PBCH CRC Part (ltebasever)LTE PBCH RateMatch Part (ltebasever)LTE PBCH Scrambler Part (ltebasever)LTE PCFICH Scrambler Part (ltebasever)LTE PDCCH Interleaver Part (ltebasever)LTE PDCCH Mux Part (ltebasever)LTE PDCCH Scrambler Part (ltebasever)LTE PHICH Demodulator Part (ltebasever)LTE PHICH Deprecoder Part (ltebasever)LTE PHICH LayerDemapper Part (ltebasever)LTE PHICH LayerMapper Part (ltebasever)LTE PHICH Modulator Part (ltebasever)LTE PHICH Precoder Part (ltebasever)LTE PSCH Part (ltebasever)LTE RACH Demodulator Part (ltebasever)LTE RACH HalfCarrierShift Part (ltebasever)LTE RACH PrmGen Part (ltebasever)LTE RACH SubcMapping Part (ltebasever)LTE RateDematch Part (ltebasever)LTE RateMatch Part (ltebasever)LTE Scrambler Part (ltebasever)LTE SpecShaping Part (ltebasever)LTE SS MIMO Demod Part (ltebasever)LTE SSCH Part (ltebasever)LTE TurboCoder Part (ltebasever)

Page 22: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

21

LTE TurboDecoder Part (ltebasever)LTE UL CAZAC Part (ltebasever)LTE UL ChDeInterleaver Part (ltebasever)LTE UL ChEqualizer Part (ltebasever)LTE UL ChEstimator Part (ltebasever)LTE UL ChInterleaver Part (ltebasever)LTE UL ControlInfo Controller Part (ltebasever)LTE UL ControlInfoEncoder Part (ltebasever)LTE UL DemuxFrame Part (ltebasever)LTE UL DemuxSCFDMASym Part (ltebasever)LTE UL DemuxSlot Part (ltebasever)LTE UL DFT Part (ltebasever)LTE UL FrameSync Part (ltebasever)LTE UL FreqSync Part (ltebasever)LTE UL MuxFrame Part (ltebasever)LTE UL MuxSCFDMASym Part (ltebasever)LTE UL MuxSlot Part (ltebasever)LTE UL PUCCH Part (ltebasever)LTE UL PUCCH Controller Part (ltebasever)LTE UL PUCCH Encoder part (ltebasever)LTE UL Src RangeCheck Part (ltebasever)LTE UserAllocInfo Part (ltebasever)

Page 23: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

22

LTE_CodeBlkDeseg PartCategories: C++ Code Generation (ltebasever), Channel Coding (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_CodeBlkDeSeg (ltebasever) LTE Code block de-segmentation for HARQ closed-looptransmission

LTE_CodeBlkDeSeg (LTE Code BlockDesegmentation)

Description: LTE Code block de-segmentation for HARQ closed-loop transmissionDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE CodeBlkDeseg Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

TransBlockSize Transport block size for eachsubframe, only valid when the TBSport is unconnected.

[2555, 2555, 2555, 2555,2555, 2555, 2555, 2555,2555, 2555]

Integerarray

NO

Input Ports

Port Name Description Signal Type Optional

1 DataIn Input Matrix-based data for code block desegmentation integermatrix

NO

2 TBS The tranparent block size for each input Matrix-based token at theDataIn port

int YES

Output Ports

Port Name Description Signal Type Optional

3 CRCOut code block CRC check parity. 0:Failed; 1:Passed integermatrix

NO

4 DataOut Output Matrix-based data after code block desegmentation integermatrix

NO

Notes/Equations

This model is used to perform the code block desegmentation on the input bit1.sequence.Each firing, if the TBS port is connected, one token is consumed in this port to get2.the transport block size (A). Otherwise, for the ith firing, the elementTransBlockSize[i%Size(TransBlockSize)] in the TransBlockSize parameter is read toget the transport block size (A).One Matrix-based token is consumed in the DataIn port. The matrix vector sizeshould be equal to C+ * K+ + C_ * K_ according to 5.1.2 of [1] given the transport

block size (A).One Matrix-based token is produced in the DataOut port. The matrix vector size isdenoted by B, where B = A+L (L=24 for CRC length).One Matrix-based token is produced in the CRCOut port. The matrix vector size isequal to C if C > 1, or equal to 0 if C=1. When C>1, the CRC check result for eachcode block is output in this port, where 1 means CRC check success, 0 means CRCcheck failure.The input bits to the code block desegmentation are denoted by cr0, cr1, cr2, cr3,..., c3.

r(Kr-1), where r is the code block number, and K~r~ is the number of bits for code

block r.Number of bits in each code blocks (applicable for C ≠ 0 only):4.

First segmentation size K+ = minimum K in table 5.1.3-3 [1] such that C · K

≥ B'

Page 24: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

23

if C =1

the number of code blocks with length K+ is C+ = 1, K- = 0, C- = 0

else if C > 1

Second segmentation size K- = maximum K in the table 5.1.3-3 [1] such

that K < K+

ΔK= K+ - K-

Number of segments of size K-:

Number of segments of size K+: C+ = C - C-

end ifNumber of filler bits F = C+ · K+ + C- · K- - B'5.

References

3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.1.

Page 25: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

24

LTE_CodeBlkSeg PartCategories: C++ Code Generation (ltebasever), Channel Coding (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_CodeBlkSeg (ltebasever) LTE Code block segmentation for HARQ closed-looptransmission

LTE_CodeBlkSeg (LTE Code Block Segmentation)

Description: LTE Code block segmentation for HARQ closed-loop transmissionDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE CodeBlkSeg Part (ltebasever)

Input Ports

Port Name Description Signal Type Optional

1 DataIn data in integermatrix

NO

Output Ports

Port Name Description Signal Type Optional

2 DataOut data out integermatrix

NO

Notes/Equations

This model is used to perform downlink/uplink transport block segmentation, as1.described in 5.1.2 of [1].Each firing, one Matrix-based token is consumed in the DataIn port. The matrix2.vector size is denoted by B.One Matrix-based token is produced in the DataOut port. The matrix vector size isdenoted by C+ * K+ + C_ * K_.

If the matrix size B at the DataIn port is equal to 0, nothing is done in this model andthe matrix vector size at the DataOut port is also 0.The input bit vector sequence is denoted by b0, b1, b2,...,bB-1, where B>0. If B is3.

larger than the maximum code block size Z, segmentation of the input bit sequenceis performed and an additional CRC sequence of L = 24 bits (using the CRC generatorpolynomial gCRC24B(D)) is attached to each code block. The maximum code block size

is Z = 6144.If the number of filler bits F calculated below is not 0, filler bits are added to the4.beginning of the first block. If B < 40, filler bits are added to the beginning of thecode block. The filler bits are always set to NULL at the input of the encoder. In thismodel, the value of filler bits is set to -1.The total number of code blocks C is determined by:5.

if B ≤ Z;

L = 0, C = 1, B' = B

else

L = 24, , B' = B _ C · L

end ifThe bits output from code block segmentation are denoted by cr0, cr1, cr2, cr3,..., c6.

r(Kr-1), where r is the code block number, and Kr is the number of bits for code block

r.Number of bits in each code blocks (applicable for C ≠ 0 only):7.

First segmentation size K+ = minimum K in table 5.1.3-3 [1] such that C · K

≥ B'

Page 26: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

25

if C =1

the number of code blocks with length K+ is C+ = 1, K- = 0, C- = 0

else if C > 1

Second segmentation size K- = maximum K in the table 5.1.3-3 [1] such

that K < K+

ΔK= K+ - K-

Number of segments of size K-:

Number of segments of size K+: C+ = C - C-

end ifNumber of filler bits F = C+ · K+ + C- · K- - B'8.

References

3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.1.

Page 27: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

26

LTE_ConvCoder PartCategories: C++ Code Generation (ltebasever), Channel Coding (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_ConvCoder (ltebasever) Downlink convolutionalcoding

LTE_ConvCoder

Description: Downlink convolutional codingDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE ConvCoder Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

ChannelType the channel type to be coded:BCH, PDCCH, Others

BCH Enumeration NO

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocationsfor TDD: Config 0, Config 1,Config 2, Config 3, Config 4,Config 5, Config 6

Config 0 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3MHz, BW 5 MHz, BW 10 MHz,BW 15 MHz, BW 20 MHz

BW 5 MHz Enumeration NO

NumTxAnts number of Tx Antennas: Tx1,Tx2, Tx4

Tx1 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal,Extended

Normal Enumeration NO

PDCCH_SymsPerSF number of OFDM symbols ofPDCCH for each subframe

[2, 2, 2, 2,2, 2, 2, 2,2, 2]

Integerarray

NO

PDCCH_UE_AggreLevel the aggregation levels of UE-specific PDCCH search space forevery subframe. The allowablelevels are 1, 2, 4 and 8.

[1] Integerarray

NO

PDCCH_UE_DCI_Formats the DCI Formats of the PDCCHcandidates for every subframe (-1 means no DCI incorresponding candidate).

[0, -1, -1, -1, -1, -1]

Integerarray

NO

PDCCH_Common_AggreLevel the aggregation levels ofCommon PDCCH search spacefor every subframe. Theallowable levels are 4 and 8.

[4] Integerarray

NO

PDCCH_Common_DCI_Formats the DCI Formats of the PDCCHcandidates for every subframe (-1 means no DCI incorresponding candidate).

[-1, -1, -1,-1]

Integerarray

NO

UE_n_RNTI Radio network temporaryidentifier for UE

[1, 1, 1, 1,1, 1, 1, 1,1, 1]

Integerarray

NO

PHICH_Ng PHICH Ng value: Ng 1/6, Ng 1/2,Ng 1, Ng 2

Ng 1/6 Enumeration NO

InfoBitsSize Information bits size 40 Integer NO

ETM_Support whether to support PHICH m=1 in all transmitted subframesfor TDD E-TM defined in 36.1416.1.2.6: NO, YES

NO Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 DataIn input data integermatrix

NO

Output Ports

Page 28: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

27

Port Name Description Signal Type Optional

2 DataOut output data integermatrix

NO

Notes/Equations

This model performs tail biting convolutional coding with constraint length 7 and1.coding rate 1/3 as defined in subclause 5.1.3.1 of 36212-860. This model can workfor LTE PDCCH, LTE BCH or other input information sequence bits by setting theparameter ChannelType as PDCCH, BCH or Others.Each firing, 1 matrix-based token is consumed and generated at the input and output2.port.

If the ChannelType is set to BCH and Others, the size of the matrix token in portDataIn is defined by parameter InfoBitsSize, and the size of the matrix token inport DataOut is InfoBitsSize*3.If the ChannelType is set to PDCCH, the size of the matrix token in port DataIn

is , and the size of the matrix token in portDataOut is NOut = NIn*3. Where, 16 is the number of attached CRC bits in each

DCI; is the number of bits of the lth DCI in subframe sf definedin 5.3.3.1 of 36212-860 and NumOfActiveDCI_sf is the number of active DCIs ofone subframe which is same as that of the active PDCCHs. They are decided bythe PDCCH corresponding parameters and system parameters. For the PDCCHdefault setting, NIn = 41 and NOut = 123.

Parameter details:3.If the ChannelType is set to BCH or Others, only parameter InfoBitsSize isactive. In LTE 8.6, InfoBitsSize represents the size of bits input this models. Butin prevenient version, InfoBitsSize indicates the number of information bitswithout the CRC attachment and so the size of bits input this model isInfoBitsSize+16 actually.For example, if ChannelType = BCH, in LTE 8.6, set InforBitsSize=40, while inLTE 8.5, please just set InforBitsSize=24. The number of tokens consumed inDataIn is 40.If the ChannelType is set to PDCCH, the PDCCH corresponding parameters areactive.ChannelType Active parameters

BCH or Others InfoBitsSize

PDCCH FrameModeTDD_ConfigBandwidthNumTxAntsCyclicPrefixPDCCH_SymsPerSFPHICH_Ng&nbspPDCCH_UE_AggreLevelPDCCH_UE_DCI_FormatsPDCCH_Common_AggreLevelPDCCH_Common_DCI_FormatsUE_n_RNTI

The configuration of the convolutional encoder is presented in the following4.figure:

The initial value of the shift register of the encoder shall be set to the valuescorresponding to the last 6 information bits in the input stream so that the initialand final states of the shift register are the same. Therefore, denoting the shiftregister of the encoder by s0, s1, s2, ..., s5, then the initial value of the shift

register shall be set to si = c(K-1-i)

The encoder output streams dk(0), dk

(1) and dk(2) correspond to the first, second

and third parity streams, respectively as shown in the figure above.

For more information, please refer to LTE_UL_Src (ltebasever) and LTE_DL_Src (ltebasever).For more details refer to LTE_DL_DCI_Gen (ltebasever) and DL Control Channel Parameters(ltebasever).

References

3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.1.

Page 29: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

28

LTE_CRCDecoder PartCategories: C++ Code Generation (ltebasever), Channel Coding (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_CRCDecoder (ltebasever) CRC decoder for HARQ closed-looptransmission

LTE_CRCDecoder (LTE CRC Decoder)

Description: CRC decoder for HARQ closed-loop transmissionDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE CRCDecoder Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

CRC_Length Number of parity bits: CRC_24A, CRC_24B,CRC_16, CRC_8

CRC_24A Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 DataIn data in integermatrix

NO

Output Ports

Port Name Description Signal Type Optional

2 CRCOut data out int NO

3 DataOut data out integermatrix

NO

Notes/Equations

This model is used to perform CRC decoding on coded LTE transport block, as1.described in 5.1.1 of [1].Each firing, one Matrix-based token is consumed in the DataIn port. The matrix2.vector size is denoted by B, where B > L, where L is CRC length depending on theCRC_Length parameter shown in the table below.One Matrix-based token is produced in the DataOut port. The matrix vector size isdenoted by A, where A = B-L.One token is produced in the CRCOut port, indicating the CRC check result, where 1means CRC check success, 0 means CRC check failure. The matrix vector size is 1.Note that if the matrix size at the DataIn port is equal to 0, nothing is done in thismodel and the matrix vector size at the DataOut port is also 0.The parity bits are generated by one of the following cyclic generator polynomials3.detailed in the table below:CRC_Length Number of Parity

bits (L)Cyclic generator polynomial

CRC_24A 24 gCRC24A(D) = [D24 + D23 + D18 + D17 + D14 + D11 + D10 + D7 +

D6 + D5 + D4 + D3 + D + 1]

CRC_24B 24 gCRC24B(D) = [D24 + D23 + D6 + D5 + D + 1]

CRC_16 16 gCRC16(D) = [D16 + D12 + D5 + 1]

CRC_8 8 gCRC8(D) = [D8 + D7 + D4 + D3 + D + 1]

Each firing, this model performs CRC encoding on the first A tokens of the input4.sequence and gets L parity tokens, which will be compared with the last L tokens ofinput sequence. If the result is the same, 1 is output at CRCOut, otherwise 0 isoutput at CRCOut.

References

3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.1.

Page 30: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

29

LTE_CRCEncoder PartCategories: C++ Code Generation (ltebasever), Channel Coding (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_CRCEncoder (ltebasever) Add CRC to each Transport Block for HARQ closed-loop transmission

LTE_CRCEncoder (LTE CRC Encoder)

Description: Add CRC to each Transport Block for HARQ closed-loop transmissionDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE CRCEncoder Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

CRC_Length Number of parity bits: CRC_24A, CRC_24B,CRC_16, CRC_8

CRC_24A Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 DataIn data in integermatrix

NO

Output Ports

Port Name Description Signal Type Optional

2 DataOut data out integermatrix

NO

Notes/Equations

This model is used to perform CRC attachment on LTE transport block, as described1.in 5.1.1 of [1].Each firing, one Matrix-based token is consumed in the DataIn port. The matrix2.vector size is denoted by A.One Matrix-based token is produced in the DataOut port. The matrix vector size isdenoted by B, where B = A+L (L is CRC length depending on the CRC_Lengthparameter shown in the table below).If the matrix size at the DataIn port is equal to 0, nothing is done in this model andthe matrix vector size at the DataOut port is also 0.The parity bits are generated by one of the following cyclic generator polynomials3.detailed in the table below:CRC_Length Number of Parity

bits (L)Cyclic generator polynomial

CRC_24A 24 gCRC24A(D) = [D24 + D23 + D18 + D17 + D14 + D11 + D10 + D7 +

D6 + D5 + D4 + D3 + D + 1]

CRC_24B 24 gCRC24B(D) = [D24 + D23 + D6 + D5 + D + 1]

CRC_16 16 gCRC16(D) = [D16 + D12 + D5 + 1]

CRC_8 8 gCRC8(D) = [D8 + D7 + D4 + D3 + D + 1]

The encoding is performed in a systematic form, which means that in GF(2), the4.polynomial:

a0DA+23 + a1D

A+22 + ... + aA-1D24 + p0D

23 + p1D22 + ... + p22D1 + p23 yields

a remainder equal to 0 when divided by the corresponding length-24 CRCgenerator polynomial (gCRC24A(D) or gCRC24B(D)).

a0DA+15 + a1D

A+14 + ... + aA-1D16 + p0D

15 + p1D14 + ... + p14D1 + p15

polynomial yields a remainder equal to 0 when divided by gCRC16(D).

a0DA+7 + a1D

A+6 + ... + aA-1D8 + p0D

7 + p1D6 + ... + p6D

1 + p7 polynomial

yields a remainder equal to 0 when divided by gCRC8(D).

References

Page 31: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

30

3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.1.

Page 32: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

31

LTE_DeScrambler PartCategories: C++ Code Generation (ltebasever), Channel Coding (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_DeScrambler (ltebasever) LTE Downlink and Uplink DeScrambler

LTE_DeScrambler (LTE Downlink and UplinkDescrambler)

Description: LTE Downlink and Uplink DeScramblerDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE DeScrambler Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

LinkDir link direction: DL, UL DL Enumeration NO

CellID_Sector the index of cell identity within the physical-layer cell-identity group

0 Integer NO

CellID_Group the index of cell identity group 0 Integer NO

n_RNTI radio network temporary identifier 0 Integer NO

q Code word number 0 Integer NO

SubframeIgnored number of subframes (or transport blocks) thatare ignored at the beginning due to systemdelay

0 Integer NO

Input Ports

Port Name Signal Type Optional

1 DataIn real matrix NO

Output Ports

Port Name Signal Type Optional

2 DataOut real matrix NO

Notes/Equations

This model is used to perform descrambling for PDSCH/PUSCH. For more information,1.please refer to LTE_Scrambler (ltebasever).The SubframeIgnored parameter specifies the number of subframes (firings) that are2.ignored at the beginning due to the receiver delay. For a typical LTE receiver in thislibrary for closed-loop HARQ transmission, one subframe delay is introduced in thereceiver. In this case the first subframe (firing) is ignored in the subframe (firing)indexing below.Each firing, one Matrix-based token is consumed in the DataIn port. The matrixvector size is denoted by Mbit.

One Matrix-based token is produced in the DataOut port. The matrix vector size isalso denoted by Mbit.

The mapping of subframe index and firing index is shown as3.SubframeIndex = FiringIndex%10, where 10 is the number of subframes in one radioframe.Note that the first SubframeIgnored firings are excluded in the firing indexing.For the benefit of soft decision decoding of Turbo codes, this model supports4.descrambling for soft information.

References

3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.1.

Page 33: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

32

LTE_DL_ChannelCoder Part Downlink channel coder

Categories: Channel Coding (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model

LTE_DL_ChannelCoder (ltebasever)

LTE_DL_ChannelCoder (LTE Downlink Channel Coder)

Description: Downlink channel coderAssociated Parts: LTE DL ChannelCoder Part (ltebasever)

Model Parameters

Page 34: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

33

Name Description Default Units Type RuntimeTunable

HARQ_Enable Whether HARQ closed-looptransmission is enabled: NO,YES

YES Enumeration NO

NumHARQ Number of HARQ processes 8 Integer NO

MaxHARQTrans Maximum number of HARQtransmission per each HARQprocess

4 Integer NO

CellID_Sector index of cell ID within onephysical cell ID group

0 Integer NO

CellID_Group index of cell ID group 0 Integer NO

n_RNTI radio network temporaryidentifier

0 Integer NO

Payload_Config input data payloadconfiguration mode: MCSindex, Transport block size,Code rate

Transport block size Enumeration NO

Payload input payload data, the inputtype is determined by thePayload_Config

[2555, 2555, 2555,2555, 2555, 2555, 2555,2555, 2555, 2555]

Floatingpoint array

NO

MappingType modulation type for eachsubframe

[0,0,0,0,0,0,0,0,0,0] Integer array NO

NumOfLayers number of layers for onecodeword

1 Integer NO

UE_Category defines UE capability, used toget the total number of softchannel bits for rate-matchingin downlink.: Category 1,Category 2, Category 3,Category 4, Category 5

Category 1 Enumeration NO

RV_Sequence Redundancy Version Sequencefor HARQ closed-looptransmission

[0, 1, 2, 3] Integer array NO

q codeword number 0 Integer NO

ChBit_Config configuration mode ofcodeword size: REs persubframe, Channel bit size

REs per subframe Enumeration NO

NumChBits number of channel bits [5640, 5640, 5640,5640, 5640, 5640, 5640,5640, 5640, 5640]

Integer array NO

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink subframealloctaion for TDD-LTE: Config0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

SpecialSF_Config special subframe configurationfor TDD-LTE: Config 0, Config1, Config 2, Config 3, Config 4,Config 5, Config 6, Config 7,Config 8

Config 4 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3MHz, BW 5 MHz, BW 10 MHz,BW 15 MHz, BW 20 MHz

BW 5 MHz Enumeration NO

CyclicPrefix cyclic prefix: Normal, Extended Normal Enumeration NO

RB_AllocType resource block allocation type:StartRB + NumRBs, RB indices(1D), RB indices (2D)

StartRB + NumRBs Enumeration NO

RB_Alloc RB allocation for UE, theformats of [Start RB, numberof RBs] or [SF0 start RB, SF0number of RBs, ...]

[0, 25] Float NO

NumTxAnts number of Tx antennas: Tx1,Tx2, Tx4

Tx1 Enumeration NO

MIMO_Mode MIMO mode: Spatial_Mux,Tx_Div

Spatial_Mux Enumeration NO

PDCCH_SymsPerSF number of OFDM symbols ofPDCCH in each subframe

[2,2,2,2,2,2,2,2,2,2] Integer array NO

Input Ports

Port Name Description Signal Type Optional

1 DataIn Input information bits int NO

4 HARQ_Bits Input HARQ ACK/NACK feedback from the channel decoder int YES

Output Ports

Port Name Description Signal Type Optional

2 DataOut Output channel bits int matrix NO

3 Qm Output modulation order for each subframe int NO

Page 35: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

34

Parameter Details1.

ChBit_Config: specify the calculation method of number of channel bits, it canbe selected as REs per subframe and Channel bit size.NumChBits: number of channel bits in each subframe, it is an Array Parameter(ltebasever). This parameter would be ignored when ChBit_Config is selected asREs per subframe. The supported sizes are 1 x 1 and 1x10;HARQ_Enable: if closed-loop HARQ transmission is enabled (by setting theHARQ_Enable parameter to YES), the soft bit combination is employed in theLTE_RateDematch model.NumHARQ and MaxHARQTrans: Number of HARQ processes and Maximumnumber of HARQ transmission per each HARQ process.For parameters FrameMode, TDD_Config, SpecialSF_Config, Bandwidth,CyclicPrefix, CellID_Sector and CellID_Group, please refer to DL SystemParameters (ltebasever).RB_AllocType and RB_Alloc: RB allocation for UE, please refer to DL RB AllocParameters (ltebasever).For parameter PDCCH_SymsPerSF please refer to DL Control ChannelParameters (ltebasever).NumTxAnts: number of Tx Antennas: Tx1, Tx2 and Tx4.MIMO_Mode: MIMO Mode for one UE, 1 for TD, 0 for SM: Spatial_Mux, Tx_Div.NumOfLayers: number of layers of this codeword of one UE.For n_RNTI, Payload_Config, UE_Category and RV_Sequence are for this codedUE.For Payload, MappingType are for the this codeword of this coded UE.

For more information on input parameters, please refer to LTE_UL_Src (ltebasever) and LTE_DL_Src(ltebasever).

Notes/Equations

This subnetwork performs LTE downlink channel coding with the optional closed-loop1.HARQ transmission. Data streams from MAC layer are encoded to offer transportservices over the radio transmission link. Channel coding scheme is a combination oferror detection, error correcting, rate matching, interleaving and transport channelmapping onto physical channels.Each firing, variant tokens are consumed at the DataIn port based on the transport2.block size (A) and HARQ ACK/NACK bit. If the transmission of new transport block isneeded in this subframe (firing), the number of tokens consumed is the transportblock size (A); otherwise, no token is consumed in this subframe (firing). Refer toClosed-loop HARQ Transmission (ltebasever).One token is consumed at the HARQ_Bits port, where 1 indicates CRC check success,0 indicates CRC check failure. When HARQ_Enable is set NO, this port could beunconnected and no data is read from this port; when HARQ_Enable is set YES, thedata is read from this port when this port is connected, and the value '1' (HARQ ACK)is assumed when this port is unconnected. Note that it is required that the HARQACK/NACK bits input to this port should be delayed by NumHARQ when HARQ_Enableis set YES.One Matrix-based token is produced at the DataOut port. The matrix vector size isthe number of channel bits (G) for this subframe (firing). For more information, referto Relation of Transport Block Sizes, Channel Bits and Code Rates (ltebasever).One token is produced at the Qm port, indicating the modulation order for thissubframe (firing), where 2 means QPSK, 4 means 16QAM and 6 means 64QAM.The schematic LTE_DL_ChannelCoder is shown below:3.

The subnetwork includes LTE_CRCEncoder, LTE_CodeBlkSeg, LTE_TurboCoder,4.LTE_RateMatch, LTE_Scrambler and LTE_HARQ_Controller, which perform CRCattachment, code block segmentation, turbo encoding, rate matching, PDSCHscrambling and HARQ control signal generation respectively for both FDD and TDD.Data arrives to the coding unit in form of a maximum of one transport block every5.transmission time interval (TTI). The coding steps for DL_SCH are shown below:

Page 36: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

35

Note that the figure above is for non-HARQ transmission.When closed-loop HARQ transmission is enabled (by setting the HARQ_Enableparameter to YES), the retransmission of the same transport block may occur in theRate matching model with different redundancy version number. The following figureshows the retransmission in closed-loop HARQ. We can see that the retransmissionstarts from Rate matching with different redundancy version number. In this case,the CRC attachement, Code block segmentation and code block CRC attachment andChannel coding do not work.

For closed-loop HARQ transmission, refer to Closed-loop HARQ Transmission(ltebasever).ChBit_Config determines how to calculate the number of channel bits in each6.subframe. If ChBit_Config is REs per subframe, number of channel bits in eachsubframe is calculated from the parameters following NumChBits, and NumChBits isignored. At first, number of REs allocated for PDSCH transmission in each subframe iscalculated from those parameters. For example, suppose the following parametersconfiguration as explained in the table below:Parameter Value

FrameMode FDD

Bandwidth 5MHz

CyclicPrefix Normal

RB_AllocType StartRB + NumRBs

RB_Alloc {0, 25}

PDCCH_SymPerSF {2,2,2,2,2,2,2,2,2,2}

NumTxAnts 1

NumOfLayers 1

As can be seen from the table above, all 25 RBs are allocated for PDSCH, hence,there are NumRBs × Subcarrier_Per_RB = 25 × 12 = 300 PDSCH REs in eachOFDM symbol. For more information on RB allocation, please refer to ResourceBlock Allocation (ltebasever).Since CyclicPrefix is Normal, there are 7 OFDM symbols in each slot. There are 4REs reserved for RS in each RB when NumTxAnts = 1. PDCCH occupies 2symbols in each subframe. After the RB allocation of all other downlink physicalsignals and channels, number of REs available for PDSCH in each subframe is{3030, 3450, 3450, 3450, 3450, 3306, 3450, 3450, 3450, 3450}.

Page 37: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

36

As this codeword is mapped onto one layer (NumOfLayers = 1), supposeMappingType are QPSK in all subframes, number of channel bits of PDSCH datain each subframe is { 6060, 6900, 6900, 6900, 6900, 6612, 6900, 6900, 6900,6900}.Then, transblock size and MCS of each subframe are calculated. For moreinformation, please refer to Relation of Transport Block Sizes, Channel Bits andCode Rates (ltebasever).

If ChBit_Config is Channel bit size, number of channel bits in each subframe is given7.by NumChBits directly independent of the LTE system parameters.Please note that this model doesn't check the RB allocation conflicts of physical8.channels and signals. It relies on other related models, for example, LTE_DL_Src, tocheck these potential conflicts.It should also be noted that parameter "NumOfLayers" here indicates the number of9.layers for this codeword. If MIMO_Mode is Spatial Multiplexing, number of channelbits equals the product of number of available REs, modulation order andNumOfLayers; otherwise, for Transmit Diversity, number of channel bits equals theproduct of number of available REs and modulation order. For Transmit Diversity,NumOfLayers only affects rate matching, more specifically, the value of NL, for more

information, please refer to [2].

References

TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access1.(UTRA),", V7.0.0, June 2006.3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.2.

Page 38: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

37

LTE_DL_ChannelDecoder Part Downlink channel decoder

Categories: Channel Coding (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model

LTE_DL_ChannelDecoder (ltebasever)

LTE_DL_ChannelDecoder (LTE Downlink ChannelDecoder)

Description: Downlink channel decoderAssociated Parts: LTE DL ChannelDecoder Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

HARQ_Enable WhetherHARQclosed-looptransmissionis enabled:NO, YES

YES Enumeration NO

NumHARQ Number ofHARQprocesses

8 Integer NO

MaxHARQTrans Maximumnumber ofHARQtransmissionper eachHARQprocess

4 Integer NO

CellID_Sector the index ofcell identitygroup

0 Integer NO

CellID_Group the index ofcell identitywithin thephysical-layer cell-identitygroup

0 Integer NO

n_RNTI Radionetworktemporaryidentifier forUE

0 Integer NO

Payload_Config theconfigurationmode ofinput datafor UE 1.:MCS index,Transportblock size,Code rate

Transport block size Enumeration NO

Payload the inputpayload forUE 1, themeaning ofthe input isdefined inUE1_Config

[2555,2555,2555,2555,2555,2555,2555,2555,2555,2555] Floatingpoint array

NO

MappingType themodulation

[0,0,0,0,0,0,0,0,0,0] Integerarray

NO

Page 39: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

38

orders forUE 1 in eachsubframe,valid whenUE1_Payloadis not set toMCS index.(0:QPSK,1:16QAM,2:64QAM)

NumOfLayers number oflayers oneUE

1 Integer NO

UE_Category defines UEcapability,used to getthe totalnumber ofsoft channelbits for rate-matching indownlink.:Category 1,Category 2,Category 3,Category 4,Category 5

Category 1 Enumeration NO

RV_Sequence RedundancyVersionSequencefor HARQclosed-looptransmission

[0,1,2,3] Integerarray

NO

q Code wordnumber

0 Integer NO

ChBit_Config theconfigurationmode ofcode wordsize: REs persubframe,Channel bitsize

REs per subframe Enumeration NO

NumChBits the numberof channelbits

[5640 5640 5640 5640 5640 5640 5640 5640 5640 5640] Integerarray

NO

FrameMode frame mode:FDD, TDD

FDD Enumeration NO

TDD_Config downlinkand uplinkallocationsfor TDD:Config 0,Config 1,Config 2,Config 3,Config 4,Config 5,Config 6

Config 0 Enumeration NO

SpecialSF_Config downlinkand uplinkallocationsfor TDD:Config 0,Config 1,Config 2,Config 3,Config 4,Config 5,Config 6,Config 7,Config 8

Config 4 Enumeration NO

Bandwidth bandwidth:BW 1.4 MHz,BW 3 MHz,BW 5 MHz,BW 10 MHz,BW 15 MHz,BW 20 MHz

BW 5 MHz Enumeration NO

CyclicPrefix type of cyclicprefix:Normal,Extended

Normal Enumeration NO

RB_AllocType RB allocationtype:StartRB +NumRBs, RB

StartRB + NumRBs Enumeration NO

Page 40: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

39

indices (1D),RB indices(2D)

RB_Alloc the RBallocation forUE 1, in theformats of[start RB,number ofRBs] or [SF0start RB,SF0 numberof RBs; . . .; SF9 startRB, SF9number ofRBs]

[0,25] Integerarray

NO

NumTxAnts number ofTxAntennas:Tx1, Tx2,Tx4

Tx1 Enumeration NO

MIMO_Mode MIMO Modefor one UE,1 for TD, 0for SM:Spatial_Mux,Tx_Div

Spatial_Mux Enumeration NO

PDCCH_SymsPerSF number ofOFDMsymbols ofPDCCH foreachsubframe

[2,2,2,2,2,2,2,2,2,2] Integerarray

NO

TC_Iteration Turbodecoderiterationnumber

4 Integer NO

SubframeIgnored number ofsubframes(or transportblocks) thatare ignoredat thebeginningdue tosystemdelay

0 Integer NO

Input Ports

Port Name Description Signal Type Optional

1 DataIn Input downlink data afterdemapper

real matrix NO

Output Ports

Port Name Description Signal Type Optional

2 HARQ_Bits Output HARQ ACK/NACK bits int NO

3 BitsDataOut Output information (raw) bits int NO

4 MatrixDataOut Output information (raw) bits (matrix based) int matrix NO

5 Qm Output modulation order for each subframe int NO

6 TBS Output transport block size for each subframe int NO

Notes/Equations:

This subnetwork performs LTE downlink channel decoding.1.Each firing2.One Matrix-based token is consumed at the DataIn port. The matrix vector size is thenumber of channel bits (G) in this subframe (firing). For more information, refer toLTE_RateDematch.One Matrix-based token is produced at the MatrixDataOut. The matrix vector size isthe number of transport block size decoded in this subframe (firing).Variant tokens are produced at the MatrixDataOut. The number of tokens produced isequal to the matrix vector size at the MatrixDataOut port.One token is produced at the Qm port, indicating the modulation order for thissubframe (firing), where 2 means QPSK, 4 means 16QAM and 6 means 64QAM.One token is produced at the TBS port, indicating the transport block size for thissubframe (firing).One token is produced at the HARQ_Bits port, where 1 indicates CRC check success,0 indicates CRC check failure.Note that for all output ports, the effective output values are delayed bySubframeIgnored.The schematic LTE_ChannelDecoder is shown below:3.

Page 41: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

40

This subnetwork includes LTE_Descrambler, LTE_RateDematch, LTE_TurboDecoder,4.LTE_CodeBlkDeseg, LTE_CRCDecoder and LTE_HARQ_Controller, which performPDSCH descrambling, rate dematch, turbo decoding, code block de-segmentation,CRC decoding and HARQ control signal generation respectively.Parameters details:5.

SubframeIgnored: specifies the number of subframes (firings) that are ignoredat the beginning due to the receiver delay. For a typical LTE receiver in thislibrary for closed-loop HARQ transmission, one subframe delay is introduced inthe receiver. In this case the first subframe (firing) is ignored in the subframe(firing) indexing below.HARQ_Enable: if closed-loop HARQ transmission is enabled (by setting theHARQ_Enable parameter to YES), the soft bit combination is employed in theLTE_RateDematch model.NumHARQ and MaxHARQTrans: Number of HARQ processes and Maximumnumber of HARQ transmission per each HARQ process.For parameters FrameMode, TDD_Config, SpecialSF_Config, Bandwidth,CyclicPrefix, CellID_Sector and CellID_Group, please refer to DL SystemParameters (ltebasever).RB_AllocType and RB_Alloc: RB allocation for UE, please refer to DL RB AllocParameters (ltebasever).For parameter PDCCH_SymsPerSF please refer to DL Control ChannelParameters (ltebasever).NumTxAnts: number of Tx Antennas: Tx1, Tx2 and Tx4.MIMO_Mode: MIMO Mode for one UE, 1 for TD, 0 for SM: Spatial_Mux, Tx_Div.NumOfLayers: number of layers of this codeword of one UE.For n_RNTI, Payload_Config, UE_Category and RV_Sequence are for this codedUE.For Payload, MappingType are for the this codeword of this coded UE.ChBit_Config: specify the calculation method of number of channel bits, it canbe selected as REs per subframe and Channel bit size.NumChBits: number of channel bits in each subframe, it is an Array Parameter(ltebasever). This parameter would be ignored when ChBit_Config is selected asREs per subframe. The supported sizes are 1 x 1 and 1x10. If ChBit_Config isChannel bit size, number of channel bits in each subframe is given byNumChBits directly independent of the LTE system parameters.

For more information, please refer to LTE_DL_Src (ltebasever)On the calculation of number of channel bits and transport block size, please refer toLTE_DL_ChannelCoder (ltebasever).

References

3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.1.

Page 42: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

41

LTE_HARQ_Controller PartCategories: C++ Code Generation (ltebasever), Channel Coding (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_HARQ_Controller (ltebasever) Controller for HARQ closed-loop transmission

LTE_HARQ_Controller (LTE Controller for HARQclosed-loop transmission)

Description: Controller for HARQ closed-loop transmissionDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE HARQ Controller Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

HARQ_Enable whether HARQ closed-looptransmission is enabled: NO, YES

YES Enumeration NO

NumHARQ Number of HARQ processes 8 Integer NO

MaxHARQTrans Maximum number of HARQtransmission per each HARQprocess

4 Integer NO

LinkDir link direction: DL, UL DL Enumeration NO

Payload_Config the configuration mode of inputdata of PUSCH.: MCS index,Transport block size, Code rate

Transport blocksize

Enumeration NO

Payload the input payload for PUSCH, themeaning of the input is defined inPayload_Config

[2555, 2555,2555, 2555, 2555,2555, 2555, 2555,2555, 2555]

Floating pointarray

NO

MappingType the modulation orders for the UE ineach subframe. (0:QPSK,1:16QAM, 2:64QAM)

[0, 0, 0, 0, 0, 0, 0,0, 0, 0]

Integer array NO

NumOfLayers number of layers 1 Integer NO

UE_Category defines UE capability, used to getthe total number of soft channelbits for rate-matching in downlink.:Category 1, Category 2, Category3, Category 4, Category 5

Category 1 Enumeration NO

ChBit_Config the configuration mode of channelbit size.: REs per subframe,Channel bit size

REs per subframe Enumeration NO

NumChBits the number of channel bits [5640, 5640,5640, 5640, 5640,5640, 5640, 5640,5640, 5640]

Integer array NO

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations forTDD: Config 0, Config 1, Config 2,Config 3, Config 4, Config 5, Config6

Config 0 Enumeration NO

SpecialSF_Config special subframe configuration forTDD: Config 0, Config 1, Config 2,Config 3, Config 4, Config 5, Config6, Config 7, Config 8

Config 4 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3MHz, BW 5 MHz, BW 10 MHz, BW15 MHz, BW 20 MHz

BW 5 MHz Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Normal Enumeration NO

Page 43: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

42

Extended

RB_AllocType RB allocation type: StartRB +NumRBs, RB indices (1D), RBindices (2D)

StartRB + NumRBs Enumeration NO

RB_Alloc the RB allocation for the UE, in theformats of [start RB, number ofRBs] or [[SF0 start RB, SF0number of RBs]; . . .; [SF9 startRB, SF9 number of RBs]]

[0, 25] Integer array NO

MIMO_Mode MIMO mode: Spatial_Mux, Tx_Div Spatial_Mux Enumeration NO

NumTxAnts number of Tx Antennas: Tx1, Tx2,Tx4

Tx1 Enumeration NO

PDCCH_SymsPerSF number of OFDM symbols ofPDCCH for each subframe

[2, 2, 2, 2, 2, 2, 2,2, 2, 2]

Integer array NO

PUCCH_PUSCH PUCCH and PUSCH selection:PUSCH, PUCCH, both

PUSCH Enumeration NO

Enable64QAM indicates whether 64QAM isallowed in uplink: NO, YES

YES Enumeration NO

PUSCH_TransMode whether control and data are sentvia PUSCH: Data and ControlMultiplexing, Data Only, ControlOnly

Data and ControlMultiplexing

Enumeration NO

SRS_Enable sounding reference symbol isenable: NO, YES

NO Enumeration NO

SRS_SF_Config the cell-specific SRS subframeconfiguration

0 Integer NO

RI_NumInfoBits RI information bits size [0] Integer array NO

RI_BetaOffsetIndex RI offset values, used in calculatingthe number of coded RI symbols

[0] Integer array NO

CQI_NumInfoBits CQI information bits size [0] Integer array NO

CQI_BetaOffsetIndex CQI offset values, used incalculating the number of codedCQI symbols

[2] Integer array NO

SubframeIgnored number of subframes (or transportblocks) that are ignored at thebeginning due to system delay

0 Integer NO

Input Ports

Port Name Description Signal Type Optional

1 HARQ_Bits HARQ ACK/NACK bits feedbacked from thereceiver

int YES

Output Ports

Port Name Description SignalType

Optional

2 ProcNum Process number for each subframe, -1 means no process exsits in thissubframe

int NO

3 RSN Retransmission number for each subframe int NO

4 TBS Retransmission number for each subframe int NO

5 Qm Modulation order for each subframe int NO

6 Msymb Number of modulation symbols for each subframe int NO

7 NIR Soft buffer size for each subframe, only for downlink int NO

8 NL Number of layers for each subframe, only for downlink int NO

9 G Number of channel bits for each subframe int NO

Notes/Equations

This model is used to control HARQ transmission for downlink/uplink transport1.channels, by inputting HARQ ACK/NACK which is feedbacked from receiver andoutputting corresponding control signals. LTE closed-loop HARQ simulation employsdynamic data flow. Refer to Dynamic Data Flow Simulation (sim) for how dynamicdata flow and closed-loop HARQ simulation work collaboratively.Each firing, one token is consumed at the HARQ_Bits port, where 1 indicates CRC2.check success, 0 indicates CRC check failure. When HARQ_Enable is set NO, this portcould be unconnected and no data is read from this port; when HARQ_Enable is setYES, the data is read from this port when this port is connected, and the value '1'(HARQ ACK) is assumed when this port is unconnected.

when HARQ_Enable is set YES,1. It is required that the HARQ ACK/NACK bits input to this port should be delayed by NumHARQ,including the possible receiver delay. Refer to 3GPP_LTE_DL_ChannelCoding (examples) and3GPP_LTE_DL_MIMO_Throughput (examples) for how to set the delay for HARQ ACK/NACK bits.2. The first intput NumHARQ HARQ ACK/NACK bits are ignored in this model since the firstNumHARQ processes always transmit new transport blocks.3. When some subframes are not allocated to HARQ transmission (see Invalid subframe for HARQtransmission below), it is still required that the HARQ ACK/NACK bits input to this port should bedelayed by NumHARQ, including the possible receiver delay.

Page 44: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

43

One token is produced at the ProcNum port, indicating the process number for thissubframe (firing). When this subframe (firing) is not allocated with transport channel,-1 is output.One token is produced at the RSN port, indicating the retransmission number for thissubframe (firing), only valid when ProNum is not equal to -1. RSN=0 meanstransmission of new transport block.One token is produced at the TBS port, indicating the transport block size for thissubframe (firing), only valid when ProNum is not equal to -1.One token is produced at the Qm port, indicating the modulation order for thissubframe (firing), only valid when ProNum is not equal to -1.One token is produced at the Msymb port, indicating the number of modulationsymbols for this subframe (firing), only valid when ProNum is not equal to -1.One token is produced at the NIR port, indicating the soft buffer size for thissubframe (firing), only valid when ProNum is not equal to -1 and when downlink isset.One token is produced at the NL port, indicating the transport block size for thissubframe (firing), only valid when ProNum is not equal to -1 and when downlink isset.One token is produced at the G port, indicating the number of channel bits for thissubframe (firing), only valid when ProNum is not equal to -1.For downlink parameters, refer to LTE Downlink Parameters (ltebasever). For how the3.LTE_HARQ_Controller model works in downlink, refer to LTE_DL_ChannelCoder(ltebasever).For uplink parameters, refer to LTE Uplink Parameters (ltebasever). For how the4.LTE_HARQ_Controller model works in uplink, refer to LTE_UL_ChannelCoder(ltebasever).The SubframeIgnored parameter specifies the number of subframes (firings) that are5.ignored at the beginning due to the receiver delay. For a typical LTE receiver in thislibrary for closed-loop HARQ transmission, one subframe delay is introduced in thereceiver. In this case the first subframe (firing) is ignored in the subframe (firing)indexing below. For the first SubframeIgnored subframe (firing), the output at theProNum Port are -1 indicating no valid process is allocated in these subframes(firings).The output values at the Qm, Msymb, NIR, NL and G ports are related to the6.subframe index (firing index). For the ith firing excluding the first SubframeIgnoredfirings, the output values at the port above are the corresponding setting in this i%10subframe, where 10 indicates the number of subframes in one radio frame. For moreinformation about how to get Msymb and G, refer to Relation of Transport BlockSizes, Channel Bits and Code Rates (ltebasever). In LTE, some subframes may be not allocated for HARQ transmission.7.The followings shows the cases that subframes are not allocated for HARQtransmission.

In TDD mode,the non-active subframes that are allocated to uplink when downlink signalis simulatedthe non-active subframes that are allocated to downlink when uplink signalis simulated

In FDD mode or for active subframes in TDD modeno transport block is allocted in the subframes (even when a number ofresouce blocks (RBs) are allocated). To do this, we need to follow theinstruction below.Parameter Payload_Config(or UE1_Config in DL)setting

Parameter Payload (or UE1_Paylod) setting

MCS index set the corresponding value to -1. e.g. Payload = [-1, 0,1, 2, 3, 4, 5, 6, 7, 8] to diable the allocation onSubframe#0

Transport block size set the corresponding value to 0. e.g. Payload = [0, 2555,2555, 2555, 2555, 2555, 2555, 2555, 2555, 2555] todiable the allocation on Subframe#0

Code rate set the corresponding value to -1. e.g. Payload = [-1, 1/2,1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2] to diable theallocation on Subframe#0

The output value at the ProcNum port is the process number for each subframe. The8.process number at the first valid subframe (firing) is 0, then is 1 at the second validsubframe (firing), until is MaxHARQTrans-1, and then is 0 again. When one subframe(firing) is invalid, the output is -1. For more information on how to set validsubframes for HARQ transmission, refer to the description above.When HARQ_Enable is set NO, the closed-loop HARQ transmission is disabled and the9.input HARQ_Bits port is ignored. In this case, the TBS port is output with thetransport block size for this subframe (firing) gotten from the parameter settings (Relation of Transport Block Sizes, Channel Bits and Code Rates (ltebasever)) , theRSN port is always output with 0 (which means always transmission of new transportblock).When HARQ_Enable is set YES, the closed-loop HARQ transmission is enabled and10.the input HARQ_Bits port is read.

Page 45: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

44

For each valid subframe (firing),When the HARQ bit is ACK (1), the TBS port is output with the transportblock size for this subframe (firing); the RSN port is output with 0 (whichmeans transmission of new transport block).When the HARQ bit is NACK (0),

If the RSN is less than MaxHARQTrans, the TBS port is output with theprevious transport block size for this process; the RSN port is outputwith the number of total transmissions (which means transmission ofold transport block).If the RSN is equal to MaxHARQTrans, the TBS port is output with thenew transport block size for this subframe (firing); the RSN port isoutput with 0 (which means transmission of new transport block)..

In the example 3GPP_LTE_DL_ChannelCoding (examples) (the design11.LTE_DL_ChannelCoding_Throughput), the behavior of closed-loop HARQ transmissionis shown, outputting internal ports, such as ProcNum, RSN, TBS and Qm.Two examples are given as follows.Example Settings

Example 1

ParameterSettings

FDD, Donwlink, NumHARQ = 4, MaxHARQTrans = 4, Payload_Config = 1(Transportblock size), Payload = [2555, 2555, 2555, 2555, 2555, 2555, 2555, 2555, 2555,2555], SubframeIgnored = 0, assume the CRC check in the receiver for the secondprocess always fails.

Expected input atthe HARQ_Bitsport

X,X,X,X, 1,0,1,1, 1,0,1,1, 1,0,1,1, 1,0,1,1,...,where,X means these input bits are ingored by this model (the actual bits are '0'),'1' means HARQ ACK,'0' means HARQ NACK.

Expected outputat the ProcNumport

0,1,2,3, 0,1,2,3, 0,1,2,3, 0,1,2,3, 0,1,2,3...

Expected outputat the RSN port

0,0,0,0, 0,1,0,0, 0,2,0,0, 0,3,0,0, 0,0,0,0, ...

Example 2

ParameterSettings

FDD, Donwlink, NumHARQ = 4, MaxHARQTrans = 4, Payload_Config = 1(Transportblock size), Payload = [2555, 0, 2555, 2555, 2555, 2555, 0, 2555, 2555, 2555],SubframeIgnored = 1, assume the CRC check in the receiver for the second processalways fails.

Expected input atthe HARQ_Bitsport

X,X,X,X, 1,X,0,1,1, 1,X,0,1,1, 1,X,0,1,1, 1,X,0,1,1,...,where,X means these input bits are ingored by this model (the actual bits are '0'),'1' means HARQ ACK,'0' means HARQ NACK.

Expected outputat the ProcNumport

-1, 0,-1,1,2,3, 0,-1,1,2,3, 0,-1,1,2,3, 0,-1,1,2,3, 0,-1,1,2,3...where the first '-1' is due to SubframeIgnored = 1; other '-1's are due to notransport block in these subframes.

Expected outputat the RSN port

X, 0,X,0,0,0, 0,X,1,0,0, 0,X,2,0,0, 0,X,3,0,0, 0,X,0,0,0, ...where the first 'X' is due to SubframeIgnored = 1; other 'X's are due to no transportblock in these subframes.

References

3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.1.

Page 46: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

45

LTE_RateDematch PartCategories: C++ Code Generation (ltebasever), Channel Coding (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_RateDeMatch (ltebasever) Downlink and Uplink SCH Rate Dematching for HARQ closed-loop transmission

LTE_RateDeMatch (LTE Downlink and Uplink RateDematching)

Description: Downlink and Uplink SCH Rate Dematching for HARQ closed-looptransmissionDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE RateDematch Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

NumHARQ Number of HARQ processes 8 Integer NO

MaxHARQTrans Maximum number of HARQtransmission per each HARQ process

4 Integer NO

RV_Sequence Redundancy Version Sequence forHARQ closed-loop transmission

[0,1,2,3] Integerarray

NO

LinkDir link direction: DL, UL DL Enumeration NO

TransBlockSize Transport block size for eachsubframe, only valid when the TBSport is unconnected.

[2555, 2555, 2555,2555, 2555, 2555,2555, 2555, 2555,2555]

Integerarray

NO

MappingType the modulation orders in eachsubframe. (0:QPSK, 1:16QAM,2:64QAM), only valid when the Qmport is unconnected.

[0, 0, 0, 0, 0, 0, 0,0, 0, 0]

Integerarray

NO

NumOfLayers number of layers, only valid whenthe G port is unconnected.

1 Integer NO

Nir the soft buffer size for downlink,only valid when the NIR port isunconnected.

378900 Integer NO

SubframeIgnored number of subframes (or transportblocks) that are ignored at thebeginning due to system delay

0 Integer NO

Input Ports

Port Name Description Signal Type Optional

1 DataIn Input Matrix-based data for derate matching real matrix NO

2 ProcNum Process number for each token at the DataIn port int YES

3 RSN Retransmission number for each token at the DataIn port int YES

4 TBS Transport block size for each token at the DataIn port int YES

5 Qm Modulation oder for each token at the DataIn port int YES

6 NIR Soft buffer size for each token at the DataIn port, only for downlink int YES

7 NL Number of layers for each token at the DataIn port, only for downlink int YES

Output Ports

Port Name Description Signal Type Optional

8 DataOut Output Matrix-based data after deratematching

real matrix NO

Notes/Equations:

Page 47: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

46

This model is used to implement rate dematching for LTE PDSCH/PUSCH, as1.described in 5.1.4.1 of [1].The SubframeIgnored parameter specifies the number of subframes (firings) that are2.ignored at the beginning due to the receiver delay. For a typical LTE receiver in thislibrary for closed-loop HARQ transmission, one subframe delay is introduced in thereceiver. In this case the first subframe (firing) is ignored in the subframe (firing)indexing below.Each firing, one Matrix-based token is consumed in the DataIn port. The matrixvector size should be equal to the number of channel bits (G).The other input ports could be connected or unconnected. If they are connected, onetoken is consumed each firing to get corresponding variable. If they are unconnected,the corresponding variable is gotten from input parameter. For the ith firing, how toget the variable from input port or input parameter is shown in the following table.Variable Port (if port is

connected)Parameter (if port is unconnected)

Process number (ProcNum)

ProcNum N/A. In this case, ProcNum=i%NumHARQ

Retransmissionnumber (RSN) Note1

RSN N/A. In this case, RSN = 0 always

Transport Block Size(A)

TBS TransBlock[i%Size(TransBlockSize)]

Modulation order (Qm)

Qm Note2 ModulationOrderTable[MappingType[i%Size(MappingTypeSize)]]

Soft buffer size (NIR

) Note3

NIR Nir

Number of Layers (NL) Note4

NL NumOfLayers

Note1: RSN=0 means the first transport block transmission; RSN=1 means the secondtransport block transmission (i.e. the first transport block retransmission), and so on;Note2: ModulationOrderTable defines the mapping of MappingType (0:QPSK,1:16QAM, 2:64QAM) and Modulation order (2:QPSK, 4:16QAM, 6:64QAM), shown inthe table below.

Value in the MappingType Parameter Modulation order Qm

0 2 (QPSK)

1 4 (16QAM)

2 6 (64QAM)

Note3: only valid in downlink.Note4: only valid in downlink.One Matrix-based token is produced in the DataOut port. The matrix vector size is3*(C+ * K+ + C_ * K_)+C*12 according to 5.1.3.2 of [1] given the transport block

size (A).This model implements the inverse operation of LTE_RateMatch. For more3.information, please refer to LTE_RateMatch (ltebasever).The soft bits combination for HARQ transport channel transmission is described as4.follows.

For ith firing (subframe),if ProcNum==-1,

No transmission is allocated in this firing (subframe). Nothing is donein this model, and the output matrix size in the DataOut port is 0.

else if RSN==0 for Process#ProcNumA new transport block transmission is performed at transmitter side.In this model, the derate-matched data are sent to the DataOut port.The redundancy version number for this transmission is equal toRV_Sequence[0]. The derate-matched data are stored in this modelfor future potential soft bit combining.

else if RSN == any value between [1: MaxHARQTrans-1]A transport block retransmission is performed at transmitter side.Hence all turbo-encoded data after derate-matching (including allprevious received data for this process and the received data in thisfiring) are added together and averaged. The averaged data areoutput at the DataOut port. The redundancy version number for thistransmission is equal to RV_Sequence[RSN].

elseerror messages are given.

References

3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.1.

Page 48: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

47

LTE_RateMatch PartCategories: C++ Code Generation (ltebasever), Channel Coding (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_RateMatch (ltebasever) Downlink and Uplink SCH Rate Matching for HARQ closed-looptransmission

LTE_RateMatch (LTE Downlink and Uplink SCH RateMatching)

Description: Downlink and Uplink SCH Rate Matching for HARQ closed-loop transmissionDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE RateMatch Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

NumHARQ Number of HARQ processes 8 Integer NO

MaxHARQTrans Maximum number of HARQtransmission per each HARQ process

4 Integer NO

RV_Sequence Redundancy Version Sequence forHARQ closed-loop transmission

[0,1,2,3] Integerarray

NO

LinkDir link direction: DL, UL DL Enumeration NO

TransBlockSize Transport block size for eachsubframe, only valid when the TBSport is unconnected.

[2555, 2555, 2555,2555, 2555, 2555,2555, 2555, 2555,2555]

Integerarray

NO

MappingType the modulation orders in eachsubframe. (0:QPSK, 1:16QAM,2:64QAM), only valid when the Qmport is unconnected.

[0, 0, 0, 0, 0, 0, 0, 0,0, 0]

Integerarray

NO

NumOfLayers number of layers, only valid when theG port is unconnected.

1 Integer NO

Nir the soft buffer size for downlink, onlyvalid when the NIR port isunconnected.

378900 Integer NO

NumChBits the number of channel bits in eachsubframe, only valid when the G portis unconnected.

[5640, 5640, 5640,5640, 5640, 5640,5640, 5640, 5640,5640]

Integerarray

NO

Input Ports

Port Name Description Signal Type Optional

1 DataIn Input Matrix-based data for rate matching integermatrix

NO

2 ProcNum Process number for each token at the DataIn port int YES

3 RSN Retransmission number for each token at the DataIn port int YES

4 TBS Transport block size for each token at the DataIn port int YES

5 Qm Modulation order for each token at the DataIn port int YES

6 NIR Soft buffer size for each token at the DataIn port, only for downlink int YES

7 NL Number of layers for each token at the DataIn port, only for downlink int YES

8 G Number of channel bits for each token at the DataIn port int YES

Output Ports

Page 49: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

48

Port Name Description Signal Type Optional

9 DataOut Output Matrix-based data after rate matching integermatrix

NO

Notes/Equations:

This model is used to implement rate matching for turbo coded LTE PDSCH/PUSCH,1.as described in 5.1.4.1 of [1].Each firing, one Matrix-based token is consumed in the DataIn port. The matrix2.vector size should be equal to 3*(C+ * K+ + C_ * K_)+C*12 according to 5.1.3.2 of

[1] given the transport block size (A).The other input ports could be connected or unconnected. If they are connected, onetoken is consumed each firing to get corresponding variable. If they are unconnected,the corresponding variable is gotten from input parameter. For the ith firing, how toget the variable from input port or input parameter is shown in the following table.Variable Port (if port is

connected)Parameter (if port is unconnected)

Process number (ProcNum)

ProcNum N/A. In this case, ProcNum=i%NumHARQ

Retransmissionnumber (RSN) Note1

RSN N/A. In this case, RSN = 0 always

Transport Block Size(A)

TBS TransBlock[i%Size(TransBlockSize)]

Modulation order (Qm)

Qm Note2 ModulationOrderTable[MappingType[i%Size(MappingTypeSize)]]

Soft buffer size (NIR

) Note3

NIR Nir

Number of Layers (NL) Note4

NL NumOfLayers

Number of ChannelBits (G)

G NumChBits[i%Size(NumChBitsSize)]

Note1: RSN=0 means the first transport block transmission; RSN=1 means the secondtransport block transmission (i.e. the first transport block retransmission), and so on;Note2: ModulationOrderTable defines the mapping of MappingType (0:QPSK,1:16QAM, 2:64QAM) and Modulation order (2:QPSK, 4:16QAM, 6:64QAM), shown inthe table below.

Value in the MappingType Parameter Modulation order Qm

0 2 (QPSK)

1 4 (16QAM)

2 6 (64QAM)

Note3: only valid in downlink.Note4: only valid in downlink.One Matrix-based token is produced in the DataOut port. The matrix vector size isthe number of channel bits denoted by G.

1. When HARQ retransmissions occur for a specific transport block on a specific process, it isrequired that the Transport Block Size (A) in the first transmission and next retransmissions (whichare on different subframes) for this transport block should be the same.2. For a specific process in a specific subframe in which HARQ retransmission occurs (i.e. RSN > 0),the data at the DataIn port are discarded, and the matrix in this port could be any size. At the sametime, the transport block data with the size of A in the first transmission of this process which arepre-stored inside this model are used for the rate matching.

The Rate matching for turbo coded transport channels (as shown below) is3.defined per coded block and consists of interleaving the three information bit streamsdk

(0), dk(1) and dk

(2), followed by the collection of bits and the generation of a

circular buffer as depicted in the following figure. The output bits for each code blockare transmitted as described in subclause 5.1.4.1.2 [1].

It should be noted that if the ProceNum port is connected, the input ProcNum should4.start with 0, then 1, 2, ... , NumHARQ-1, 0, 1, .... One exception is that ProcNum=-1is allowed which means no transmission is allocated in this firing (subframe), andcould be in any position of input sequence. For example, NumHARQ =4, the inputProcNum sequence could be 0, -1, 1, 2, 3, -1, -1, 0, 1, 2, -1, 3.The HARQ transport channel transmission for this model is described as follows.

Page 50: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

49

5.For ith firing (subframe),

if ProcNum==-1,No transmission is allocated in this firing (subframe). Nothing is donein this model, and the output matrix size in the DataOut port is 0.

else if RSN==0 for Process#ProcNumA new transport block transmission is performed whose turbo-encodeddata are read from the DataIn port. The redundancy version numberfor this transmission is equal to RV_Sequence[0]. The input data fromthe DataIn port are stored in this model for future potentialretransmission.

else if RSN == any value between [1: MaxHARQTrans-1]A transport block retransmission is performed whose turbo-encodeddata are the data in the last transmission for this process which werepre-stored in this model. The redundancy version number for thistransmission is equal to RV_Sequence[RSN].

elseerror messages are given.

References

3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.1.

Page 51: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

50

LTE_Scrambler PartCategories: C++ Code Generation (ltebasever), Channel Coding (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_Scrambler (ltebasever) LTE Downlink and UplinkScrambler

LTE_Scrambler (LTE Downlink and Uplink Scrambler)

Description: LTE Downlink and Uplink ScramblerDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE Scrambler Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

LinkDir link direction: DL, UL DL Enumeration NO

CellID_Sector the index of cell identity within the physical-layercell-identity group

0 Integer NO

CellID_Group the index of cell identity group 0 Integer NO

n_RNTI radio network temporary identifier 0 Integer NO

q Code word number 0 Integer NO

Input Ports

Port Name Signal Type Optional

1 DataIn integermatrix

NO

Output Ports

Port Name Signal Type Optional

2 DataOut integermatrix

NO

Parameter Details

LinkDir: Link direction, the type is enum and it can be selected as Downlink andUplink.CodewordLength: Code Word Length, the type is int array.CellID_Sector: The index of cell identity within the physical-layer cell-identity group,the type is int and it must be in the range of [0,2].CellID_Group: The index of cell identity group, the type is int and it must be in therange of [0,167]. Then the Cell ID is given by CellID = 3 * CellID_Group +CellID_Sector.n_RNTI: Radio network temporary identifier, the type is int and it must be in therange of [0, 65535].q: Code word number, the type is int and it can be set to 0 and 1.

Notes/Equations

This model is used to perform scrambling for PDSCH/PUSCH, as described in 6.3.11.and 5.3.1 in [1].Each firing, one Matrix-based token is consumed in the DataIn port. The matrix2.vector size is denoted by Mbit.

One Matrix-based token is produced in the DataOut port. The matrix vector size isalso denoted by Mbit.

The mapping of subframe index and firing index is shown as3.SubframeIndex = FiringIndex%10, where 10 is the number of subframes in one radioframe.In uplink, the block of bits b(0), ..., b(Mbit-1, where Mbit is the number of bits4.

transmitted on the physical uplink shared channel in one subframe, shall bescrambled with a UE-specific scrambling sequence prior to modulation, resulting in a

block of scrambled bits according to pseudo code in Section 5.3.1 of [1].M is the sum of number of channel bits for PUSCH data and coded bits of CQI/PMI

Page 52: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

51

bit

and RI. For more information on the calculation of number of channel bits, pleaserefer to LTE_UL_ChannelCoder (ltebasever). It is required that the x and y bits(defined in 5.3.1 in [1]) should be set to -1 and -2 respectively.In downlink, For each code word q, the block of bits b(q)(0), ..., b(q)(Mbits

(q)-1),5.

where Mbits(q) is the number of bits in code word q transmitted on the physical

channel in one subframe, shall be scrambled prior to modulation, resulting in a blockof scrambled bits according to Section 6.3.1 of [1]. Up to two codewords can be transmitted in one subframe, i.e., q {0,1}. In the case of single codeword transmission, q is equal to zero. Mbit

(q) equals the number of channel bits for

PDSCH of this codeword.

References

3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.1.

Page 53: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

52

LTE_TurboCoder PartCategories: C++ Code Generation (ltebasever), Channel Coding (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_TurboCoder (ltebasever) LTE turbo encoder

LTE_TurboCoder (LTE Turbo Encoder)

Description: LTE turbo encoderDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE TurboCoder Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

TransBlockSize Transport block size for eachsubframe, only valid when the TBSport is unconnected.

[2555, 2555, 2555, 2555,2555, 2555, 2555, 2555,2555, 2555]

Integerarray

NO

Input Ports

Port Name Description Signal Type Optional

1 DataIn Input Matrix-based data for turbo coding integermatrix

NO

2 TBS Transport block size for each token at the DataIn port int YES

Output Ports

Port Name Description Signal Type Optional

3 DataOut Output Matrix-based data after turbocoding

integermatrix

NO

Notes/Equations:

This model is used to implement Turbo encoding for LTE downlink/uplink transport1.channel.Each firing, if the TBS port is connected, one token is consumed in this port to get2.the transport block size (A). Otherwise, for the ith firing, the elementTransBlockSize[i%Size(TransBlockSize)] in the TransBlockSize parameter is read toget the transport block size (A).One Matrix-based token is consumed in the DataIn port. The matrix vector sizeshould be equal to C+ * K+ + C_ * K_ according to 5.1.2 of [1] given the transport

block size (A).One Matrix-based token is consumed in the DataOut port. The matrix vector size isequal to 3*(C+ * K+ + C_ * K_)+C*12 according to 5.1.3.2 of [1] given the transport

block size (A).The scheme of Turbo coder is a Parallel Concatenated Convolutional Code (PCCC)3.with two 8-state constituent encoders and one turbo code internal interleaver. Thecoding rate of turbo coder is 1/3. The structure of turbo coder (Structure of rate1/3 Turbo coder) is illustrated below:

Page 54: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

53

.The transfer function of the 8-state constituent code for PCCC is:4.

where,

The initial value of the shift registers of the 8-state constituent encoders shall be all5.zeros when starting to encode the input bits.Trellis termination is performed by taking the tail bits from the shift register feedback6.after all information bits are encoded. Tail bits are padded after the encoding ofinformation bits. The first three tail bits shall be used to terminate the firstconstituent encoder (upper switch of the preceding figure in lower position) while thesecond constituent encoder is disabled. The last three tail bits shall be used toterminate the second constituent encoder (lower switch of the preceding figure inlower position) while the first constituent encoder is disabled.The bits input to the turbo code internal interleaver are denoted by ,7.where K is the number of input bits. The bits output of the turbo code internal

interleaver are denoted by .The relationship between the input and output bits is as follows:8.

where the relationship between the output index i and the input index satisfies9.the following quadratic form:

The parameters f1 and f2 depend on the block size K and are summarized in the10.Turbo code internal interleaver parameters table illustrated below:

Page 55: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

54

References

3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.1.

Page 56: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

55

LTE_TurboDecoder PartCategories: C++ Code Generation (ltebasever), Channel Coding (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_TurboDecoder (ltebasever) LTE turbo decoder

LTE_TurboDecoder (LTE Turbo Decoder)

Description: LTE turbo decoderDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE TurboDecoder Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

TransBlockSize Transport block size for eachsubframe, only valid when the TBSport is unconnected.

[2555, 2555, 2555, 2555,2555, 2555, 2555, 2555,2555, 2555]

Integerarray

NO

TC_Iteration Turbo decoder iteration number 4 Integer NO

Input Ports

Port Name Description Signal Type Optional

1 DataIn Input Matrix-based data for turbo decoding real matrix NO

2 TBS Transport block size for each token at the DataIn port int YES

Output Ports

Port Name Description Signal Type Optional

3 DataOut Output Matrix-based data after turbocoding

integermatrix

NO

Notes/Equations:

This model is used to implement Turbo decoding for LTE downlink/uplink transport1.channel.Each firing, if the TBS port is connected, one token is consumed in this port to get2.the transport block size (A). Otherwise, for the ith firing, the elementTransBlockSize[i%Size(TransBlockSize)] in the TransBlockSize parameter is read toget the transport block size (A).One Matrix-based token is consumed in the DataIn port. The matrix vector sizeshould be equal to 3*(C+ * K+ + C_ * K_)+C*12 according to 5.1.3.2 of [1] given the

transport block size (A).One Matrix-based token is consumed in the DataOut port. The matrix vector size isequal to C+ * K+ + C_ * K_according to 5.1.2 of [1] given the transport block size

(A).An iterative decoding scheme based on the modified BAHL et al. algorithm [2][3] is3.used in this model. The iterative number can be set from 1 through to 20 through theTC_Iteration parameter. In theory, as the number of these iterations approachesinfinity, the estimate at the output of decoder will approach the maximum aposteriori (MAP) solution.The following figure shows the Turbo decoder structure.4.

Page 57: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

56

Decoder 1 computes Logarithm of Likelihood Ration(LLR) associated with each5.decoded bit from the systematic information (Xk), redundant information of encoder

1 (y1k) and extrinsic information (Zk).

Decoder 2 takes as input the interleaved version of LLR, the redundant information of6.second encoder (y2k). The extrinsic information from decoder 2 is interleaved to

produce Zk, which is fed back to decoder 1.

Note that, when it is determined by the Turbo decoder that the input sequence7.cannot be decoded, a fixed sequence (10101010...) is output.

References

3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.1.L.R. Bahl, J. Cocke, F. Jeinek and J. Raviv. "Optimal decoding of linear codes for2.minimizing symbol error rate." IEEE Trans. Inform. Theory, vol. IT-20. pp.248-287,March 1974.C. Berrou and A. Glavieus. "Near optimum error correcting coding and decoding:3.turbo-codes", IEEE Trans. Comm., pp. 1261-1271, Oct. 1996.

Page 58: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

57

LTE_UL_ChannelCoder Part uplink channel coder

Categories: Channel Coding (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model

LTE_UL_ChannelCoder (ltebasever)

LTE_UL_ChannelCoder (LTE Uplink Channel Coder)

Description: uplink channel coderAssociated Parts: LTE UL ChannelCoder Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

HARQ_Enable whether enableHARQ or not:NO, YES

YES Enumeration NO

NumHARQ Number ofHARQ processes

8 Integer NO

MaxHARQTrans Maximumnumber ofHARQtransmissionper each HARQprocess

4 Integer NO

CellID_Sector the index of cellidentity withinthe physical-layer cell-identity group([0:2])

0 none Integer NO

CellID_Group the index of cellidentity group([0:167])

0 none Integer NO

n_RNTI radio networktemporaryidentifier([0:65535])

0 none Integer NO

Payload_Config theconfigurationmode of inputdata forpayload.: MCSindex,Transport blocksize, Code rate

Transport block size none Enumeration NO

Payload the inputpayload, themeaning of theinput is definedinPayload_Config

[2555,2555,2555,2555,2555,2555,2555,2555,2555,2555] none Floatingpoint array

NO

MappingType the modulationorders for theUE in eachsubframe.(0:QPSK,1:16QAM,2:64QAM)

[0,0,0,0,0,0,0,0,0,0] none Integerarray

NO

RV_Sequence RedundancyVersion Index([0, 3])

[0,1,2,3] none Integerarray

NO

Page 59: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

58

ChBit_Config theconfigurationmode ofchannel bitsize.: REs persubframe,Channel bit size

REs per subframe none Enumeration NO

NumChBits the number ofchannel bits

[5640,5640,5640,5640,5640,5640,5640,5640,5640,5640] none Integerarray

NO

FrameMode frame mode:FDD, TDD

FDD none Enumeration NO

TDD_Config downlink anduplinkallocations forTDD: Config 0,Config 1, Config2, Config 3,Config 4, Config5, Config 6

Config 0 none Enumeration NO

SpecialSF_Config specialsubframeconfigurationfor TDD: Config0, Config 1,Config 2, Config3, Config 4,Config 5, Config6, Config 7,Config 8

Config 4 none Enumeration NO

Bandwidth bandwidth: BW1.4 MHz, BW 3MHz, BW 5MHz, BW 10MHz, BW 15MHz, BW 20MHz

BW 5 MHz none Enumeration NO

CyclicPrefix type of cyclicprefix: Normal,Extended

Normal none Enumeration NO

RB_AllocType RB allocationtype: StartRB +NumRBs, RBindices (1D),RB indices (2D)

StartRB + NumRBs none Enumeration NO

RB_Alloc the RBallocation forthe UE, in theformats of[start RB,number of RBs]or [SF0 startRB, SF0number of RBs;. . . ; SF9 startRB, SF9number of RBs]

[0,25] none Integerarray

NO

PUCCH_PUSCH PUCCH andPUSCHselection:PUSCH, PUCCH,both

PUSCH none Enumeration NO

Enable64QAM indicateswhether 64QAMis allowed inuplink: NO, YES

YES Enumeration NO

PUSCH_TransMode whether controland data aresent viaPUSCH: Dataand ControlMultiplexing,Data Only,Control Only

Data and Control Multiplexing Enumeration NO

SRS_Enable soundingreferencesymbol isenable: NO,YES

NO none Enumeration NO

SRS_SF_Config SRS subframeconfiguration([0:14])

0 none Integer NO

RI_NumInfoBits RI informationbits size([0,inf))

[0] none Integerarray

NO

RI_BetaOffsetIndex RI offsetvalues, used in

[0] none Integerarray

NO

Page 60: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

59

calculating thenumber ofcoded RIsymbols([0,12])

CQI_NumInfoBits CQI informationbits size([0,inf))

[0] none Integerarray

NO

CQI_BetaOffsetIndex CQI offsetvalues, used incalculatingnumber ofcoded CQIsymbols([2,15])

[2] none Integerarray

NO

HARQACK_NumInfoBits HARQ-ACKinformation bitssize ([0,inf))

[0] none Integerarray

NO

HARQACK_BetaOffsetIndex HARQ-ACKoffset values,used incalculatingnumber ofcoded HARQ-ACKsymbols([0,inf))

[0] none Integerarray

NO

ACK_NACK_FeedbackMode ACK/NACKfeedback modesfor TDD:ACK/NACKmultiplexing,ACK/NACKbundling

ACK/NACK multiplexing none Enumeration NO

Nbundled Nbundled forTDD ACK/NACKbundling

[1] none Integerarray

NO

Input Ports

Port Name Description Signal Type Optional

1 DataIn Input PUSCH information bits int NO

2 RI_In Input RI information bits int NO

3 HARQACK_In Input HARQ-ACK information bits int NO

4 CQI_In Input CQI information bits int NO

7 HARQ_Bits Input HARQ ACK/NACK feedback from the channel decoder int YES

Output Ports

Port Name Description Signal Type Optional

5 DataOut PUSCH channel bits int matrix NO

6 Qm Output modulation order for each subframe int NO

Notes/Equations

This subnetwork performs LTE uplink channel coding. Data and control streams from1.MAC layer are encoded to offer transport and control services over the radiotransmission link. Channel coding scheme is a combination of error detection, errorcorrecting, rate matching, interleaving and transport channel or control informationmapping onto physical channels.Each firing,2.

variant tokens are consumed at port DataIn based on the transport block size(A) and the input at HARQ_Bits. If the transmission of a new transport block isneeded in this subframe (firing), the number of tokens consumed is equal totransport block size (A); otherwise, no token is consumed in this subframe(firing). For more information, please refer to Closed-loop HARQ Transmission(ltebasever).variant tokens are consumed at port RI_In based on the number of RIinformation bits in each subframe.variant tokens are consumed at port HARQACK_In based on the number ofHARQ-ACK information bits in each subframe.variant tokens are consumed at port CQI_In based on the number of CQIinformation bits in each subframe.one token is consumed at port HARQ_Bits, where '1' indicates CRC checksuccess, '0' indicates CRC check failure. When HARQ_Enable is set to NO, thisport could be unconnected and no data is read from this port; whenHARQ_Enable is set to YES, the data is read from this port when this port isconnected, and the value '1' (HARQ ACK) is assumed when this port isunconnected. Note that it is required that the feedback HARQ ACK/NACK bits tothis port should be delayed by NumHARQ when HARQ_Enable is set to YES.one matrix token is produced at port DataOut, the size of the matrix is the sumof the number of channel bits and the number of CQI and RI coded bits (G + H+ QRI) in this subframe (firing). For more information, please refer to Relation of

Page 61: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

60

Transport Block Sizes, Channel Bits and Code Rates (ltebasever).one token is produced at port Qm, indicating the modulation order for thissubframe (firing), where '2' means QPSK, '4' means 16QAM and '6' means64QAM.For the default parameter configurations, the transport block size in eachsubframe are [2555, 2555, 2555, 2555, 2555, 2555, 2555, 2555, 2555, 2555],the number of channel bits in each subframe are [7200, 7200, 7200, 7200,7200, 7200, 7200, 7200, 7200, 7200], uplink control information are nottransmitted.

The schematic LTE_UL_ChannelCoder is shown below:3.

The subnetwork includes LTE_CRCEncoder, LTE_CodeBlkSeg, LTE_TurboCoder,4.LTE_RateMatch, LTE_UL_ChInterleaver, LTE_Scrambler and LTE_HARQ_Controller,which perform CRC attachment, code block segmentation and code block CRCattachment, turbo encoding, rate matching, multiplexing of data and controlinformation as well as interleaving, PUSCH scrambling and HARQ control signalgeneration respectively for both FDD and TDD.In addition, this subnetwork includes three LTE_UL_ControlInfoEncoders for channel5.coding of control information in the form of channel quality information(CQI and/orPMI), HARQ-ACK and rank indication respectively. Different coding rates for thecontrol information are achieved by allocating different number of coded symbols forits transmission. For more information, please refer to LTE_UL_ControlInfoEncoder(ltebasever).Data arrives to the coding unit in the form of a maximum of one transport block6.every transmission time interval (TTI). Control data arrives at the coding unit in theform of channel quality information (CQI and/or PMI), HARQ-ACK and rank indication.The coding steps for UL_SCH (Transport channel processing for UL-SCH)areshown in the figure below:

Note that the figure above is for non-HARQ transmission.When closed-loop HARQ transmission is enabled (by setting the HARQ_Enableparameter to YES), the retransmission of the same transport block may occur in theRate matching model with different redundancy version number. When theretransmission occurs, the CRC attachement, Code block segmentation and code

Page 62: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

61

block CRC attachment and Channel coding do not work.For more information on closed-loop HARQ transmission, refer to Closed-loop HARQTransmission (ltebasever).ChBit_Config specify the calculation method of number of channel bits (G), it can be7.selected as REs per subframe and Channel bit size. NumChBits indicates the numberof channel bits in each subframe, it is an Array Parameter (ltebasever). Thisparameter would be ignored when ChBit_Config is selected as REs per subframe. Thesupported sizes are 1 × 1 and 10 × 1.

If ChBit_Config is selected as 0:REs per subframe, number of channel bits ineach subframe is calculated from those parameters following NumChBits, andNumChBits is ignored.

At first, number of REs allocated for PUSCH transmission in each subframeis calculated from those parameters. For example, suppose the followingparameters configurations:Parameter Value

FrameMode FDD

Bandwidth 5MHz

CyclicPrefix Normal

RB_AllocType StartRB + NumRBs

RB_Alloc {0, 25}

PUCCH_PUSCH PUSCH

SRS_Enable YES

SRS_SF_Config 3

As can be seen from the table above, all 25 RBs are allocated for PUSCH,hence, there are NumRBs × Subcarrier_Per_RB = 25 × 12 = 300 PUSCHREs in each SC-FDMA symbol. For more information on RB allocation,please refer to Resource Block Allocation (ltebasever).Since CyclicPrefix is Normal, there are 7 SC-FDMA symbols in each slot,among which 1 SC-FDMA symbol is allocated for DMRS for PUSCH.Sounding reference signals are transmitted at the last symbol of subframe0 and subframe 5 since SRS_SF_Config = 3. Therefore, number of SC-FDMA symbols for PUSCH transmission in each subframe is {11, 12, 12, 12,12, 11, 12, 12, 12, 12}.Number of REs available for PUSCH in each subframe is {3300, 3600,3600, 3600, 3600, 3300, 3600, 3600, 3600, 3600}.Suppose MappingType are QPSK in all subframes, number of channel bits ofPUSCH data and control inforamtion in each subframe is {6600, 7200,7200, 7200, 7200, 6600, 7200, 7200, 7200, 7200}.Number of coded bits of control information in the form of CQI/PMI (H) andRI (QRI) are subtracted from the number of available REs. It should be

noted that HARQ-ACK information will overwrites some of the channelinterleaver entries for PUSCH data, hence, it should not be subtracted. Formore information, please refer to LTE_UL_ChInterleaver (ltebasever).Then, transblock size and MCS of each subframe are calculated. For moreinformation, please refer to Relation of Transport Block Sizes, Channel Bitsand Code Rates (ltebasever).

If ChBit_Config is Channel bit size, number of channel bits in each subframe isgiven by NumChBits directly independent of the LTE system parameters.

See LTE_UL_ChannelDecoder (ltebasever), LTE_DL_ChannelCoder (ltebasever) and8.LTE_DL_ChannelDecoder (ltebasever).

For more information on the channel coding of LTE uplink control information, please refer toLTE_UL_ControlInfoEncoder (ltebasever).For more information on the parameters details, please refer to LTE_UL_Src (ltebasever).

References

TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access1.(UTRA),", V7.0.0, June 2006.3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.2.

Page 63: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

62

LTE_UL_ChannelDecoder Part uplink channel decoder

Categories: Channel Coding (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model

LTE_UL_ChannelDecoder (ltebasever)

LTE_UL_ChannelDecoder (LTE Uplink ChannelDecoder)

Description: uplink channel decoderAssociated Parts: LTE UL ChannelDecoder Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

HARQ_Enable whetherenable HARQor not: NO,YES

YES Enumeration NO

NumHARQ Number ofHARQprocesses

8 Integer NO

MaxHARQTrans Maximumnumber ofHARQtransmissionper each HARQprocess

4 Integer NO

CellID_Sector the index ofcell identitywithin thephysical-layercell-identitygroup ([0:2])

0 none Integer NO

CellID_Group the index ofcell identitygroup([0:167])

0 none Integer NO

n_RNTI radio networktemporaryidentifier([0:65535])

0 none Integer NO

Payload_Config theconfigurationmode of inputdata forpayload.: MCSindex,Transportblock size,Code rate

Transport block size none Enumeration NO

Payload the inputpayload, themeaning of theinput isdefined inPayload_Config

[2555,2555,2555,2555,2555,2555,2555,2555,2555,2555] none Floatingpoint array

NO

MappingType the modulationorders for theUE in each

[0,0,0,0,0,0,0,0,0,0] none Integerarray

NO

Page 64: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

63

subframe.(0:QPSK,1:16QAM,2:64QAM)

RV_Sequence RedundancyVersion Index([0, 3])

[0,1,2,3] none Integerarray

NO

ChBit_Config theconfigurationmode ofchannel bitsize.: REs persubframe,Channel bitsize

REs per subframe none Enumeration NO

NumChBits the number ofchannel bits

[5640,5640,5640,5640,5640,5640,5640,5640,5640,5640] none Integerarray

NO

FrameMode frame mode:FDD, TDD

FDD none Enumeration NO

TDD_Config downlink anduplinkallocations forTDD: Config 0,Config 1,Config 2,Config 3,Config 4,Config 5,Config 6

Config 0 none Enumeration NO

SpecialSF_Config specialsubframeconfigurationfor TDD:Config 0,Config 1,Config 2,Config 3,Config 4,Config 5,Config 6,Config 7,Config 8

Config 4 none Enumeration NO

Bandwidth bandwidth: BW1.4 MHz, BW 3MHz, BW 5MHz, BW 10MHz, BW 15MHz, BW 20MHz

BW 5 MHz none Enumeration NO

CyclicPrefix type of cyclicprefix: Normal,Extended

Normal none Enumeration NO

RB_AllocType RB allocationtype: StartRB+ NumRBs, RBindices (1D),RB indices(2D)

StartRB + NumRBs none Enumeration NO

RB_Alloc the RBallocation forthe UE, in theformats of[start RB,number ofRBs] or [SF0start RB, SF0number ofRBs; . . . ; SF9start RB, SF9number ofRBs]

[0,25] none Integerarray

NO

PUCCH_PUSCH PUCCH andPUSCHselection:PUSCH,PUCCH, both

PUSCH none Enumeration NO

SRS_Enable soundingreferencesymbol isenable: NO,YES

NO none Enumeration NO

SRS_SF_Config SRS subframeconfiguration([0:14])

0 none Integer NO

RI_NumInfoBits number of RIinfomation bits

[0] none Integerarray

NO

Page 65: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

64

([0,2])

TC_Iteration Turbo decoderiterationnumber([1:20])

4 none Integer NO

Enable64QAM indicateswhether64QAM isallowed inuplink: NO,YES

YES Enumeration NO

PUSCH_TransMode whethercontrol anddata are sentvia PUSCH:Data andControlMultiplexing,Data Only,Control Only

Data and Control Multiplexing Enumeration NO

HARQACK_NumInfoBits HARQ-ACKinformationbits size

[0] Integerarray

NO

HARQACK_BetaOffsetIndex HARQ-ACKoffset values,used incalculating thenumber ofcoded HARQ-ACK symbols

[0] Integerarray

NO

RI_BetaOffsetIndex RI offsetvalues, used incalculating thenumber ofcoded RIsymbols

[0] Integerarray

NO

CQI_NumInfoBits CQIinformationbits size

[0] Integerarray

NO

CQI_BetaOffsetIndex CQI offsetvalues, used incalculating thenumber ofcoded CQIsymbols

[2] Integerarray

NO

SubframeIgnored number ofsubframes (ortransportblocks) thatare ignored atthe beginningdue to systemdelay

0 Integer NO

Input Ports

Port Name Description Signal Type Optional

1 DataIn Input uplink data after demapper real matrix NO

Output Ports

Port Name Description SignalType

Optional

2 HARQ_Bits Output HARQ ACK/NACK bits int NO

3 DataOut Output information (raw) bits int NO

4 RI_Out Output RI bits (matrix based) after channel deinterleaving (notdecoded yet)

int matrix NO

5 HARQACK_Out Output HARQ-ACK bits (matrix based) after channeldeinterleaving (not decoded yet)

int matrix NO

6 CQI_Out Output CQI bits (matrix based) after channel deinterleaving (notdecoded yet)

int matrix NO

7 DataOut_Matrix Output information (raw) bits (matrix based) int matrix NO

8 Qm Output modulation order for each subframe int NO

9 TBS Output transport block size for each subframe int NO

Notes/Equations

This subnetwork performs LTE uplink channel decoding. Data and control streams to1.MAC layer are decoded to offer transport and control services over the radiotransmission link. Channel decoding scheme is a combination of error detection, errorcorrecting, de-rate matching, deinterleaving and transport channel or controlinformation splitting from physical channels.Each firing2.

one matrix token is consumed at port DataIn. The size of the matrix is the sumof the number of channel bits (G) and number of CQI coded bits (H) and RI

Page 66: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

65

coded bits (QRI) in this subframe (firing). For more information, please refer to

LTE_RateDeMatch (ltebasever) and LTE_UL_ChDeInterleaver (ltebasever).one token is produced at port HARQ_Bit, where '1' indicates CRC check success,'0' indicates CRC check failure.variant tokens are produced at port DataOut. The number of tokens produced isequal to the number of transport block size decoded in this subframe (firing),which is also the matrix vector size at port MatrixDataOut.one matrix token is produced at port MatrixDataOut. The size of the matrix isthe number of transport block size decoded in this subframe (firing).one token is produced at port Qm, indicating the modulation order for thissubframe (firing), where '2' means QPSK, '4' means 16QAM and '6' means64QAM.one token is produced at port TBS, indicating the transport block size in thissubframe (firing).For the default parameters configurations, the transport block size in eachsubframe are [2555, 2555, 2555, 2555, 2555, 2555, 2555, 2555, 2555, 2555],the number of channel bits in each subframe are [7200, 7200, 7200, 7200,7200, 7200, 7200, 7200, 7200, 7200], uplink control information are nottransmitted.

The LTE_UL_ChannelDecoder schematic is shown below:3.

The subnetwork includes LTE_Descrambler, LTE_UL_ChDeinterleaver,4.LTE_RateDematch, LTE_TurboDecoder, LTE_CodeBlkDeseg, LTE_CRCDecoder andLTE_HARQ_Controller, which performs PUSCH descrambling, deinterleaving anddemultiplexing of data and control information, rate dematching , turbo decoding,code block de-segmentation, CRC decoding and HARQ control signal generationrespectively for both FDD and TDD.It should be noted that channel decoding for control information is NOT supported in5.current implementation.The SubframeIgnored parameter specifies the number of subframes which are6.ignored at the beginning due to the receiver delay. For a typical LTE receiver in thislibrary for closed-loop HARQ transmission, one subframe delay is introduced in thereceiver. In this case the first subframe (firing) is ignored.When closed-loop HARQ transmission is enabled (by setting the HARQ_Enable to7.YES), the soft bit combination is employed in the LTE_RateDeMatch (ltebasever)model.See LTE_UL_ChannelCoder (ltebasever), LTE_DL_ChannelDecoder (ltebasever) and8.LTE_DL_ChannelCoder (ltebasever).

For more information on the calculation of number of channel bits, transport block size and MCS,please refer to LTE_UL_ChannelCoder (ltebasever).For more information on the parameters details, please refer to LTE_UL_Src (ltebasever).

References

TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access1.(UTRA),", V7.0.0, June 2006.3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.2.

Page 67: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

66

LTE_UL_ChDeInterleaver PartCategories: C++ Code Generation (ltebasever), Channel Coding (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_UL_ChDeInterleaver (ltebasever) Uplink PUSCH Channel DeInterleaver

LTE_UL_ChDeInterleaver (Uplink PUSCH Channel De-interleaver)

Description: Uplink PUSCH Channel DeInterleaverDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE UL ChDeInterleaver Part (ltebasever)

Model Parameters

Page 68: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

67

Name Description Default Units Type RuntimeTunable

Payload_Config the configuration mode ofinput data of PUSCH.: MCSindex, Transport block size,Code rate

Transport blocksize

Enumeration NO

Payload the input payload for PUSCH,the meaning of the input isdefined in Payload_Config

[2555, 2555,2555, 2555,2555, 2555,2555, 2555,2555, 2555]

Floatingpoint array

NO

ChBit_Config the configuration mode ofchannel bit size.: REs persubframe, Channel bit size

REs per subframe Enumeration NO

NumChBits the number of channel bits [5640, 5640,5640, 5640,5640, 5640,5640, 5640,5640, 5640]

Integer array NO

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocationsfor TDD: Config 0, Config 1,Config 2, Config 3, Config 4,Config 5, Config 6

Config 0 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3MHz, BW 5 MHz, BW 10 MHz,BW 15 MHz, BW 20 MHz

BW 5 MHz Enumeration NO

CyclicPrefix type of cyclic prefix: Normal,Extended

Normal Enumeration NO

MappingType the modulation orders for theUE in each subframe.(0:QPSK, 1:16QAM, 2:64QAM)

[0, 0, 0, 0, 0, 0,0, 0, 0, 0]

Integer array NO

RB_AllocType RB allocation type: StartRB +NumRBs, RB indices (1D), RBindices (2D)

StartRB +NumRBs

Enumeration NO

RB_Alloc the RB allocation for the UE, inthe formats of [start RB,number of RBs] or [[SF0 startRB, SF0 number of RBs]; . . .;[SF9 start RB, SF9 number ofRBs]]

[0, 25] Integer array NO

PUCCH_PUSCH PUCCH and PUSCH selection:PUSCH, PUCCH, both

PUSCH Enumeration NO

Enable64QAM indicates whether 64QAM isallowed in uplink: NO, YES

YES Enumeration NO

PUSCH_TransMode whether control and data aresent via PUSCH: Data andControl Multiplexing, DataOnly, Control Only

Data and ControlMultiplexing

Enumeration NO

SRS_Enable sounding reference symbol isenable: NO, YES

NO Enumeration NO

SRS_SF_Config the cell-specific SRS subframeconfiguration

0 Integer NO

RI_NumInfoBits RI information bits size [0] Integer array NO

RI_BetaOffsetIndex RI offset values, used incalculating the number ofcoded RI symbols

[0] Integer array NO

CQI_NumInfoBits CQI information bits size [0] Integer array NO

CQI_BetaOffsetIndex CQI offset values, used incalculating the number ofcoded CQI symbols

[2] Integer array NO

HARQACK_NumInfoBits HARQ-ACK information bitssize

[0] Integer array NO

HARQACK_BetaOffsetIndex HARQ-ACK offset values, usedin calculating the number ofcoded HARQ-ACK symbols

[0] Integer array NO

SubframeIgnored number of subframes (ortransport blocks) that areignored at the beginning dueto system delay

0 Integer NO

DisplayPortRates whether the port rates andother useful information aredisplayed in Simulation Logwindow: NO, YES

NO Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 DataIn Data In float matrix NO

Output Ports

Page 69: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

68

Port Name Description Signal Type Optional

2 DataOut Data Out float matrix NO

3 RI Rank Indication Out float matrix NO

4 HARQACK HARQ-ACK Out float matrix NO

5 CQI CQI/PMI Out float matrix NO

Notes/Equations

This model is used to deinterleave the uplink bits transported in each subframe and1.demultiplex the uplink control information and data.Each firing,2.

1 matrix token is consumed at port DataIn, the size of the matrix token shouldbe equal to (PUSCH_NumChBits + RI_NumCodedBits + CQI_NumCodedBits),where PUSCH_NumChBits is the number of PUSCH channel bits in eachsubframe, RI_NumCodedBits is the number of RI coded bits in each subframe,CQI_NumCodedBits is the number of CQI coded bits in each subframe;1 matrix token is produced at port DataOut, the size of the matrix token is equalto PUSCH_NumChBits;1 matrix token is produced at port RI, the size of the matrix token is equal toRI_NumCodedBits;1 matrix token is produced at port HARQACK, the size of the matrix token isequal to HARQACK_NumCodedBits, where HARQACK_NumCodedBits is thenumber of HARQ-ACK coded bits in each subframe;1 matrix token is produced at port CQI, the size of the matrix token is equal toCQI_NumCodedBits;For the default parameter configurations, the control information is nottransmitted, PUSCH_NumChBits = 25RB × 12Symbols × 12SubcPerRB × 2(Qm)

= 7200.For more information on the calculation of RI_NumCodedBits,3.HARQACK_NumCodedBits and CQI_NumCodedBits, please refer toLTE_UL_ControlInfoEncoder (ltebasever).See LTE_UL_ChInterleaver (ltebasever).4.

For more information on the calculation of number of channel bits, please refer toLTE_UL_ChannelCoder (ltebasever).For more information on the parameters details, please refer to LTE_UL_Src (ltebasever).For more information on channel coding for uplink control information, please refer toLTE_UL_ControlInfo_Controller (ltebasever) and LTE_UL_ControlInfoEncoder (ltebasever).

References

TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access1.(UTRA),", V7.0.0, June 2006.3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.2.3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.3.

Page 70: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

69

LTE_UL_ChInterleaver PartCategories: C++ Code Generation (ltebasever), Channel Coding (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_UL_ChInterleaver (ltebasever) Uplink ChannelInterleaver

LTE_UL_ChInterleaver (Uplink PUSCH ChannelInterleaver)

Description: Uplink Channel InterleaverDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE UL ChInterleaver Part (ltebasever)

Model Parameters

Page 71: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

70

Name Description Default Units Type RuntimeTunable

Payload_Config the configuration mode ofinput data of PUSCH.: MCSindex, Transport block size,Code rate

Transport blocksize

Enumeration NO

Payload the input payload for PUSCH,the meaning of the input isdefined in Payload_Config

[2555, 2555,2555, 2555,2555, 2555,2555, 2555,2555, 2555]

Floatingpoint array

NO

ChBit_Config the configuration mode ofchannel bit size.: REs persubframe, Channel bit size

REs per subframe Enumeration NO

NumChBits the number of channel bits [5640, 5640,5640, 5640,5640, 5640,5640, 5640,5640, 5640]

Integer array NO

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocationsfor TDD: Config 0, Config 1,Config 2, Config 3, Config 4,Config 5, Config 6

Config 0 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3MHz, BW 5 MHz, BW 10 MHz,BW 15 MHz, BW 20 MHz

BW 5 MHz Enumeration NO

CyclicPrefix type of cyclic prefix: Normal,Extended

Normal Enumeration NO

MappingType the modulation orders for theUE in each subframe.(0:QPSK, 1:16QAM, 2:64QAM)

[0, 0, 0, 0, 0, 0,0, 0, 0, 0]

Integer array NO

RB_AllocType RB allocation type: StartRB +NumRBs, RB indices (1D), RBindices (2D)

StartRB +NumRBs

Enumeration NO

RB_Alloc the RB allocation for the UE, inthe formats of [start RB,number of RBs] or [[SF0 startRB, SF0 number of RBs]; . . .;[SF9 start RB, SF9 number ofRBs]]

[0, 25] Integer array NO

PUCCH_PUSCH PUCCH and PUSCH selection:PUSCH, PUCCH, both

PUSCH Enumeration NO

Enable64QAM indicates whether 64QAM isallowed in uplink: NO, YES

YES Enumeration NO

PUSCH_TransMode whether control and data aresent via PUSCH: Data andControl Multiplexing, DataOnly, Control Only

Data and ControlMultiplexing

Enumeration NO

SRS_Enable sounding reference symbol isenable: NO, YES

NO Enumeration NO

SRS_SF_Config the cell-specific SRS subframeconfiguration

0 Integer NO

RI_NumInfoBits RI information bits size [0] Integer array NO

RI_BetaOffsetIndex RI offset values, used incalculating the number ofcoded RI symbols

[0] Integer array NO

CQI_NumInfoBits CQI information bits size [0] Integer array NO

CQI_BetaOffsetIndex CQI offset values, used incalculating the number ofcoded CQI symbols

[2] Integer array NO

HARQACK_NumInfoBits HARQ-ACK information bitssize

[0] Integer array NO

HARQACK_BetaOffsetIndex HARQ-ACK offset values, usedin calculating the number ofcoded HARQ-ACK symbols

[0] Integer array NO

DisplayPortRates whether the port rates andother useful information aredisplayed in Simulation Logwindow: NO, YES

NO Enumeration NO

Input Ports

Page 72: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

71

Port Name Description Signal Type Optional

1 DataIn Data In integermatrix

NO

2 RI Rank Indication In integermatrix

NO

3 HARQACK HARQ-ACK In integermatrix

NO

4 CQI CQI/PMI In integermatrix

NO

Output Ports

Port Name Description Signal Type Optional

5 DataOut Data Out integermatrix

NO

Notes/Equations

This model is used to interleave the uplink bits transported in each subframe. If1.control data are sent via PUSCH with UL-SCH data, the uplink control information anddata multiplexing is also implemented in this model.Each firing,2.

1 matrix token is consumed at port DataIn, the size of the matrix token shouldbe equal to PUSCH_NumChBits, where PUSCH_NumChBits is the number ofPUSCH channel bits in each subframe;1 matrix token is consumed at port RI, the size of the matrix token should beequal to RI_NumCodedBits, where RI_NumCodedBits is the number of RI codedbits in each subframe;1 matrix token is consumed at port HARQACK, the size of the matrix tokenshould be equal to HARQACK_NumCodedBits, where HARQACK_NumCodedBitsis the number of HARQ-ACK coded bits in each subframe;1 matrix token is consumed at port CQI, the size of the matrix token should beequal to CQI_NumCodedBits, where CQI_NumCodedBits is the number of CQIcoded bits in each subframe;1 matrix token is produced at port DataOut, the size of the matrix token is equalto (PUSCH_NumChBits + RI_NumCodedBits + CQI_NumCodedBits) in eachsubframe;For the default parameter configurations, the control information is nottransmitted, PUSCH_NumChBits = 25RB × 12Symbols × 12SubcPerRB × 2(Qm)

= 7200, RI_NumCodedBits = 0, HARQACK_NumCodedBits = 0,CQI_NumCodedBits = 0.

The control and data multiplexing is performed such that HARQ-ACK information is3.present on both slots and is mapped to resources around the demodulation referencesignals. In addition, the multiplexing ensures that control and data information aremapped to different modulation symbols.The channel interleaver in conjunction with the resource element mapping for PUSCH4.in [2] implements a time-first mapping of modulation symbols onto the transmitwaveform while ensuring that the HARQ-ACK information is present on both slots inthe subframe and is mapped to resources around the uplink demodulation referencesignals.The input to the channel interleaver are denoted by , and

. The number of modulation symbols in the subframe is given by H'' = H' _ Q'RI. The output bit sequence from the channel interleaver is derived as

follows:Assign Cmux = NPUSCH

symb to be the number of columns of the matrix. The1.columns of the matrix are numbered 0, 1, 2,..., Cmux − 1 from left to right. N

PUSCHsymb is determined according to section 5.2.2.6 [1].

The number of rows of the matrix is Rmux = (H'' · Qm) / Cmux and we define R'2.

mux = Rmux / Qm. The rows of the rectangular matrix are numbered 0, 1, 2,..., R

mux − 1 from top to bottom.

If rank information is transmitted in this subframe, the vector sequence3. is written onto the columns indicated by Table 5.2.2.8-1 [1], and

by sets of Qm rows starting from the last row and moving upwards according to

the following pseudo code.

Page 73: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

72

Where ColumnSet is given in the following table and indexed left to right from 0to 3.CP configuration Column Set

Normal {1, 4, 7,10}

Extended {0, 3, 5, 8}

Write the input vector sequence, i.e., for k = 0, 1,..., H' − 1, into the (R4.mux × Cmux) matrix by sets of Qm rows starting with the vector in column 0

and rows 0 to (Qm − 1) and skipping the matrix entries that are already

occupied:

If HARQ-ACK information is transmitted in this subframe, the vector sequence5. is written onto the columns indicated by the following table,

and by sets of Qm rows starting from the last row and moving upwards

according to the following pseudocode. Note that this operation overwrites someof the channel interleaver entries obtained in step (4).

Where ColumnSet is given in the following table and indexed left to right from 0to 3.CP configuration Column Set

Normal {2, 3, 8, 9}

Extended {1, 2, 6, 7}

The output of the block interleaver is the bit sequence read out column by6.column from the (Rmux × Cmux) matrix. The bits after channel interleaving are

denoted by .See LTE_UL_ChDeInterleaver (ltebasever).5.

On the calculation of number of channel bits, please refer to LTE_UL_ChannelCoder (ltebasever).For more information on the parameters details, please refer to LTE_UL_Src (ltebasever).For more information on channel coding for uplink control information, please refer toLTE_UL_ControlInfo_Controller (ltebasever) and LTE_UL_ControlInfoEncoder (ltebasever).

References

TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access1.(UTRA),", V7.0.0, June 2006.3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.2.3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.3.

Page 74: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

73

LTE_UL_ControlInfo_Controller PartCategories: C++ Code Generation (ltebasever), Channel Coding (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_UL_ControlInfo_Controller (ltebasever) Uplink Control InformationEncoder

LTE_UL_ControlInfo_Controller (LTE Uplink ControlInformation Encoder)

Description: Uplink Control Information EncoderDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE UL ControlInfo Controller Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations forTDD: Config 0, Config 1, Config 2,Config 3, Config 4, Config 5, Config6

Config 0 Enumeration NO

PUCCH_PUSCH PUCCH and PUSCH selection:PUSCH, PUCCH, both

PUSCH Enumeration NO

PUSCH_TransMode whether control and data are sentvia PUSCH: Data and ControlMultiplexing, Data Only, ControlOnly

Data andControlMultiplexing

Enumeration NO

ControlInfoType type of control information: CQI,HARQ ACK, Rank Indication

CQI Enumeration NO

CQI_NumInfoBits CQI information bits size [0] Integerarray

NO

HARQACK_NumInfoBits HARQ-ACK information bits size [0] Integerarray

NO

RI_NumInfoBits RI information bits size [0] Integerarray

NO

Output Ports

Port Name Description Signal Type Optional

1 DataOut Number of UL control information bits for eachsubframe

int NO

Notes/Equations

This model outputs the number of uplink control information bits transmitted in each1.subframe. The form of control information is determined by ControlInfoType, whichcan be selected as CQI (Channel Quality Information), HARQ-ACK and RI (RankIndication).Each firing, 1 token is produced at port DataOut. If the selected control information is2.not transmitted in this subframe, a '0' would be output.The number of information bits is calculated from CQI_NumInfoBits,3.HARQACK_NumInfoBits and RI_NumInfoBits corresponding to the setting ofControlInfoType. A '0' would be output for downlink subframes and special subframesin TDD mode. If PUSCH_TransMode is selected as DataOnly, a '0' would be output foreach subframe since control information is not transmitted on PUSCH.Take CQI for example, as can be seen from the subnetwork LTE_UL_ChannelCoder4.(ltebasever), the channel coding for uplink control information is implemented asshown in the following figure:

Page 75: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

74

The information bits are read from CQI_Bits (a Bits model in the figure above), thenumber of information bits transmitted in each subframe is controlled byLTE_UL_ControlInfo_Controller, the channel coding is performed inLTE_UL_ControlInfoEncoder. Users can replace the Bits model with other models, e.g.ReadFile or DataPattern, to transmit the customized information bits.See LTE_UL_ControlInfoEncoder (ltebasever), LTE_UL_ChInterleaver (ltebasever)5.and LTE_UL_ChDeInterleaver (ltebasever).

For more information on the System Parameters details please refer to UL System Parameters(ltebasever).For more information on the PUSCH Parameters details please refer to UL PUSCH Parameters(ltebasever).

References

3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.1.

Page 76: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

75

LTE_UL_ControlInfoEncoder PartCategories: C++ Code Generation (ltebasever), Channel Coding (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_UL_ControlInfoEncoder (ltebasever) Uplink Control InformationEncoder

LTE_UL_ControlInfoEncoder (LTE Uplink ControlInformation Encoder)

Description: Uplink Control Information EncoderDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE UL ControlInfoEncoder Part (ltebasever)

Model Parameters

Page 77: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

76

Name Description Default Units Type RuntimeTunable

Payload_Config the configuration mode ofinput data of PUSCH.: MCSindex, Transport block size,Code rate

Transport blocksize

Enumeration NO

Payload the input payload for PUSCH,the meaning of the input isdefined in Payload_Config

[2555, 2555,2555, 2555,2555, 2555,2555, 2555,2555, 2555]

Floatingpoint array

NO

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplinkallocations for TDD: Config 0,Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3MHz, BW 5 MHz, BW 10 MHz,BW 15 MHz, BW 20 MHz

BW 5 MHz Enumeration NO

CyclicPrefix type of cyclic prefix: Normal,Extended

Normal Enumeration NO

MappingType the modulation orders for theUE in each subframe.(0:QPSK, 1:16QAM, 2:64QAM)

[0, 0, 0, 0, 0, 0,0, 0, 0, 0]

Integer array NO

RB_AllocType RB allocation type: StartRB +NumRBs, RB indices (1D), RBindices (2D)

StartRB +NumRBs

Enumeration NO

RB_Alloc the RB allocation for the UE, inthe formats of [start RB,number of RBs] or [[SF0 startRB, SF0 number of RBs]; . . .;[SF9 start RB, SF9 number ofRBs]]

[0, 25] Integer array NO

PUCCH_PUSCH PUCCH and PUSCH selection:PUSCH, PUCCH, both

PUSCH Enumeration NO

Enable64QAM indicates whether 64QAM isallowed in uplink: NO, YES

YES Enumeration NO

PUSCH_TransMode whether control and data aresent via PUSCH: Data andControl Multiplexing, DataOnly, Control Only

Data and ControlMultiplexing

Enumeration NO

SRS_Enable sounding reference symbol isenable: NO, YES

NO Enumeration NO

SRS_SF_Config the cell-specific SRS subframeconfiguration

0 Integer NO

ControlInfoType type of control information:CQI, HARQ ACK, RankIndication

CQI Enumeration NO

CQI_NumInfoBits CQI information bits size [0] Integer array NO

CQI_BetaOffsetIndex CQI offset values, used incalculating the number ofcoded CQI symbols

[2] Integer array NO

HARQACK_NumInfoBits HARQ-ACK information bitssize

[0] Integer array NO

HARQACK_BetaOffsetIndex HARQ-ACK offset values, usedin calculating the number ofcoded HARQ-ACK symbols

[0] Integer array NO

ACK_NACK_FeedbackMode ACK/NACK feedback modes forTDD: ACK/NACK multiplexing,ACK/NACK bundling

ACK/NACKmultiplexing

Enumeration NO

Nbundled Nbundled for TDD ACK/NACKbundling

[1] Integer array NO

RI_NumInfoBits RI information bits size [0] Integer array NO

RI_BetaOffsetIndex RI offset values, used incalculating the number ofcoded RI symbols

[0] Integer array NO

DisplayPortRates whether the port rates andother useful information aredisplayed in Simulation Logwindow: NO, YES

NO Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 DataIn input data integermatrix

NO

Output Ports

Page 78: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

77

Port Name Description Signal Type Optional

2 DataOut output data integermatrix

NO

3 CQI_CRCOut output data of CRC attachment for CQI integermatrix

NO

4 CQI_ConvCodingOut output data of convolutional coding for CQI integermatrix

NO

Notes/Equations

This model performs channel coding for uplink control information. Control data1.arrives at the coding unit in the form of channel quality information (CQI and/orPMI), HARQ-ACK and rank indication. Different coding rates for the controlinformation are achieved by allocating different number of coded symbols for itstransmission. When control data are transmitted in the PUSCH, the channel codingfor HARQ-ACK, rank indication and channel quality information o0, o1, o2, o3, ..., oO

is done independently.Each firing,2.

1 matrix token is consumed at port DataIn, the size of the matrix token shouldbe equal to NumInfoBits, where NumInfoBits is the number of CQI/HARQ-ACK/RI information bits in each subframe, which is equal to CQI_NumInfoBits/HARQACK_NumInfoBits/RI_NumInfoBits according to ControlInfoType;1 matrix token is produced at port DataOut, the size of the matrix token is equalto NumCodedBits, where NumCodedBits is the number of CQI/HARQ-ACK/RIcoded bits in each subframe, which is calculated from the parameters accordingto [1];1 matrix token is produced at port CQI_CRCOut, the size of the matrix token isequal to (CQI_NumInfoBits + 8) when ControlInfoType is selected as CQI andCQI_NumInfoBits is larger than 11 in this subframe, otherwise, an empty matrixis produced;1 matrix token is produced at port CQI_ConvCodingOut, the size of the matrixtoken is equal to 3 × (CQI_NumInfoBits + 8) when ControlInfoType is selectedas CQI and CQI_NumInfoBits is larger than 11 in this subframe, otherwise, anempty matrix is produced.For the default parameters configurations, no control information is transmitted.Hence, the input and output are empty matrix tokens.

ControlInfoType specifies the type of control information, which can be selected from3.CQI, HARQ-ACK and Rank Indication. ParametersCQI_NumInfoBits/HARQACK_NumInfoBits/RI_NumInfoBits andCQI_BetaOffsetIndex/HARQACK_BetaOffsetIndex/RI_BetaOffsetIndex specify thenumber of information bits input to the encoder and number of output coded bitsafter channel coding in each subframe. These two parameters are Array Parameter(ltebasever). The supported sizes are 1 × 1 and 10 × 1.Uplink control information on PUSCH with UL-SCH data4.

When the UE transmits HARQ-ACK bits or rank indicator bits, it shall determinethe number of coded symbols Q' for HARQ-ACK or rank indicator as

where O is the number of ACK/NACK bits or rank indicator bits, MPUSCHsc is the

scheduled bandwidth for PUSCH transmission in the current sub-frame for thetransport block, expressed as a number of subcarriers in [2], and NPUSCH-initial

symb is the number of SC-FDMA symbols per subframe for initial PUSCH

transmission given by NPUSCH-initialsymb = (2 · (NUL

symb − 1) − NSRS), where N

SRS is equal to 1 if UE is configured to send PUSCH and SRS in the same

subframe for initial transmission or if the PUSCH resource allocation for initialtransmission even partially overlaps with the cell specific SRS subframe andbandwidth configuration defined in Section 5.5.3 of [2]. Otherwise NSRS is equal

to 0. MPUSCHsc, C and Kr are obtained from the initial PDCCH for the same

transport block. In current implementation, MPUSCHsc, C and Kr are calculated

from the parameters.For HARQ-ACK information QACK = Qm · Q' and [ β PUSCH

offset = β HARQ-ACKoffset

], where β HARQ-ACKoffset shall be determined according to [3].

For rank indication QRI = Qm · Q' and [ β PUSCHoffset = β RI

offset ], where β RI

offset shall be determined according to [3].

When the UE transmits channel quality control information bits, it shalldetermine the number of coded symbols Q' for channel quality information as

Page 79: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

78

where O is the number of CQI bits,

L is the number of CRC bits given by ,QCQI = Qm · Q' and [ β PUSCH

offset = β CQIoffset ], where β CQI

offset shall be

determined according to [3]. If rank indicator is not transmitted then QRI = 0.

MPUSCH-initialsc, C and Kr are obtained from the initial PDCCH for the same

transport block (calculated from the parameters in current implementation) and NPUSCH-initial

symb is the number of SC-FDMA symbols per subframe for initial

PUSCH transmission.For UL-SCH data information G = NPUSCH

symb · MPUSCH

sc · Qm − QCQI − QRI,

where MPUSCHsc is the scheduled bandwidth for PUSCH transmission in the

current sub-frame for the transport block, and NPUSCHsymb is the number of SC-

FDMA symbols in the current PUSCH transmission sub-frame given by NPUSCH

symb = (2 · (NULsymb − 1) − NSRS), where NSRS is equal to 1 if UE is configured

to send PUSCH and SRS in the same subframe for the current subframe or if thePUSCH resource allocation for the current subframe even partially overlaps withthe cell specific SRS subframe and bandwidth configuration defined in Section5.5.3 of [2]. Otherwise NSRS is equal to 0.

Uplink control information on PUSCH without UL-SCH data5.When the UE transmits HARQ-ACK bits or rank indicator bits, it shall determine thenumber of coded symbols Q' for HARQ-ACK or rank indicator as

where O is the number of ACK/NACK bits, see also Section 5.2.2.6 [1] for the twoACK/NACK feedback modes for TDD as configured by higher layers, or rank indicatorbits, OCQI-MIN is the number of CQI bits including CRC bits assuming rank equals to

1, MPUSCHsc is the scheduled bandwidth for PUSCH transmission in the current

subframe expressed as a number of subcarriers in [2], and NPUSCHsymb is the number

of SC-FDMA symbols in the current PUSCH transmission sub-frame given by NPUSCH

symb = (2 · (NPUSCHsymb − 1) − NSRS), where NSRS is equal to 1 if UE is configured to

send PUSCH and SRS in the same subframe for the current subframe or if the PUSCHresource allocation for the current subframe even partially overlaps with the cellspecific SRS subframe and bandwidth configuration defined in Section 5.5.3 of [2].Otherwise NSRS is equal to 0.

For HARQ-ACK information QACK = Qm · Q' and [ β PUSCHoffset = β HARQ-ACK

offset / βCQI

offset], where β HARQ-ACKoffset shall be determined according to [3].

For rank indication QRI = Qm · Q' and [ β PUSCHoffset = β RI

offset / β CQIoffset], where β

RIoffset shall be determined according to [3].

For CQI and/or PMI information QRI = NPUSCHsymb · M

PUSCHsc · Qm − QRI.

For HARQ-ACK information:6.Each positive acknowledgement (ACK) is encoded as a binary '1' and eachnegative acknowledgement (NAK) is encoded as a binary '0'If HARQ-ACK consists of 1-bit of information, i.e., [o0

ACK], it is first encoded

according to the Encoding of 1-bit HARQ-ACK table shown below:Qm Encoded HARQ-ACK

2 [o0ACK y]

4 [o0ACK y x x]

6 [o0ACK y x x x x]

If HARQ-ACK consists of 2-bits of information, i.e., [o0ACK o1

ACK], it is first

encoded according to the Encoding of 2-bit HARQ-ACK table shown below,where o2

ACK = (o0ACK + o1

ACK) mod 2.

Page 80: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

79

Qm Encoded HARQ-ACK

2 [o0ACK o1

ACK o2ACK o0

ACK o1ACK o2

ACK]

4 [o0ACK o1

ACK x x o2ACK o0

ACK x x o1ACK o2

ACK x x ]

6 [ o0ACK o1

ACK x x x x o2ACK o0

ACK x x x x o1ACK o2

ACK x x x x ]

The "x" and "y" i are placeholders for [2] to scramble the HARQ-ACK bits in away that maximizes the Euclidean distance of the modulation symbols carryingHARQ-ACK information. In this model, "x" and "y" are output as "-1" and "-2"respectively.

For rank indication (RI):7.If RI consists of 1-bit of information, i.e., [o0

RI], it is first encoded according to

Encoding of 1-bit RI table shown below:Qm Encoded RI

2 [o0RI y]

4 [o0RI y x x]

6 [o0RI y x x x x]

If RI consists of 2-bits of information, i.e., [o0RI o1

RI], it is first encoded

according to Encoding of 2-bit RI table shown below, where o2RI = (o0

RI + o1RI) mod 2.Qm Encoded HARQ-ACK

2 [o0RI o1

RI o2RI o0

RI o1RI o2

RI]

4 [o0RI o1

RI x x o2RI o0

RI x x o1RI o2

RI x x ]

6 [o0RI o1

RI x x x x o2RI o0

RI x x x x o1RI o2

RI x x x x ]

The "x" and "y" i are placeholders for [2] to scramble the HARQ-ACK bits in away that maximizes the Euclidean distance of the modulation symbols carryingrank information. In this model, "x" and "y" are output as "-1" and "-2"respectively.

The bit sequence is obtained by concatenation of multipleencoded RI blocks where QRI is the total number of coded bits for all the

encoded RI blocks. The last concatenation of the encoded RI block may bepartial so that the total bit sequence length is equal to QRI.

For channel quality control information (CQI and/or PMI):8.If the payload size is less than or equal to 11 bits,

the channel quality information is first coded using a (32, O) block codewith input sequence o0, o1, o2, ..., oO-1. The code words of the (32, O)

block code are a linear combination of the 11 basis sequences denoted Mi,n

and defined in Table 5.2.2.6.4-1 [1].The encoded CQI/PMI block is denoted by b0, b1, b2, ..., bB-1 where B=32

and

The output bit sequence q0, q1, q2, ..., qQ-1 is obtained by circular

repetition of the encoded CQI/PMI block as follows qi = b(i mod B) where i =

0, 1, 2, ..., Q -1For payload sizes greater than 11 bits,

the CRC attachment, channel coding and rate matching of the channelquality information is performed according to subclauses 5.1.1, 5.1.3.1 and5.1.4.2 [1], respectively.The input bit sequence to the CRC attachment is o0, o1, o2, ..., oO-1.

The output bit sequence of the CRC attachment operation is the input bitsequence to the channel coding operation. The output bit sequence of thechannel coding operation is the input bit sequence to the rate matchingoperation.

See LTE_UL_ControlInfo_Controller (ltebasever), LTE_UL_ChInterleaver (ltebasever)9.and LTE_UL_ChDeInterleaver (ltebasever).

It should be noted that, in current implementation, NSRS is equal to 1 in all cell specific SRS subframe,

and MPUSCH-initialsc = MPUSCH

sc, NPUSCH-initial

symb = NPUSCHsymb.

Page 81: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

80

For more information on the System Parameters details please refer to UL System Parameters(ltebasever).For more information on the PUSCH Parameters details please refer to UL PUSCH Parameters(ltebasever).For more information on the Control Information Parameters details please refer to UL ControlInformation Parameters (ltebasever).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.2.3GPP TS 36.213 v8.8.0, "Physical Layer Procedures", September 2009.3.

Page 82: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

81

LTE_BER_FER PartCategories: Measurement (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_BER_FER (ltebasever) Bit Error Rate and Frame Error Rate estimation in LTElibrary

LTE_BER_FER

Description: Bit Error Rate and Frame Error Rate estimation in LTE libraryDomain: UntimedC++ Code Generation Support: NOAssociated Parts: LTE BER FER Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

Range

LinkDir link direction: Downlink, Uplink Downlink Enumeration NO

Payload_Config the configuration mode of inputdata for payload.: MCS_index,Transport_block_size,Code_rate

Transport_block_size Enumeration NO

Payload the input payload, the meaningof the input is defined inPayload_Config

[2555, 2555, 2555, 2555,2555, 2555, 2555, 2555,2555, 2555]

Floatingpoint array

NO

MappingType the modulation orders for theUE in each subframe. (0:QPSK,1:16QAM, 2:64QAM)

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0] Integerarray

NO

Enable64QAM indicates whether 64QAM isallowed in uplink: NO, YES

YES Enumeration NO

NumOfLayers number of layers for onecodeword can be up to 2 for DL(for transmit diversity, it shouldbe set to 1), and be up to 1 forUL.

1 Integer NO [1:4]

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocationsfor TDD: Config_0, Config_1,Config_2, Config_3, Config_4,Config_5, Config_6

Config_0 Enumeration NO

SpecialSF_Config special subframe configurationfor TDD: Config0, Config1,Config2, Config3, Config4,Config5, Config6, Config7,Config8

Config4 Enumeration NO

Bandwidth bandwidth: BW_1_4_MHz,BW_3_MHz, BW_5_MHz,BW_10_MHz, BW_15_MHz,BW_20_MHz

BW_5_MHz Enumeration NO

CyclicPrefix type of cyclic prefix: Normal,Extended

Normal Enumeration NO

RB_AllocType RB allocation type:StartRB_NumRBs,RB_indices_1D, RB_indices_2D

StartRB_NumRBs Enumeration NO

RB_Alloc the RB allocation for the UE, inthe formats of [start RB,number of RBs] or [[SF0 startRB, SF0 number of RBs]; . . .;[SF9 start RB, SF9 number ofRBs]]

[0, 25] Integerarray

NO

PDCCH_SymsPerSF number of OFDM symbols ofPDCCH for each subframe

[3, 3, 3, 3, 3, 3, 3, 3, 3, 3] Integerarray

NO [0:3]

NumTxAnts number of Tx Antennas: Tx1,Tx2, Tx4

Tx1 Enumeration NO

PUCCH_PUSCH PUCCH and PUSCH selection:PUSCH, PUCCH, both

PUSCH Enumeration NO

PUSCH_TransMode whether control and data are Data_and_Control_Multiplexing Enumeration NO

Page 83: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

82

sent via PUSCH:Data_and_Control_Multiplexing,Data_Only, Control_Only

SRS_Enable sounding reference symbol isenable: NO, YES

NO Enumeration NO

SRS_SF_Config SRS subframe configuration 0 Integer NO [0:14]

RI_NumInfoBits RI information bits size [0] Integerarray

NO [0,∞)

RI_BetaOffsetIndex RI offset values, used incalculating the number of codedRI symbols

[0] Integerarray

NO [0,12]

CQI_NumInfoBits CQI information bits size [0] Integerarray

NO [0,∞)

CQI_BetaOffsetIndex CQI offset values, used incalculating the number of codedCQI symbols

[2] Integerarray

NO [2,15]

DisplayPortRates whether the port rates andother useful information aredisplayed in Simulation Logwindow: NO, YES

NO Enumeration NO

SourceType The source is including channelcoding or not: RawBits,ChannelBits

RawBits Enumeration NO

FrameDelay Delay frame numbers for refinput pin

1 Integer NO [0:∞)

FrameStart Data collection start frameindex

1 Integer NO [0:∞)

FrameStop Data collection stop frameindex when EstRelVariance isnot met

10 Integer NO [FrameStart:∞)

EstRelVariance BER estimation relativevariance

0.01 Float NO [0:1)

StatusUpdatePeriod Status update period in numberof bits

1000 Integer NO [1:∞)

Input Ports

Port Name Description Signal Type Optional

1 ref reference bit stream int NO

2 test test bit stream int NO

Parameter Details

LinkDir: link direction, it can be selected as Downlink and Uplink, indicating themeasurement is for LTE downlink and uplink respectively.SourceType: type of the input data streams, it can be selected as RawBits andChannelBits, indicating coded BER/FER and uncoded (raw) BER/FER are measuredrespectively.If LinkDir is Downlink, for more information on parameters FrameMode, TDD_Config,SpecialSF_Config, Bandwidth, CyclicPrefix, MappingType, Payload_Config, Payload,RB_AllocType, RB_Alloc, NumTxAnts, NumOfLayers and PDCCH_SymsPerSF, pleaserefer to LTE_DL_Src (ltebasever).If LinkDir is Uplink, for more information on parameters FrameMode, TDD_Config,SpecialSF_Config, Bandwidth, CyclicPrefix, MappingType, Payload_Config, Payload,RB_AllocType, RB_Alloc, PUCCH_PUSCH, SRS_Enable, SRS_SF_Config,RI_NumInfoBits, RI_BetaOffsetIndex, CQI_NumInfoBits, CQI_BetaOffsetIndex,HARQACK_NumInfoBits and HARQACK_BetaOffsetIndex, please refer to LTE_UL_Src(ltebasever).FrameDelay: the input data streams to ref will be delayed FrameDelay frames.FrameStart: data collection start frame index.FrameStop: data collection stop frame index when EstRelVariance is not met.EstRelVariance: BER estimation relative variance, it must be in range [0.0,1.0].StatusUpdatePeriod: status update period in number of bits.

Notes/Equations

This model can be used to measure the bit error rate (BER) and frame error rate1.(FER) of both LTE downlink and uplink input data streams. FER is sometimes referredto as PER (packet error rate) or BLER (block error rate). Here FER actually stands forsubframe error rate. A subframe is considered to be in error if at least one of the bitsin the subframe is detected incorrectly.Both downlink and uplink BER/FER can be measured.2.

If LinkDir is selected as Downlink, BER/FER of PDSCH is measured. It shouldbe noted that this model only measures the BER and FER for one code word,while the parameter NumOfLayers specifies the number of layers that themeasured code word is mapped to.If LinkDir is selected as Uplink, BER/FER of PUSCH is measured.BER/FER measurements of the physical channels other than PDSCH/PUSCH arenot supported in this model.

Both raw BER/FER and coded BER/FER can be measured. The number of bits in each3.

Page 84: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

83

subframe is calculated from related parameters.If SourceType is selected as RawBits, the input data streams to ref and testare taken as information bit streams before CRC attachment (input toLTE_DL_ChannelCoder (ltebasever)/LTE_UL_ChannelCoder (ltebasever) ) anddecoded bit streams after CRC decoding (output from LTE_DL_ChannelDecoder(ltebasever)/LTE_UL_ChannelDecoder (ltebasever)), respectively. The numberof measured bits in each subframe equals the transport block size in eachsubframe. For more information on how to get transport block size on eachsubframe, please refer to Relation of Transport Block Sizes (ltebasever).If SourceType is selected as ChannelBits, the input data streams to ref andtest are taken as channel bit streams after encoding (output fromLTE_DL_ChannelCoder (ltebasever)/LTE_UL_ChannelCoder (ltebasever)) andundecoded bit streams after demapping (hard decision demodulation of theinput to LTE_DL_ChannelDecoder (ltebasever)/[LTE_UL_ChannelDecoder),respectively. The number of measured bits in each subframe equals the numberof channel bits in each subframe. For more information on how to get the size ofmodulation symbols and channel bits, please refer to Channel Bits Calculation(ltebasever).

The parameters used in the calculation of transport block size and number of channel4.bits are listed as follows:

Common Parameters for both Downlink and Uplink: FrameMode, TDD_Config,SpecialSF_Config, Bandwidth, CyclicPrefix, RB_AllocType, RB_Alloc,Payload_Config, Payload, MappingType;Parameters used when LinkDir = Downlink: PDCCH_SymsPerSF, NumTxAnts,NumOfLayers;Parameters used when LinkDir = Uplink: PUCCH_PUSCH, PUSCH_TransMode,Enable64QAM, SRS_Enable, SRS_SF_Config, RI_NumInfoBits,RI_BetaOffsetIndex, CQI_NumInfoBits, CQI_BetaOffsetIndex,HARQACK_NumInfoBits, HARQACK_BetaOffsetIndex.

When DisplayPortRates is set to YES, the detailed calculation results of transport blocksize/number of channel bits would be shown in the Simulation Log.

For the default configuration, the BER/FER of downlink raw bits are measured. The5.transport block size in 10 subframes are [2555, 2555, 2555, 2555, 2555, 2555,2555, 2555, 2555, 2555].The input signals to the reference (ref) and test (test) inputs must be bit streams.6.The bit streams to the reference (ref) inputs will be delayed FrameDelay framesbefore being compared with test (test) inputs, where frame stands for a 10mssystem frame. This is shown in the following figure.

Typically the input bit stream to ref is delayed 1 frame, and the start frame to count7.BER/FER is Frame 1 i.e. FrameStart = 1. This is due to the one frame delay (noHARQ) caused by the receiver. Please refer to LTE_DL_Receiver (ltebasever) andLTE_UL_Receiver (ltebasever) for more information.The FrameStart parameter defines when data processing starts. The end of data8.processing depends on the settings of the parameters FrameStop andEstRelVariance:

If EstRelVariance is 0.0, then data processing ends when FrameStop is reached.If EstRelVariance is greater than 0.0, then data processing ends whenEstRelvariance is met or when FrameStop is reached. In this case, FrameStopacts as an upper bound on how long the simulation runs just in case thesimulation takes too long for EstRelVariance to be met. In this mode ofoperation, messages are printed in the simulation status window showing thevalue of estimation relative variance as the simulation progresses. TheEstRelVariance parameter can be used to control the quality of the BER estimateLTE_BER_FER generates. The lower the value of EstRelVariance the moreaccurate the estimate is.Note that the equation for the estimation relative variance described aboveassumes that the errors happen randomly (as in the case of an AWGN channel)and not in bursts (as in the case of a fading channel).

If the bit errors are independent identically distributed events then BER and FER are9.related through the equation FER = 1 − (1 − BER)BitsPerSubFrame.To estimate BER/FER over an exact number of frames set EstRelVariance to 0.0, andFrameStop to FrameStart + N − 1, where FrameStart is the value of the FrameStartparameter and N is the number of frames to be simulated.The StatusUpdatePeriod parameter can be used to control how often estimation10.relative variance status messages are reported to the simulation status window.The typical use of this model can be found in the example workspace11.

Page 85: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

84

3GPP_LTE_DL_SISO_BER.wsv and 3GPP_LTE_UL_BER.wsv.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.

Page 86: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

85

LTE_DL_EVM PartCategories: Measurement (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_DL_EVM (ltebasever) Downlink EVM measurement

LTE_DL_EVM

Description: Downlink EVM measurementDomain: UntimedC++ Code Generation Support: NOAssociated Parts: LTE DL EVM Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

Range

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations forTDD: Config_0, Config_1, Config_2,Config_3, Config_4, Config_5,Config_6

Config_0 Enumeration NO

SpecialSF_Config special subframe configuration forTDD: Config0, Config1, Config2,Config3, Config4, Config5, Config6,Config7, Config8

Config4 Enumeration NO

Bandwidth bandwidth: BW_1_4_MHz,BW_3_MHz, BW_5_MHz,BW_10_MHz, BW_15_MHz,BW_20_MHz

BW_5_MHz Enumeration NO

NumTxAnts number of Tx Antennas: Tx1, Tx2,Tx4

Tx1 Enumeration NO

NumRxAnts number of Rx Antennas: Rx1, Rx2,Rx4

Rx1 Enumeration NO

OversamplingOption Ratio 1, Ratio 2, Ratio 4, Ratio 8:Ratio_1, Ratio_2, Ratio_4, Ratio_8

Ratio_2 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal,Extended

Normal Enumeration NO

CellID_Sector the index of cell identity within thephysical-layer cell-identity group

0 Integer NO [0:2]

CellID_Group the index of cell identity group 0 Integer NO [0:167]

SS_PerTxAnt whether synchronization signals (P-SS and S-SS) are transmitted oneach transmit antenna: NO, YES

NO Enumeration NO

UEs_MIMO_Mode MIMO Mode for each UE, 1 for TD, 0for SM

[0, 0, 0, 0, 0, 0] Integerarray

NO [0:1]

UEs_CDD_Mode CDD Mode for each UE, 1 for Zero-Delay, 0 for Large-Delay

[0, 0, 0, 0, 0, 0] Integerarray

NO [0:1]

UEs_CdBlk_Index codebook index for precoding foreach UE

[0, 0, 0, 0, 0, 0] Integerarray

NO [0:15]

UEs_NumOfCWs number of code words for each UE [1, 1, 1, 1, 1, 1] Integerarray

NO [1:2]

UEs_NumOfLayers number of layers for each UE [2, 2, 2, 2, 2, 2] Integerarray

NO [1:4]

ShowUE1_Parameters show system parameters for LTEuplink signals: NO, YES

YES Enumeration NO

UE1_MappingType the modulation orders for UE 1 ineach subframe, valid whenUE1_Payload is not set to MCSindex. (0:QPSK, 1:16QAM,2:64QAM)

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0] Integerarray

NO

RB_AllocType RB allocation type:StartRB_NumRBs, RB_indices_1D,RB_indices_2D

StartRB_NumRBs Enumeration NO

UE1_RB_Alloc the RB allocation for UE 1, in theformats of [start RB, number ofRBs] or [[SF0 start RB, SF0 numberof RBs]; . . .; [SF9 start RB, SF9

[0, 25] Integerarray

NO

Page 87: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

86

number of RBs]]

ShowOtherUEs_Parameters show system parameters for LTEuplink signals: NO, YES

YES Enumeration NO

OtherUEs_MappingType the modulation orders for other UEsexcept UE 1 in all subframes.(0:QPSK, 1:16QAM, 2:64QAM)

[0, 0, 0, 0, 0] Integerarray

NO

UE2_RB_Alloc the RB allocation for UE 2, in theformats of [start RB, number ofRBs] or [[SF0 start RB, SF0 numberof RBs]; . . .; [SF9 start RB, SF9number of RBs]]

[0, 0] Integerarray

NO

UE3_RB_Alloc the RB allocation for UE 3, in theformats of [start RB, number ofRBs] or [[SF0 start RB, SF0 numberof RBs]; . . .; [SF9 start RB, SF9number of RBs]]

[0, 0] Integerarray

NO

UE4_RB_Alloc the RB allocation for UE 4, in theformats of [start RB, number ofRBs] or [[SF0 start RB, SF0 numberof RBs]; . . .; [SF9 start RB, SF9number of RBs]]

[0, 0] Integerarray

NO

UE5_RB_Alloc the RB allocation for UE 5, in theformats of [start RB, number ofRBs] or [ [SF0 start RB, SF0number of RBs]; . . .; [SF9 start RB,SF9 number of RBs]]

[0, 0] Integerarray

NO

UE6_RB_Alloc the RB allocation for UE 6, in theformats of [start RB, number ofRBs] or [[SF0 start RB, SF0 numberof RBs]; . . .; [SF9 start RB, SF9number of RBs]]

[0, 0] Integerarray

NO

PDCCH_SymsPerSF number of OFDM symbols of PDCCHfor each subframe

[2, 2, 2, 2, 2, 2, 2, 2, 2, 2] Integerarray

NO [0:3]

PHICH_Duration type of PHICH duration:Normal_Duration,Extended_Duration

Normal_Duration Enumeration NO

PHICH_Ng PHICH Ng value: Ng_1_6, Ng_1_2,Ng_1, Ng_2

Ng_1_6 Enumeration NO

PCFICH_Rb PCFICH-to-RS EPRE ratio in dB insymbols with RS

0 Float NO (-∞:∞)

PHICH_Ra PHICH-to-RS EPRE ratio in dB insymbols with RS

0 Float NO (-∞:∞)

PHICH_Rb PHICH-to-RS EPRE ratio in dB insymbols without RS

0 Float NO (-∞:∞)

PBCH_Ra PBCH-to-RS EPRE ratio in dB insymbols with RS

0 Float NO (-∞:∞)

PBCH_Rb PBCH-to-RS EPRE ratio in dB insymbols without RS

0 Float NO (-∞:∞)

PDCCH_Ra PDCCH-to-RS EPRE ratio in dB insymbols with RS

0 Float NO (-∞:∞)

PDCCH_Rb PDCCH-to-RS EPRE ratio in dB insymbols without RS

0 Float NO (-∞:∞)

UEs_Pa PDSCH-to-RS EPRE ratio in dB insymbols without RS for each UE

[0, 0, 0, 0, 0, 0] Floatingpoint array

NO (-∞:∞)

PSS_Ra PSS-to-RS EPRE ratio in dB insymbols without RS

0 Float NO (-∞:∞)

SSS_Ra SSS-to-RS EPRE ratio in dB insymbols without RS

0 Float NO (-∞:∞)

PDSCH_PowerRatio PDSCH Cell Specific Ratio:p_B_p_A_1, P_B_0, P_B_1, P_B_2,P_B_3

p_B_p_A_1 Enumeration NO

ShowRxAlgorithmParameters show parameters for LTE downlinkEVM measurement algorithm: NO,YES

YES Enumeration NO

SyncType Initial synchronization type: P_SS,RS

P_SS Enumeration NO

PDSCHIncludeInAnalysis whether or not PDSCH is included incomputing composite results suchas EVM, EVMPk andOFDMRBErrorMagSpectrum: NO,YES

YES Enumeration NO

P_SSIncludeInAnalysis whether or not P_SS is included incomputing composite results suchas EVM, EVMPk andOFDMRBErrorMagSpectrum: NO,YES

YES Enumeration NO

S_SSIncludeInAnalysis whether or not S_SS is included incomputing composite results suchas EVM, EVMPk andOFDMRBErrorMagSpectrum: NO,YES

YES Enumeration NO

Page 88: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

87

PBCHIncludeInAnalysis whether or not PBCH is included incomputing composite results suchas EVM, EVMPk andOFDMRBErrorMagSpectrum: NO,YES

YES Enumeration NO

PHICHIncludeInAnalysis whether or not PHICH is included incomputing composite results suchas EVM, EVMPk andOFDMRBErrorMagSpectrum: NO,YES

YES Enumeration NO

PCFICHIncludeInAnalysis whether or not PCFICH is includedin computing composite results suchas EVM, EVMPk andOFDMRBErrorMagSpectrum: NO,YES

YES Enumeration NO

PDCCHIncludeInAnalysis whether or not PDCCH is included incomputing composite results suchas EVM, EVMPk andOFDMRBErrorMagSpectrum: NO,YES

YES Enumeration NO

RSIncludeInAnalysis whether or not RS is included incomputing composite results suchas EVM, EVMPk andOFDMRBErrorMagSpectrum: NO,YES

YES Enumeration NO

CellIDDetectMode Cell ID detect mode: Auto, Manual Auto Enumeration NO

Ref_TxAnt determines the Tx antenna port andworks with Ref_InputChannel todetermine which Tx/Rx path to usefor initial equalization: Autodetect,Port0, Port1, Port2, Port3

Autodetect Enumeration NO

Ref_InputChannel determines the Rx antenna port andworks with Ref_TxAnt to determinewhich Tx/Rx path to use for initialequalization: Rx0, Rx1, Rx2, Rx3

Rx0 Enumeration NO

AntDetThresh specify threshold level of RS powerlevel in dB relative to that of areference antenna port forautomatic detection of activeantenna

-36 Integer NO [-100:100]

IncludeInactiveAntennaPaths means only Tx/Rx antenna pathsthat have an average RS powerabove the threshold will bedisplayed on the MIMO traces: NO,YES

NO Enumeration NO

MIMODecoding specifies the MIMO decoding:NoDecoding, MIMODecoding

MIMODecoding Enumeration NO

RBAutoDetect defines the RB allocation andmodulation format detection mode:Manual, Auto

Auto Enumeration NO

ResLenInSlots Result length in slots. Specifically,this is the number of slots to beanalyzed and demodulated

20 Integer NO [1:100]

MeasOffset specifies measurement offset insymbols, from which EVM iscomputed.

0 Integer NO [0:ResLenInSlots*NumSymsPerSlot)

MeasInterval specifies measurement interval insymbols used for EVM computation,starting from the slot and symboloffset specified by MeasOffset

140 Integer NO [1:ResLenInSlots*NumSymsPerSlot- MeasOffset)

AnalysisBoundary analysis start boundary:ANALYSIS_BOUNDARY_FRAME,ANALYSIS_BOUNDARY_HALFFRAME,ANALYSIS_BOUNDARY_SUBFRAME

ANALYSIS_BOUNDARY_FRAME Enumeration NO

CPLengthAutoDetect specifies Cyclic Prefix length autodetect or not: NO, YES

NO Enumeration NO

MirrorFreqSpectrum whether or not the entire frequencyspectrum be flipped around thecarrier frequency: NO, YES

NO Enumeration NO

EqualizerTraining specify how equalizer is trained:Off, RS

RS Enumeration NO

EqualizerTrainingMovingAvgLength specify window length of theequalizer moving average forsubcarrier smoothing.

19 Integer NO [1:399]

EVMMinimization specifies the amplitude err, timingerr and frequency and phase errtracking and compensation mode:Off, Tracking

Tracking Enumeration NO

EVMMinimizationAmp whether or not tracking theamplitude err: NO, YES

NO Enumeration NO

EVMMinimizationTiming whether or not tracking the timingerr: NO, YES

NO Enumeration NO

EVMMinimizationFreqPhase whether or not tracking the freq and NO Enumeration NO

Page 89: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

88

phase err: NO, YES

SymTimeAdjMode symbol timing adjust mode:MAX_EVMWIN_START_END,MIN_EVMWIN_START_END,EVMWIN_START,EVMWIN_START_End,EVMWIN_Center,PERCENT_FFT_SIZE

MAX_EVMWIN_START_END Enumeration NO

SymTimeAdj specify how much data in cyclicprefix portion, backing up from theexact symbol timing are included forFFT computation in percentage ofFFT length. This value must be zeroor a negative value, down to awhole cyclic prefix length -7.125 to0% (Normal CP length), -25% to0% (Extended CP length)

-3.125 Float NO [-25:0]

ReportEVMIndB specifies the EVM units in dB or not:NO, YES

NO Enumeration NO

PowerBoostNormalize whether or not the constellation benormalized: NO, YES

YES Enumeration NO

SaveConstellation if set YES, the measured vectorused for EVM calculation shall besaved to Data File: NO, YES

NO Enumeration NO

FramesToMeas number of frames that will bemeasured

10 Integer NO [1:100]

DisplayFrame the Frame number for display somevector measurement results

0 Integer NO

Input Ports

Port Name Description Signal Type Optional

1 input input signal multiple complex NO

Parameters Details

For System Parameters details please refer to DL System Parameters (ltebasever).SS_PerTxAnt: whether the P-SS/S-SS are transmitted on the first antenna port or onall the transmit antenna ports.For UE1 Parameters details details refer to DL UE1 Parameters (ltebasever).For OtherUEs Parameters details please refer to DL OtherUEs Parameters(ltebasever).For Control Channel Parameters details please refer to DL Control ChannelParameters (ltebasever).For MIMO Parameters details please refer to DL MIMO Parameters (ltebasever).For Power Parameters details please refer to DL Power Parameters (ltebasever).

For more information on parameters details, please refer to LTE_DL_Src(ltebasever).

Rx Algorithm Parameters:

SyncType: Sets the channel or signal to be used for synchronization. The LTEdemodulator can be set to use either the Primary Sync Signal (P_SS) or the referencesignal (RS) to synchronize the downlink signal.This synchronization is performed at the frame level. For smaller scale adjustments(such as at the symbol or slot level), see the EVM Minimization parameter.P-SS is normally used for downlink synchronization. However, when P-SS is impairedin some way (for example, P-SS has a different CellID than RS), RS can be used forsynchronization so that the signal can be demodulated. S-SS must be present in thetime capture for demodulation to occur, since finding S-SS is the only way todistinguish between the beginning and the middle of a frame.When Sync Type is set to RS the measurement result SyncCorr shows which Txantenna port's reference signal was used for synchronization to the right of thecorrelation value. The Error Summary data result SyncCorr shows which Tx antennaport's reference signal was used for synchronization to the right of the correlationvalue. The reference Tx antenna port must be specified, since the demodulator doesnot automatically search the reference input channel for all Tx antenna ports whenSync Type is set to RS. Autodetection of CellID is not supported.These parameters listed below are used to set whether these channels or signals areincluded in computing composite results such as EVM, EVMPk andOFDMRBErrorMagSpectrum.PDSCHIncludeInAnalysis, P_SSIncludeInAnalysis, S_SSIncludeInAnalysis,PBCHIncludeInAnalysis, PHICHIncludeInAnalysis, PCFICHIncludeInAnalysis,PDCCHIncludeInAnalysis and RSIncludeInAnalysis.CellIDDetectMode: Sets Cell ID detect mode. When SyncType is set to RS, the Autodetect is not supported and CellIDDetectMode must be specified manually. This isbecause the demodulator needs to know the values of the RS sequence to use forsynchronization and because Cell ID determines these values.Ref_TxAnt and Ref_InputChannel: These two parameters determine which Tx/Rxpath to use for initial equalization and to show on certain non-MIMO traces(OFDMRBErrorMagSpectrum, OFDMRBPowerSpectrum, OFDMErrVectSpectrum andOFDMFrequencyError). The Ref_TxAnt determines the Tx antenna port and the

Page 90: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

89

Ref_InputChannel parameter determines the Rx antenna port of the reference path.When Ref_TxAnt is set to Autodetect, the Tx antenna signal path with the strongestreference signal on the reference Rx antenna port (determined by Ref_InputChannel)is used.When Ref_TxAnt is selected and set to Port(x), Tx antenna port(x) is used as thereference Tx antenna port. The reference Rx antenna port is determined byRef_InputChannel.The RS power of the current Tx/Rx path is used to set the reference level for theother Tx/Rx RS power levels. For example, when Tx port 0 and Rx port 0 (InputChannel 1) are selected, the Tx0/Rx0 section of the MIMO Info Talbe will show 0 dBfor RSPwr and the other Tx/Rx paths' RSPwr will be expressed in dB relative to this 0dB point.In the absence of cross-channel paths (when connecting directly to the Tx antennaports), make sure that the Tx/Rx path selected is present; otherwise, the signal willnot be demodulated. This is not a problem when SyncType is set to P-SS and theRef_TxAnt set to Autodetect since the demodulator will automatically detect thestrongest Tx/Rx path to use for the reference path. However, when Sync Type is setto RS, reference path autodetection is not supported and the reference Tx/Rxantenna path must be specified manually using Ref_TxAnt and Ref_InputChannel.When the reference signal (RS) for the reference Tx-to-Rx path is not present in thesignal, demodulation will fail.P-SS and S-SS must be present in the time capture of one of the channels connectedto the analyzer for successful demodulation to occur. For example, in a two-channeltransmit diversity signal that has P-SS and S-SS transmitted only on Tx port 1,thedemodulator could analyze Tx port 1 without Tx port 0 connected, but not vice versa.AntDetThresh: sets the threshold for transmit antenna port signal detection. Thesignal from a Tx antenna port has to be above the Antenna Detection Threshold to bedetected by the demodulator. The threshold is relative to the average RS subcarrierpower level of the reference antenna path, which is determined by the parametersRef_TxAnt and Ref_InputChannel.IncludeInactiveAntennaPaths: is used to show information for all Tx/Rx antennapaths on the MIMO Info results. If IncludeInactiveAntennaPaths = NO, only Tx/Rxantenna paths that that have an average RS power above the antenna detectionthreshold will be shown.MIMODecoding: determines how much of the transmit chain is decoded by thedemodulator. The selection of this parameter directly affects what values are shownon the IQ Measurement data and all other Measurement data that depend on the IQMeasurement data (error vector traces). MIMO Decoding applies to multi-antennasignals only.When MIMO Decoding is selected, the data points shown on the IQ Measurementdata are equivalent to the data points before precoding was applied in the transmitchain. In other words, the demodulated signal will be decoded and then shown on IQMeasurement data. Although the data points are mapped onto "subcarriers" whenbeing shown on the layer traces, the data points do not have a one-to-onecorrespondence to the subcarrier that they are mapped onto. For instance, whenthere is a frequency null that affects a subcarrier, there will be several (depending onthe precoding) data points in IQ Measurement data that are affected. Another way oflooking at this is that each subcarrier contains information from multiple data pointsafter precoding is performed (this does not apply to RS, P-SS, and S-SS which do notundergo precoding).For channels that undergo transmit diversity, the demodulator will undo transmitdiversity precoding, undo codeword-to-layer mapping, and show the resultingcodeword data points in their respective resource elements, copied on all layertraces. That is, constellation points on layer traces for transmit diversity-precodedchannels will be the same for all layer traces.When a signal uses Tx Diversity, the amount of data transmitted is not increased, butthe reliability of the signal is increased by transmitting multiple copies of the data.For channels that undergo spatial multiplexing, the demodulator will only undoSpatial Multiplexing precoding and show the layer data points in their respectiveresource elements on the appropriate layer traces.For precoded channels, subcarrier points on the layer traces do not have a one-to-one correspondence to on-air subcarriers. Rather, each subcarrier point is actuallythe demodulated value of a codeword data point that was present prior to thecodeword-to-layer mapping at the transmitter.RS subcarriers from the reference Tx/Rx path are copied to all layer traces. P-SS andS-SS subcarriers from the P-SS/S-SS Antenna Port are also copied to all layer traces.When No Decoding is selected, no decoding or cross-channel equalization will beperformed on the measured IQ data. This means that, for LTE signals that have beenprecoded (multi-antenna signals), subcarrier points shown on measured IQ trace willactually be an addition of multiple modulation points, resulting in non-standardconstellations.For example, in a two antenna port signal, there will be subcarrier points that are anaddition of two QPSK points. The resulting diagram will be a 9QAM constellation.These are effectively the points that were transmitted on the OFDM subcarriers.Reference antenna path equalization will still be performed when Equalizer Training isenabled (set to RS or RS+Data). Only one input channel is analyzed. The signal fromthe reference input antenna port will be equalized using the reference antenna path

Page 91: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

90

RS. The points on layer traces will correspond to actual subcarriers, and each set oflayer traces will be identical.The No Decoding selection is useful for the case that you have four antenna signals,and you want to isolate channel effects from transmit chain effects (filters, mixers,etc.). You could connect each transmit port directly to your measurement instrumentwith identical cables. That way, any observed anomalies would come primarily fromthe RF transmit chain.RBAutoDetect: enables autodetection of user allocations .When RB Auto Detect is selected, the demodulator will autodetect PDSCH userallocations. The codeword powers (needed for EVM calculations) and Precoding typeare not autodetected and need to be specified. And these parameters are assumed toapply to all autodetected PDSCH channels. When RB Auto Detect is selected, thedemodulator groups resource blocks that contain the same modulation type into auser so that there are three possible users: QPSK, QAM16, and QAM64. RBAutodetection can detect allocations which use either Spatial Multiplexing (SpMux) orTransmit Diversity (TxDiv) precoding, but not both. The Precoding parameterdetermines which type of precoding the demodulator looks for.When RBAutoDetect is set to Manual, all user’s allocation is set by the systemparameters and the RB allocation corresponding parameters.ResLenInSlots: determines how many slots will be available for demodulation.Measurement Interval and Measurement Offset specify which part of the time captureis demodulated.MeasOffset: specifies the offset from the Analysis Start Boundary to the beginning ofthe Measurement Interval (the data sent to the demodulator). Measurement Offset isspecified in slots plus symbol-times.*MeasInterval: determines how much data is sent to the demodulator and can bespecified in slots plus symbol-times. The beginning of the measurement interval isspecified as an offset from the Analysis Start Boundary. The offset is specified by theMeasurement Offset parameter.AnalysisBoundary: specifies the alignment boundary of the Result Length time data.To ensure that this alignment can be achieved, the total amount of data acquired bythe analyzer is equal to the Result Length plus the length of the alignment boundaryspecified by Analysis Start Boundary. For example, when Analysis Start Boundary isset to Half-Frame, the total acquisition is equal to Result Length + 10 slots (and thedata available for analysis would start at a Half-Frame boundary). Once the ResultLength data is located within the time capture, Measurement Offset andMeasurement Interval determine what part of the Result Length data is to beanalyzed. The Measurement Interval data is shown on the Time trace. See imagebelow for more information.

CPLengthAutoDetect: indicates the CP length (Normal or Extended) that wasautodetected or specified by the CyclicPrefix parameter. When the CP length isautodetected, the text "(auto)" will be displayed to the right of the value.MirrorFreqSpectrum: whether or not the entire frequency spectrum will be flippedaround the carrier frequency.EqualizerTraining: tells the demodulator whether or not to equalize the signal(compensate for the measured channel frequency response). When Off is selected,no equalization will be applied to the signal. When RS is selected, equalization will beperformed using the frequency response calculated from the reference signal for thereference antenna path. The channel frequency response for subcarriers betweenreference signals will be linearly interpolated.EqualizerTrainingMovingAvgLength: specifies window length of the equalizer movingaverage (frequency smoothing) on the reference signals during equalization, as wellas the number of RS subcarriers to use in each average. When EqualizerTraining isset to RS, a value of 5 RS means the value of an RS subcarrier is calculated as theaverage of the value of that subcarrier and the values of the next two and previoustwo RS subcarriers in frequency. For RS subcarrier locations that do not have enoughRS subcarriers to one side or the other (those near the edge of the frequencyspectrum), the average is taken over available reference signal subcarriers.EVMMinimization: whether or not uses the reference signal to correct the signal.When Tracking is selected, the demodulator applies corrections on a symbol-by-symbol basis and the Equalizer Training parameter determines whether datasubcarriers are included in calculating corrections. When Equalizer Training is set toRS+Data, EVM Minimization Tracking is performed using the reference signal and thePDSCH data subcarriers. When Equalizer Training is set to RS or Off, EVMMinimization Tracking is performed using only the reference signal.When Off isselected, EVM minimization corrections are not applied to the signal.There are four types of corrections that can be applied to the signal to minimize theEVM. They are Amplitude, Frequency/Phase and Timing which are set by these 3parameters as follows.

Page 92: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

91

EVMMinimizationAmp: When selected, the average reference signal amplitude errorwill be used to correct the amplitudes of the subcarriersEVMMinimizationTiming: When selected, the average slope (average rate of change)of the RS phase in the frequency domain is used to correct the timingEVMMinimizationFreqPhase: When selected, the average reference signal phasedifference will be used to adjust subcarrier phaseSymTimeAdjMode and SymTimeAdj: determines where the FFT used for EVM anddemodulation results is located within the symbol + cyclic prefix time data.ReportEVMIndB: specifies the EVM units for all result data.PowerBoostNormalize: When Power Boost Normalize is selected, whether or not theconstellation be normalized.SaveConstellation: if set YES, the measured vector used for EVM calculation shall besaved to Data FileFramesToMeas: number of measured frames.DisplayFrame: the Frame number for display some vector measurement results.

Notes/Equations

This component performs an EVM measurement for a LTE downlink signal (including1.single transmit antenna and multiple transmit antennas). The input signal must be acomplex signal. The available results from this measurement are:

Error summaryThese measurement results contain information about the quality of the signalbeing analyzed (in the Measurement Interval). Measurement Intervaldetermines how much data is sent to the demodulator and can be specified insymbol-times by parameter MeasInterval. The beginning of the measurementinterval is specified as an offset from the AnalysisBoundary. The offset isspecified by the MeasOffset parameter. Notes: this need add link.Below is a list of available data results.

EVM: Overall RMS Error Vector Magnitude for all selected channels.EVMPk, EVMPkIdx and EVMSubcarPkIdx: The peak EVM value and locationof the peak EVM.DataEVM: RMS Error Vector Magnitude of the user channels.QPSKEVM: RMS average EVM of PDSCH QPSK allocations, calculatedaccording to the standardQAM16EVM: RMS average EVM of PDSCH 16QAM allocations, calculatedaccording to the standard.QAM64EVM: RMS average EVM of PDSCH 64QAM allocations, calculatedaccording to the standard.RSEVM: RMS Error Vector Magnitude of the reference signal.RSTxPower: Average (dBm) reference signal power, can be used tocalculate RSTP as defined by the standard.OFDMSymTxPower: Average power (dBm) for OFDM data subcarriers, canbe used to calculate OSTP as defined by the standard.FreqErr: Average carrier frequency error (unit: Hz).SyncCorr: Correlation between the measured P-SS signal and the referenceP-SS signal.CommonTrackingError: Rms averaged common pilot error result (unit: %).SymClkErr: Frequency error of the measured signal's symbol clock (unit:ppm).TimeOffset: The distance from the start of the Search Time trace to thebeginning of the Measurement Interval (unit:sec).IQOffset: IQ offset result is computed as a power ratio of dc power to totalaveraged power.IQGainImbalance: I vs Q amplifier gain imbalance (ratio of I-gain to Q-gain).IQQuadError: Amount of angle skew between I and Q (unit: deg).IQTimingSkew: Time difference between the I and Q parts of the signal(unit: sec).Only EVM and EVM Pk are calculated from the channels that are selectedfor. The other Error Summary data results are not dependent on whichchannels are selected for analysis. The ReportEVMIndB parameter affectsthe units of EVM result.

Frame summaryThe Frame Summary trace shows the EVM, power, and number of resourceblocks occupied for the channels and signals that are present in theMeasurement Interval.EVM is the RMS value of error vector magnitudes for the channel. TheReportEVMIndB parameter affects the units of EVM result. Power is the per-subcarrier power received at the reference input channel, averaged over all thesubcarriers belonging to the physical layer channel. The power values arereported in dB relative to the reference signal power. For PDSCH channels, thePower data result also shows the average power for each layer.NumRB shows the number of resource blocks (1 RB x 1 slot) within theMeasurement Interval that contain subcarriers belonging to the channel

P_SSEVM: EVM result of P_SS.P_SSPower: power of P_SS in dB relative to the reference signal power.

Page 93: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

92

P_SSNumRB: number of RBs of P_SS.S_SSEVM: EVM result of S_SS.S_SSPower: power of S_SS in dB relative to the reference signal power.S_SSNumRB: number of RBs of S_SS.PBCHEVM: EVM result of PBCH.PBCHPower: power of PBCH in dB relative to the reference signal power.PBCHNumRB: The number of RBs of PBCH.PCFICHEVM: EVM result of PCFICH.PCFICHPower: power of PCFICH in dB relative to the reference signal powerPCFICHNumRB: number of RBs of PCFICH.PHICHEVM: EVM result of PHICH.PHICHPower: power of PHICH in dB relative to the reference signal powerPHICHNumRB: number of RBs of PHICH.PDCCHEVM: EVM result of PDCCH.PDCCHPower: power of PDCCH in dB relative to the reference signal power.PDCCHNumRB: number of RBs of PDCCH.RSEVM: EVM result of RS.RSPower: power of RS in dB relative to the reference signal powerRSNumRB: number of RBs of RS.PDSCHEVM: EVM result of PDSCH.PDSCHPower: power of PDSCH in dB relative to the reference signal powerPDSCHNumRB: number of RBs of PDSCH.PDSCH_UsersEVM: EVM result of PDSCH for each user.PDSCH_UsersPower: power of PDSCH for each user in dB relative to thereference signal powerPDSCH_UsersNumRB: number of RBs of PDSCH for each user.The user mappings for downlink users (PDSCH) and the downlink controlchannel and signal are specified by the corresponding parameters same asthe downlink signal sources.

Vector measurement outputIf parameter SaveConstellation set to YES, the available vector measurementoutput for the displayed frame (specified by the parameter DisplayFrame) arelisted below:

MeasuredVector: IQ measured vector result after FFT of all layers, and theFFT window starts from the center of CP.MeasuredModFormat: Modulation format per subcarrier and symbol. Enumvalues used in this result are defined as follows:0 MOD_NONE null subcarrier

1 MOD_QPSK QPSK modulation

2 MOD_QAM16 16QAM modulation

3 MOD_QAM64 64QAM modulation

4 MOD_BPSK BPSK modulation

8 MOD_BPSK_CDM_45DEG PHICH BPSK +45deg ROTATED plus CDM (code domainmodulation) combination. Multiple users have the samePHICH allocation, but their data are separated by orthogonalcodes.

9 MOD_DL_RS modulation of RS

10 MOD_PSCH modulation of PSCH, Zadoff-Chu sequence

MeasuredChanType: Channel type per subcarrier and symbol of layer 0.Enum values used in this result are defined as follows:

Page 94: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

93

0 null subcarrier

1 PSCH

2 SSCH

3 RS

4 PBCH

5 PCFICH

6 PHICH

7 PDCCH

21 unused DC

22 unused subcarriers at edges of central 72 PSCH/SSCH sync subcarriers

23 unused subcarriers reserved for Antenna Port 0 RS subcarrier transmission

24 unused subcarriers reserved for Antenna Port 1 RS subcarrier transmission

25 unused subcarriers reserved for Antenna Port 2 RS subcarrier transmission

26 unused subcarriers reserved for Antenna Port 3 RS subcarrier transmission

27 unused subcarriers within PBCH channel symbols (i.e. inactive Null subcarriers)

28 unused subcarriers within PCFICH channel symbols (i.e. inactive Null subcarriers)

29 unused subcarriers within PHICH channel symbols (i.e. inactive Null subcarriers)

30 unused subcarriers within PXCCH control channel symbols (i.e. inactive Nullsubcarriers)

32 unused subcarriers for partial RB in Subframe 0 (all sym) and Subframe 10 (just syncsym) when Odd #Tx RB

34 allocated for PXSCH, but disabled

35 unused reserved RS subcarriers within PBCH channel symbols (i.e. inactive Nullsubcarriers)

100~ PDSCH, use numbers after this for multiple data bursts, such as 100, 101, 102, …

OFDMRBErrorMagSpectrum: EVM result (%), rms averaged over subcarrierand symbol for each RB and Slot of each layer for the reference TxRx pathwhich is decided by the parameters Ref_TxAnt and Ref_InputChannel. It isa 2 dimensional result of RB and slot but shown as a 1 dimensional vectorin such alignment as (Slot0, RB0), (Slot0, RB1), (Slot0, RB2), …, (Slot1,RB0), (Slot1, RB1), (Slot1, RB2), …(Slot2, RB0), (Slot2, RB1), …etc. Wherethe number of slots is decided by MeasOffset and MeasInterval . Becauseaverage is computed slot by slot in time, odd symbols after slot boundaryat the end are averaged to add an additional result at the end. Likewise,when MeasOffset in symbols is not 0, odd symbols before slot boundary atthe beginning are averaged to add an additional result at the beginning.So, when MeasOffset in symbols = 0 and MeasInterval in symbols = 0,then, the number of slots is equal to MeasInterval in slots. WhenMeasOffset in symbols > 0 and MeasInterval in symbols = 0, the number ofslots is equal to MeasInterval in slots + 1. When MeasOffset in symbols = 0and MeasInterval in symbols > 0, the number of slots is equal toMeasInterval in slots + 1, too.OFDMRBPowerSpectrum: Normalized relative power result in linear scale,rms averaged over subcarrier and symbol for each RB and slot of eachlayer for the reference TxRx path which is decided by the parametersRef_TxAnt and Ref_InputChannel. The data format is same asOFDMRBErrorMagSpectrum.OFDMErrVectSpectrum: a comlex vector with length: the actual number ofsymbols analyzed * numOfSubcarriers. Error vector result, which is thedifference between IQ measured vector result and IQ reference vectorresult for the reference TxRx path which is decided by the parametersRef_TxAnt and Ref_InputChannel.OFDMFrequencyError: a real vector with length: the number ofmeasurement slot. Each element is the frequency error estimated overeach slot for the reference TxRx path which is decided by the parametersRef_TxAnt and Ref_InputChannel.TxRxEqChanFreqResp: Each row vector is a normalized equalizer channelfrequency response over subcarriers of each path.Constellation for all channelsThe displayed constellation of each channel and each layer are listed below:PDSCHConst_QPSK: Constellation of PDSCH with QPSK modulation.PDSCHConst_16QAM: Constellation of PDSCH with 16QAM modulation.PDSCHConst_64QAM: Constellation of PDSCH with 64QAM modulation.PSSConst: Constellation of PSS.SSSConst: Constellation of SSS.RSConst: Constellation of RS.PBCHConst: Constellation of PBCH.PCFICHConst: Constellation of PCFICH.PHICHConst: Constellation of PHICH.PDCCHConst: Constellation of PDCCH.

MIMO information printed in the Simulation LogThe MIMO information about Tx/Rx antenna paths present in the signal isprinted in the simulation log. This information is calculated from the referencesignals. The items are listed below:

Page 95: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

94

RSPwr(dB): Average (RMS) RS signal power. It shows the average power ofthe reference signal from a Tx/Rx antenna path. RSPwr is expressed in dBrelative to the power of RS on the reference Tx/Rx antenna path and iscalculated from the data in the Measurement Interval.RSEvm(% or dB): Average (RMS) RS EVM. It shows the average errorvector magnitude of the reference signal for each Tx/Rx antenna path andis calculated from the data in the Measurement Interval. The RS subcarrierEVMs are calculated and expressed relative to the average power of thesignal. Then the EVMs are RMS averaged, and the result is expressed in dBor percentage depending on the Report EVM in dB parameterRSTiming(second): RS timing error. It shows the average timing error ofthe reference signal for a Tx/Rx antenna path. RSTiming is expressed innanoseconds relative to the RS timing error of the reference Tx/Rx antennapath and is calculated from the data in the Measurement Interval.RSPhase(degress): Average(RMS) RS phase error. It shows the averagephase error of the reference signal for each Tx/Rx antenna path. RSPhaseis expressed in degrees relative to the RS phase error of the referenceTx/Rx antenna path and is calculated from the data in the MeasurementInterval.RSSymClk(ppm): Average RS symbol clock error. It shows the symbol clockerror of the reference signal for a Tx/Rx antenna path.RSSymClk isexpressed in ppm (parts-per-million) relative to the symbol clock error ofthe reference Tx/Rx antenna path and is calculated from the data in theMeasurement Interval.RSFreq(Hz): RS frequency shift error. It shows the frequency error of thereference signal for each Tx/Rx antenna path.RSFreq is expressed in Hzrelative to the RS frequency error of the reference Tx/Rx antenna path andis calculated from the data in the Measurement Interval.IQGainImb: shows the amount of amplifier gain imbalance between I and Qfor a transmit antenna port over all receive antenna ports. IQGainImb iscomputed by calculating the ratio of I to Q for each pair of PDSCHsubcarriers symmetric about the DC axis and then linearly averaging theratios. IQGainImb is calculated over all PDSCH subcarriers in theMeasurement Interval. IQGainImb is calculated for each transmit antennaport. When a Tx/Rx antenna path is present, the MIMO Info Table printedin the simulation log will show the IQ gain imbalance for the correspondingtransmit antenna port. Antenna paths with the same Tx antenna port butdifferent Rx ports will show the same value.IQQuadErr(deg): IQ quadrature error. It shows the IQ quadrature error, orangle error between I and Q for a transmit antenna, averaged over thePDSCH subcarriers on a transmit antenna port for all Rx antenna ports.IQQuadErr is expressed in number of degrees. Positive values indicate thatthe angle between I and Q is greater than 90 degrees. Negative valuesindicate that the angle between I and Q is less than 90 degrees. IQQuadErris calculated for each transmit antenna port. When a Tx/Rx antenna path ispresent, the MIMO Info Table will show the IQ quadrature error for thecorresponding transmit antenna port. Antenna paths with the same Txantenna port but different Rx ports will show the same value.IQTimSkew(second): IQ timing skew. It shows the amount of IQ timeskew, or delay between the I and Q channels, averaged over the PDSCHsubcarriers on a transmit antenna port for all Rx antenna ports. IQTimSkewis expressed in nanoseconds and is calculated from the data in theMeasurement Interval. IQTimSkew is calculated for each transmit antennaport. When a Tx/Rx antenna path is present, the MIMO Info Table will showthe IQ timing skew for the corresponding transmit antenna port. Antennapaths with the same Tx antenna port but different Rx ports will show thesame value.RSPwr, RSTiming, RSPhase, RSSymClk and RSFreq are set to zero for theTx/Rx antenna path determined by the Ref Input Channel and Ref TxAntenna parameters. The values of these data results for other Tx/Rxantenna paths are reported relative to the reference antenna path.Cases where the IQ metrics cannot be calculated are as follows:The signal has the MIMO_Mode set to (SM) Spatial Multiplexing, CDD_Modeset to W/o CDD, and the number of layers is less than the number oftransmit antennas.The signal in the Measurement Interval does not contain at least onePDSCH subcarrier that has a corresponding PDSCH subcarrier in thefrequency-mirrored location on the other side of the DC axis.RSPwr, RSTiming, RSPhase, RSSymClk and RSFreq are set to zero for theTx/Rx antenna path determined by the Ref_TxAnt and Ref_InputChannelparameters. The values of these data results for other Tx/Rx antenna pathsare reported relative to the reference antenna path.

The algorithm used here is the same as the one used in Agilent 89600 software.2.Following is a brief description of the algorithm.Starting at the beginning of the frame, a signal segment of length SearchLength isacquired. The SearchLength is longer than the result length (which is decided byparameter ResLenInSlots) by approximately the length of the AnalysisBoundary

Page 96: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

95

(frame = 10 ms, slot = 0.5 ms, etc.) to allow for location of the analysis boundarywithin the time capture. ResLenInSlots determines how many slots will be availablefor demodulation. MeasOffset and MeasInterval specify which part of the time captureis demodulated.To ensure that this alignment can be achieved, the total amount of data acquired bythe analyzer is larger than the result length plus the length of the alignmentboundary specified by AnalysisBoundary. For example, when AnalysisBoundary is setto Half-Frame, the total acquisition is larger than result length + 10 slots (and thedata available for analysis would start at a Half-Frame boundary).The acquired complex signal is passed to a complex algorithm that performssynchronization, demodulation, and EVM analysis. The algorithm that performs thesynchronization, demodulation, and EVM analysis is the same as the one used in theAgilent 89600 VSA.If for any reason a measurement is misdetected (in this model, if synchronizationcorrelation coefficient is less than 0.4, the measurement shall be discarded) theresults from its analysis are discarded.See LTE_DL_Receiver (ltebasever) and LTE_DL_Src (ltebasever).3.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.104 v8.7.0 "Base Station (BS) radio transmission and reception",2.September 2009.TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access3.(UTRA),", V7.0.0, June 2006.Agilent 89600 VSA Online Help, Optional Measurement Software, 3G Cellular Comms4.Modulation Analysis, LTE Modulation Analysis, version 11.20.

Page 97: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

96

LTE_DL_EVM_Sink PartCategories: Measurement (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_DL_EVM_Sink (ltebasever) Downlink EVM measurementsink

LTE_DL_EVM_Sink

Description: Downlink EVM measurement sinkDomain: UntimedC++ Code Generation Support: NOAssociated Parts: LTE DL EVM Sink Part (ltebasever)

Model Parameters

Name Description Default Units Type Range

FrameMode frame mode: FDD, TDD FDD Enumeration

TDD_Config downlink and uplink allocations forTDD: Config_0, Config_1, Config_2,Config_3, Config_4, Config_5,Config_6

Config_0 Enumeration

SpecialSF_Config special subframe configuration forTDD: Config0, Config1, Config2,Config3, Config4, Config5, Config6,Config7, Config8

Config4 Enumeration

Bandwidth bandwidth: BW_1_4_MHz,BW_3_MHz, BW_5_MHz,BW_10_MHz, BW_15_MHz,BW_20_MHz

BW_5_MHz Enumeration

NumTxAnts number of Tx Antennas: Tx1, Tx2,Tx4

Tx1 Enumeration

CyclicPrefix type of cyclic prefix: Normal,Extended

Normal Enumeration

CellID_Sector the index of cell identity within thephysical-layer cell-identity group

0 Integer [0:2]

CellID_Group the index of cell identity group 0 Integer [0:167]

RB_MappingType the mapping type of VRBs to PRBs:Localized, Distributed

Localized Enumeration

SS_PerTxAnt whether synchronization signals (P-SS and S-SS) are transmitted oneach transmit antenna: NO, YES

NO Enumeration

UEs_MIMO_Mode MIMO Mode for each UE, 1 for TD, 0for SM

[0, 0, 0, 0, 0, 0] Integerarray

[0:1]

UEs_NumOfCWs number of code words for each UE [1, 1, 1, 1, 1, 1] Integerarray

[1:2]

UEs_NumOfLayers number of layers for each UE [2, 2, 2, 2, 2, 2] Integerarray

[1:4]

UE1_MappingType the modulation orders for UE 1 ineach subframe, valid when

[0, 0, 0, 0, 0, 0,0, 0, 0, 0]

Integerarray

Page 98: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

97

UE1_Payload is not set to MCS index.(0:QPSK, 1:16QAM, 2:64QAM)

RB_AllocType RB allocation type:StartRB_NumRBs, RB_indices_1D,RB_indices_2D

StartRB_NumRBs Enumeration

UE1_RB_Alloc the RB allocation for UE 1, in theformats of [start RB, number of RBs]or [[SF0 start RB, SF0 number ofRBs]; . . .; [SF9 start RB, SF9number of RBs]]

[0, 25] Integerarray

OtherUEs_MappingType the modulation orders for other UEsexcept UE 1 in all subframes.(0:QPSK, 1:16QAM, 2:64QAM)

[0, 0, 0, 0, 0] Integerarray

UE2_RB_Alloc the RB allocation for UE 2, in theformats of [start RB, number of RBs]or [[SF0 start RB, SF0 number ofRBs]; . . .; [SF9 start RB, SF9number of RBs]]

[0, 0] Integerarray

UE3_RB_Alloc the RB allocation for UE 3, in theformats of [start RB, number of RBs]or [[SF0 start RB, SF0 number ofRBs]; . . .; [SF9 start RB, SF9number of RBs]]

[0, 0] Integerarray

UE4_RB_Alloc the RB allocation for UE 4, in theformats of [start RB, number of RBs]or [[SF0 start RB, SF0 number ofRBs]; . . .; [SF9 start RB, SF9number of RBs]]

[0, 0] Integerarray

UE5_RB_Alloc the RB allocation for UE 5, in theformats of [start RB, number of RBs]or [ [SF0 start RB, SF0 number ofRBs]; . . .; [SF9 start RB, SF9number of RBs]]

[0, 0] Integerarray

UE6_RB_Alloc the RB allocation for UE 6, in theformats of [start RB, number of RBs]or [[SF0 start RB, SF0 number ofRBs]; . . .; [SF9 start RB, SF9number of RBs]]

[0, 0] Integerarray

PDCCH_SymsPerSF number of OFDM symbols of PDCCHfor each subframe

[2, 2, 2, 2, 2, 2,2, 2, 2, 2]

Integerarray

[0:3]

PHICH_Duration type of PHICH duration:Normal_Duration,Extended_Duration

Normal_Duration Enumeration

PHICH_Ng PHICH Ng value: Ng_1_6, Ng_1_2,Ng_1, Ng_2

Ng_1_6 Enumeration

FramesToAverage number of frames that will beaveraged if AverageType is RMS(Video)

10 Integer [1:∞)

DisplayOption display option: Percentage, dB,Percentage_dB

Percentage_dB Enumeration

MeasurementOption measurement option:Per_PhysicalCh, Per_RB,Per_PhysicalCh_RB

Per_PhysicalCh Enumeration

SymbolIndex given OFDM symbol index when EVMvs RE for specific OFDM symbol ismeasured

0 Integer [0:139]

Input Ports

Port Name Description Signal Type Optional

1 PDCCH input PDCCH mapping signal complex YES

2 PHICH input mapping signal of PHICH complex YES

3 PCFICH input mapping signal of PCFICH complex YES

4 BCH input BCH mapping signal complex YES

5 UE1_Data input data signal from UE 1 multiple complex NO

6 UE2_Data input data signal from UE 2 multiple complex NO

7 UE3_Data input data signal from UE 3 multiple complex NO

8 UE4_Data input data signal from UE 4 multiple complex NO

9 UE5_Data input data signal from UE 5 multiple complex NO

10 UE6_Data input data signal from UE 6 multiple complex NO

11 SSCH input S-SCH mapping signal multiple complex YES

12 PSCH input P-SCH mapping signal multiple complex YES

13 CompositeSig input composite signals multiple complex YES

Notes/Equations

This model performs EVM measurement on LTE downlink signal for both FDD and1.TDD mode.The EVM is defined as the RMS value of the error vector difference between the ideal2.reference signal and the measured signal. Its generic form can be written as follows:

Page 99: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

98

si: measured signalri: ideal reference signalThe bandwidth of the multiple ports (from UE1_Data to UE6_Data) should be equal to3.the number of code words defined in UEs_NumOfCWs parameter.The available results from this measurement are dependent on these two4.parameters: DisplayOption and MeasurementOption.When DisplayOption = Percentage , the EVM measurement results are provided inpercentage.When DisplayOption = dB , the EVM measurement results are provided in dB.When DisplayOption = Percentage_dB , the EVM measurement results in percentageand dB are both provided.When MeasurementOption = Per_PhysicalCh , the EVM measurements for differentphysical channels, such as P-SCH, S-SCH, BCH, PDCCH, PCFICH, PHICH and UEsData are performed frame by frame, and the averaged EVM measurement resultsover FramesToAverage frames for these physical channels also provided.When MeasurementOption = Per_RB , the EVM measurements for different resourceblocks which are occupied by UEs Data are performed frame by frame, and theaveraged EVM measurement results over FramesToAverage frames for theseresource blocks also provided.When MeasurementOption = Per_PhysicalCh_RB , both EVM measurements fordifferent physical channels and for different resource blocks are performed frame byframe, and the averaged EVM measurement results over FramesToAverage framesfor these physical channels and resource blocks both provided.The available measurement results in the dataset are as follows:5.

Only available when DisplayOption = Percentage or Percentage_dB and whenMeasurementOption = Per_PhysicalCh or Per_PhysicalCh_RB:

PSCH_EVM_Percent: EVM measurement result for P-SCH of each frame inpercentage, from 0 to FramesToAverage-1.PSCH_Avg_EVM_Percent: averaged EVM measurement result overFramesToAverage frames for P-SCH in percentage.SSCH_EVM_Percent: EVM measurement result for S-SCH of each frame inpercentage, from 0 to FramesToAverage-1.SSCH_Avg_EVM_Percent: averaged EVM measurement result overFramesToAverage frames for S-SCH in percentage.BCH_EVM_Percent: EVM measurement result for BCH of each frame inpercentage, from 0 to FramesToAverage-1.BCH_Avg_EVM_Percent: averaged EVM measurement result overFramesToAverage frames for BCH in percentage.PDCCH_EVM_Percent: EVM measurement result for PDCCH of each frame inpercentage, from 0 to FramesToAverage-1.PDCCH_Avg_EVM_Percent: averaged EVM measurement result overFramesToAverage frames for PDCCH in percentage.PCFICH_EVM_Percent: EVM measurement result for PCFICH of each framein percentage, from 0 to FramesToAverage-1.PCFICH_Avg_EVM_Percent: averaged EVM measurement result overFramesToAverage frames for PCFICH in percentage.PHICH_EVM_Percent: EVM measurement result for PHICH of each frame inpercentage, from 0 to FramesToAverage-1.PHICH_Avg_EVM_Percent: averaged EVM measurement result overFramesToAverage frames for PHICH in percentage.UEx_Data_EVM_Percent_CWy: EVM measurement result for UEs Data (ifthe allocated RBs are not 0) of each frame in percentage, from 0 toFramesToAverage-1, where x is from 1 to 6, y is from 1 to 2 for code wordindex.UEx_Data_Avg_EVM_Percent_CWy: averaged EVM measurement resultover FramesToAverage frames for UEs Data if the allocated RBs are not 0)in percentage, where x is from 1 to 6, y is from 1 to 2 for code word index.

Only available when DisplayOption = dB or Percentage_dB and whenMeasurementOption = Per_PhysicalCh or Per_PhysicalCh_RB:

PSCH_EVM_dB EVM measurement result for P-SCH of each frame in dB,from 0 to FramesToAverage-1.PSCH_Avg_EVM_dB: averaged EVM measurement result overFramesToAverage frames for P-SCH in dB.SSCH_EVM_dB: EVM measurement result for S-SCH of each frame in dB,from 0 to FramesToAverage-1.SSCH_Avg_EVM_dB: averaged EVM measurement result overFramesToAverage frames for S-SCH in dB.BCH_EVM_dB: EVM measurement result for BCH of each frame in dB, from0 to FramesToAverage-1.BCH_Avg_EVM_dB: averaged EVM measurement result overFramesToAverage frames for BCH in dB.PDCCH_EVM_dB: EVM measurement result for PDCCH of each frame in dB,from 0 to FramesToAverage-1.

Page 100: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

99

PDCCH_Avg_EVM_dB: averaged EVM measurement result overFramesToAverage frames for PDCCH in dB.PCFICH_EVM_dB: EVM measurement result for PCFICH of each frame in dB,from 0 to FramesToAverage-1.PCFICH_Avg_EVM_dB: averaged EVM measurement result overFramesToAverage frames for PCFICH in dB.PHICH_EVM_dB: EVM measurement result for PHICH of each frame in dB,from 0 to FramesToAverage-1.PHICH_Avg_EVM_dB: averaged EVM measurement result overFramesToAverage frames for PHICH in dB.UEx_Data_EVM_dB_CWy: EVM measurement result for UEs Data (if theallocated RBs are not 0) of each frame in dB, from 0 to FramesToAverage-1, where x is from 1 to 6, y is from 1 to 2 for code word index.UEx_Data_Avg_EVM_dB_CWy: averaged EVM measurement result overFramesToAverage frames for UE Data if the allocated RBs are not 0) in dB,where x is from 1 to 6, y is from 1 to 2 for code word index.

Only available when DisplayOption = Percentage or Percentage_dB and whenMeasurementOption = Per_RB or Per_PhysicalCh_RB:

UEx_EVM_RB_Percent_CWy: EVM measurement result for UEs Data (if theallocated RBs are not 0) of each resource block occupied by UEs Data inpercentage, where x is from 1 to 6, y is from 1 to 2 for code word index.UEx_Avg_EVM_RB_Percent_CWy: averaged EVM measurement result overFramesToAverage frames for UEs Data if the allocated RBs are not 0) inpercentage, where x is from 1 to 6, y is from 1 to 2 for code word index.

Only available when DisplayOption = dB or Percentage_dB and whenMeasurementOption = Per_RB or Per_PhysicalCh_RB:

UEx_EVM_RB_dB_CWy: EVM measurement result for UEs Data (if theallocated RBs are not 0) of each frame in dB, from 0 to FramesToAverage-1, where x is from 1 to 6, y is from 1 to 2 for code word index.UEx_Avg_EVM_RB_dB_CWy: averaged EVM measurement result overFramesToAverage frames for UEs Data if the allocated RBs are not 0) in dB,where x is from 1 to 6, y is from 1 to 2 for code word index.The constellations of input symbols for UEs Data (if the allocated RBs arenot 0) are provided.

Meanwhile, EVMs vs. Subcarriers are provided for the given OFDM symbolspecified in SymbolIndex parameter, as follows:

Ant0_Avg_EVM_SC_Percent, Ant1_Avg_EVM_SC_Percent,Ant2_Avg_EVM_SC_Percent, Ant3_Avg_EVM_SC_Percent: averaged EVMmeasurement results over FramesToAverage frames for the OFDM symbolspecified in SymbolIndex parameter in percentage for antenna port 0, 1, 2and 3 respectively.Ant0_Avg_EVM_SC_dB, Ant1_Avg_EVM_SC_dB, Ant2_Avg_EVM_SC_dB,Ant3_Avg_EVM_SC_dB: averaged EVM measurement results overFramesToAverage frames for the OFDM symbol specified in SymbolIndexparameter in dB for antenna port 0, 1, 2 and 3 respectively.Ant0_EVM_SC_Percent, Ant1_EVM_SC_Percent, Ant2_EVM_SC_Percent,Ant3_EVM_SC_Percent: EVM measurement results over FramesToAverageframes for the OFDM symbol specified in SymbolIndex parameter inpercentage for antenna port 0, 1, 2 and 3 respectively.Ant0_EVM_SC_dB, Ant1_EVM_SC_dB, Ant2_EVM_SC_dB,Ant3_EVM_SC_dB: EVM measurement results over FramesToAverageframes for the OFDM symbol specified in SymbolIndex parameter in dB forantenna port 0, 1, 2 and 3 respectively.

For more information on parameters details, please refer to refer to DL Parameters6.(ltebasever).See LTE_DL_EVM (ltebasever).7.

References

3GPP TS 36.211 v8.6.0, "Physical Channels and Modulation", March 2009.1.3GPP TS 36.104 v8.5.0 "Base Station (BS) radio transmission and reception", March2.2009.TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access3.(UTRA),", V7.0.0, June 2006.

Page 101: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

100

LTE_DL_MIMO_2Ant_Src_RangeCheckPartCategories: C++ Code Generation (ltebasever), Measurement (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_DL_MIMO_2Ant_Src_RangeCheck (ltebasever) LTE downlink MIMO 2Ant signal source rangecheck

LTE_DL_MIMO_2Ant_Src_RangeCheck (DownlinkMIMO 2Ant signal source range check)

Description: LTE downlink MIMO 2Ant signal source range checkDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE DL MIMO 2Ant Src RangeCheck Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

SpecialSF_Config special subframe configuration for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6, Config 7,Config 8

Config 4 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW5 MHz, BW 10 MHz, BW 15 MHz, BW 20MHz

BW 5 MHz Enumeration NO

OversamplingOption Ratio 1, Ratio 2, Ratio 4, Ratio 8: Ratio1, Ratio 2, Ratio 4, Ratio 8

Ratio 2 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

CellID_Sector the index of cell identity within thephysical-layer cell-identity group

0 Integer NO

CellID_Group the index of cell identity group 0 Integer NO

RB_MappingType the mapping type of VRBs to PRBs:Localized, Distributed

Localized Enumeration NO

SS_PerTxAnt whether synchronization signals (P-SSand S-SS) are transmitted on eachtransmit antenna: NO, YES

NO Enumeration NO

UEs_MIMO_Mode MIMO Mode for each UE, 1 for TD, 0 forSM

[0, 0, 0, 0, 0, 0] Integerarray

NO

UEs_CDD_Mode CDD Mode for each UE, 1 for Zero-Delay, 0 for Large-Delay

[0, 0, 0, 0, 0, 0] Integerarray

NO

UEs_CdBlk_Index codebook index for precoding for eachUE

[0, 0, 0, 0, 0, 0] Integerarray

NO

UEs_NumOfCWs number of code words for each UE [1, 1, 1, 1, 1, 1] Integerarray

NO

UEs_NumOfLayers number of layers for each UE [2, 2, 2, 2, 2, 2] Integerarray

NO

UE1_HARQ_Enable UE1 HARQ closed-loop transmissionenable: NO, YES

YES Enumeration NO

UE1_NumHARQ UE1 Number of HARQ processes 8 Integer NO

UE1_MaxHARQTrans UE1 Maximum number of HARQtransmission per each HARQ process

4 Integer NO

UE1_CL_Precoding_Enable whether closed-loop MIMO precoding forUE1 is enabled: NO, YES

NO Enumeration NO

UE1_PMI_Granularity closed-loop PMI reporting granularity inunits of resource blocks (RBs) for UE1

25 Integer NO

UE1_PMI_Delay closed-loop PMI reporting delay in unitsof sub-frames (1ms) for UE1

6 Integer NO

UE1_Config the configuration mode of input data forUE 1.: MCS index, Transport block size,

Transport blocksize

Enumeration NO

Page 102: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

101

Code rate

UE1_Payload the input payload for UE 1, the meaningof the input is defined in UE1_Config

[2555, 2555,2555, 2555,2555, 2555,2555, 2555,2555, 2555]

Floatingpoint array

NO

UE1_MappingType the modulation orders for UE 1 in eachsubframe, valid when UE1_Payload isnot set to MCS index. (0:QPSK,1:16QAM, 2:64QAM)

[0, 0, 0, 0, 0, 0,0, 0, 0, 0]

Integerarray

NO

UE1_RV_Sequence UE1 Redundancy Version Sequence forHARQ closed-loop transmission

[0,1,2,3] Integerarray

NO

UE1_n_RNTI Radio network temporary identifier forUE 1

1 Integer NO

UE1_Category defines UE capability, used to get thetotal number of soft channel bits forrate-matching in downlink.: Category 1,Category 2, Category 3, Category 4,Category 5

Category 1 Enumeration NO

RB_AllocType RB allocation type: StartRB + NumRBs,RB indices (1D), RB indices (2D)

StartRB +NumRBs

Enumeration NO

UE1_RB_Alloc the RB allocation for UE 1, in theformats of [start RB, number of RBs] or[[SF0 start RB, SF0 number of RBs]; . ..; [SF9 start RB, SF9 number of RBs]]

[0, 25] Integerarray

NO

OtherUEs_MappingType the modulation orders for other UEsexcept UE 1 in all subframes. (0:QPSK,1:16QAM, 2:64QAM)

[0, 0, 0, 0, 0] Integerarray

NO

UE2_RB_Alloc the RB allocation for UE 2, in theformats of [start RB, number of RBs] or[[SF0 start RB, SF0 number of RBs]; . ..; [SF9 start RB, SF9 number of RBs]]

[0, 0] Integerarray

NO

UE3_RB_Alloc the RB allocation for UE 3, in theformats of [start RB, number of RBs] or[[SF0 start RB, SF0 number of RBs]; . ..; [SF9 start RB, SF9 number of RBs]]

[0, 0] Integerarray

NO

UE4_RB_Alloc the RB allocation for UE 4, in theformats of [start RB, number of RBs] or[[SF0 start RB, SF0 number of RBs]; . ..; [SF9 start RB, SF9 number of RBs]]

[0, 0] Integerarray

NO

UE5_RB_Alloc the RB allocation for UE 5, in theformats of [start RB, number of RBs] or[ [SF0 start RB, SF0 number of RBs]; . ..; [SF9 start RB, SF9 number of RBs]]

[0, 0] Integerarray

NO

UE6_RB_Alloc the RB allocation for UE 6, in theformats of [start RB, number of RBs] or[[SF0 start RB, SF0 number of RBs]; . ..; [SF9 start RB, SF9 number of RBs]]

[0, 0] Integerarray

NO

PDCCH_SymsPerSF number of OFDM symbols of PDCCH foreach subframe

[2, 2, 2, 2, 2, 2,2, 2, 2, 2]

Integerarray

NO

PDCCH_UE_AggreLevel the aggregation levels of UE-specificPDCCH search space for everysubframe. The allowable levels are 1, 2,4 and 8.

[1] Integerarray

NO

PDCCH_UE_DCI_Formats the DCI Formats of the PDCCHcandidates for every subframe (-1means no DCI in correspondingcandidate).

[0, -1, -1, -1, -1, -1]

Integerarray

NO

PDCCH_Common_AggreLevel the aggregation levels of CommonPDCCH search space for everysubframe. The allowable levels are 4and 8.

[4] Integerarray

NO

PDCCH_Common_DCI_Formats the DCI Formats of the PDCCHcandidates for every subframe (-1means no DCI in correspondingcandidate).

[-1, -1, -1, -1] Integerarray

NO

UE_n_RNTI Radio network temporary identifier forUE

[1, 1, 1, 1, 1, 1,1, 1, 1, 1]

Integerarray

NO

PHICH_Duration type of PHICH duration:Normal_Duration, Extended_Duration

Normal_Duration Enumeration NO

PHICH_Ng PHICH Ng value: Ng 1/6, Ng 1/2, Ng 1,Ng 2

Ng 1/6 Enumeration NO

HI physical hybrid-ARQ ACK/NAK indicators [1, 0, 1, 0, 1, 0,1, 0, 1, 0]

Integerarray

NO

RS_EPRE transmit energy per resource element(RE) for transmitted cell specific RS foreach antenna port, in unit ofdBm/15kHz

-25 Float NO

PCFICH_Rb PCFICH-to-RS EPRE ratio in dB insymbols with RS

0 Float NO

PHICH_Ra PHICH-to-RS EPRE ratio in dB insymbols without RS

0 Float NO

Page 103: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

102

PHICH_Rb PHICH-to-RS EPRE ratio in dB insymbols with RS

0 Float NO

PBCH_Ra PBCH-to-RS EPRE ratio in dB in symbolswithout RS

0 Float NO

PBCH_Rb PBCH-to-RS EPRE ratio in dB in symbolswith RS

0 Float NO

PDCCH_Ra PDCCH-to-RS EPRE ratio in dB insymbols without RS

0 Float NO

PDCCH_Rb PDCCH-to-RS EPRE ratio in dB insymbols with RS

0 Float NO

PDSCH_PowerRatio PDSCH Cell Specific Ratio: p_B/p_A = 1,P_B = 0, P_B = 1, P_B = 2, P_B = 3

p_B/p_A = 1 Enumeration NO

UEs_Pa UE specific power parameter for each UE [0, 0, 0, 0, 0, 0] Floatingpoint array

NO

PSS_Ra PSS-to-RS EPRE ratio in dB in symbolswithout RS

0 Float NO

SSS_Ra SSS-to-RS EPRE ratio in dB in symbolswithout RS

0 Float NO

SpectrumShapingType spectrum shaping method:TimeWindowing, FIRFilter

TimeWindowing Enumeration NO

WindowType type of time transition windowingbetween two consecutive symbols, validwhenSpectrumShapingType=TimeWindowing:Tukey, Raised cosine

Tukey Enumeration NO

CyclicInterval the overlapped cyclic interval betweentwo adjacent symbols in unit of chips(without oversampling), valid whenSpectrumShapingType=TimeWindowing

6 Integer NO

CI_StartPos the start position of cyclic interval(without oversampling), compared tothe start position of CP (negative meansahead of CP)

-3 Integer NO

FIR_Taps number of FIR filter taps, valid whenSpectrumShapingType=FIRFilter

19 Integer NO

FIR_withInterp whether spectrum-shaping FIR filterwith interpolation operation or not, validwhen SpectrumShapingType=FIRFilter:NO, YES

NO Enumeration NO

FIR_FilterType spectrum-shaping FIR filter type, validwhen SpectrumShapingType=FIRFilter:RRC, Ideal Lowpass, EquiRipple

RRC Enumeration NO

RRC_Alpha roll-off factor for root raised-cosinefilter, valid whenSpectrumShapingType=FIRFilter

.22 Float NO

DisplayMsg control LTE system informationdisplayed in Simulation Log window:None, Simple, Full

Simple Enumeration NO

Notes/Equations

This model is used inside the LTE_DL_MIMO_2Ant_Src model for LTE Downlink with1.two antenna ports, serving two functions:

Validate the input parametersReport some useful internal inforamtion based on the input parameters

When the parameter DisplayMsg = None, no message is shown;When the parameter DisplayMsg = Simple, the System Configurations andUE-specific Configurations are output;When the parameter DisplayMsg = Full, the System Configurations, UE-specific Configurations and Power are output. Note that the transmit powerfor the OFDM symbols allocated to PDCCH is calculated with the assumptionthat all resource elements (REs) allocated to PDCCH are occupied withQPSK symbols. When some of the resource elements (REs) allocated toPDCCH are empty, the actual transmit power will be lower than the powerabove.

There is no input and output port in this model.2.The detailed descrioption for all input parameters can be found in LTE downlink two-3.port source parameters (ltebasever).When users want to test a set of parameters for LTE Downlink with two antenna4.ports, they can run this model alone. Then the error messages are shown ifparameters are wrong, or the useful intenal messages are shown based onDisplayMsg setting if parameters are correct.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.2.

Page 104: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

103

LTE_DL_MIMO_4Ant_Src_RangeCheckPartCategories: C++ Code Generation (ltebasever), Measurement (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_DL_MIMO_4Ant_Src_RangeCheck (ltebasever) LTE downlink MIMO 4Ant signal source rangecheck

LTE_DL_MIMO_4Ant_Src_RangeCheck (DownlinkMIMO 4Ant signal source range check)

Description: LTE downlink MIMO 4Ant signal source range checkDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE DL MIMO 4Ant Src RangeCheck Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

SpecialSF_Config special subframe configuration for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6, Config 7,Config 8

Config 4 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW5 MHz, BW 10 MHz, BW 15 MHz, BW 20MHz

BW 5 MHz Enumeration NO

OversamplingOption Ratio 1, Ratio 2, Ratio 4, Ratio 8: Ratio1, Ratio 2, Ratio 4, Ratio 8

Ratio 2 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

CellID_Sector the index of cell identity within thephysical-layer cell-identity group

0 Integer NO

CellID_Group the index of cell identity group 0 Integer NO

RB_MappingType the mapping type of VRBs to PRBs:Localized, Distributed

Localized Enumeration NO

SS_PerTxAnt whether synchronization signals (P-SSand S-SS) are transmitted on eachtransmit antenna: NO, YES

NO Enumeration NO

UEs_MIMO_Mode MIMO Mode for each UE, 1 for TD, 0 forSM

[0, 0, 0, 0, 0, 0] Integerarray

NO

UEs_CDD_Mode CDD Mode for each UE, 1 for Zero-Delay, 0 for Large-Delay

[0, 0, 0, 0, 0, 0] Integerarray

NO

UEs_CdBlk_Index codebook index for precoding for eachUE

[0, 0, 0, 0, 0, 0] Integerarray

NO

UEs_NumOfCWs number of code words for each UE [1, 1, 1, 1, 1, 1] Integerarray

NO

UEs_NumOfLayers number of layers for each UE [2, 2, 2, 2, 2, 2] Integerarray

NO

UE1_HARQ_Enable UE1 HARQ closed-loop transmissionenable: NO, YES

YES Enumeration NO

UE1_NumHARQ UE1 Number of HARQ processes 8 Integer NO

UE1_MaxHARQTrans UE1 Maximum number of HARQtransmission per each HARQ process

4 Integer NO

UE1_CL_Precoding_Enable whether closed-loop MIMO precoding forUE1 is enabled: NO, YES

NO Enumeration NO

UE1_PMI_Granularity closed-loop PMI reporting granularity inunits of resource blocks (RBs) for UE1

25 Integer NO

UE1_PMI_Delay closed-loop PMI reporting delay in unitsof sub-frames (1ms) for UE1

6 Integer NO

UE1_Config the configuration mode of input data forUE 1.: MCS index, Transport block size,

Transport blocksize

Enumeration NO

Page 105: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

104

Code rate

UE1_Payload the input payload for UE 1, the meaningof the input is defined in UE1_Config

[2555, 2555,2555, 2555,2555, 2555,2555, 2555,2555, 2555]

Floatingpoint array

NO

UE1_MappingType the modulation orders for UE 1 in eachsubframe, valid when UE1_Payload isnot set to MCS index. (0:QPSK,1:16QAM, 2:64QAM)

[0, 0, 0, 0, 0, 0,0, 0, 0, 0]

Integerarray

NO

UE1_RV_Sequence UE1 Redundancy Version Sequence forHARQ closed-loop transmission

[0,1,2,3] Integerarray

NO

UE1_n_RNTI Radio network temporary identifier forUE 1

1 Integer NO

UE1_Category defines UE capability, used to get thetotal number of soft channel bits forrate-matching in downlink.: Category 1,Category 2, Category 3, Category 4,Category 5

Category 1 Enumeration NO

RB_AllocType RB allocation type: StartRB + NumRBs,RB indices (1D), RB indices (2D)

StartRB +NumRBs

Enumeration NO

UE1_RB_Alloc the RB allocation for UE 1, in theformats of [start RB, number of RBs] or[[SF0 start RB, SF0 number of RBs]; . ..; [SF9 start RB, SF9 number of RBs]]

[0, 25] Integerarray

NO

OtherUEs_MappingType the modulation orders for other UEsexcept UE 1 in all subframes. (0:QPSK,1:16QAM, 2:64QAM)

[0, 0, 0, 0, 0] Integerarray

NO

UE2_RB_Alloc the RB allocation for UE 2, in theformats of [start RB, number of RBs] or[[SF0 start RB, SF0 number of RBs]; . ..; [SF9 start RB, SF9 number of RBs]]

[0, 0] Integerarray

NO

UE3_RB_Alloc the RB allocation for UE 3, in theformats of [start RB, number of RBs] or[[SF0 start RB, SF0 number of RBs]; . ..; [SF9 start RB, SF9 number of RBs]]

[0, 0] Integerarray

NO

UE4_RB_Alloc the RB allocation for UE 4, in theformats of [start RB, number of RBs] or[[SF0 start RB, SF0 number of RBs]; . ..; [SF9 start RB, SF9 number of RBs]]

[0, 0] Integerarray

NO

UE5_RB_Alloc the RB allocation for UE 5, in theformats of [start RB, number of RBs] or[ [SF0 start RB, SF0 number of RBs]; . ..; [SF9 start RB, SF9 number of RBs]]

[0, 0] Integerarray

NO

UE6_RB_Alloc the RB allocation for UE 6, in theformats of [start RB, number of RBs] or[[SF0 start RB, SF0 number of RBs]; . ..; [SF9 start RB, SF9 number of RBs]]

[0, 0] Integerarray

NO

PDCCH_SymsPerSF number of OFDM symbols of PDCCH foreach subframe

[2, 2, 2, 2, 2, 2,2, 2, 2, 2]

Integerarray

NO

PDCCH_UE_AggreLevel the aggregation levels of UE-specificPDCCH search space for everysubframe. The allowable levels are 1, 2,4 and 8.

[1] Integerarray

NO

PDCCH_UE_DCI_Formats the DCI Formats of the PDCCHcandidates for every subframe (-1means no DCI in correspondingcandidate).

[0, -1, -1, -1, -1, -1]

Integerarray

NO

PDCCH_Common_AggreLevel the aggregation levels of CommonPDCCH search space for everysubframe. The allowable levels are 4and 8.

[4] Integerarray

NO

PDCCH_Common_DCI_Formats the DCI Formats of the PDCCHcandidates for every subframe (-1means no DCI in correspondingcandidate).

[-1, -1, -1, -1] Integerarray

NO

UE_n_RNTI Radio network temporary identifier forUE

[1, 1, 1, 1, 1, 1,1, 1, 1, 1]

Integerarray

NO

PHICH_Duration type of PHICH duration:Normal_Duration, Extended_Duration

Normal_Duration Enumeration NO

PHICH_Ng PHICH Ng value: Ng 1/6, Ng 1/2, Ng 1,Ng 2

Ng 1/6 Enumeration NO

HI physical hybrid-ARQ ACK/NAK indicators [1, 0, 1, 0, 1, 0,1, 0, 1, 0]

Integerarray

NO

RS_EPRE transmit energy per resource element(RE) for transmitted cell specific RS foreach antenna port, in unit ofdBm/15kHz

-25 Float NO

PCFICH_Rb PCFICH-to-RS EPRE ratio in dB insymbols with RS

0 Float NO

PHICH_Ra PHICH-to-RS EPRE ratio in dB insymbols without RS

0 Float NO

Page 106: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

105

PHICH_Rb PHICH-to-RS EPRE ratio in dB insymbols with RS

0 Float NO

PBCH_Ra PBCH-to-RS EPRE ratio in dB in symbolswithout RS

0 Float NO

PBCH_Rb PBCH-to-RS EPRE ratio in dB in symbolswith RS

0 Float NO

PDCCH_Ra PDCCH-to-RS EPRE ratio in dB insymbols without RS

0 Float NO

PDCCH_Rb PDCCH-to-RS EPRE ratio in dB insymbols with RS

0 Float NO

PDSCH_PowerRatio PDSCH Cell Specific Ratio: p_B/p_A = 1,P_B = 0, P_B = 1, P_B = 2, P_B = 3

p_B/p_A = 1 Enumeration NO

UEs_Pa UE specific power parameter for each UE [0, 0, 0, 0, 0, 0] Floatingpoint array

NO

PSS_Ra PSS-to-RS EPRE ratio in dB in symbolswithout RS

0 Float NO

SSS_Ra SSS-to-RS EPRE ratio in dB in symbolswithout RS

0 Float NO

SpectrumShapingType spectrum shaping method:TimeWindowing, FIRFilter

TimeWindowing Enumeration NO

WindowType type of time transition windowingbetween two consecutive symbols, validwhenSpectrumShapingType=TimeWindowing:Tukey, Raised cosine

Tukey Enumeration NO

CyclicInterval the overlapped cyclic interval betweentwo adjacent symbols in unit of chips(without oversampling), valid whenSpectrumShapingType=TimeWindowing

6 Integer NO

CI_StartPos the start position of cyclic interval(without oversampling), compared tothe start position of CP (negative meansahead of CP)

-3 Integer NO

FIR_Taps number of FIR filter taps, valid whenSpectrumShapingType=FIRFilter

19 Integer NO

FIR_withInterp whether spectrum-shaping FIR filterwith interpolation operation or not, validwhen SpectrumShapingType=FIRFilter:NO, YES

NO Enumeration NO

FIR_FilterType spectrum-shaping FIR filter type, validwhen SpectrumShapingType=FIRFilter:RRC, Ideal Lowpass, EquiRipple

RRC Enumeration NO

RRC_Alpha roll-off factor for root raised-cosinefilter, valid whenSpectrumShapingType=FIRFilter

.22 Float NO

DisplayMsg control LTE system informationdisplayed in Simulation Log window:None, Simple, Full

Simple Enumeration NO

Notes/Equations

This model is used inside the LTE_DL_MIMO_4Ant_Src model for LTE Downlink with1.four antenna ports, serving two functions:

Validate the input parametersReport some useful internal inforamtion based on the input parameters

When the parameter DisplayMsg = None, no message is shown;When the parameter DisplayMsg = Simple, the System Configurations andUE-specific Configurations are output;When the parameter DisplayMsg = Full, the System Configurations, UE-specific Configurations and Power are output. Note that the transmit powerfor the OFDM symbols allocated to PDCCH is calculated with the assumptionthat all resource elements (REs) allocated to PDCCH are occupied withQPSK symbols. When some of the resource elements (REs) allocated toPDCCH are empty, the actual transmit power will be lower than the powerabove.

There is no input and output port in this model.2.The detailed descrioption for all input parameters can be found in LTE downlink four-3.port source parameters (ltebasever).When users want to test a set of parameters for LTE Downlink with four antenna4.ports, they can run this model alone. Then the error messages are shown ifparameters are wrong, or the useful intenal messages are shown based onDisplayMsg setting if parameters are correct.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.2.

Page 107: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

106

LTE_DL_MIMO_EVM_2Ants Part Downlink MIMO EVM measurement

Categories: Measurement (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model

LTE_DL_MIMO_EVM_2Ants (ltebasever)

LTE_DL_MIMO_EVM_2Ants (Uplink EVMMeasurement)

Description: Downlink MIMO EVM measurementAssociated Parts: LTE DL MIMO EVM 2Ants Part (ltebasever)

Model Parameters

Name Description Default Units Type

ShowSystemParameters show systemparameters for LTEdownlink signals:NO, YES

YES Enumeration

FrameMode frame mode: FDD,TDD

FDD Enumeration

TDD_Config downlink anduplink allocationsfor TDD: Config 0,Config 1, Config 2,Config 3, Config 4,Config 5, Config 6

Config 0 Enumeration

SpecialSF_Config downlink anduplink allocationsfor TDD: Config 0,Config 1, Config 2,Config 3, Config 4,Config 5, Config 6,Config 7, Config 8

Config 4 Enumeration

Bandwidth bandwidth: BW1.4 MHz, BW 3MHz, BW 5 MHz,BW 10 MHz, BW15 MHz, BW 20MHz

BW 5 MHz Enumeration

NumTxAnts number of TxAntennas: Tx1,Tx2, Tx4

Tx2 Enumeration

OversamplingOption oversamplingoption: Ratio 1,Ratio 2, Ratio 4,Ratio 8

Ratio 2 Enumeration

CyclicPrefix type of cyclicprefix: Normal,Extended

Normal Enumeration

CellID_Sector the index of cellidentity group

0 Integer

CellID_Group the index of cellidentity within thephysical-layer cell-identity group

0 Integer

RB_MappingType the mapping typeof VRBs to PRBs:Localized,Distributed

Localized Enumeration

SS_PerTxAnt whethersynchronizationsignals (P-SS andS-SS) aretransmitted oneach transmitantenna: NO, YES

YES Enumeration

Page 108: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

107

ShowMIMO_Parameters show MIMO-related parametersfor all six Ues: NO,YES

YES Enumeration

UEs_MIMO_Mode MIMO Mode foreach UE, 1 for TD,0 for SM

[0,0,0,0,0,0] Integerarray

UEs_CDD_Mode CDD Mode foreach UE, 1 forZero-Delay, 0 forLarge-Delay

[0,0,0,0,0,0] Integerarray

UEs_CdBlk_Index codebook index forprecoding for eachUE

[0,0,0,0,0,0] Integerarray

UEs_NumOfCWs number of codewords for each UE

[1,1,1,1,1,1] Integerarray

UEs_NumOfLayers number of layersfor each UE

[1,1,1,1,1,1] Integerarray

ShowUE1_Parameters show parametersfor coded UE1:NO, YES

YES Enumeration

UE1_HARQ_Enable Whether HARQclosed-looptransmission isenable: NO, YES

NO Enumeration

UE1_NumHARQ Number of HARQprocesses

8 Integer

UE1_MaxHARQTrans Maximum numberof HARQtransmission pereach HARQprocess

4 Integer

UE1_Config the configurationmode of input datafor UE 1.: MCSindex, Transportblock size, Coderate

Transport block size Enumeration

UE1_Payload the input payloadfor UE 1, themeaning of theinput is defined inUE1_Config

[2555,2555,2555,2555,2555,2555,2555,2555,2555,2555] Floatingpoint array

UE1_MappingType the modulationorders for UE 1 ineach subframe,valid whenUE1_Payload isnot set to MCSindex. (0:QPSK,1:16QAM,2:64QAM)

[0,0,0,0,0,0,0,0,0,0] Integerarray

UE1_RV_Sequence RedundancyVersion Sequencefor HARQ closed-loop transmission

[0,1,2,3] Integerarray

UE1_n_RNTI Radio networktemporaryidentifier for UE 1

1 Integer

UE1_Category defines UE1capability, used toget the totalnumber of softchannel bits forrate-matching indownlink.:Category 1,Category 2,Category 3,Category 4,Category 5

Category 1 Enumeration

RB_AllocType RB allocation type:StartRB +NumRBs, RBindices (1D), RBindices (2D)

StartRB + NumRBs Enumeration

UE1_RB_Alloc the RB allocationfor UE 1, in theformats of [startRB, number ofRBs] or [SF0 startRB, SF0 number ofRBs; . . . ; SF9start RB, SF9number of RBs]

[0,25] Integerarray

Page 109: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

108

ShowOtherUEs_Parameters show parametersfor other uncodedUes: NO, YES

YES Enumeration

OtherUEs_MappingType the modulationorders for otherUEs except UE 1 inall subframes.(0:QPSK,1:16QAM,2:64QAM)

[0,0,0,0,0] Integerarray

UE2_RB_Alloc the RB allocationfor UE 2, in theformats of [startRB, number ofRBs] or [SF0 startRB, SF0 number ofRBs; . . . ; SF9start RB, SF9number of RBs]

[0,0] Integerarray

UE3_RB_Alloc the RB allocationfor UE 3, in theformats of [startRB, number ofRBs] or [SF0 startRB, SF0 number ofRBs; . . . ; SF9start RB, SF9number of RBs]

[0,0] Integerarray

UE4_RB_Alloc the RB allocationfor UE 4, in theformats of [startRB, number ofRBs] or [SF0 startRB, SF0 number ofRBs; . . . ; SF9start RB, SF9number of RBs]

[0,0] Integerarray

UE5_RB_Alloc the RB allocationfor UE 5, in theformats of [startRB, number ofRBs] or [SF0 startRB, SF0 number ofRBs; . . . ; SF9start RB, SF9number of RBs]

[0,0] Integerarray

UE6_RB_Alloc the RB allocationfor UE 6, in theformats of [startRB, number ofRBs] or [SF0 startRB, SF0 number ofRBs; . . . ; SF9start RB, SF9number of RBs]

[0,0] Integerarray

ShowControlChannelParameters show parametersfor controlchannels: NO, YES

YES Enumeration

PDCCH_SymsPerSF number of OFDMsymbols of PDCCHfor each subframe

[2,2,2,2,2,2,2,2,2,2] Integerarray

PDCCH_UE_AggreLevel the aggregationlevels of UE-specific PDCCHsearch space forevery subframe.The allowablelevels are 1, 2, 4and 8.

[1] Integerarray

PDCCH_UE_DCI_Formats the DCI Formats ofthe PDCCHcandidates forevery subframe (-1 means no DCI incorrespondingcandidate).

[0, -1, -1, -1, -1, -1] Integerarray

PDCCH_Common_AggreLevel the aggregationlevels of CommonPDCCH searchspace for everysubframe. Theallowable levelsare 4 and 8.

[4] Integerarray

PDCCH_Common_DCI_Formats the DCI Formats ofthe PDCCHcandidates for

[-1, -1, -1, -1] Integerarray

Page 110: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

109

every subframe (-1 means no DCI incorrespondingcandidate).

PHICH_Duration type of PHICHduration :Normal_Duration,Extended_Duration

Normal_Duration Enumeration

PHICH_Ng type of PHICHduration : Ng 1/6,Ng 1/2, Ng 1, Ng 2

Ng 1/6 Enumeration

HI physical hybrid-ARQ ACK/NAKindicators

[1,0,1,0,1,0,1,0,1,0] Integerarray

ShowPowerParameters show power-relatedparameters: NO,YES

YES Enumeration

RS_EPRE transmit energyper resourceelement (RE) fortransmitted cellspecific RS foreach antenna port,in unit ofdBm/15kHz

-25 Float

PCFICH_Rb PCFICH-to-RSEPRE ratio in dB insymbols with RS

0 Float

PHICH_Ra PHICH-to-RS EPREratio in dB insymbols with RS

0 Float

PHICH_Rb PHICH-to-RS EPREratio in dB insymbols withoutRS

0 Float

PBCH_Ra PBCH-to-RS EPREratio in dB insymbols with RS

0 Float

PBCH_Rb PBCH-to-RS EPREratio in dB insymbols withoutRS

0 Float

PDCCH_Ra PDCCH-to-RSEPRE ratio in dB insymbols with RS

0 Float

PDCCH_Rb PDCCH-to-RSEPRE ratio in dB insymbols withoutRS

0 Float

PDSCH_PowerRatio PDSCH CellSpecific Ratio:p_B/p_A = 1, P_B= 0, P_B = 1, P_B= 2, P_B = 3

p_B/p_A = 1 Enumeration

UEs_Pa UE specific powerparameter foreach UE

[0,0,0,0,0,0] Floatingpoint array

PSS_Ra PSS-to-RS EPREratio in dB insymbols withoutRS

0 Float

SSS_Ra SSS-to-RS EPREratio in dB insymbols withoutRS

0 Float

PreDownsampling pre-downsamplingto 1x symbol rate?: NO, YES

NO Enumeration

SyncMode synchronization forevery port or onesynchronization forall ports:SyncPerPort,AverageSync

SyncPerPort Enumeration

SearchType start a new timingand frequencesynchronizationsearch for everyframe or not:Search everyframe,Search+Track

Search+Track Enumeration

SearchRange timing and 0.003 s Float

Page 111: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

110

frequencesynchronizationsearching rangefor the first frame

TrackRange timing andfrequencesynchronizationtracking range forthe frames exceptthe first frame,valid whenSearchType is setto Search+Track

0 s Float

FreqSync frequencyestimation rangeselect: non, lessthan 100Hz, lessthan 15kHz, lessthan 45kHz

non Enumeration

ChEstimatorMode mode ofinterpolationalgorithm inchannel estimator:Linear, MMSE_2D,For EVM

For EVM Enumeration

MMSE_RBWinLen number of RBs foreach MMSE-2Dinterpolation

3 Integer

SNR SNR in dB. (usedby 2D-MMSEchannel estimatorin PDSCH)

15 Float

Tmax the maximumdelay of multi-pathchannel. (used by2D-MMSE channelestimator inPDSCH)

0 s Float

Fmax the maximumdoppler frequency.(used by 2D-MMSEchannel estimatorin PDSCH)

100 Hz Float

Sym_StartPos start position(withoutoversampling) toget the OFDMsymbol for FFToperation for longCP and short CPsymbolsrespectively,compared to thestart position ofthe OFDM bodyafter CP

[-3, 3] Integerarray

DemapperType symboldemodulationtype: Hard, Soft,CSI

Soft Enumeration

DemapperMaxLevel the maximumlevel for softdemapping outputwhenDemapperType isSoft or CSI

1 Float

TC_Iteration Turbo decoderiteration number

4 Integer

FramesToAverage number of framesthat will beaveraged ifAverageType isRMS (Video)

3 Integer

DisplayOption display option:Percentage, dB,Percentage_dB

Percentage_dB Enumeration

MeasurementOption measurementoption:Per_PhysicalCh,Per_RB,Per_PhysicalCh_RB

Per_PhysicalCh_RB Enumeration

SymbolIndex given OFDMsymbol indexwhen EVM vs REfor specific OFDMsymbol is

0 Integer

Page 112: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

111

measured

Input Ports

Port Name Description Signal Type Optional

1 Ant1_TD input of time domain baseband signal onantenna1

complex NO

2 Ant2_TD input of time domain baseband signal onantenna2

complex NO

Notes/Equations

This model performs EVM measurements on the LTE downlink 2 antenna ports signal1.for both frame structure type 1 and frame structure type 2.Each firing, one frame data is consumed at port Input. For the default parameter2.configurations, the number of tokens consumed each firing is 7.68MHz * 2 * 10ms =153600.The LTE_DL_MIMO_EVM_2Ants schematic is shown below:3.

The parameter ReceiverDelay in the two LTE_DL_MIMO_2Ant_Rcv models in thissubnetwork are selected as one frame delay.The parameter ChEstimatorMode in the two LTE_DL_MIMO_2Ant_Rcv models inthis subnetwork are selected as For EVM.The model LTE_DL_EVM_Adaptor in this subnetwork is used to transfersubframe-based matrix vector data into frame-based normal data (non-matrix-based data) for LTE_DL_EVM_Sink.

The EVM is defined as the RMS value of the error vector difference between the ideal4.reference signal and the measured signal. Before calculating the EVM the measuredwaveform is corrected by the sample timing offset and RF frequency offset. Then theIQ origin offset shall be removed from the measured waveform. The measuredwaveform is further modified by selecting the absolute phase and absolute amplitudeof the Tx chain. The EVM result is defined after the front-end IDFT as the square rootof the ratio of the mean error vector power to the mean reference power expressedas a %. Its generic form can be written as follows:

si: measured signal

ri: ideal reference signal

The basic unit of EVM measurement is defined over one subframe (1ms) in the time5.domain and NRB subcarriers (180kHz) in the frequency domain:

whereT is the set of symbols with the considered modulation scheme being active withinthe subframe,F(t) is the set of subcarriers within the NRB subcarriers with the consideredmodulation scheme being active in symbol t,

Page 113: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

112

I(t,f) is the ideal signal reconstructed by the measurement equipment in accordancewith relevant Tx models,Z'(t,f) is the modified signal under test defined in E.3 of 36104-850.The accumulated average EVM is also provided, which is defined as follows:6.

where M is the number of frames over which the averaging is performed which equalsFramesToAverage.The EVM window of length W is centered7.Table E.5.1-1 of 36104-850 specifies EVM window length (W) for normal CP, thecyclic prefix length Ncp is 160 for symbols 0 and 144 for symbols 1-6.

Table E.5.1-2 of 36104-850 specifies the EVM window length (W) for extended CP,the cyclic prefix length Ncp is 512.

The EVM requirements should be tested against the maximum of the RMS average at8.the window W extremities of the EVM measurements as defined in Section E.7 [2].The available results from this measurement are dependent on these two9.parameters: DisplayOption and MeasurementOption.When DisplayOption = Percentage , the EVM measurement results are provided inpercentage.When DisplayOption = dB , the EVM measurement results are provided in dB.When DisplayOption = Percentage_dB , the EVM measurement results in percentageand dB are both provided.When MeasurementOption = Per_PhysicalCh , the EVM measurements for differentphysical channels, such as P-SCH, S-SCH, BCH, PDCCH, PCFICH, PHICH and UEsData are performed frame by frame, and the averaged EVM measurement resultsover FramesToAverage frames for these physical channels also provided.When MeasurementOption = Per_RB , the EVM measurements for different resourceblocks which are occupied by UEs Data are performed frame by frame, and theaveraged EVM measurement results over FramesToAverage frames for theseresource blocks also provided.When MeasurementOption = Per_PhysicalCh_RB , both EVM measurements fordifferent physical channels and for different resource blocks are performed frame byframe, and the averaged EVM measurement results over FramesToAverage framesfor these physical channels and resource blocks both provided.The constellation of the data symbols of the first frame is provided.10.EVM parameters Details:11.

FramesToAverage: number of frames that will be averaged.DisplayOption: display option of the EVM measurement results, it can beselected as Percentage, dB and Percentage_dB.MeasurementOption: option of EVM measurement, it can be selected asPer_PhysicalCh, Per_Subcarrier and Per_PhysicalCh_Subcarrier.SymbolIndex: the OFDM symbol index when EVM vs RE for specific OFDMsymbol is provided.For more information on parameters details, please refer to refer to DLParameters (ltebasever).

See LTE_DL_EVM_Sink (ltebasever), LTE_DL_MIMO_2Ant_Rcv (ltebasever),12.LTE_DL_EVM_Adaptor (ltebasever), LTE_DL_MIMO_2Ant _Src] and LTE_DL_EVM(ltebasever).

For more information on parameters details, please refer to LTE_DL_Src(ltebasever).

References

3GPP TS 36.211 v8.6.0, "Physical Channels and Modulation", March 2009.1.3GPP TS 36.104 v8.5.0 "Base Station (BS) radio transmission and reception", March2.2009.TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access3.(UTRA),", V7.0.0, June 2006.

Page 114: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

113

LTE_DL_Src_RangeCheck PartCategories: C++ Code Generation (ltebasever), Measurement (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_DL_Src_RangeCheck (ltebasever) LTE downlink signal source rangecheck

LTE_DL_Src_RangeCheck (Downlink signal sourcerange check)

Description: LTE downlink signal source range checkDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE DL Src RangeCheck Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

SpecialSF_Config special subframe configuration for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6, Config 7,Config 8

Config 4 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW5 MHz, BW 10 MHz, BW 15 MHz, BW 20MHz

BW 5 MHz Enumeration NO

OversamplingOption Ratio 1, Ratio 2, Ratio 4, Ratio 8: Ratio1, Ratio 2, Ratio 4, Ratio 8

Ratio 2 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

CellID_Sector the index of cell identity within thephysical-layer cell-identity group

0 Integer NO

CellID_Group the index of cell identity group 0 Integer NO

RB_MappingType the mapping type of VRBs to PRBs:Localized, Distributed

Localized Enumeration NO

UE1_HARQ_Enable UE1 HARQ closed-loop transmissionenable: NO, YES

YES Enumeration NO

UE1_NumHARQ UE1 Number of HARQ processes 8 Integer NO

UE1_MaxHARQTrans UE1 Maximum number of HARQtransmission per each HARQ process

4 Integer NO

UE1_CL_Precoding_Enable whether closed-loop MIMO precoding forUE1 is enabled: NO, YES

NO Enumeration NO

UE1_PMI_Granularity closed-loop PMI reporting granularity inunits of resource blocks (RBs) for UE1

25 Integer NO

UE1_PMI_Delay closed-loop PMI reporting delay in unitsof sub-frames (1ms) for UE1

6 Integer NO

UE1_Config the configuration mode of input data forUE 1.: MCS index, Transport block size,Code rate

Transport blocksize

Enumeration NO

UE1_Payload the input payload for UE 1, the meaningof the input is defined in UE1_Config

[2555, 2555,2555, 2555,2555, 2555,2555, 2555,2555, 2555]

Floatingpoint array

NO

UE1_MappingType the modulation orders for UE 1 in eachsubframe, valid when UE1_Payload isnot set to MCS index. (0:QPSK,1:16QAM, 2:64QAM)

[0, 0, 0, 0, 0, 0,0, 0, 0, 0]

Integerarray

NO

UE1_RV_Sequence UE1 Redundancy Version Sequence forHARQ closed-loop transmission

[0,1,2,3] Integerarray

NO

UE1_n_RNTI Radio network temporary identifier forUE 1

1 Integer NO

UE1_Category defines UE capability, used to get thetotal number of soft channel bits for

Category 1 Enumeration NO

Page 115: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

114

rate-matching in downlink.: Category 1,Category 2, Category 3, Category 4,Category 5

RB_AllocType RB allocation type: StartRB + NumRBs,RB indices (1D), RB indices (2D)

StartRB +NumRBs

Enumeration NO

UE1_RB_Alloc the RB allocation for UE 1, in theformats of [start RB, number of RBs] or[[SF0 start RB, SF0 number of RBs]; . ..; [SF9 start RB, SF9 number of RBs]]

[0, 25] Integerarray

NO

OtherUEs_MappingType the modulation orders for other UEsexcept UE 1 in all subframes. (0:QPSK,1:16QAM, 2:64QAM)

[0, 0, 0, 0, 0] Integerarray

NO

UE2_RB_Alloc the RB allocation for UE 2, in theformats of [start RB, number of RBs] or[[SF0 start RB, SF0 number of RBs]; . ..; [SF9 start RB, SF9 number of RBs]]

[0, 0] Integerarray

NO

UE3_RB_Alloc the RB allocation for UE 3, in theformats of [start RB, number of RBs] or[[SF0 start RB, SF0 number of RBs]; . ..; [SF9 start RB, SF9 number of RBs]]

[0, 0] Integerarray

NO

UE4_RB_Alloc the RB allocation for UE 4, in theformats of [start RB, number of RBs] or[[SF0 start RB, SF0 number of RBs]; . ..; [SF9 start RB, SF9 number of RBs]]

[0, 0] Integerarray

NO

UE5_RB_Alloc the RB allocation for UE 5, in theformats of [start RB, number of RBs] or[ [SF0 start RB, SF0 number of RBs]; . ..; [SF9 start RB, SF9 number of RBs]]

[0, 0] Integerarray

NO

UE6_RB_Alloc the RB allocation for UE 6, in theformats of [start RB, number of RBs] or[[SF0 start RB, SF0 number of RBs]; . ..; [SF9 start RB, SF9 number of RBs]]

[0, 0] Integerarray

NO

PDCCH_SymsPerSF number of OFDM symbols of PDCCH foreach subframe

[2, 2, 2, 2, 2, 2,2, 2, 2, 2]

Integerarray

NO

PDCCH_UE_AggreLevel the aggregation levels of UE-specificPDCCH search space for everysubframe. The allowable levels are 1, 2,4 and 8.

[1] Integerarray

NO

PDCCH_UE_DCI_Formats the DCI Formats of the PDCCHcandidates for every subframe (-1means no DCI in correspondingcandidate).

[0, -1, -1, -1, -1, -1]

Integerarray

NO

PDCCH_Common_AggreLevel the aggregation levels of CommonPDCCH search space for everysubframe. The allowable levels are 4and 8.

[4] Integerarray

NO

PDCCH_Common_DCI_Formats the DCI Formats of the PDCCHcandidates for every subframe (-1means no DCI in correspondingcandidate).

[-1, -1, -1, -1] Integerarray

NO

UE_n_RNTI Radio network temporary identifier forUE

[1, 1, 1, 1, 1, 1,1, 1, 1, 1]

Integerarray

NO

PHICH_Duration type of PHICH duration:Normal_Duration, Extended_Duration

Normal_Duration Enumeration NO

PHICH_Ng PHICH Ng value: Ng 1/6, Ng 1/2, Ng 1,Ng 2

Ng 1/6 Enumeration NO

HI physical hybrid-ARQ ACK/NAK indicators [1, 0, 1, 0, 1, 0,1, 0, 1, 0]

Integerarray

NO

RS_EPRE transmit energy per resource element(RE) for transmitted cell specific RS foreach antenna port, in unit ofdBm/15kHz

-25 Float NO

PCFICH_Rb PCFICH-to-RS EPRE ratio in dB insymbols with RS

0 Float NO

PHICH_Ra PHICH-to-RS EPRE ratio in dB insymbols without RS

0 Float NO

PHICH_Rb PHICH-to-RS EPRE ratio in dB insymbols with RS

0 Float NO

PBCH_Ra PBCH-to-RS EPRE ratio in dB in symbolswithout RS

0 Float NO

PBCH_Rb PBCH-to-RS EPRE ratio in dB in symbolswith RS

0 Float NO

PDCCH_Ra PDCCH-to-RS EPRE ratio in dB insymbols without RS

0 Float NO

PDCCH_Rb PDCCH-to-RS EPRE ratio in dB insymbols with RS

0 Float NO

PDSCH_PowerRatio PDSCH Cell Specific Ratio: p_B/p_A = 1,P_B = 0, P_B = 1, P_B = 2, P_B = 3

p_B/p_A = 1 Enumeration NO

UEs_Pa UE specific power parameter for each UE [0, 0, 0, 0, 0, 0] Floatingpoint array

NO

PSS_Ra PSS-to-RS EPRE ratio in dB in symbols 0 Float NO

Page 116: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

115

without RS

SSS_Ra SSS-to-RS EPRE ratio in dB in symbolswithout RS

0 Float NO

SpectrumShapingType spectrum shaping method:TimeWindowing, FIRFilter

TimeWindowing Enumeration NO

WindowType type of time transition windowingbetween two consecutive symbols, validwhenSpectrumShapingType=TimeWindowing:Tukey, Raised cosine

Tukey Enumeration NO

CyclicInterval the overlapped cyclic interval betweentwo adjacent symbols in unit of chips(without oversampling), valid whenSpectrumShapingType=TimeWindowing

6 Integer NO

CI_StartPos the start position of cyclic interval(without oversampling), compared tothe start position of CP (negative meansahead of CP)

-3 Integer NO

FIR_Taps number of FIR filter taps, valid whenSpectrumShapingType=FIRFilter

19 Integer NO

FIR_withInterp whether spectrum-shaping FIR filterwith interpolation operation or not, validwhen SpectrumShapingType=FIRFilter:NO, YES

NO Enumeration NO

FIR_FilterType spectrum-shaping FIR filter type, validwhen SpectrumShapingType=FIRFilter:RRC, Ideal Lowpass, EquiRipple

RRC Enumeration NO

RRC_Alpha roll-off factor for root raised-cosinefilter, valid whenSpectrumShapingType=FIRFilter

.22 Float NO

DisplayMsg control LTE system informationdisplayed in Simulation Log window:None, Simple, Full

Simple Enumeration NO

ETM_Support whether to support PHICH m =1 in alltransmitted subframes for TDD E-TMdefined in 36.141 6.1.2.6: NO, YES

NO Enumeration NO

Notes/Equations

This model is used inside the LTE_DL_Src model for LTE Downlink with one antenna1.port, serving two functions:

Validate the input parametersReport some useful internal inforamtion based on the input parameters

When the parameter DisplayMsg = None, no message is shown;When the parameter DisplayMsg = Simple, the System Configurations andUE-specific Configurations are output;When the parameter DisplayMsg = Full, the System Configurations, UE-specific Configurations and Power are output. Note that the transmit powerfor the OFDM symbols allocated to PDCCH is calculated with the assumptionthat all resource elements (REs) allocated to PDCCH are occupied withQPSK symbols. When some of the resource elements (REs) allocated toPDCCH are empty, the actual transmit power will be lower than the powerabove.

There is no input and output port in this model.2.The detailed descrioption for all input parameters can be found in LTE downlink one-3.port source parameters (ltebasever).When users want to test a set of parameters for LTE Downlink with one antenna port,4.they can run this model alone. Then the error messages are shown if parameters arewrong, or the useful intenal messages are shown based on DisplayMsg setting ifparameters are correct.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.2.

Page 117: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

116

LTE_Throughput PartCategories: Measurement (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_Throughput (ltebasever) Throughput measurement in LTE library

LTE_Throughput

Description: Throughput measurement in LTE libraryDomain: UntimedC++ Code Generation Support: NOAssociated Parts: LTE Throughput Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

Range

SubframeStart Data collection start subframeindex

1 Integer NO [0:∞)

SubframeStop Data collection stop subframeindex

100 Integer NO [SubframeStart:∞)

StatusUpdatePeriod Status update period innumber of subframes

20 Integer NO [1:∞)

Input Ports

Port Name Description Signal Type Optional

1 CRCParity CRC result of received transport block bits (0:NACK; 1:ACK) int NO

2 TBS transparent block size for this subframe (Range [0:inf)) int NO

Notes/Equations

This model performs the averaged closed-loop HARQ throughput over subframes1.from Subframe#SubframeStart to Subframe#SubframeStop for both PDSCH andPUSCH.Each firing, one token is consumed at both 'TBS' port and 'CRCParity' port.2.The data input from the 'TBS' port indicates the transport block size for eachsubframe. If the input value at this port is '0', it is assumed that no transport block isallocated in this subframe. This occurs in TDD mode or when the transport block sizefor one specific subframe is set to '0' manually by users.The data input from the 'CRCParity' port is the CRC check result for each subframe,where '1' means CRC check is successful and '0' means CRC check fails.If this model is used in the scenario that the LTE receiver is delayed by one3.subframe, the throughput calculation should at least start from the second subframe(i.e. SubframeStart >= 1).The calculated results that are output to the DataSet are shown below4.

BLER(Block error rate): The calculation equation is

.Note that the subframes with TBS=0 are excluded from the calculation of BLER.Throughput(averaged throughput (bps) over specified subframes): Thecalculation equation is

,where 1000 is the reciprocal of 1 msec.ThroughtputFraction (the fraction (%) of averaged throughput to the maximumpossible throughput): The calculation equation is

Page 118: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

117

.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.2.

Page 119: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

118

LTE_UL_EVM PartCategories: Measurement (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_UL_EVM (ltebasever) Uplink EVMmeasurement

LTE_UL_EVM

Description: Uplink EVM measurementDomain: UntimedC++ Code Generation Support: NOAssociated Parts: LTE UL EVM Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

Range

ShowSystemParameters show system parameters for LTEuplink signals: NO, YES

YES Enumeration NO

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations forTDD: Config_0, Config_1, Config_2,Config_3, Config_4, Config_5,Config_6

Config_0 Enumeration NO

SpecialSF_Config special subframe configuration forTDD: Config0, Config1, Config2,Config3, Config4, Config5, Config6,Config7, Config8

Config4 Enumeration NO

Bandwidth Bandwidth: BW_1_4_MHz,BW_3_MHz, BW_5_MHz,BW_10_MHz, BW_15_MHz,BW_20_MHz

BW_5_MHz Enumeration NO

OversamplingOption oversampling ratio option: Ratio_1,Ratio_2, Ratio_4, Ratio_8

Ratio_2 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal,Extended

Normal Enumeration NO

CellID_Sector the index of cell identity within thephysical-layer cell-identity group

0 Integer NO [0, 2]

CellID_Group the index of cell identity group 0 Integer NO [0, 167]

HalfCarrierShift_Enable whether or not to enable 1/2subcarrier shifting: NO, YES

YES Enumeration NO

FrameNum frame number 0 Integer NO [0, ∞)

FrameIncreased frame number increasing or not:NO, YES

NO Enumeration NO

ShowPUSCH_Parameters show PUSCH parameters for LTEuplink signals: NO, YES

YES Enumeration NO

PUCCH_PUSCH PUCCH and PUSCH selection:PUSCH, PUCCH, both

PUSCH Enumeration NO

MappingType the modulation orders for thePUSCH in each subframe. (0:QPSK,1:16QAM, 2:64QAM)

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0] Integerarray

NO

DFTSwap_Enable PUSCH DFT swap is enable: NO,YES

NO Enumeration NO

PUSCH_HoppingEnable whether PUSCH frequency-hoppingis enabled or not: NO, YES

NO Enumeration NO

PUSCH_HoppingMode PUSCH frequency hopping mode:interSubFrame,intraAndInterSubFrame

interSubFrame Enumeration NO

PUSCH_HoppingOffset the offset used for PUSCH frequencyhopping

0 Integer NO [0, 63]

PUSCH_Hopping_Nsb number of sub-bands for PUSCHfrequency hopping

1 Integer NO [1, 4]

PUSCH_HoppingBits information in hopping bits:zero_or_zz, one_or_zone, onezero,oneone

zero_or_zz Enumeration NO

RB_AllocType RB allocation type: StartRB_NumRBs Enumeration NO

Page 120: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

119

StartRB_NumRBs, RB_indices_1D,RB_indices_2D

RB_Alloc the RB allocation for PUSCH, in thefomats of [start RB, number of RBs]or[SF0 start RB, SF0 number ofRBs; ...; SF9 start RB, SF9 numberof RBs]

[0, 25] Integerarray

NO

GroupHop_Enable whether enable group hopping forDMRS on PUCCH and PUSCH or not:NO, YES

NO Enumeration NO

SeqHop_Enable whether enable sequence hoppingfor DMRS on PUSCH or not: NO,YES

NO Enumeration NO

PUSCH_Delta_ss used in determining the sequence-shift pattern for PUSCH

0 Integer NO [0, 29]

PUSCH_n_DMRS1 used in computing the cyclic shiftfor PUSCH DMRS

[0] Integerarray

NO

PUSCH_n_DMRS2 used in computing the cyclic shiftfor PUSCH DMRS

[0] Integerarray

NO

ShowPUCCH_Parameters show PUCCH parameters for LTEuplink signals: NO, YES

YES Enumeration NO

PUCCH_Format PUCCH format: Format_1,Format_1a, Format_1b,Shortened_1, Shortened_1a,Shortened_1b, Format_2,Format_2a, Format_2b

Format_1 Enumeration NO

PUCCH_Delta_shift used to calculate PUCCH cyclic shiftAlfa

2 Integer NO [1, 3]

PUCCH_SF_Alloc which sub frames contain thePUCCH, valid when PUCCH_PUSCHis other than PUSCH

[2] Integerarray

NO [0, 9]

PUCCH_NRB2 number of RBs used fortransmisstion PUCCH format2/2a/2b

1 Integer NO [0, 99]

PUCCH_n1 resources used for transmisstionPUCCH format 1/1a/1b

11 Integer NO [0, 12*100-1]

PUCCH_n2 resources used for transmissionPUCCH format 2/2a/2b

11 Integer NO [0, 12*PUCCH_NB2-1]

ShowPRACH_Parameters show PRACH parameters for LTEuplink signals: NO, YES

YES Enumeration NO

PRACH_Enable whether or not to enable PRACH:NO, YES

NO Enumeration NO

PRACH_Config PRACH configuration index 0 Integer NO [0, 63]

PRACH_ResourceIndex the PRACH Resource Index. In FDD,it indicates the subframe numberwhere the preamble starts; in TDD,it indicates the preamble mappingin time and frequency

[1] Integerarray

NO [0, 9]

PRACH_PrmbleIndex preamble indexes, used to selectpreamble sequences from 64preambles available in this cell

[0] Integerarray

NO [0, 63]

PRACH_RBOffset PRACH frequency offset, the first RBavailable for PRACH

0 Integer NO [0, 94]

PRACH_LogicalIndex logical index of root ZC sequence 0 Integer NO [0, 837]

PRACH_Ncs cyclic shifts of ZC sequence 0 Integer NO [0, 15]

PRACH_HS_flag high speed flag: NO, YES NO Enumeration NO

ShowSRS_Parameters show PRACH parameters for LTEuplink signals: NO, YES

YES Enumeration NO

SRS_Enable sounding reference symbol isenable: NO, YES

NO Enumeration NO

SRS_BandwidthConfig the cell-specific SRS bandwidthconfiguration

7 Integer NO [0, 7]

SRS_SF_Config the cell-specific SRS subframeconfiguration

0 Integer NO [0, 14]

SRS_MaxUpPts whether enable the reconfigurationof maximum m_SRS_0 or not: NO,YES

NO Enumeration NO

SRS_Bandwidth the UE-specific SRS bandwidth 0 Integer NO [0, 3]

SRS_HoppingBandwidth the SRS hopping bandwidth 3 Integer NO [0, 3]

SRS_FreqPosition the SRS frequency domain position 0 Integer NO [0, 23]

SRS_ConfigIndex the UE-specific SRS configuration 0 Integer NO [0, 1023]

SRS_TransmissionComb transmission comb 0 Integer NO [0, 1]

SRS_CyclicShift used in computing the cyclic shift ofSRS

0 Integer NO [0, 7]

ShowPowerParameters show power parameters for LTEuplink signals: NO, YES

YES Enumeration NO

PUSCH_PwrOffset the power offset in dB for PUSCH 0 Float NO (-∞, +∞)

PUSCH_RS_PwrOffset the power offset in dB for PUSCH RS 0 Float NO (-∞, +∞)

Page 121: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

120

PUCCH_PwrOffset the power offset in dB for PUCCH 0 Float NO (-∞, +∞)

PUCCH_RS_PwrOffset the power offset in dB for PUCCH RS 0 Float NO (-∞, +∞)

PRACH_PwrOffset the power offset in dB for PRACH 0 Float NO (-∞, +∞)

SRS_PwrOffset the power offset in dB for SRS 0 Float NO (-∞, +∞)

ShowRxAlgorithmParameters show parameters for LTE uplinkEVM measurement algorithm: NO,YES

NO Enumeration NO

SyncType Initial synchronization type:PUSCH_DMRS, PUCCH_DMRS,S_RS, PRACH

PUSCH_DMRS Enumeration NO

RBAutoDetect defines the RB allocation andmodulation format detection mode:Manual, Auto

Auto Enumeration NO

PUSCHIncludeInAnalysis whether or not PUSCH is included incomputing composite results suchas EVM, EVMPk andOFDMRBErrorMagSpectrum: NO,YES

YES Enumeration NO

PUCCHIncludeInAnalysis whether or not PUCCH is included incomputing composite results suchas EVM, EVMPk andOFDMRBErrorMagSpectrum: NO,YES

NO Enumeration NO

SRSIncludeInAnalysis whether or not SRS is included incomputing composite results suchas EVM, EVMPk andOFDMRBErrorMagSpectrum: NO,YES

NO Enumeration NO

PRACHIncludeInAnalysis whether or not PRACH is included incomputing composite results suchas EVM, EVMPk andOFDMRBErrorMagSpectrum: NO,YES

NO Enumeration NO

PUSCHAutoSync specify the sync slot type forPUSCH: NO, YES

YES Enumeration NO

PUSCHSyncSlot specify a slot index in a radio frameused for initial synchronization

6 Integer NO [0:19]

PUCCHAutoSync specify the sync slot type forPUCCH: NO, YES

YES Enumeration NO

PUCCHSyncSlot specify the slot to use as the syncslot

0 Integer NO [0:19]

SRSAutoSync specify the sync slot type for SRS:NO, YES

YES Enumeration NO

SRSSyncSlot specify the slot to use as the syncslot

1 Integer NO [0:19]

ResLenInSlots Result length in slots. Specifically,this is the number of slots to beanalyzed and demodulated.

20 Integer NO [1:100]

MeasOffset specifies measurement offset insymbols, from which EVM iscomputed.

0 Integer NO [0:ResLenInSlots*NumSymsPerSlot)

MeasInterval specifies measurement interval insymbols used for EVM computation,starting from the slot and symboloffset specified by MeasOffset

140 Integer NO [1:ResLenInSlots*NumSymsPerSlot- MeasOffset]

AnalysisBoundary analysis start boundary:ANALYSIS_BOUNDARY_FRAME,ANALYSIS_BOUNDARY_HALFFRAME,ANALYSIS_BOUNDARY_SUBFRAME,ANALYSIS_BOUNDARY_SLOT

ANALYSIS_BOUNDARY_FRAME Enumeration NO

CPLengthAutoDetect specifies Cyclic Prefix length autodetect or not: NO, YES

NO Enumeration NO

MirrorFreqSpectrum whether or not the entire frequencyspectrum be flipped around thecarrier frequency: NO, YES

NO Enumeration NO

EqualizerTraining Specify how equalizer is trained:Off, RS, RS_Data

RS Enumeration NO

EVMMinimization specifies the amplitude err, timingerr and frequency and phase errtracking and compensation mode:Off, 3GPP, Tracking

3GPP Enumeration NO

EVMMinimizationAmp whether or not tracking theamplitude err: NO, YES

NO Enumeration NO

EVMMinimizationTiming whether or not tracking the timingerr: NO, YES

NO Enumeration NO

EVMMinimizationFreqPhase whether or not tracking the freq andphase err: NO, YES

NO Enumeration NO

EVMMinimizationIQOffset whether or not tracking the IQoffset: NO, YES

NO Enumeration NO

SymTimeAdjMode symbol timing adjust mode: MAX_EVMWIN_START_END Enumeration NO

Page 122: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

121

MAX_EVMWIN_START_END,MIN_EVMWIN_START_END,EVMWIN_START,EVMWIN_START_End,EVMWIN_Center,PERCENT_FFT_SIZE

SymTimeAdj specify how much data in cyclicprefix portion, backing up from theexact symbol timing are included forFFT computation in percentage ofFFT length. This value must be zeroor a negative value, down to awhole cyclic prefix length -7.125 to0% (Normal CP length), -25% to0% (Extended CP length)

-3.125 Float NO [-25:0]

ReportEVMIndB specifies the EVM units in dB or not:NO, YES

NO Enumeration NO

PowerBoostNormalize whether or not the constellation benormalized: NO, YES

YES Enumeration NO

FramesToMeas number of frames that will beaveraged if AverageType is RMS(Video)

10 Integer NO [1:100]

SaveConstellation if set YES, the measured vectorused for EVM calculation shall besaved to Data File: NO, YES

NO Enumeration NO

DisplayFrame the Frame number for display somevector measurement results

0 Integer NO [0:FramesToMeas-1]

Input Ports

Port Name Description Signal Type Optional

1 input input signal complex NO

Parameters Details

For System Parameters details please refer to UL System Parameters (ltebasever).For more information on the PUSCH Parameters details please refer to UL PUSCHParameters (ltebasever).For more information on the PUCCH Parameters details please refer to UL PUCCHParameters (ltebasever).For more information on the PRACH Parameters details please refer to UL PRACHParameters (ltebasever).For more information on the SRS Parameters details please refer to UL SRSParameters (ltebasever).For more information on the Power Parameters details please refer to UL PowerParameters (ltebasever).

Rx Algorithm Parameters

PUCCH_PUSCH, PRACH_Enable and SRS_Enable set which channels or signals arepresent for the current user. PRACH analysis is done separately from the otherchannels and signals. Selecting Present in Signal for PRACH by setting PRACH_Enableto YES, will clear the Present for the other channels and signals, i.e. SRS_Enableshould be set to NO, and PUCCH_PUSCH should be set to PUSCH and none RBallocated to PUSCH.SyncType: Sets the channel or signal to be used for synchronization. Thedemodulator can use PUSCH DM-RS, PUCCH DM-RS, S-RS, or PRACH forsynchronization. Only the channels or signals that are present for the current userwill be available as synchronization options. PUSCH, PUCCH, PUSCH DM-RS, PUCCHDM-RS, and SRS powers are specified relative to the 0 dB level determined by thepower of the channel/signal chosen for synchronization.Sync Type also determines which channel/signal's Sync Slot parameter is used forframe boundary calculation.RBAutoDetect: enables autodetection of user allocations .When RBAutoDetect is set to Auto, the demodulator can autodetect PUSCH, PUCCH,SRS, or PRACH when the necessary parameters are defined.For PUSCH, PUCCH, and SRS autodetection, channel parameters include a Sync Slotparameter. There must be a unique sync slot in the channel/signal corresponding tothe Sync Type setting in order for the frame boundary to be determined successfully.The signal will still demodulate when there is no unique sync slot, but the timeindexes (slot, symbol, etc.) may be incorrect.To configure the demodulator to automatically detect the sync slot, select the AutoSync parameter for the channel or signal.To specify a sync slot for a channel or signal, make sure the this channel or signal isactive, then specify the Channel Parameters or Signal Parameters, and Per-slotParameters for the sync slot.When RBAutoDetect is set to Manual, all user’s allocation is set by the systemparameters and the RB allocation corresponding parameters.These parameters listed below are used to set whether these channels or signals areincluded in computing composite results such as EVM, EVMPk andOFDMRBErrorMagSpectrum.PUSCHIncludeInAnalysis, PUCCHIncludeInAnalysis, SRSIncludeInAnalysis and

Page 123: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

122

PRACHIncludeInAnalysis work with PUCCH_PUSCH, PRACH_Enable and SRS_Enableto decide whether or not the presented signal is included in computing compositeresults.PUSCHAutoSync and PUSCHSyncSlotAutoSync sets the demodulator to automatically find a sync slot.

When RBAutoDetect is set to Auto,Auto Sync set YES: the sync slot will be chosen automatically given channelparameters and channel powers. The resource block allocation of the syncslot does not need to be specified.Auto Sync set NO: the sync slot index is specified by the Sync Slotparameter. The sync slot will be found within the frame given the syncslot's resource block allocation and channel parameters.

When RBAutoDetect is set to Manual,Auto Sync set YES: the sync slot will be automatically chosen from the listof slot allocations. A unique slot with the highest correlation will be chosenas the sync slot. When there is no unique slot, the slot with the highestcorrelation will be chosen as the sync slot.Auto Sync set NO: the sync slot index is specified by the Sync Slotparameter. The sync slot index determines which of the slot allocationsdefined for the current user to use as the sync slot.SyncSlot specifies the index of the slot to use for initial synchronizationwhen PUSCH DM-RS is selected as the Sync Type. The demodulatorsearches for the slot with the characteristics specified in Per-slotParameters, and the slot that matches the Per-slot Parameters with thehighest correlation will be assigned the slot number given in the Sync Slotparameter.To specify a sync slot for PUSCH, make sure the PUSCH is presented, thenspecify Sync Slot, Channel Parameters, and Per-slot Parameters for thesync slot.

PUCCHAutoSync, PUCCHSyncSlotAuto Sync sets the demodulator to automatically find a sync slot. This parameterdoes not have any effect when Sync Type is set to a channel/signal other thanPUCCH DMRS.

When RBAutoDetect is set to Auto,Auto Sync set YES: the sync slot will be chosen automatically given theAuto-calculate parameters (when Auto-calculate is selected) and Per-slotParameters.Auto Sync set NO: the sync slot index is specified by the Sync Slotparameter.

When RBAutoDetect is set to Manual,Auto Sync set YES: the sync slot will be automatically chosen from the listof subframe allocations. A unique slot with the highest correlation will bechosen as the sync slot.Auto Sync set NO: the sync slot index is specified by the Sync Slotparameter. The sync slot index determines which of the subframeallocations defined for the current user is used as the sync slot.SyncSlot specifies the index of the slot to use for initial synchronizationwhen PUCCH DM-RS is selected as the Sync Type. The demodulatorsearches for the slot with the characteristics specified in Per-slotParameters, and the slot that matches the Per-slot Parameters with thehighest correlation will be assigned the slot number given in the Sync Slotparameter.To specify a sync slot for PUCCH, make sure the PUCCH is presented, andthen specify Sync Slot, Channel Parameters, and Per-slot Parameters forthe sync slot.

SRSAutoSync and SRSSyncSlotAutoSync sets the demodulator to automatically find a sync slot.

Auto Sync set YES: the sync slot will be chosen automatically using the SRSSignal Parameters.Auto Sync set NO: the sync slot index is specified by the Sync Slot parameter.The sync slot will be located within the frame using the SRS Signal Parameters.SyncSlot specifies the index of the slot to use for initial synchronization whenSRS is selected as the Sync Type.The demodulator searches for the slot with the characteristics specified in theSignal Parameters, and the slot that matches the Signal Parameters with thehighest correlation will be assigned the slot number given in the Sync Slotparameter.To specify a sync slot for SRS, make sure the SRS tab is presented, then specifySync Slot and Signal Parameters for the sync slot.

ResLenInSlots: determines how many slots will be available for demodulation.Measurement Interval and Measurement Offset specify which part of the time captureis demodulated.MeasOffset: specifies the offset from the Analysis Start Boundary to the beginning ofthe Measurement Interval (the data sent to the demodulator). Measurement Offset isspecified in slots plus symbol-times.MeasInterval: determines how much data is sent to the demodulator and can bespecified in slots plus symbol-times. The beginning of the measurement interval is

Page 124: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

123

specified as an offset from the Analysis Start Boundary. The offset is specified by theMeasurement Offset parameter.AnalysisBoundary: specifies the alignment boundary of the Result Length time data.To ensure that this alignment can be achieved, the total amount of data acquired bythe analyzer is equal to the Result Length plus the length of the alignment boundaryspecified by Analysis Start Boundary. For example, when Analysis Start Boundary isset to Half-Frame, the total acquisition is equal to Result Length + 10 slots (and thedata available for analysis would start at a Half-Frame boundary). Once the ResultLength data is located within the time capture, Measurement Offset andMeasurement Interval determine what part of the Result Length data is to beanalyzed. The Measurement Interval data is shown on the Time trace. See imageEVM Measment Interval (ltebasever)for more information.CPLengthAutoDetect: indicates the CP length (Normal or Extended) that wasautodetected or specified by the CyclicPrefix parameter.MirrorFreqSpectrum: whether or not the entire frequency spectrum will be flippedaround the carrier frequency.EqualizerTraining: tells the demodulator whether or not to equalize the signal(compensate for the measured channel frequency response).When RS+Data is selected for uplink, the LTE demodulator calculates the equalizerchannel frequency response according to the standard using the DM-RS subcarriersand the DFT-spread (SC-FDMA) subcarriers (PUSCH). The LTE standard specifies thatan RS+Data equalization should be performed for uplink signals.When RS is selected, the signal will be equalized using the channel frequencyresponse calculated using the DM-RS subcarriers in the signal.When Off is selected, the channel frequency response will still be calculated from theDM-RS subcarriers but will not be applied to the signal.PRACH equalization is done differently from the other uplink channels' equalization.First, the channel frequency response is calculated for a PRACH transmission bycomparing the received preamble sequence to the reference preamble sequence.Then, the channel frequency response is averaged to a single correction value andthis correction is applied to all subcarriers in the PRACH preamble. Each PRACHtransmission is equalized separately from the other PRACH transmissions.PRACH equalization is done this way because if each PRACH subcarrier werecorrected individually, the equalization would simply remove the error from thePRACH transmission (resulting in near zero EVM) since the channel frequencyresponse would be calculated from the same subcarriers that were being equalized.EVMMinimization: whether or not uses the reference signal to correct the signal.When Tracking is selected, the demodulator applies corrections on a symbol-by-symbol basis and the Equalizer Training parameter determines whether datasubcarriers are included in calculating corrections. When Equalizer Training is set toRS+Data, EVM Minimization Tracking is performed using the reference signal and thedata subcarriers. When Equalizer Training is set to RS or Off, EVM MinimizationTracking is performed using only the reference signal.When Off is selected, EVMminimization corrections are not applied to the signal.There are four types of corrections that can be applied to the signal to minimize theEVM. They are Amplitude, Frequency/Phase, Timing, and IQ Offset which are set bythese 4 parameters as follows.EVMMinimizationAmp: When selected, the average reference signal amplitude errorwill be used to correct the amplitudes of the subcarriers.EVMMinimizationTiming: When selected, the average slope (average rate of change)of the RS phase in the frequency domain is used to correct the timing.EVMMinimizationFreqPhase: When selected, the average reference signal phasedifference will be used to adjust subcarrier phase.EVMMinimizationIQOffset: When selected, the average reference signal phasedifference will be used to adjust the IQ offset.SymTimeAdjMode and SymTimeAdj: determines where the FFT used for EVM anddemodulation results is located within the symbol + cyclic prefix time data.ReportEVMIndB: specifies the EVM units for all result data.PowerBoostNormalize: When Power Boost Normalize is selected, whether or not theconstellation is normalized.SaveConstellation: if set YES, the measured vector used for EVM calculation shall besaved to Data File.FramesToMeas: number of measured frames.DisplayFrame: the Frame number for display some vector measurement results.

Notes/Equations

This component performs an EVM measurement for a LTE uplink signal. The input1.signal must be a complex signal. The available results from this measurement are:

Error summaryThese measurement results contain information about the quality of the signalbeing analyzed (in the Measurement Interval). Measurement Intervaldetermines how much data is sent to the demodulator and can be specified insymbol-times by parameter MeasInterval. The beginning of the measurementinterval is specified as an offset from the AnalysisBoundary. The offset isspecified by the MeasOffset parameter. Notes: this need add link.Below is a list of available data results.

Page 125: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

124

EVM: Overall RMS Error Vector Magnitude for all selected channels.EVMPk, EVMPkIdx and EVMSubcarPkIdx: The peak EVM value and locationof the peak EVM.DataEVM: RMS Error Vector Magnitude of the user channels.QPSKEVM: RMS average EVM of PDSCH QPSK allocations, calculatedaccording to the standardQAM16EVM: RMS average EVM of PDSCH 16QAM allocations, calculatedaccording to the standard.QAM64EVM: RMS average EVM of PDSCH 64QAM allocations, calculatedaccording to the standard.RSEVM: RMS Error Vector Magnitude of the reference signal.FreqErr: Average carrier frequency.SyncCorr: Correlation between the measured P-SS signal and the referenceP-SS signal.CommonTrackingError: Rms averaged common pilot error result (unit: %).SymClkErr: Frequency error of the measured signal's symbol clock. (unit:ppm)TimeOffset: The distance from the start of the Search Time trace to thebeginning of the Measurement IntervalIQOffset: IQ offset result is computed as a power ratio of dc power to totalaveraged power.IQGainImbalance: I vs Q amplifier gain imbalance (ratio of I-gain to Q-gain).IQQuadError: Amount of angle skew between I and Q (unit: deg).IQTimingSkew: Time difference between the I and Q parts of the signal(unit: sec).CPLengthMode: Current CP Length (normal or extended).Only EVM and EVM Pk are calculated from the channels that are selectedfor. The other Error Summary data results are not dependent on whichchannels are selected for analysis. The ReportEVMIndB parameter affectsthe units of EVM result.

Frame summaryThe Frame Summary trace shows the EVM, power, and number of resourceblocks occupied for the channels and signals that are present in theMeasurement Interval.EVM is the RMS value of error vector magnitudes for the channel. TheReportEVMIndB parameter affects the units of EVM result. Power is the per-subcarrier power received averaged over all the subcarriers belonging to thephysical layer channel. The power values are reported in dB relative to thesignal’s 0dB point power which determined by the sync signal's power for uplinkNum. RB shows the number of resource blocks (1 RB x 1 slot) within theMeasurement Interval that contain subcarriers belonging to the channel

PUSCHEVM: EVM result of PUSCH.PUSCHPower: power of PUSCH in dB relative to the reference signal power.PUSCHNumRB: number of RBs of PUSCH.PUCCHEVM: EVM result of PUCCH.PUCCHPower: power of PUCCH in dB relative to the reference signal power.PUCCHNumRB: number of RBs of PUCCH.PUCCHDMRSEVM: EVM result of PUCCH Demodulation Reference Signal(DMRS).PUCCHDMRSPower: power of PUCCH Demodulation Reference Signal(DMRS) in dB relative to the reference signal power.PUCCHDMRSNumRB: number of RBs of PUCCH Demodulation ReferenceSignal (DMRS).SRS: EVM result of SRS.SRSPower: power of SRS in dB relative to the reference signal powerSRSNumRB: number of RBs of SRS.PRACHEVM: EVM result of PRACH.PRACHPower: power of PRACH in dB relative to the reference signal powerPRACHNumRB: number of RBs of PRACH.The user mappings for uplink users (PUSCH) and the uplink control channeland signal are specified by the corresponding parameters same as theuplink signal sources.

Vector measurement outputIf parameter SaveConstellation set to YES, the available vector measurementoutput for the displayed frame (specified by the parameter DisplayFrame) arelisted below:

MeasuredVector: IQ measured vector result after IDFT.MeasuredModFormat: Modulation format per subcarrier and symbol. Enumvalues used in this result are defined as follows:

Page 126: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

125

0 MOD_NONE null subcarrier

1 MOD_QPSK QPSK modulation

2 MOD_QAM16 16QAM modulation

3 MOD_QAM64 64QAM modulation

11 MOD_UL_RS modulation of RS

12 MOD_PUCCH_FORMAT1 PUCCH format 1

13 MOD_PUCCH_FORMAT1a PUCCH format 1a

14 MOD_PUCCH_FORMAT1b PUCCH format 1b

15 MOD_PUCCH_FORMAT2a PUCCH format 2a

16 MOD_PUCCH_FORMAT2b PUCCH format 2b

MeasuredChanType: Channel type per subcarrier and symbol of layer 0.Enum values used in this result are defined as follows:0 null subcarrier

3 RS

4 PBCH

5 PCFICH

6 PHICH

7 PUCCH

8 PUCCH_RS

9 SRS

10 PRACH

21 unused DC

30 unused subcarriers within PUCCH/PDCCH control channel symbols (i.e. inactive Nullsubcarriers)

32 unused subcarriers for partial RB in Subframe 0 (all sym) and Subframe 10 (just syncsym) when Odd #Tx RB

34 allocated for PUSCH/PDSCH, but disabled

36 unused reserved SRS subcarriers

37 unused subcarriers in opposite link in TDD mode

100~ PDSCH, use numbers after this for multiple data bursts, such as 100, 101, 102, …

OFDMEqChanFreqResp: Normalized equalizer channel frequency responseover subcarriers. It’s a complex vector of length with the length ofnumOfSubcarriers.OFDMErrVectSpectrum: a comlex vector with length: the actual number ofsymbols analyzed * numOfSubcarriers. Error vector result, which is thedifference between IQ measured vector result and IQ reference vectorresult.OFDMFrequencyError: shows the average frequency error for each slot inthe Measurement Interval. The frequency error is expressed as an offset inHz from the current center frequency setting. It’s a real vector with length:the number of measurement slot.OFDMIQOffset: shows the average IQ offset for each slot in theMeasurement Interval. See the IQ Offset topic in the Error Summary formore information about IQ offset calculation. The IQ Offset Per Slot trace iscalculated and is valid for active slots only (slots that contain channelallocations.OFDMRBErrorMagSpectrum: EVM result (%), rms averaged over subcarrierand symbol for each RB and Slot. It is a 2 dimensional result of RB and slotbut shown as a 1 dimensional vector in such alignment as (Slot0, RB0),(Slot0, RB1), (Slot0, RB2), …, (Slot1, RB0), (Slot1, RB1), (Slot1, RB2),…(Slot2, RB0), (Slot2, RB1), …etc. Where the number of slots is decided byMeasOffset and MeasInterval . Because average is computed slot by slot intime, odd symbols after slot boundary at the end are averaged to add anadditional result at the end. Likewise, when MeasOffset in symbols is not 0,odd symbols before slot boundary at the beginning are averaged to add anadditional result at the beginning. So, when MeasOffset in symbols = 0 andMeasInterval in symbols = 0, then, the number of slots is equal toMeasInterval in slots. When MeasOffset in symbols > 0 and MeasInterval insymbols = 0, the number of slots is equal to MeasInterval in slots + 1.When MeasOffset in symbols = 0 and MeasInterval in symbols > 0, thenumber of slots is equal to MeasInterval in slots + 1, too.OFDMRBPowerSpectrum: Normalized relative power result in linear scale,rms averaged over subcarrier and symbol for each RB and slot. The dataformat is same as OFDMRBErrorMagSpectrum.Constellation for all channelsThe displayed constellation of each channel and each layer are listed below:PUSCHConst_QPSK: Constellation of PUSCH with QPSK modulation.PUSCHConst_16QAM: Constellation of PUSCH with 16QAM modulation.PUSCHConst_64QAM: Constellation of PUSCH with 64QAM modulation.PUSCHRSConst: Constellation of PUSCH RS.PUCCHConst: Constellation of PUCCH.PUCCHRSConst: Constellation of PUCCH RS.SRSConst: Constellation of SRS.

Page 127: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

126

PRACHConst: Constellation of PRACH.The algorithm used here is the same as the one used in Agilent 89600 software.2.Following is a brief description of the algorithm.Starting at the beginning of the frame, a signal segment of length SearchLength isacquired. The SearchLength is longer than the result length (which is decided byparameter ResLenInSlots) by approximately the length of the AnalysisBoundary(frame = 10 ms, slot = 0.5 ms, etc.) to allow for location of the analysis boundarywithin the time capture. ResLenInSlots determines how many slots will be availablefor demodulation. MeasOffset and MeasInterval specify which part of the time captureis demodulated.To ensure that this alignment can be achieved, the total amount of data acquired bythe analyzer is larger than the result length plus the length of the alignmentboundary specified by AnalysisBoundary. For example, when AnalysisBoundary is setto Half-Frame, the total acquisition is larger than result length + 10 slots (and thedata available for analysis would start at a Half-Frame boundary).The acquired complex signal is passed to a complex algorithm that performssynchronization, demodulation, and EVM analysis. The algorithm that performs thesynchronization, demodulation, and EVM analysis is the same as the one used in theAgilent 89600 VSA.If for any reason a measurement is misdetected (in this model, if synchronizationcorrelation coefficient is less than 0.4, the measurement shall be discarded) theresults from its analysis are discarded.See LTE_UL_Receiver (ltebasever) and LTE_UL_Src (ltebasever).3.

References

3GPP TS 36.101 v8.6.0 "User Equipment (UE) radio transmission and reception",1.September 2009.3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.2.TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access3.(UTRA),", V7.0.0, June 2006.Agilent 89600 VSA Online Help, Optional Measurement Software, 3G Cellular Comms4.Modulation Analysis, LTE Modulation Analysis, version 11.20.

Page 128: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

127

LTE_UL_EVM_Sink PartCategories: Measurement (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_UL_EVM_Sink (ltebasever) Uplink EVM measurementsink

LTE_UL_EVM_Sink

Description: Uplink EVM measurement sinkDomain: UntimedC++ Code Generation Support: NOAssociated Parts: LTE UL EVM Sink Part (ltebasever)

Model Parameters

Page 129: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

128

Name Description Default Units Type Range

FrameMode frame mode: FDD, TDD FDD Enumeration

TDD_Config downlink and uplink allocations forTDD: Config_0, Config_1, Config_2,Config_3, Config_4, Config_5,Config_6

Config_0 Enumeration

Bandwidth Bandwidth: BW_1_4_MHz,BW_3_MHz, BW_5_MHz,BW_10_MHz, BW_15_MHz,BW_20_MHz

BW_5_MHz Enumeration

CyclicPrefix type of cyclic prefix: Normal,Extended

Normal Enumeration

CellID_Sector the index of cell identity within thephysical-layer cell-identity group

0 Integer [0, 2]

CellID_Group the index of cell identity group 0 Integer [0,167]

FrameNum frame number 0 Integer [0, ∞)

FrameIncreased frame number increasing or not:NO, YES

NO Enumeration

PUCCH_PUSCH PUCCH and PUSCH selection:PUSCH, PUCCH, both

PUSCH Enumeration

MappingType the modulation orders for thePUSCH in each subframe. (0:QPSK,1:16QAM, 2:64QAM)

[0, 0, 0, 0, 0, 0,0, 0, 0, 0]

Integerarray

PUSCH_HoppingEnable whether PUSCH frequency-hoppingis enabled or not: NO, YES

NO Enumeration

PUSCH_HoppingMode PUSCH frequency hopping mode:interSubFrame,intraAndInterSubFrame

interSubFrame Enumeration

PUSCH_HoppingOffset the offset used for PUSCHfrequency hopping

0 Integer [0, 63]

PUSCH_Hopping_Nsb number of sub-bands for PUSCHfrequency hopping

1 Integer [1, 4]

PUSCH_HoppingBits information in hopping bits:zero_or_zz, one_or_zone, onezero,oneone

zero_or_zz Enumeration

RB_AllocType RB allocation type:StartRB_NumRBs, RB_indices_1D,RB_indices_2D

StartRB_NumRBs Enumeration

RB_Alloc the RB allocation for PUSCH, in thefomats of [start RB, number ofRBs] or[SF0 start RB, SF0 numberof RBs; ...; SF9 start RB, SF9number of RBs]

[0, 25] Integerarray

PUCCH_NumCQIBits number of CQI bits for PUCCHformat 2/2a/2b

5 Integer [1,13]

PUCCH_NumHARQACKBits number of HARQ-ACK bits forPUCCH format 2 in Extended CPmode: n_1_bit, n_2_bits

n_1_bit Enumeration

SRS_Enable sounding reference symbol isenable: NO, YES

NO Enumeration

SRS_SF_Config the cell-specific SRS subframeconfiguration

0 Integer [0, 14]

DisplayPortRates whether the port rates and otheruseful information are displayed inSimulation Log window: NO, YES

NO Enumeration

FramesToAverage number of frames that will beaveraged if AverageType is RMS(Video)

10 Integer [1:∞)

DisplayOption display option: Percentage, dB,Percentage_dB

Percentage Enumeration

MeasurementOption measurement option:Per_PhysicalCh, Per_Subcarrier,Per_PhysicalCh_Subcarrier

Per_PhysicalCh Enumeration

Input Ports

Port Name Description Signal Type Optional

1 Data input PUSCH signal fromUE

complex NO

Notes/Equations

This model performs an EVM measurement on the LTE uplink signal for both frame1.structure type 1 and frame structure type 2.Each firing, the number of tokens consumed at port Data is equal to the number of2.allocated REs for PUSCH in each frame. For the default parameter configurations,3600 tokens are read from port Data each firing.The EVM is defined as the RMS value of the error vector difference between the ideal3.reference signal and the measured signal. Its generic form can be written as follows:

Page 130: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

129

si: measured signal

ri: ideal reference signal

The basic EVM measurement interval is defined over one slot in the time domain. The4.formula described above is converted to,

where N is the number of data symbols within one slot.The accumulated average EVM is also provided, which is defined as follows:5.

where M is the number of frames over which the averaging is performed which equalsFramesToAverage.If DisplayOption = Percentage, the EVM measurement results will be provided in6.percentage; if DisplayOption = dB, the EVM measurement results will be provided indB; and if DisplayOption = Percentage_dB, the EVM measurement results inpercentage and dB are both provided.If MeasurementOption = Per_PhysicalCh, the EVM measurement results for PUSCH on7.a slot basis is provided; If MeasurementOption = Per_Subcarrier, the EVMmeasurement results for PUSCH on each allocated subcarrier is provided; and ifMeasurementOption = Per_PhysicalCh_Subcarrier, the EVM measurement results oneach slot and occupied subcarrier are both provided.The constellation of the data symbols of the first frame is provided.8.See LTE_UL_EVM (ltebasever).9.

For more information on parameters details, please refer to LTE_UL_Src(ltebasever).

References

3GPP TS 36.211 v8.6.0, "Physical Channels and Modulation", March 2009.1.3GPP TS 36.101 v8.5.0, "User Equipments (UE) radio transmission and reception",2.March 2009.

Page 131: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

130

LTE_UL_Src_RangeCheck PartCategories: C++ Code Generation (ltebasever), Measurement (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_UL_Src_RangeCheck (ltebasever) LTE uplink signal source range check

LTE_UL_Src_RangeCheck (Uplink signal source rangecheck)

Description: LTE uplink signal source range checkDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE UL Src RangeCheck Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

SpecialSF_Config special subframe configuration for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6, Config 7,Config 8

Config 4 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW5 MHz, BW 10 MHz, BW 15 MHz, BW 20MHz

BW 5 MHz Enumeration NO

OversamplingOption Ratio 1, Ratio 2, Ratio 4, Ratio 8: Ratio1, Ratio 2, Ratio 4, Ratio 8

Ratio 2 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

CellID_Sector the index of cell identity within thephysical-layer cell-identity group

0 Integer NO

CellID_Group the index of cell identity group 0 Integer NO

n_RNTI radio network temporary identifier 0 Integer NO

HalfCarrierShift_Enable whether or not to enable 1/2 subcarriershifting: NO, YES

YES Enumeration NO

FrameNum frame number 0 Integer NO

FrameIncreased frame number increasing or not: NO,YES

NO Enumeration NO

DL_CyclicPrefix type of cyclic prefix in downlink:Normal, Extended

Normal Enumeration NO

Printf_RB_SF_Alloc print the RB_SF allocation to file: NO,YES

NO Enumeration NO

PUCCH_PUSCH PUCCH and PUSCH selection: PUSCH,PUCCH, both

PUSCH Enumeration NO

HARQ_Enable HARQ closed-loop transmission enable:NO, YES

YES Enumeration NO

NumHARQ Number of HARQ processes 8 Integer NO

MaxHARQTrans Maximum number of HARQ transmissionper each HARQ process

4 Integer NO

Payload_Config the configuration mode of input data ofPUSCH.: MCS index, Transport blocksize, Code rate

Transport blocksize

Enumeration NO

Payload the input payload for PUSCH, themeaning of the input is defined inPayload_Config

[2555, 2555,2555, 2555,2555, 2555,2555, 2555,2555, 2555]

Floatingpoint array

NO

Enable64QAM indicates whether 64QAM is allowed inuplink: NO, YES

YES Enumeration NO

MappingType the modulation orders for the UE in eachsubframe. (0:QPSK, 1:16QAM,2:64QAM)

[0, 0, 0, 0, 0,0, 0, 0, 0, 0]

Integerarray

NO

RV_Sequence Redundancy Version Sequence for HARQ [0,1,2,3] Integer NO

Page 132: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

131

closed-loop transmission array

DFTSwap_Enable PUSCH DFT swap is enable: NO, YES NO Enumeration NO

PUSCH_HoppingEnable whether PUSCH frequency-hopping isenabled or not: NO, YES

NO Enumeration NO

PUSCH_HoppingMode PUSCH frequency hopping mode:interSubFrame, intraAndInterSubFrame

interSubFrame Enumeration NO

PUSCH_HoppingOffset the offset used for PUSCH frequencyhopping

0 Integer NO

PUSCH_Hopping_Nsb number of sub-bands for PUSCHfrequency hopping

1 Integer NO

PUSCH_HoppingBits information in hopping bits: 0 or 00, 1or 01, 10, 11

0 or 00 Enumeration NO

PUSCH_TransMode whether control and data are sent viaPUSCH: Data and Control Multiplexing,Data Only, Control Only

Data andControlMultiplexing

Enumeration NO

RB_AllocType RB allocation type: StartRB + NumRBs,RB indices (1D), RB indices (2D)

StartRB +NumRBs

Enumeration NO

RB_Alloc the RB allocation for the UE, in theformats of [start RB, number of RBs] or[[SF0 start RB, SF0 number of RBs]; . ..; [SF9 start RB, SF9 number of RBs]]

[0, 25] Integerarray

NO

GroupHop_Enable whether enable group hopping for DMRSon PUCCH and PUSCH or not: NO, YES

NO Enumeration NO

SeqHop_Enable whether enable sequence hopping forDMRS on PUSCH or not: NO, YES

NO Enumeration NO

PUSCH_Delta_ss used in determining the sequence-shiftpattern for PUSCH

0 Integer NO

PUSCH_n_DMRS1 used in computing the cyclic shift forPUSCH DMRS

[0] Integerarray

NO

PUSCH_n_DMRS2 used in computing the cyclic shift forPUSCH DMRS

[0] Integerarray

NO

PUCCH_Format PUCCH format: Format 1, Format 1a,Format 1b, Shortened 1, Shortened 1a,Shortened 1b, Format 2, Format 2a,Format 2b

Format 1 Enumeration NO

PUCCH_NumCQIBits number of CQI bits for PUCCH format2/2a/2b

5 Integer NO

PUCCH_NumHARQACKBits number of HARQ-ACK bits for PUCCHformat 2 in Extended CP mode: 1 bit, 2bits

1 bit Enumeration NO

PUCCH_Delta_shift used to calculate PUCCH cyclic shift Alfa 2 Integer NO

PUCCH_SF_Alloc which sub frames contain the PUCCH,valid when PUCCH_PUSCH is other thanPUSCH

[2] Integerarray

NO

PUCCH_NRB2 number of RBs used for transmisstionPUCCH format 2/2a/2b

1 Integer NO

PUCCH_n1 resources used for transmisstion PUCCHformat 1/1a/1b

11 Integer NO

PUCCH_n2 resources used for transmission PUCCHformat 2/2a/2b

11 Integer NO

PRACH_Enable whether or not to enable PRACH: NO,YES

NO Enumeration NO

PRACH_Config PRACH configuration index 0 Integer NO

PRACH_ResourceIndex the PRACH Resource Index. In FDD, itindicates the subframe number wherethe preamble starts; in TDD, it indicatesthe preamble mapping in time andfrequency

[1] Integerarray

NO

PRACH_PrmbleIndex preamble indexes, used to selectpreamble sequences from 64 preamblesavailable in this cell

[0] Integerarray

NO

PRACH_RBOffset PRACH frequency offset, the first RBavailable for PRACH

0 Integer NO

PRACH_LogicalIndex logical index of root ZC sequence 0 Integer NO

PRACH_Ncs cyclic shifts of ZC sequence 0 Integer NO

PRACH_HS_flag high speed flag: NO, YES NO Enumeration NO

SRS_Enable sounding reference symbol is enable:NO, YES

NO Enumeration NO

SRS_BandwidthConfig the cell-specific SRS bandwidthconfiguration

7 Integer NO

SRS_SF_Config the cell-specific SRS subframeconfiguration

0 Integer NO

SRS_MaxUpPts whether enable the reconfiguration ofmaximum m_SRS_0 or not: NO, YES

NO Enumeration NO

SRS_Bandwidth the UE-specific SRS bandwidth 0 Integer NO

SRS_HoppingBandwidth the SRS hopping bandwidth 3 Integer NO

SRS_FreqPosition the SRS frequency domain position 0 Integer NO

Page 133: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

132

SRS_ConfigIndex the UE-specific SRS configuration 0 Integer NO

SRS_TransmissionComb transmission comb 0 Integer NO

SRS_CyclicShift used in computing the cyclic shift of SRS 0 Integer NO

PUSCH_PwrOffset the power offset in dB for PUSCH 0 Float NO

PUSCH_RS_PwrOffset the power offset in dB for PUSCH RS 0 Float NO

PUCCH_PwrOffset the power offset in dB for PUCCH 0 Float NO

PUCCH_RS_PwrOffset the power offset in dB for PUCCH RS 0 Float NO

PRACH_PwrOffset the power offset in dB for PRACH 0 Float NO

SRS_PwrOffset the power offset in dB for SRS 0 Float NO

SpectrumShapingType spectrum shaping method:TimeWindowing, FIRFilter

TimeWindowing Enumeration NO

WindowType type of time transition windowingbetween two consecutive symbols, validwhenSpectrumShapingType=TimeWindowing:Tukey, Raised cosine

Tukey Enumeration NO

CyclicInterval the overlapped cyclic interval betweentwo adjacent symbols in unit of chips(without oversampling), valid whenSpectrumShapingType=TimeWindowing

6 Integer NO

CI_StartPos the start position of cyclic interval(without oversampling), compared tothe start position of CP (negative meansahead of CP)

-3 Integer NO

FIR_Taps number of FIR filter taps, valid whenSpectrumShapingType=FIRFilter

19 Integer NO

FIR_withInterp whether spectrum-shaping FIR filterwith interpolation operation or not, validwhen SpectrumShapingType=FIRFilter:NO, YES

NO Enumeration NO

FIR_FilterType spectrum-shaping FIR filter type, validwhen SpectrumShapingType=FIRFilter:RRC, Ideal Lowpass, EquiRipple

RRC Enumeration NO

RRC_Alpha roll-off factor for root raised-cosinefilter, valid whenSpectrumShapingType=FIRFilter

.22 Float NO

RI_NumInfoBits RI information bits size [0] Integerarray

NO

RI_BetaOffsetIndex RI offset values, used in calculating thenumber of coded RI symbols

[0] Integerarray

NO

CQI_NumInfoBits CQI information bits size [0] Integerarray

NO

CQI_BetaOffsetIndex CQI offset values, used in calculatingthe number of coded CQI symbols

[2] Integerarray

NO

HARQACK_NumInfoBits HARQ-ACK information bits size [0] Integerarray

NO

HARQACK_BetaOffsetIndex HARQ-ACK offset values, used incalculating the number of coded HARQ-ACK symbols

[0] Integerarray

NO

ACK_NACK_FeedbackMode ACK/NACK feedback modes for TDD:ACK/NACK multiplexing, ACK/NACKbundling

ACK/NACKmultiplexing

Enumeration NO

Nbundled Nbundled for TDD ACK/NACK bundling [1] Integerarray

NO

Notes/Equations

This model is used inside the LTE_UL_Src model to validate the input parameter1.configurations and display useful internal information based on the parameterconfigurations.There is no input and output port in this model.2.If there is any range error or confliction between the parameters, errors would be3.shown in the Error log panel.The useful messages are displayed in the Simulation log panel, including4.

System Configurations, including frame mode, system bandwidth, cell ID, cyclicprefix mode, etc.PUSCH and DMRS information, including RB allocation for PUSCH, sequence-group number u, base sequence number v and cyclic shifts ncs for PUSCH DMRS,

etc.Channel Coding information, including HARQ closed-loop transmission, transportblock size, number of channel bits, etc.PUCCH information, including PUCCH format, time and frequency resources forPUCCH, etc.SRS information, including SRS transmission instances, length of SRS, etc.PRACH information, including time and frequency resources for PRACH, etc.

For more information on the details of parameters, please refer to LTE_UL_Src (ltebasever).

References

Page 134: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

133

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.2.

Page 135: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

134

LTE_DL_MIMO_Deprecoder PartCategories: C++ Code Generation (ltebasever), MIMO Precoder (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_DL_MIMO_Deprecoder (ltebasever) Downlink MIMODeprecoder

LTE_DL_MIMO_Deprecoder

Description: Downlink MIMO DeprecoderDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE DL MIMO Deprecoder Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

NumTxAnts number of Tx Antennas: Tx1, Tx2, Tx4 Tx1 Enumeration NO

NumRxAnts number of Rx Antennas: Rx1, Rx2, Rx4 Rx1 Enumeration NO

MIMO_Mode MIMO mode: Spatial_Mux, Tx_Div Tx_Div Enumeration NO

CDD_Mode cyclic delay diversity (CDD) mode, validwhen MIMO_Mode is Spatial_Mux: Large-Delay, Zero-Delay

Large-Delay Enumeration NO

CdBlk_Index codebook index for precoding, valid whenMIMO_Mode is Spatial_Mux

0 Integer NO

NumOfLayers number of layers 1 Integer NO

MIMO_Decoder MIMO decoder mode for spatialmultiplexing: ZF, MMSE

MMSE Enumeration NO

CL_Precoding_Enable whether closed-loop MIMO precoding isenabled: NO, YES

NO Enumeration NO

PMI_Granularity closed-loop PMI reporting granularity inunits of resource blocks (RBs)

25 Integer NO

PMI_Delay closed-loop PMI reporting delay in units ofsub-frames (1ms)

6 Integer NO

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

SpecialSF_Config special subframe configuration for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6, Config 7,Config 8

Config 4 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW 5MHz, BW 10 MHz, BW 15 MHz, BW 20MHz

BW 5 MHz Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

PDCCH_SymsPerSF number of OFDM symbols of PDCCH foreach subframe

[2, 2, 2, 2,2, 2, 2, 2,2, 2]

Integerarray

NO

RB_AllocType RB allocation type: StartRB + NumRBs,RB indices (1D), RB indices (2D)

StartRB +NumRBs

Enumeration NO

RB_Alloc the RB allocation for the UE, in theformats of [start RB, number of RBs] or[[SF0 start RB, SF0 number of RBs]; . . .;[SF9 start RB, SF9 number of RBs]]

[0, 25] Integerarray

NO

SubframeIgnored number of subframes (or transportblocks) that are ignored at the beginningdue to system delay

0 Integer NO

Input Ports

Page 136: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

135

Port Name Description Signal Type Optional

1 CIR Channel Impulse Response in frequency domain complex matrix YES

2 SNR input of linear signal noise ratio per receiver antenna real YES

3 PMI input of precoding matrix index for closed-loopprecoding

integer matrix YES

4 MIMO_Symbol input of modulation symbols multiple complexmatrix

NO

Output Ports

Port Name Description Signal Type Optional

5 Layer_Symbol output of layer mappingsymbols

multiple complex matrix NO

Notes/Equations

This model is to implement MIMO deprecoding for both spatial multiplexing and1.transimit diversity. It is the inverse of LTE_DL_MIMO_Precoder (ltebasever).Each firing, one Matrix-based token is consumed at the MIMO_Symbol port whose2.bus width is equal to the number of antenna ports (determined by NumTxAnts). Thematrix vector size for each bus, donated B.One Matrix-based token is produced at the CIR port when this port is connected. Thematrix vector size should be equal to NumTxPorts*NumRxPorts*B, whereNumTxPorts and NumRxPorts are the number of transmit antenna ports and thenumber of receiver antenna ports respectively.One Matrix-based token is produced at the Layer_Symbol port whose bus width isequal to NumOfLayers. The matrix vector size for each bus is the same as theLayer_Symbol port in LTE_DL_MIMO_Precoder (ltebasever).The SubframeIgnored parameter specifies how many tokens are ignored at the3.beginning of simulation. In the first SubframeIgnored tokens, the matrix size at theLayer_Symbol port is 0.When this CIR port is connected, the H matrix is constructed from this port, with the4.size of NumRxPorts by NumTxPorts. Otherwise, the identity matrix is constructed forH matrix.Deprecoding for spatial multiplexing:5.

When MIMO_Decoder = ZF, ZF (Zero Forcing) algorithm is employed.When MIMO_Decoder = MMSE, MMSE (Minimum Mean Square Error) algorithmis employed in which the requried SNR is read from the input port SNR.

Deprecoding for transmit diversity: the Alamouti algorithm is employed.6.When NumTxAnts = Tx1, and NumRxAnts = Rx2,or Rx4, the Maximal Ratio7.Combining (MRC) method is employed for receiver diversity.For spatial multiplexing, when CL_Precoding_Enable = YES, the value of the8.precoding matrix shall be set by the input port PMI. For the detailed requirement forinput port PMI, refer to LTE_DL_PMI_Generator (ltebasever).Note that when transmit diversity mode for 4 antenna ports, the number of9.modulation symbols may be not integer multiple of 4 (see Table 6.3.3.3-1 in 36.211[1]). In this case, the number of output data in the last two layers (at the last twobuses in the Layer_Symbol port) should be one less than the number of output datain the first two layers (at the first two buses in the Layer_Symbol port).See also LTE_DL_MIMO_Precoder (ltebasever).10.

References3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.11.

Page 137: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

136

LTE_DL_MIMO_LayDemapDeprecoderPart Downlink layer demapping and deprecoding

Categories: MIMO Precoder (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model

LTE_DL_MIMO_LayDemapDeprecoder (ltebasever)

LTE_DL_MIMO_LayDemapDeprecoder

Description: Downlink layer demapping and deprecodingAssociated Parts: LTE DL MIMO LayDemapDeprecoder Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

NumTxAnts number of Tx Antennas: Tx1, Tx2, Tx4 Tx2 Enumeration NO

NumRxAnts number of Rx Ant: Rx1, Rx2, Rx4 Rx2 Enumeration NO

MIMO_Mode MIMO Mode, 1 for TD, 0 for SM:Spatial_Mux, Tx_Div

Tx_Div Enumeration NO

CDD_Mode : Large-Delay, Zero-Delay Large-Delay Enumeration NO

CdBlk_Index codebook indexrecoding for each UE 0 Integer NO

NumOfCWs number of code words 1 Integer NO

NumOfLayers number of layers 2 Integer NO

MIMO_Decoder MIMO decoder mode for spatialmultiplexing: ZF, MMSE

ZF Enumeration NO

CL_Precoding_Enable whether closed-loop MIMO precoding forUE1 is enabled: NO, YES

NO Enumeration NO

PMI_Granularity closed-loop PMI reporting granularity inunits of resource blocks (RBs)

25 Integer NO

PMI_Delay closed-loop PMI reporting delay in units ofsub-frames (1ms)

6 Integer NO

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

SpecialSF_Config special subframe configuration for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6, Config 7,Config 8

Config 0 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW 5MHz, BW 10 MHz, BW 15 MHz, BW 20 MHz

BW 5 MHz Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

PDCCH_SymsPerSF number of OFDM symbols of PDCCH foreach subframe

[2, 2, 2, 2,2, 2, 2, 2,2, 2]

Integerarray

NO

RB_AllocType RB allocation type: StartRB + NumRBs,RB indices (1D), RB indices (2D)

StartRB +NumRBs

Enumeration NO

RB_Alloc the RB allocation for the UE, in theformats of [start RB, number of RBs] or[[SF0 start RB, SF0 number of RBs]; . . .;[SF9 start RB, SF9 number of RBs]]

[0, 25] Integerarray

NO

SubframeIgnored number of subframes (or transport blocks)that is ignored at the beginning due tosystem delay

0 Integer NO

Input Ports

Page 138: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

137

Port Name Description Signal Type Optional

1 CIR Channel Impulse Response complex matrix NO

2 input input of modulation symbols multiple complex matrix NO

4 SNR input of linear signal noise ratio per receiver antenna real YES

5 PMI input of PMI int matrix YES

Output Ports

Port Name Description Signal Type Optional

3 output output of modulation symbols multiple complex matrix NO

Notes/Equations

This sub-network model is used to implement layer de-mapping (section 6.3.3 in [1])1.and de-precoding (section 6.3.4 in [1]). The LTE_MIMO_LayDemapDeprecoderschematic is shown below:

Each firing, one Matrix-based token is consumed at the input port and the CIR port.2.Refer to LTE_DL_MIMO_Deprecoder (ltebasever) for more information on input ports.One Matrix-based token is produced at the output port. Refer toLTE_DL_MIMO_LayerDemapper (ltebasever) for more information on output ports.It consists of LTE_DL_MIMO_LayerDemapper and LTE_DL_MIMO_Deprecoder.3.It can support both spatial multiplexing and transmit diversity MIMO mode. It also4.can support PDSCH as well as PMCH, PBCH, PDCCH and PCFICH.The SubframeIgnored parameter specifies how many tokens are ignored at the5.beginning of simulation. In the first SubframeIgnored tokens, the matrix size at theLayer_Symbol port is 0.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.

Page 139: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

138

LTE_DL_MIMO_LayerDemapper PartCategories: C++ Code Generation (ltebasever), MIMO Precoder (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_DL_MIMO_LayerDemapper (ltebasever) Downlink MIMO LayerDemapper

LTE_DL_MIMO_LayerDemapper

Description: Downlink MIMO Layer DemapperDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE DL MIMO LayerDemapper Part (ltebasever)

Model Parameters

Name Description Default Units Type Runtime Tunable

NumOfCWs number of code words 1 Integer NO

NumOfLayers number of layers 1 Integer NO

Input Ports

Port Name Description Signal Type Optional

1 Layer_Symbol input of layer mapping symbols multiple complex matrix NO

Output Ports

Port Name Description Signal Type Optional

2 Mod_Symbol output of modulation symbols multiple complex matrix NO

Notes/Equations

This model is used to implement MIMO layer de-mapping for both spatial multiplexing1.(SM) and transmit diversity (TD). It is the inverse of LTE_DL_MIMO_LayerDemapper.Each firing, one Matrix-based token is consumed at the input port whose bus width is2.equal to NumOfLayers. The matrix vector size for each bus is denoted by B.One Matrix-based token is produced at the output port whose bus width is equal toNumOfCWs. The matrix vector size for each bus, denoted by A(i), is shown in thefollowing table.NumOfCWs NumOfLayers A(i)

1 1 B

1 2 2*B

2 2 Codeword#1:BCodeword#2: B

2 3 Codeword#1: BCodeword#2: 2*B

2 4 Codeword#1: 2*BCodeword#2: 2*B

Note that when transmit diversity mode for 4 antenna ports (NumOfCWs=1,3.NumOfLayers=4), the number of modulation symbols may be not integer multiple of4 (see Table 6.3.3.3-1 in 36.211 [1]). In this case, it is required that the number ofdata in the last two layers (at the last two buses in the Layer_Symbol port) should beone less than the number of data in the first two layers (at the first two buses in theLayer_Symbol port).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.

Page 140: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

139

LTE_DL_MIMO_LayerMapper PartCategories: C++ Code Generation (ltebasever), MIMO Precoder (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_DL_MIMO_LayerMapper (ltebasever) Downlink MIMO Layer Mapper

LTE_DL_MIMO_LayerMapper

Description: Downlink MIMO Layer MapperDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE DL MIMO LayerMapper Part (ltebasever)

Model Parameters

Name Description Default Units Type Runtime Tunable

NumOfCWs number of code words 1 Integer NO

NumOfLayers number of layers 1 Integer NO

Input Ports

Port Name Description Signal Type Optional

1 Mod_Symbol input of modulationsymbols

multiple complex matrix NO

Output Ports

Port Name Description Signal Type Optional

2 Layer_Symbol output of layer mappingsymbols

multiple complex matrix NO

Notes/Equations

This model is used to implement MIMO layer mapping for both spatial multiplexing1.(SM) and transmit diversity (TD). The complex-valued modulation symbols for eachof the code words to be transmitted are mapped onto one or several layers.Each firing, one Matrix-based token is consumed at the input port whose bus width is2.equal to NumOfCWs. The matrix vector size for each bus is denoted by A with theexception that, in case NumOfCWs = 2, NumOfLayers=3, the size in Codeword#1 isA, the size in Codeword#2 is 2A.One Matrix-based token is produced at the output port whose bus width is equal toNumOfLayers. The matrix vector size for each bus, denoted by B, is shown in thefollowing table.NumOfCWs NumOfLayers B

1 1 A

1 2 A/2

2 2 A

2 3 A

2 4 A/2

Layer mapping for spatial multiplexing: For spatial multiplexing, the layer mapping3.shall be done according to Table 6.3.3.2-1 in [1]. The case of a single codewordmapped to two layers is only applicable when the number of antenna ports is 4.Layer mapping for transmit diversity: For transmit diversity, the layer mapping shall4.be done according to Table 6.3.3.3-1 in [1]. The case of a single codeword mappedto two layers is only applicable when the number of antenna ports is 4.Note that when transmit diversity mode for 4 antenna ports (NumOfCWs=1,5.NumOfLayers=4), the number of modulation symbols may be not integer multiple of4 (see Table 6.3.3.3-1 in 36.211 [1]), two null symbols are added in this model.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.

Page 141: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

140

LTE_DL_MIMO_LayMapPrecoder Part Downlink layer mapping and precoding

Categories: MIMO Precoder (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model

LTE_DL_MIMO_LayMapPrecoder (ltebasever)

LTE_DL_MIMO_LayMapPrecoder

Description: Downlink layer mapping and precodingAssociated Parts: LTE DL MIMO LayMapPrecoder Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

NumTxAnts number of Tx Antennas: Tx1, Tx2, Tx4 Tx2 Enumeration NO

MIMO_Mode MIMO Mode, 1 for TD, 0 for SM:Spatial_Mux, Tx_Div

Tx_Div Enumeration NO

CDD_Mode : Large-Delay, Zero-Delay Large-Delay Enumeration NO

CdBlk_Index codebook indexrecoding for each UE 0 Integer NO

NumOfCWs number of code words 1 Integer NO

NumOfLayers number of layers 2 Integer NO

CL_Precoding_Enable whether closed-loop MIMO precoding forUE1 is enabled: NO, YES

NO Enumeration NO

PMI_Granularity closed-loop PMI reporting granularity inunits of resource blocks (RBs)

25 Integer NO

PMI_Delay closed-loop PMI reporting delay in units ofsub-frames (1ms)

6 Integer NO

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

SpecialSF_Config special subframe configuration for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6, Config 7,Config 8

Config 4 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW 5MHz, BW 10 MHz, BW 15 MHz, BW 20MHz

BW 5 MHz Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

PDCCH_SymsPerSF number of OFDM symbols of PDCCH foreach subframe

[2, 2, 2, 2,2, 2, 2, 2,2, 2]

Integerarray

NO

RB_AllocType RB allocation type: StartRB + NumRBs,RB indices (1D), RB indices (2D)

StartRB +NumRBs

Enumeration NO

RB_Alloc the RB allocation for UE , in the formats of[start RB, number of RBs] or [[SF0 startRB, SF0 number of RBs]; . . .; [SF9 startRB, SF9 number of RBs]]

[0, 25] Integerarray

NO

Input Ports

Port Name Description Signal Type Optional

1 input input of modulationsymbols

multiple complex matrix NO

3 PMI input of PMI int matrix YES

Output Ports

Port Name Description Signal Type Optional

2 output output of layer mappingsymbols

multiple complex matrix NO

Notes/Equations

Page 142: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

141

This sub-network model is used to implement layer mapping (section 6.3.3 in [1])1.and precoding (section 6.3.4 in [1]). The LTE_MIMO_LayMappPrecoder schematicis shown below:

Each firing, one Matrix-based token is consumed at the input port. Refer to2.LTE_DL_MIMO_LayerMapper (ltebasever) for more information on input ports.One Matrix-based token is produced at the output port. Refer toLTE_DL_MIMO_Precoder (ltebasever) for more information on output ports.It consists of LTE_DL_MIMO_LayerMapper and LTE_DL_MIMO_Precoder.3.It can support both spatial multiplexing and transmit diversity MIMO mode.4.It also can support PDSCH as well as PMCH, PBCH, PDCCH and PCFICH.5.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.

Page 143: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

142

LTE_DL_MIMO_Precoder PartCategories: C++ Code Generation (ltebasever), MIMO Precoder (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_DL_MIMO_Precoder (ltebasever) Downlink MIMOPrecoder

LTE_DL_MIMO_Precoder

Description: Downlink MIMO PrecoderDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE DL MIMO Precoder Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

NumTxAnts number of Tx Antennas: Tx1, Tx2, Tx4 Tx1 Enumeration NO

MIMO_Mode MIMO mode: Spatial_Mux, Tx_Div Tx_Div Enumeration NO

CDD_Mode cyclic delay diversity (CDD) mode, validwhen MIMO_Mode is Spatial_Mux: Large-Delay, Zero-Delay

Large-Delay Enumeration NO

CdBlk_Index codebook index for precoding, valid whenMIMO_Mode is Spatial_Mux

0 Integer NO

NumOfLayers number of layers 1 Integer NO

CL_Precoding_Enable whether closed-loop MIMO precoding isenabled: NO, YES

NO Enumeration NO

PMI_Granularity closed-loop PMI reporting granularity inunits of resource blocks (RBs)

25 Integer NO

PMI_Delay closed-loop PMI reporting delay in units ofsub-frames (1ms)

6 Integer NO

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

SpecialSF_Config special subframe configuration for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6, Config 7,Config 8

Config 4 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW 5MHz, BW 10 MHz, BW 15 MHz, BW 20MHz

BW 5 MHz Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

PDCCH_SymsPerSF number of OFDM symbols of PDCCH foreach subframe

[2, 2, 2, 2,2, 2, 2, 2,2, 2]

Integerarray

NO

RB_AllocType RB allocation type: StartRB + NumRBs,RB indices (1D), RB indices (2D)

StartRB +NumRBs

Enumeration NO

RB_Alloc the RB allocation for the UE, in theformats of [start RB, number of RBs] or[[SF0 start RB, SF0 number of RBs]; . . .;[SF9 start RB, SF9 number of RBs]]

[0, 25] Integerarray

NO

Input Ports

Port Name Description Signal Type Optional

1 PMI input of precoding matrix index for closed-loopprecoding

integer matrix YES

2 Layer_Symbol intput of layer mapping symbols multiple complexmatrix

NO

Output Ports

Page 144: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

143

Port Name Description Signal Type Optional

3 MIMO_Symbol output of modulation symbols multiple complex matrix NO

Notes/Equations

The precoder takes as input a token of vectors from the layer mapping and generates1.a token of vectors to be mapped onto resources on each of the antenna portsaccording to Section 6.3.4 in [1].Each firing, one Matrix-based token is consumed at the input port whose bus width is2.equal to NumOfLayers. The matrix vector size for each bus is donated by A.One Matrix-based token is produced at the output port whose bus width is equal tothe number of antenna ports (determined by NumTxAnts). The matrix vector size foreach bus, donated by B, is shown in the following table.MIMO_Mode NumTxAnts B

Spatial_Mux Tx1 A

Spatial_Mux Tx2 A

Spatial_Mux Tx4 A

Tx_Div Tx1 A

Tx_Div Tx2 A/2

Tx_Div Tx4 A/4

Precoding for spatial multiplexing: When set parameter MIMO_Mode to Spatial_Mux,3.precoding for spatial multiplexing is used in combination with layer mapping forspatial multiplexing as described in Section 6.3.4.2 in [1]. Spatial multiplexingsupports two or four antenna ports.

Precoding without CDD:When CL_Precoding_Enable = NO, the value of the precoding matrix shallbe set by the parameter Codebook_Index from Table 6.3.4.2.3-1 or6.3.4.2.3-2 in [1]. For transmission on two antenna ports, the precodingmatrix shall be selected from Table 6.3.4.2.3-1 in [1].When CL_Precoding_Enable = YES, the value of the precoding matrix shallbe set by the input port PMI. For the detailed requirement for input portPMI, refer to LTE_DL_PMI_Generator (ltebasever). Note that when theparameter PMI_Delay is greater than 0, the first PMI_Delay tokens(subframes) will use the value in the parameter Codebook_Index.

Precoding for large delay CDD: For large-delay CDD, precoding for spatialmultiplexing is defined by Section 6.3.4.2.2 in [1]. This can be set parameterCDD_Mode to Large-delay CDD.

For Precoding for large delay CDD, for 2 antenna ports, the precoder isselected according to W(i) = C1, where C1 denotes the precoding matrixcorresponding to precoder index 0 in Table 6.3.4.2.3-1. For transmission onfour antenna ports, the precoding matrix shall be selected from Table6.3.4.2.3-2 in [1], which means the CdBlk_Index parameter is ignored inthis case.For 4 antenna ports, the UE may assume that the eNB cyclically assignsdifferent precoders to different vectors as defined in 6.3.4.2.2 in [1]. In thiscase, the CdBlk_Index parameter is also ignored.

Precoding for transmit diversity: When set parameter MIMO_Mode setting to Tx_Div,4.precoding for transmit diversity is used in combination with layer mapping fortransmit diversity as described in Section 6.3.4.3 in [1].The precoding operation for transmit diversity is defined for two and four antennaports. Note that for transmit diversity precoding, the number of layers set byparameter NumOfLayers should be equal to number of transmit antenna ports set byparameter NumTxAnts.Note that when transmit diversity mode for 4 antenna ports, the number of5.modulation symbols may be not integer multiple of 4 (see Table 6.3.3.3-1 in 36.211[1]), two null symbols are added in LTE_DL_MIMO_LayerMapper. However in thismodel, the two null AP symbols output at the MIMO_Symbol port are not removedwhich will be ignored in LTE_DL_MuxOFDMSym.See also LTE_DL_MIMO_Deprecoder (ltebasever).6.

References3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.7.

Page 145: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

144

LTE_DL_PMI_Generator PartCategories: C++ Code Generation (ltebasever), MIMO Precoder (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_DL_PMI_Generator (ltebasever) Precoding Matrix Index generator for closed-loop MIMOprecoding

LTE_DL_PMI_Generator

Description: Precoding Matrix Index generator for closed-loop MIMO precodingDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE DL PMI Generator Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

CL_Precoding_Enable whether closed-loop MIMO precoding isenabled: NO, YES

NO Enumeration NO

PMI_Granularity closed-loop PMI reporting granularity inunits of resource blocks (RBs)

25 Integer NO

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

SpecialSF_Config special subframe configuration for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6, Config 7,Config 8

Config 4 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW 5MHz, BW 10 MHz, BW 15 MHz, BW 20 MHz

BW 5 MHz Enumeration NO

NumTxAnts number of Tx Antennas: Tx1, Tx2, Tx4 Tx2 Enumeration NO

NumRxAnts number of Rx Antennas: Rx1, Rx2, Rx4 Rx2 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

NumOfLayers number of layers 1 Integer NO

RB_AllocType RB allocation type: StartRB + NumRBs, RBindices (1D), RB indices (2D)

StartRB +NumRBs

Enumeration NO

RB_Alloc the RB allocation for the UE, in the formatsof [start RB, number of RBs] or [[SF0 startRB, SF0 number of RBs]; . . .; [SF9 startRB, SF9 number of RBs]]

[0, 25] Integerarray

NO

SubframeIgnored number of subframes (or transport blocks)that are ignored at the beginning due tosystem delay

0 Integer NO

Input Ports

Port Name Description Signal Type Optional

1 CIR Channel Impulse Response in frequencydomain

complex YES

Output Ports

Port Name Description Signal Type Optional

2 PMI output of generated Precoding MatrixIndex

integermatrix

NO

Notes/Equations

This model performs MIMO precoding PMI generation given the MIMO channel1.matrices H which are input from the CIR port.Each firing, one subframe is processed.2.

NumberREsPerSubframe*Nr*Nt tokens are consumed at the CIR port,

NumberREsPerSubframe = NumOfTotalRBs * 12 (subcarriers per RB) *NumberOfSymbolsPerSubframe, NumOfTotalRBs is the total number of resourceblocks per each subframe, related to Bandwidth, as

Page 146: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

145

Bandwidth NumOfTotalRBs

1.4 MHz 6

3 MHz 15

5 MHz 25

10 MHz 50

15 MHz 75

20 MHz 100

NumberOfSymbolsPerSubframe is 7 in normal cyclic prefix mode and is 6 inextended cyclic prefix mode.Nt is the number of transmitter antennas, determined by the NumTxAnts

parameter.Nr is the number of receiver antennas, determined by the NumRxAnts

parameter.For the CIR port, the first Nr*Nt tokens compose the MIMO channel matrix H for

the first resource element (RE) in one subframe, and so on.One matrix-based token is produced at the PMI port. The matrix vector size isceil(NumRBs/PMI_Granularity), where NumRBs is the total number of resourceblocks (RBs) allocated in each subframe, determined by the RB_AllocType andRB_Alloc parameters, see Resource Block (RB) Allocation (ltebasever).

UE1_CL_Precoding_Enable specifies whether closed-loop MIMO precoding for UE1 is3.enabled. According to Reference [1], closed-loop MIMO precoding can be eanbledonly in case of Spatial Multiplexing and without CDD.UE1_PMI_Granularity specify the granularity in units of PRBs that PMIs are produced4.when UE1_CL_Precoding_Enable is equal to YES.First the MIMO channel matrices H for the resource blocks which are allocated to UE5.are selected from the input matrices H. The resource blocks allocated to UE aredetermined by the RB_AllocType and RB_Alloc parameters, see Resource Block (RB)Allocation (ltebasever).for each selected Nr*Nt MIMO channel matrix H, the singular value decomposition6.

(SVD) is performed, as , where matrices U and V are unitary.The selected matrices H could be divided into ceil(NumRBs/PMI_Granularity)7.precoding blocks. For ith precoding block, the desired precoding matrix index is

estimated, as , where Vk,0 is the first column of

Vk, k is the index of H in the ith precoding block with PMI_Granularity resource block

granularity, and W0(c) is the first column of W(c). W is the MIMO precoding codebook

determined by the NumTxAnts and NumOfLayers parameters, see Table 6.3.4.2.3-1and 6.3.4.2.3-1 in 36.211[1].The estimated PMI(i) is output at the ith row in the PMI port.8.It is requried that the resource block allocation in each subfame should be the same,9.unless no resource block in one subframe is allocated. If no resource block isallocated in one subframe, the output PMIs at the PMI port will use the estimatedresults in closest previouse suframe in which resource blocks are allocated.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.

Page 147: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

146

LTE_PHICH_Deprecoder PartCategories: C++ Code Generation (ltebasever), MIMO Precoder (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_PHICH_Deprecoder (ltebasever) PHICHDeprecoder

LTE_PHICH_Deprecoder

Description: PHICH DeprecoderDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE PHICH Deprecoder Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW5 MHz, BW 10 MHz, BW 15 MHz, BW 20MHz

BW 5 MHz Enumeration NO

NumTxAnts number of Tx Antennas: Tx1, Tx2, Tx4 Tx1 Enumeration NO

NumRxAnts number of Rx Antennas: Rx1, Rx2, Rx4 Rx1 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

PDCCH_SymsPerSF number of OFDM symbols of PDCCH foreach subframe

[2, 2, 2, 2, 2,2, 2, 2, 2, 2]

Integerarray

NO

PHICH_Ng PHICH Ng value: Ng 1/6, Ng 1/2, Ng 1,Ng 2

Ng 1/6 Enumeration NO

SubframeIgnored number of subframes (or transportblocks) that are ignored at the beginningdue to system delay

0 Integer NO

ETM_Support whether to support PHICH m =1 in alltransmitted subframes for TDD E-TMdefined in 36.141 6.1.2.6: NO, YES

NO Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 CIR input of Rx antenna signals complex matrix YES

2 MIMO_Symbol multiple complex matrix NO

Output Ports

Port Name Description Signal Type Optional

3 Layer_Symbol output of layer mappingsymbols

multiple complex matrix NO

Notes/Equations

This model is used to implement PHICH pre-decoding. It is the inverse of1.LTE_PHICH_Precoder.The input port MIMO_Symbol and output port Layer_Symbol are all multiple ports.2.The bus width connected to Layer_Symbol should be equal to the number of layerswhich is equal to the number of Tx antenna ports; the bus width connected toMIMO_Symbol should be equal to the number of Rx antenna ports. The input portCIR used to input the channel impulse response for PHICH.For ith firing, Subframe#(i%10) is processed, where 10 is the number of subframes inone radio frame.Each firing,

for each antenna port, 1 matrix-based token is consumed at MIMO_Symbol. Thesize of this matrix token is c*3*NSF

PHICH*N_PHICH_Group(sf).

1 matrix-based token is consumed at CIR. The size of this matrix token is c*3*N

SFPHICH*N_PHICH_Group(sf)*NumOfTxAnts*NumOfRxAnts.

Page 148: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

147

for each antenna port, 1 matrix-based token is generated at Layer_Symbol. Thesize of this matrix token is c*3*NSF

PHICH*N_PHICH_Group(sf)/NumOfLayers.

Where NSFPHICH=4, c=1 for normal cyclic prefix and NSF

PHICH=2, c=2 for

extended cyclic prefix. N_PHICH_Group(sf) is the number of PHICH groups inthis subframe as defined in Section 6.9 of 36.211. These system parameters areused to decide the N_PHICH_Group(sf) of each subframe. NumOfTxAnts andNumOfRxAnts are defined by parameter NumTxAnts and NumRxAnts.

Parameter details:3.System parameters

FrameMode: frame mode of LTE, the type is enum and it can be selected asFDD and TDD. FDD supports frame structure typ1 and TDD supports framestructure type 2.TDD_Config: uplink-downlink configuration for TDD, the type is enum and itcan be selected as Config 0, Config 1, Config 2, Config 3, Config 4, Config 5and Config 6.Hidden when FrameMode = FDD.Bandwidth: bandwidth of LTE, the type is enum and it can be selected asBW 1.4 MHz, BW 3 MHz, BW 5 MHz, BW 10 MHz, BW 15 MHz and BW 20MHz.CyclicPrefix: type of cyclic prefix. It can be set to Normal and Extended.Please note the first six OFDM symbols have the same shorter cyclic prefixand the last OFDM symbol has the longer cyclic prefix in the Normal CyclicPrefix mode.NumTxAnts: number of Tx antenna ports.NumRxAnts: number of Rx antenna ports.SubframeIgnored: number of subframe that are ignored at the beginningdue to system delay.

Control channel parametersPDCCH_SymsPerSF: number of OFDM symbols of PDCCH for eachsubframe. Its value can be set as 0, 1, 2, 3 and 4. Note that value 4 forsmall bandwidth is supported in this release. For more information, refer toTable 6.7-1 of 36211-860. This is an Array Parameter (ltebasever). Theallowable sizes are 1x1, 10x1. If the number of PDCCH symbols of PDCCHfor one subframe is set to 0, there is no PDCCH (no DCI), PHICH andPCFICH in this subframe.PHICH_Ng: number of PHICH group. The type is enum and it can be set to1/6, 1/2, 1 and 2.

For the system parameters, refer to DL System Parameters (ltebasever).For PDCCH corresponding parameters, refer to DL Control Channel Parameters(ltebasever).

See LTE_PHICH_LayerDemapper (ltebasever) and LTE_PHICH_Precoder (ltebasever).4.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.

Page 149: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

148

LTE_PHICH_LayDemapDeprecoder Part PHICH layer demapping and deprecoding

Categories: MIMO Precoder (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model

LTE_PHICH_LayDemapDeprecoder (ltebasever)

LTE_PHICH_LayDemapDeprecoder

Description: PHICH layer demapping and deprecodingAssociated Parts: LTE PHICH LayDemapDeprecoder Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations forTDD: Config 0, Config 1, Config 2,Config 3, Config 4, Config 5, Config6

Config 0 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3MHz, BW 5 MHz, BW 10 MHz, BW15 MHz, BW 20 MHz

BW 5 MHz Enumeration NO

NumTxAnts number of Tx Antennas: Tx1, Tx2,Tx4

Tx2 Enumeration NO

NumRxAnts number of Rx Antennas: Rx1, Rx2,Rx4

Rx2 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal,Extended

Normal Enumeration NO

CellID_Sector the index of cell identity group 0 Integer NO

CellID_Group the index of cell identity within thephysical-layer cell-identity group

0 Integer NO

NumOfLayers number of layers 1 Integer NO

PDCCH_SymsPerSF number of OFDM symbols ofPDCCH for each subframe

[2,2,2,2,2,2,2,2,2,2] Integerarray

NO

PHICH_Ng type of PHICH duration : Ng 1/6,Ng 1/2, Ng 1, Ng 2

Ng 1/6 Enumeration NO

SubframeIgnored number of subframes (or transportblocks) that are ignored at thebeginning due to system delay

0 Integer NO

Input Ports

Port Name Description Signal Type Optional

1 CIR Channel impulse response for PHICH complex matrix NO

2 input PHICH layer mapping and precodingsignal

multiple complex matrix NO

Output Ports

Port Name Description Signal Type Optional

3 HI HI bits int matrix NO

4 Constellation PHICHconstellation

complex matrix NO

Notes/Equations

This sub-network model is used to implement PHICH de-precoding, PHICH de-1.mapping and de-modulator. It consists of PHICH_Depredecoder,PHICH_LayerDemapper and PHICH_Demodulator. TheLTE_PHICH_LayDemapDeprecoder schematic is shown below:

Page 150: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

149

Each firing,2.one Matrix-based token is consumed at the input port. Refer toLTE_PHICH_Deprecoder (ltebasever) for more information on input ports.for each antenna port, one Matrix-based token is produced at the output port.Refer to LTE_PHICH_Demodulator (ltebasever) for more information on outputports.

It consists of LTE_PHICH_Deprecoder, LTE_PHICH_LayerDemapper and3.LTE_PHICH_Demodulator.It can support transmit diversity MIMO mode for PHICH.4.Parameter details:5.

FrameMode: frame mode of LTE, the type is enum and it can be selected as FDDand TDD. FDD supports frame structure typ1 and TDD supports frame structuretype 2.TDD_Config: uplink-downlink configuration for TDD, the type is enum and it canbe selected as Config 0, Config 1, Config 2, Config 3, Config 4, Config 5 andConfig 6.Hidden when FrameMode = FDD.Bandwidth: bandwidth of LTE, the type is enum and it can be selected as BW 1.4MHz, BW 3 MHz, BW 5 MHz, BW 10 MHz, BW 15 MHz and BW 20 MHz.NumTxAnts: number of Tx antennas.CyclicPrefix: type of cyclic prefix. It can be set to Normal and Extended. Pleasenote the first six OFDM symbols have the same shorter cyclic prefix and the lastOFDM symbol has the longer cyclic prefix in the Normal Cyclic Prefix mode.CellID_Sector: the index of cell identity within the physical-layer cell-identitygroup.CellID_Group: index of cell identity group, its value range is [0,167].CellID_Sector and CellID_Group are used to initialize the scrambling sequence inLTE_PHICH_Modulator.NumOfLayers: number of layers for PHICH which is equal to the number ofantenna ports.PDCCH_SymsPerSF: number of OFDM symbols of PDCCH for each subframe. Itsvalue can be set as 0, 1, 2, 3 and 4. Note that value 4 for small bandwidth issupported in this release. For more information, refer to Table 6.7-1 of 36211-860. This is an Array Parameter (ltebasever). The allowable sizes are 1x1, 10x1.If the number of PDCCH symbols of PDCCH for one subframe is set to 0, there isno PDCCH (no DCI), PHICH and PCFICH in this subframe.PHICH_Ng: number of PHICH group. The type is enum and it can be set to 1/6,1/2, 1 and 2.SubframeIgnored: number of subframe that are ignored at the beginning due tosystem delay.

See LTE_PHICH_Deprecoder (ltebasever), LTE_PHICH_LayerDemapper (ltebasever)6.and LTE_PHICH_Demodulator (ltebasever).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.

Page 151: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

150

LTE_PHICH_LayerDemapper PartCategories: C++ Code Generation (ltebasever), MIMO Precoder (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_PHICH_LayerDemapper (ltebasever) PHICH LayerDemapper

LTE_PHICH_LayerDemapper

Description: PHICH Layer DemapperDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE PHICH LayerDemapper Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW5 MHz, BW 10 MHz, BW 15 MHz, BW 20MHz

BW 5 MHz Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

NumOfLayers number of layers 1 Integer NO

PDCCH_SymsPerSF number of OFDM symbols of PDCCH foreach subframe

[2, 2, 2, 2, 2,2, 2, 2, 2, 2]

Integerarray

NO

PHICH_Ng PHICH Ng value: Ng 1/6, Ng 1/2, Ng 1,Ng 2

Ng 1/6 Enumeration NO

SubframeIgnored number of subframes (or transportblocks) that are ignored at the beginningdue to system delay

0 Integer NO

ETM_Support whether to support PHICH m =1 in alltransmitted subframes for TDD E-TMdefined in 36.141 6.1.2.6: NO, YES

NO Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 PHICH_Layer input of layer mapping PHICHsymbols

multiple complex matrix NO

Output Ports

Port Name Description Signal Type Optional

2 PHICH out of PHICHsymbols

complex matrix NO

Notes/Equations

This model is used to implement PHICH layer de-mapping according to section1.6.3.3.3 in [1]. It is the inverse of LTE_PHICH_LayerMapper.The input port PHICH_Layer is multiple ports. The bus width connected to it should2.be equal to the NumOfLayers parameter which is equal to the number of Tx antennaports.For ith firing, Subframe#(i%10) is processed, where 10 is the number of subframes inone radio frame.Each firing,

For each antenna port, 1 matrix-based token is consumed at PHICH_Layer. Thesize of this matrix token is c*3*NSF

PHICH*N_PHICH_Group(sf)/NumOfLayers.

1 matrix-based token is generated at PHICH. The size of this matrix token is3*NSF

PHICH*N_PHICH_Group(sf).

Where NSFPHICH=4, c=1 for normal cyclic prefix and NSF

PHICH=2, c=2 for

extended cyclic prefix. N_PHICH_Group(sf) is the number of PHICH groups inthis subframe as defined in Section 6.9 of 36.211. These system parameters are

Page 152: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

151

used to decide the N_PHICH_Group(sf) of each subframe.Parameter details:3.

FrameMode: frame mode of LTE, the type is enum and it can be selected as FDDand TDD. FDD supports frame structure typ1 and TDD supports frame structuretype 2.TDD_Config: uplink-downlink configuration for TDD, the type is enum and it canbe selected as Config 0, Config 1, Config 2, Config 3, Config 4, Config 5 andConfig 6.Hidden when FrameMode = FDD.Bandwidth: bandwidth of LTE, the type is enum and it can be selected as BW 1.4MHz, BW 3 MHz, BW 5 MHz, BW 10 MHz, BW 15 MHz and BW 20 MHz.CyclicPrefix: type of cyclic prefix. It can be set to Normal and Extended. Pleasenote the first six OFDM symbols have the same shorter cyclic prefix and the lastOFDM symbol has the longer cyclic prefix in the Normal Cyclic Prefix mode.NumOfLayers: number of layers for PHICH which is equal to the number ofantenna ports.PDCCH_SymsPerSF: number of OFDM symbols of PDCCH for each subframe. Itsvalue can be set as 0, 1, 2, 3 and 4. Note that value 4 for small bandwidth issupported in this release. For more information, refer to Table 6.7-1 of 36211-860. This is an Array Parameter (ltebasever). The allowable sizes are 1x1, 10x1.If the number of PDCCH symbols of PDCCH for one subframe is set to 0, there isno PDCCH (no DCI), PHICH and PCFICH in this subframe.PHICH_Ng: number of PHICH group. The type is enum and it can be set to 1/6,1/2, 1 and 2.SubframeIgnored: number of subframe that are ignored at the beginning due tosystem delay.

See LTE_PHICH_LayerMapper (ltebasever).4.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.

Page 153: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

152

LTE_PHICH_LayerMapper PartCategories: C++ Code Generation (ltebasever), MIMO Precoder (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_PHICH_LayerMapper (ltebasever) PHICH Layer Mapper

LTE_PHICH_LayerMapper

Description: PHICH Layer MapperDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE PHICH LayerMapper Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW5 MHz, BW 10 MHz, BW 15 MHz, BW 20MHz

BW 5 MHz Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

NumOfLayers number of layers 1 Integer NO

PDCCH_SymsPerSF number of OFDM symbols of PDCCH foreach subframe

[2, 2, 2, 2, 2,2, 2, 2, 2, 2]

Integerarray

NO

PHICH_Ng PHICH Ng value: Ng 1/6, Ng 1/2, Ng 1,Ng 2

Ng 1/6 Enumeration NO

ETM_Support whether to support PHICH m =1 in alltransmitted subframes for TDD E-TMdefined in 36.141 6.1.2.6: NO, YES

NO Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 PHICH input of PHICHsymbols

complex matrix NO

Output Ports

Port Name Description Signal Type Optional

2 PHICH_Layer output of layer mapping PHICH symbols multiple complex matrix NO

Notes/Equations

This model is used to implement PHICH layer mapping according to section 6.3.3.3 in1.[1].The output port PHICH_Layer is multiple ports. The bus width connected to it should2.be equal to the NumOfLayers parameter.For ith firing, Subframe#(i%10) is processed, where 10 is the number of subframes inone radio frame.Each firing,

1 matrix-based token is consumed at PHICH. The size of this matrix token is3*NSF

PHICH*N_PHICH_Group(sf).

For each antenna port, 1 matrix-based token is generated at PHICH_Layer. Thesize of this matrix token is c*3*NSF

PHICH*N_PHICH_Group(sf)/NumOfLayers.

Where NSFPHICH=4, c=1 for normal cyclic prefix and NSF

PHICH=2, c=2 for

extended cyclic prefix. N_PHICH_Group(sf) is the number of PHICH groups inthis subframe as defined in Section 6.9 of 36.211. These system parameters areused to decide the N_PHICH_Group(sf) of each subframe.

Parameter details:3.FrameMode: frame mode of LTE, the type is enum and it can be selected as FDDand TDD. FDD supports frame structure typ1 and TDD supports frame structuretype 2.TDD_Config: uplink-downlink configuration for TDD, the type is enum and it can

Page 154: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

153

be selected as Config 0, Config 1, Config 2, Config 3, Config 4, Config 5 andConfig 6.Hidden when FrameMode = FDD.Bandwidth: bandwidth of LTE, the type is enum and it can be selected as BW 1.4MHz, BW 3 MHz, BW 5 MHz, BW 10 MHz, BW 15 MHz and BW 20 MHz.CyclicPrefix: type of cyclic prefix. It can be set to Normal and Extended. Pleasenote the first six OFDM symbols have the same shorter cyclic prefix and the lastOFDM symbol has the longer cyclic prefix in the Normal Cyclic Prefix mode.NumOfLayers: number of layers for PHICH which is equal to the number ofantenna ports.PDCCH_SymsPerSF: number of OFDM symbols of PDCCH for each subframe. Itsvalue can be set as 0, 1, 2, 3 and 4. Note that value 4 for small bandwidth issupported in this release. For more information, refer to Table 6.7-1 of 36211-860. This is an Array Parameter (ltebasever). The allowable sizes are 1x1, 10x1.If the number of PDCCH symbols of PDCCH for one subframe is set to 0, there isno PDCCH (no DCI), PHICH and PCFICH in this subframe.PHICH_Ng: number of PHICH group. The type is enum and it can be set to 1/6,1/2, 1 and 2.

See LTE_PHICH_Modulator (ltebasever) and LTE_PHICH_LayerDemapper4.(ltebasever).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.

Page 155: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

154

LTE_PHICH_LayMapPrecoder Part PHICH layer mapping and precoding

Categories: MIMO Precoder (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model

LTE_PHICH_LayMapPrecoder (ltebasever)

LTE_PHICH_LayMapPrecoder

Description: PHICH layer mapping and precodingAssociated Parts: LTE PHICH LayMapPrecoder Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations forTDD: Config 0, Config 1, Config 2,Config 3, Config 4, Config 5, Config6

Config 0 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3MHz, BW 5 MHz, BW 10 MHz, BW15 MHz, BW 20 MHz

BW 5 MHz Enumeration NO

NumTxAnts number of Tx Antennas: Tx1, Tx2,Tx4

Tx1 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal,Extended

Normal Enumeration NO

CellID_Sector the index of cell identity group 0 Integer NO

CellID_Group the index of cell identity within thephysical-layer cell-identity group

0 Integer NO

NumOfLayers number of layers 1 Integer NO

PDCCH_SymsPerSF number of OFDM symbols ofPDCCH for each subframe

[2,2,2,2,2,2,2,2,2,2] Integerarray

NO

PHICH_Ng type of PHICH duration : Ng 1/6,Ng 1/2, Ng 1, Ng 2

Ng 1/6 Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 input PHICH bits int matrix NO

Output Ports

Port Name Description Signal Type Optional

2 output PHICH layer mapping and precodingsignal

multiple complex matrix NO

Notes/Equations

This sub-network model is used to implement PHICH modulator, PHICH mapping and1.precoding. It consists of PHICH_Modulator, PHICH_LayerMapper andPHICH_Precoder. The LTE_PHICH_LayMapPrecoder schematic is shown below:

Each firing,2.one Matrix-based token is consumed at the input port. Refer toLTE_PHICH_LayerMapper (ltebasever) for more information on input ports.for each antenna port, one Matrix-based token is produced at the output port.Refer to LTE_PHICH_Precoder (ltebasever) for more information on output ports.

It consists of LTE_PHICH_Modulator, LTE_PHICH_LayerMapper and3.LTE_PHICH_Precoder.

Page 156: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

155

It can support transmit diversity MIMO mode for PHICH.4.Parameter details:5.

FrameMode: frame mode of LTE, the type is enum and it can be selected as FDDand TDD. FDD supports frame structure typ1 and TDD supports frame structuretype 2.TDD_Config: uplink-downlink configuration for TDD, the type is enum and it canbe selected as Config 0, Config 1, Config 2, Config 3, Config 4, Config 5 andConfig 6.Hidden when FrameMode = FDD.Bandwidth: bandwidth of LTE, the type is enum and it can be selected as BW 1.4MHz, BW 3 MHz, BW 5 MHz, BW 10 MHz, BW 15 MHz and BW 20 MHz.NumTxAnts: number of Tx antennas.CyclicPrefix: type of cyclic prefix. It can be set to Normal and Extended. Pleasenote the first six OFDM symbols have the same shorter cyclic prefix and the lastOFDM symbol has the longer cyclic prefix in the Normal Cyclic Prefix mode.CellID_Sector: the index of cell identity within the physical-layer cell-identitygroup.CellID_Group: index of cell identity group, its value range is [0,167].CellID_Sector and CellID_Group are used to initialize the scrambling sequence inLTE_PHICH_Modulator.NumOfLayers: number of layers for PHICH which is equal to the number ofantenna ports.PDCCH_SymsPerSF: number of OFDM symbols of PDCCH for each subframe. Itsvalue can be set as 0, 1, 2, 3 and 4. Note that value 4 for small bandwidth issupported in this release. For more information, refer to Table 6.7-1 of 36211-860. This is an Array Parameter (ltebasever). The allowable sizes are 1x1, 10x1.If the number of PDCCH symbols of PDCCH for one subframe is set to 0, there isno PDCCH (no DCI), PHICH and PCFICH in this subframe.PHICH_Ng: number of PHICH group. The type is enum and it can be set to 1/6,1/2, 1 and 2.

See LTE_PHICH_Modulator (ltebasever), LTE_PHICH_LayerMapper (ltebasever) and6.LTE_PHICH_Precoder (ltebasever).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.

Page 157: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

156

LTE_PHICH_Precoder PartCategories: C++ Code Generation (ltebasever), MIMO Precoder (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_PHICH_Precoder (ltebasever) PHICHPrecoder

LTE_PHICH_Precoder

Description: PHICH PrecoderDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE PHICH Precoder Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW5 MHz, BW 10 MHz, BW 15 MHz, BW 20MHz

BW 5 MHz Enumeration NO

NumTxAnts number of Tx Antennas: Tx1, Tx2, Tx4 Tx1 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

PDCCH_SymsPerSF number of OFDM symbols of PDCCH foreach subframe

[2, 2, 2, 2, 2,2, 2, 2, 2, 2]

Integerarray

NO

PHICH_Ng PHICH Ng value: Ng 1/6, Ng 1/2, Ng 1,Ng 2

Ng 1/6 Enumeration NO

ETM_Support whether to support PHICH m =1 in alltransmitted subframes for TDD E-TMdefined in 36.141 6.1.2.6: NO, YES

NO Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 Layer_Symbol output of layer mappingsymbols

multiple complex matrix NO

Output Ports

Port Name Description Signal Type Optional

2 MIMO_Symbol input of modulationsymbols

multiple complex matrix NO

Notes/Equations

This model is used to precode PHICH symbols for each of the transimit antenna port.1.For transmission on two antenna ports, precoding are defined by 6.3.4.3 in [1].For transmission on four antenna ports, precoding are defined by

Page 158: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

157

if (i+PHICH group number)mod2=0 for normal cyclic prefix, or (i + int(PHICHgroup number/2))mod2 = 0 for extended cyclic prefix, and otherwise by

The input and output port are all multiple ports. The bus width connected to2.Layer_Symbol should be equal to the number of layers which is equal to the numberof Tx antenna ports; the bus width connected to MIMO_Symbol should be equal tothe number of Tx antenna ports.For ith firing, Subframe#(i%10) is processed, where 10 is the number of subframes inone radio frame.Each firing, for each antenna port

1 matrix-based token is consumed at Layer_Symbol. The size of this matrixtoken is c*3*NSF

PHICH*N_PHICH_Group(sf)/NumOfLayers.

1 matrix-based token is generated at MIMO_Symbol. The size of this matrixtoken is c*3*NSF

PHICH*N_PHICH_Group(sf).

Where NSFPHICH=4, c=1 for normal cyclic prefix and NSF

PHICH=2, c=2 for

extended cyclic prefix. N_PHICH_Group(sf) is the number of PHICH groups inthis subframe as defined in Section 6.9 of 36.211. These system parameters areused to decide the N_PHICH_Group(sf) of each subframe.

Parameter details:3.System parameters

FrameMode: frame mode of LTE, the type is enum and it can be selected asFDD and TDD. FDD supports frame structure typ1 and TDD supports framestructure type 2.TDD_Config: uplink-downlink configuration for TDD, the type is enum and itcan be selected as Config 0, Config 1, Config 2, Config 3, Config 4, Config 5and Config 6.Hidden when FrameMode = FDD.Bandwidth: bandwidth of LTE, the type is enum and it can be selected asBW 1.4 MHz, BW 3 MHz, BW 5 MHz, BW 10 MHz, BW 15 MHz and BW 20MHz.CyclicPrefix: type of cyclic prefix. It can be set to Normal and Extended.Please note the first six OFDM symbols have the same shorter cyclic prefixand the last OFDM symbol has the longer cyclic prefix in the Normal CyclicPrefix mode.NumTxAnts: number of Tx antenna ports.

Control channel parametersPDCCH_SymsPerSF: number of OFDM symbols of PDCCH for eachsubframe. Its value can be set as 0, 1, 2, 3 and 4. Note that value 4 forsmall bandwidth is supported in this release. For more information, refer toTable 6.7-1 of 36211-860. This is an Array Parameter (ltebasever). Theallowable sizes are 1x1, 10x1. If the number of PDCCH symbols of PDCCHfor one subframe is set to 0, there is no PDCCH (no DCI), PHICH andPCFICH in this subframe.PHICH_Ng: number of PHICH group. The type is enum and it can be set to1/6, 1/2, 1 and 2.

For the system parameters, refer to DL System Parameters (ltebasever).For PDCCH corresponding parameters, refer to DL Control Channel Parameters(ltebasever).

See LTE_PHICH_LayerMapper (ltebasever) and LTE_PHICH_Deprecoder (ltebasever).4.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.

Page 159: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

158

LTE_Demapper PartCategories: C++ Code Generation (ltebasever), Modulation (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_Demapper (ltebasever) De-mapper

LTE_Demapper (De-mapper)

Description: De-mapperDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE Demapper Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

MappingType the modulation orders for the UE ineach subframe. (0:QPSK, 1:16QAM,2:64QAM)

[0, 0, 0, 0, 0,0, 0, 0, 0, 0]

Integerarray

NO

DemapperType demapper type: Hard, Soft, CSI Hard Enumeration NO

DemapperMaxLevel the maximum level for soft demappingoutput when DemapperType is Soft orCSI

1.0 Float NO

Input Ports

Port Name Signal Type Optional

1 DataIn complex matrix NO

2 CIR complex matrix YES

3 Qm int YES

Output Ports

Port Name Signal Type Optional

4 DataOut real matrix NO

Notes/Equations

This model de-maps uniform QPSK, 16-QAM and 64-QAM to bits used for channel1.decoding.Each firing, one Matrix-based token is consumed at the DataIn pin. The matrix vector2.size is denoted by Msymb.

If the Qm pin is connected, one token is consumed each firing to get the modulationorder Qm (2:QPSK, 4:16QAM, 6:64QAM). Otherwise, for the ith firing, the elementMappingType[i%Size(MappingType)] in the MappingType parameter is read to get themodulation order Qm. The mapping of the value in the MappingType parameter andthe modulation order Qm is shown in the table below.Value in parameter MappingType Modulation order Qm

0 2 (QPSK)

1 4 (16QAM)

2 6 (64QAM)

If the CIR pin is connected, the matrix size in this pin must be equal to Msymb.

One Matrix-based token is produce at the DataOut pin. The matrix vector sizedenoted by Mbit is Msymb*Qm.

Decision equations:3.If Qm is 6 input is multiplied by sqrt(42) and I is the real part of product and Qis the imaginary part, the decision equations for 64QAM are:b0 = 2.0-|b1|; b1 = 4 - |Q|; b2 = -Q; b3 = 2.0-|b4|; b4 = 4 - |I|; b5 = -I.If Qm is 4 input is multiplied by sqrt(10) and I is the real part of product and Qis the imaginary part, the decision equations for 16QAM are:b0 = 2.0-|b1|; b1 = -Q; b2 = 2.0-|b3|; b3 = -I.If Qm is 2 input is multiplied by sqrt(2) and I is the real part of product and Q is

Page 160: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

159

the imaginary part, the decision equations for QPSK are:b0 = -Q; b1 = -I.

Based on the above calculations, let any one of decision bits equal b:4.when DecoderType is set to Hard, if b < 0, -1.0 is output, otherwise 1.0 isoutput.when DecoderType is set to Soft, if b < -DemapperMaxLevel, -DemapperMaxLevel is output; if b > DemapperMaxLevel, DemapperMaxLevel isoutput, otherwise, b is output directly.when DecoderType is set to CSI, after the steps of soft decision, the channelestimation of each subcarrier is considerated for the output.

DemapperMaxLevel: the maximum level for soft demapping output when5.DemapperType is Soft or CSI.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.

Page 161: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

160

LTE_DL_OFDM_Demodulator Part Downlink MIMO OFDM De-modulator

Categories: Modulation (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model

LTE_DL_OFDM_Demodulator (ltebasever)

LTE_DL_OFDM_Demodulator (Downlink MIMO OFDMDe-modulator)

Description: Downlink MIMO OFDM De-modulatorAssociated Parts: LTE DL OFDM Demodulator Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

Bandwidth bandwidth of LTE system: BW 1.4 MHz, BW3 MHz, BW 5 MHz, BW 10 MHz, BW 15 MHz,BW 20 MHz

BW 5MHz

Enumeration NO

OversamplingOption oversampling ratio option: Ratio 1, Ratio 2,Ratio 4, Ratio 8

Ratio 2 Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 TimeSig time domian signal before FFT complex NO

Output Ports

Port Name Description Signal Type Optional

2 MappingData demodulated mapping signal after FFT complex NO

Notes/Equations

This model is used to complete 3GPP LTE downlink OFDM demodulator.1.Each firing,2.

tokens are consumed at the input port

TimeSig and tokens are generated at the output portMappingData.For the default parameter configurations, 1024 tokens are consumed at TimeSigport and 300 tokens are generated at MappingData port.

LTE_DL_OFDM_Demodulator is a sub-network model and the schematic is shown3.below:

After removing cyclic prefix, the time domain OFDM signals are input into FFT4.(LTE_FFT).After LTE_FFT, the frequency domain mapping signals are output after removing5.NULL subcarriers and reordering. The FFT procedure is completed in LTE_FFT. The

FFT size is . One downlink OFDM symbol consists of . Resource Block's

(RB) mapping signals (the index is from 0 to ) and one DC-NULLsignal.In the EESof implementation, the output of LTE_DL_OFDM_Modulator is6.

(it does not include DC NULL subcarrier). These N mapping signals inone OFDM symbol are output as follows:

Page 162: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

161

where input signals of LTE_DL_OFDM_Demodulator are .The input signals of LTE_DL_OFDM_Demodulator are7.

. The FFT size is determined byBandwidth and OversamplingOption. If Bandwidth is selected, the basic FFT size (

) is also determined (see the following table):Bandwidth (MHz) FFT Size ( )

1.4 128

3 256

5 512

10 1024

15 1536

20 2048

Please note the length of cyclic prefix per each OFDM in one slot is not the same. The8.CP is always set to zeros and the cyclic prefix inserting is completed inLTE_DL_MuxSlot.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.104 v8.7.0 "Base Station (BS) radio transmission and reception",2.September 2009.TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access3.(UTRA),", V7.0.0, June 2006.

Page 163: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

162

LTE_DL_OFDM_Modulator Part Downlink OFDM modulator

Categories: Modulation (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model

LTE_DL_OFDM_Modulator (ltebasever)

LTE_DL_OFDM_Modulator (Downlink OFDMmodulator)

Description: Downlink OFDM modulatorAssociated Parts: LTE DL OFDM Modulator Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

Bandwidth bandwidth of LTE system: BW 1.4 MHz, BW3.2 MHz, BW 5 MHz, BW 10 MHz, BW 15MHz, BW 20 MHz

BW 5MHz

Enumeration NO

OversamplingOption oversampling ratio option: Ratio 1, Ratio 2,Ratio 4, Ratio 8

Ratio 2 Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 MappingData mapping signal complex NO

Output Ports

Port Name Description Signal Type Optional

2 OFDMSig output of one OFDMsignal

complex NO

Notes/Equations

This model is used to complete 3GPP LTE downlink OFDM modulator.1.Each firing,2.

tokens are consumed at the input port MappingData and

tokens are generated at the output portOFDMSig.For the default parameter configurations, 300 tokens are consumed atMappingData port and 1024 tokens are generated at OFDMSig port.

LTE_DL_OFDM_Modulator is a sub-network model and the schematic is shown3.below:

The inverse FFT procedure is completed in LTE_FFT. The inverse IFFT size is .4.

One downlink OFDM symbol consists of . Resource Block (RB)'s mapping5.

signals (the index is from 0 to ) and one DC-NULL signal.In the EESof implementation, the input of LTE_DL_OFDM_Modulator is6.

(it does not include DC NULL subcarrier).

These mapping signals are mapped into inverse FFT buffer as follows:7.

Page 164: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

163

where input signals of LTE_DL_OFDM_Modulator are .

The input signals of LTE_FFT are . After LTE_FFT (inverse IFFT),8.

the time domain signal (the length is ) is generated. After adding cyclic prefix(By AddGuard), one time domain OFDM symbol is generated.

The FFT size is determined by Bandwidth and OversamplingOption. If9.

Bandwidth is selected, the basic FFT size ( ) is also determined (see thefollowing table).Bandwidth (MHz) FFT Size ( )

1.4 128

3.0 256

5 512

10 1024

15 1536

20 2048

The FFT size ( ) of LTE_FFT is as follows:10.

Please note the length of cyclic prefix per each OFDM in one slot is not the same. The11.CP is always set to zeros and the cyclic prefix inserting is completed inLTE_DL_MuxSlot.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access2.(UTRA),", V7.0.0, June 2006.

Page 165: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

164

LTE_FFT_M PartCategories: C++ Code Generation (ltebasever), Modulation (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_FFT_M (ltebasever) Complex fast Fouriertransform

LTE_FFT_M (Complex fast Fourier transform)

Description: Complex fast Fourier transformDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE FFT M Part (ltebasever)

Model Parameters

Name Description Default Units Type Runtime Tunable

InputSize number of input samples to read 256 Integer NO

FFTSize number of the transform size 256 Integer NO

Direction direction of transform: Inverse,Forward

Forward Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 input Input Matrix-based data for FFToperation

complex matrix NO

Output Ports

Port Name Description Signal Type Optional

2 output Output Matrix-based data from FFT operation complex matrix NO

Notes/Equations

The LTE_FFT_M model computes the DFT (Discrete Fourier Transform) of the input1.signal using a mixed radix FFT (Fast Fourier Transform) algorithm.At every execution of this model, 1 matrix token is read from the input port. These2.samples in this matrix token are firstly segmented to several blocks of size InputSize(the last block may be zero-padded) if the size of the matrix is larger than InputSize.Then each block of InputSize samples is zero padded (if InputSize < FFTSize) tocreate a block of FFTSize samples. The block of FFTSize samples is then processed bya mixed radix FFT algorithm to produce FFTSize equally spaced samples that is theDFT of the input signal. Each firing, a matrix token is produced at output port, whichconsists of the FFT/IFFT of the input. For the default parameter configurations, thesize of the input matrix token and output matrix token are equal to 256.Direction specifies a forward or inverse FFT.3.See LTE_UL_DFT (ltebasever)4.

References

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:1.Englewood Cliffs, NJ, 1989.

Page 166: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

165

LTE_FFT PartCategories: C++ Code Generation (ltebasever), Modulation (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_FFT (ltebasever) Complex fast Fouriertransform

LTE_FFT

Description: Complex fast Fourier transformDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE FFT Part (ltebasever)

Model Parameters

Name Description Default Units Type Runtime Tunable

InputSize number of input samples to read 256 Integer NO

FFTSize number of the transform size 256 Integer NO

Direction direction of transform: Inverse,Forward

Forward Enumeration NO

Input Ports

Port Name Signal Type Optional

1 input complex NO

Output Ports

Port Name Signal Type Optional

2 output complex NO

Notes/Equations

FFT algorithms are based on the fundamental principle of decomposing the1.computation of the discrete Fourier transform of a sequence of length N intosuccessively smaller DFT.A single firing of LTE_FFT consumes InputSize inputs and produces FFTSize outputs.2.LTE_FFT calculates the DFT or IDFT of a complex input using the fast Fourier3.transform (FFT) algorithm. LTE_FFT reads InputSize (default 256) complex samples,zero pads the data if necessary, then takes an FFT of length FFTSize (default 256)where InputSize <= FFTSize .Direction specifies a forward or inverse FFT.4.See LTE_FFT_M (ltebasever)5.

References

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:1.Englewood Cliffs, NJ, 1989.

Page 167: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

166

LTE_Mapper PartCategories: C++ Code Generation (ltebasever), Modulation (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_Mapper (ltebasever) Mapper

LTE_Mapper (Mapper)

Description: MapperDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE Mapper Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

MappingType the modulation orders for the UE in eachsubframe. (0:QPSK, 1:16QAM, 2:64QAM)

[0, 0, 0, 0, 0, 0,0, 0, 0, 0]

Integerarray

NO

Input Ports

Port Name Signal Type Optional

1 DataIn integermatrix

NO

2 Qm int YES

Output Ports

Port Name Signal Type Optional

3 DataOut complex matrix NO

Notes/Equations

This model takes binary digits, 0 or 1, as input and produces complex-valued1.modulation symbols, x=I+jQ, as output, as described in 6.3.2 of [1].Each firing, one Matrix-based token is consumed at the DataIn pin. The matrix vector2.size is denoted by Mbit.

If the Qm pin is connected, one token is consumed each firing to get the modulationorder Qm (2:QPSK, 4:16QAM, 6:64QAM). Otherwise, for the ith firing, the elementMappingType[i%Size(MappingType)] in the MappingType parameter is read to get themodulation order Qm. The mapping of the value in the MappingType parameter andthe modulation order Qm is shown in the table below.Value in the MappingType Parameter Modulation order Qm

0 2 (QPSK)

1 4 (16QAM)

2 6 (64QAM)

One Matrix-based token is produced at the DataOut pin. The matrix vector size,denoted by Msymb, is Mbit/Qm.

When Qm equals to 2, QPSK mapping is used. When Qm equals to 4, 16QAM3.mapping is used. When Qm equals to 6, 64QAM mapping is used.QPSK mapping: In case of QPSK modulation, pairs of bits, b(n)b(n+1), are mapped4.to complex-valued modulation symbols x=I+jQ according to the QPSK ModulationMapping table.

16QAM mapping: In case of 16QAM modulation, pairs of bits,5.

Page 168: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

167

b(n)b(n+1)b(n+2)b(n+3), are mapped to complex-valued modulation symbolsx=I+jQ according to the 16QAM Modulation Mapping table.

64QAM mapping: In case of QPSK modulation, pairs of bits,6.b(n)b(n+1)b(n+2)b(n+3)b(n+4)b(n+5), are mapped to complex-valued modulationsymbols x=I+jQ according to the 64QAM Modulation Mapping table.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.

Page 169: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

168

LTE_MIMO_Mapper Part MIMO mapping for two codewords

Categories: Modulation (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model

LTE_MIMO_Mapper (ltebasever)

LTE_MIMO_Mapper (MIMO mapping for twocodewords)

Description: MIMO mapping for two codewordsAssociated Parts: LTE MIMO Mapper Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

CW1_DataPattern data pattern for codeword 1: PN9, PN15,FIX4, _4_1_4_0, _8_1_8_0, _16_1_16_0,_32_1_32_0, _64_1_64_0

PN9 Enumeration NO

CW2_DataPattern data pattern for codeword 2: PN9, PN15,FIX4, _4_1_4_0, _8_1_8_0, _16_1_16_0,_32_1_32_0, _64_1_64_0

PN9 Enumeration NO

CW1_MappingType modulation type for codeword 1: QPSK,QAM16, QAM64

QPSK Enumeration NO

CW2_MappingType modulation type for codeword 2: QPSK,QAM16, QAM64

QPSK Enumeration NO

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

SpecialSF_Config special subframe configuration for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6, Config 7,Config 8

Config 4 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW 5MHz, BW 10 MHz, BW 15 MHz, BW 20 MHz

BW 5 MHz Enumeration NO

NumTxAnts number of Tx Antennas: Tx1, Tx2, Tx4 Tx1 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

RB_AllocType RB allocation type: StartRB + NumRBs, RBindices (1D), RB indices (2D)

StartRB +NumRBs

Enumeration NO

RB_Alloc the RB allocation for the UE, in the formatsof [start RB, number of RBs] or [[SF0 startRB, SF0 number of RBs]; . . .; [SF9 startRB, SF9 number of RBs]]

[0, 25] Integerarray

NO

PDCCH_SymsPerSF number of OFDM symbols of PDCCH foreach subframe

[2, 2, 2, 2,2, 2, 2, 2,2, 2]

Integerarray

NO

Output Ports

Port Name Description Signal Type Optional

1 ModulationSymbols output of Matrix-based (subframe-based) modulationsymbols for at most 2 codewords

multiple complexmatrix

NO

Notes/Equations

This subnetwork model generates modulation symbols (QPSK, 16-QAM and 64-QAM)1.for two codewords. It is only for 3GPP FDD and TDD LTE MIMO usage.The LTE_MIMO_Mapper schematic is shown below:2.

Page 170: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

169

Each firing, one Matrix-based token is produced at each output. See Matrix-based3.Ports (ltebasever) for how Matrix-based ports work.For ith firing, the modulation symbols for Subframe#i%10 are output on the Matrix-based token. The matrix vector size is equal to the number of resource elements(REs) that are allocated to UE in Subframe#i%10. Refer to Channel Bits Calculation(ltebasever) for how to get the number of resource elements (REs) per eachsubframe based on input parameter for downlink.For the mapping of QPSK, 16QAM and 64QAM, the details can be found in the4.document for LTE Mapper.Parameter Details:5.

CW1_DataPattern: data pattern for codeword 1. For the CW1_DataPatternparameter:

if PN9 is selected, a 511-bit pseudo-random test pattern is generatedaccording to CCITT Recommendation O.153if PN15 is selected, a 32767-bit pseudo-random test pattern is generatedaccording to CCITT Recommendation O.151if FIX4 is selected, a zero-stream is generatedif x_1_x_0 is selected, where x equals 4, 8, 16, 32, or 64, a periodic bitstream is generated, with the period being 2 × x. In one period, the first xbits are 1s and the second x bits are 0s.

CW2_DataPattern: data pattern for codeword 2.CW1_MappingType: modulation type for codeword 1. It can be selected asQPSK, 16_QAM and 64-QAM mapping type.CW2_MappingType: modulation type for codeword 2. It also can be selected asQPSK, 16_QAM and 64-QAM mapping type.For other parameters, pleaase refer to DL UE Parameters (ltebasever). Note theRB_Alloc parameter refers to the UE1_RB_Alloc parameter in LTE_DL_Src.

References

CCITT, Recommendation O.151(10/92).1.CCITT, Recommendation O.153(10/92).2.3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.3.

Page 171: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

170

LTE_PHICH_Demodulator PartCategories: C++ Code Generation (ltebasever), Modulation (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_PHICH_Demodulator (ltebasever) Downlink PHICH Demodulator

LTE_PHICH_Demodulator (Downlink PHICHDemodulator)

Description: Downlink PHICH DemodulatorDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE PHICH Demodulator Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW5 MHz, BW 10 MHz, BW 15 MHz, BW 20MHz

BW 5 MHz Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

CellID_Sector the index of cell identity within thephysical-layer cell-identity group

0 Integer NO

CellID_Group the index of cell identity group 0 Integer NO

PDCCH_SymsPerSF number of OFDM symbols of PDCCH foreach subframe

[2, 2, 2, 2, 2,2, 2, 2, 2, 2]

Integerarray

NO

PHICH_Ng PHICH Ng value: Ng 1/6, Ng 1/2, Ng 1,Ng 2

Ng 1/6 Enumeration NO

SubframeIgnored number of subframes (or transportblocks) that are ignored at the beginningdue to system delay

0 Integer NO

ETM_Support whether to support PHICH m =1 in alltransmitted subframes for TDD E-TMdefined in 36.141 6.1.2.6: NO, YES

NO Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 PHICH input of PHICHsymbols

complex matrix NO

Output Ports

Port Name Description Signal Type Optional

2 HI output of HI bits integer matrix NO

3 Constellation output of PHICHconstellation

complex matrix NO

Notes/Equations

This model is used to implement PHICH De-scrambling De-spreading and De-1.modulation. It is the inverse of LTE_PHICH_Modulator.For ith firing, Subframe#(i%10) is processed, where 10 is the number of subframes in2.one radio frame.Each firing, 1 matrix-based token is consumed and generated at PHICH and HI,Constellation.The size of matrix token at PHICH is 3*NSF

PHICH*N_PHICH_Group(sf), where NSFPHICH=4 for normal cyclic prefix and NSF

PHICH=2 for extended cyclic prefix.

The size of matrix token at HI and Constellation is the number of HI bits of thissubframe 3*NumPHICHs*N_PHICH_Group(sf), where NumPHICHs=8 for normalcyclic prefix and NumPHICHs=4 for extended cyclic prefix is the number of PHICHs ofone PHICH group; N_PHICH_Group(sf) is the number of PHICH groups in this

Page 172: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

171

subframe as defined in Section 6.9 of 36.211. These system parameters are used todecide the N_PHICH_Group(sf) of each subframe.Parameter details:3.System Parameters FrameMode

TDD_ConfigBandwidthCyclicPrefixCellID_SectorCellID_Group

PDCCH corresponding parameters PDCCH_SymsPerSFPHICH_Ng

For the system parameters, refer to DL System Parameters (ltebasever).For PDCCH corresponding parameters, refer to DL Control Channel Parameters(ltebasever).See LTE_PHICH_Modulator (ltebasever).4.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.

Page 173: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

172

LTE_PHICH_Modulator PartCategories: C++ Code Generation (ltebasever), Modulation (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_PHICH_Modulator (ltebasever) Downlink PHICHModulator

<#comment></#comment><#comment></#comment>

LTE_PHICH_Modulator (Downlink PHICH Modulator)

Description: Downlink PHICH ModulatorDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE PHICH Modulator Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW5 MHz, BW 10 MHz, BW 15 MHz, BW 20MHz

BW 5 MHz Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

CellID_Sector the index of cell identity within thephysical-layer cell-identity group

0 Integer NO

CellID_Group the index of cell identity group 0 Integer NO

PDCCH_SymsPerSF number of OFDM symbols of PDCCH foreach subframe

[2, 2, 2, 2, 2,2, 2, 2, 2, 2]

Integerarray

NO

PHICH_Ng PHICH Ng value: Ng 1/6, Ng 1/2, Ng 1,Ng 2

Ng 1/6 Enumeration NO

ETM_Support whether to support PHICH m =1 in alltransmitted subframes for TDD E-TMdefined in 36.141 6.1.2.6: NO, YES

NO Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 HI input of HI bits integermatrix

NO

Output Ports

Port Name Description Signal Type Optional

2 PHICH output of PHICH symbols complex matrix NO

3 Constellation output of PHICHconstellation

complex matrix NO

Notes/Equations

This model is used to modulate the HI bits into PHICH symbols including constellation1.mapping, scrambling and spreading, and then these sequences of different PHICH inthe same PHICH group are summed and output at port PHICH. The constellations ofthe HI bits are output at port Constellation.For ith firing, Subframe#(i%10) is processed, where 10 is the number of subframes in2.one radio frame.

Each firing, 1 matrix-based token is consumed and generated at HI, PHICH andConstellation. The size of matrix token at HI and Constellation is the number ofHI bits of this subframe 3*NumPHICHs*N_PHICH_Group(sf), whereNumPHICHs=8 for normal cyclic prefix and NumPHICHs=4 for extended cyclicprefix is the number of PHICHs of one PHICH group; N_PHICH_Group(sf) is thenumber of PHICH groups in this subframe as defined in Section 6.9 of 36.211.These system parameters are used to decide the N_PHICH_Group(sf) of eachsubframe.The size of matrix token at PHICH is 3*N PHICH*N_PHICH_Group(sf), where N

Page 174: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

173

SF SFPHICH=4 for normal cyclic prefix and NSF

PHICH=2 for extended cyclic prefix.

For the default parameter configurations, the size of matrix-based tokenconsumed and generated at HI and Constellation is 24, and the size of matrix-based token generated at PHICH is 12.

The modulation mappings applicable for the physical hybrid ARQ indicator channel is3.BPSK defined in Section 7.1.1 [1]. The modulation symbols are output atConstellation.The block of modulation symbols shall be bit-wise multiplied with an PN sequenceand a spreading sequence, resulting in a sequence of modulation symbols. The PNsequence generated according to Section 7.2 in [1] and initialized with cinit = (slotnumber/2 + 1)*(2*Cell_ID + 1)*2^9 + Cell_ID in Section 6.9.1 [1].The spreading sequence is given by Table 6.9.1-2 in [1] and can be set by parameterCyclicPrefix.In our implementation, the port PHICH is not output the data only includingscrambling and spreading. These sequences of different PHICH in the same PHICHgroup are summed and out put at port PHICH.Parameter details:4.System Parameters FrameMode

TDD_ConfigBandwidthCyclicPrefixCellID_SectorCellID_Group

PDCCH corresponding parameters PDCCH_SymsPerSFPHICH_Ng

For the system parameters, refer to DL System Parameters (ltebasever).For PDCCH corresponding parameters, refer to DL Control Channel Parameters(ltebasever).See LTE_DL_HI (ltebasever) and LTE_PHICH_LayerMapper (ltebasever).5.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.

Page 175: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

174

LTE_SCFDMA_Demodulator PartCategories: Modulation (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_SCFDMA_Demodulator (ltebasever) LTE SC-FDMA demodulator

LTE_SCFDMA_Demodulator (LTE SC-FDMAdemodulator)

Description: LTE SC-FDMA demodulatorAssociated Parts: LTE SCFDMA Demodulator Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW 5MHz, BW 10 MHz, BW 15 MHz, BW 20 MHz

BW 5MHz

Enumeration NO

OversamplingOption oversampling ratio option: Ratio 1, Ratio 2,Ratio 4, Ratio 8

Ratio 2 Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 SCFDMASig Input SC-FDMA signal complex NO

Output Ports

Port Name Description Signal Type Optional

2 MappingData Output mapped signal in frequencydomain

complex NO

Parameter Details

Bandwidth: Bandwidth of LTE, the type is enum and it can be selected as BW 1.4MHz, BW 3.0 MHz, BW 5 MHz, BW 10 MHz, BW 15 MHz and BW 20 MHz.OversamplingOption: Over-sampling ratio option. Agilent EEsof EDA provides ratio 1,ratio 2, ratio 4 and ratio 8 in this uplink source.

Notes/Equations

This subnetwork performs LTE uplink SC-FDMA demodulation.1.The LTE_SCFDMA_Demodulator schematic is shown below:2.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access2.(UTRA),", V7.0.0, June 2006.

Page 176: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

175

LTE_SCFDMA_Modulator Part Uplink SC-FDMA modulator

Categories: Modulation (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model

LTE_SCFDMA_Modulator (ltebasever)

LTE_SCFDMA_Modulator (Uplink SC-FDMAmodulator)

Description: Uplink SC-FDMA modulatorAssociated Parts: LTE SCFDMA Modulator Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

Bandwidth bandwidth of LTE system: BW 1.4 MHz, BW3.0 MHz, BW 5 MHz, BW 10 MHz, BW 15MHz, BW 20 MHz

BW 5MHz

Enumeration NO

OversamplingOption oversampling ratio option: Ratio 1, Ratio 2,Ratio 4, Ratio 8

Ratio 2 Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 MappingData Input mapped signal in frequencydomain

complex NO

Output Ports

Port Name Description Signal Type Optional

2 SCFDMASig Output SC-FDMA signal complex NO

Parameter Details

Bandwidth: Bandwidth of LTE, the type is enum and it can be selected as BW 1.4MHz, BW 3.0 MHz, BW 5 MHz, BW 10 MHz, BW 15 MHz and BW 20 MHz.OversamplingOption: Over-sampling ratio option. Agilent EEsof EDA provides ratio 1,ratio 2, ratio 4 and ratio 8 in this uplink source.

Notes/Equations

This subnetwork performs LTE uplink SC-FDMA modulation.1.The LTE_SCFDMA_Modulator schematic is shown below:2.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access2.(UTRA),", V7.0.0, June 2006.

Page 177: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

176

LTE_SpecShaping PartCategories: C++ Code Generation (ltebasever), Modulation (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_SpecShaping (ltebasever) LTE SpectrumShaper

LTE_SpecShaping (LTE Spectrum Shaper)

Description: LTE Spectrum ShaperDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE SpecShaping Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW5 MHz, BW 10 MHz, BW 15 MHz, BW 20MHz

BW 5 MHz Enumeration NO

OversamplingOption Ratio 1, Ratio 2, Ratio 4, Ratio 8: Ratio1, Ratio 2, Ratio 4, Ratio 8

Ratio 2 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

SpectrumShapingType spectrum shaping method:TimeWindowing, FIRFilter

TimeWindowing Enumeration NO

WindowType type of time transition windowingbetween two consecutive symbols, validwhenSpectrumShapingType=TimeWindowing:Tukey, Raised cosine

Tukey Enumeration NO

CyclicInterval the overlapped cyclic interval betweentwo adjacent symbols in unit of chips(without oversampling), valid whenSpectrumShapingType=TimeWindowing

6 Integer NO

CI_StartPos the start position of cyclic interval(without oversampling), compared tothe start position of CP (negative meansahead of CP)

-3 Integer NO

FIR_Taps number of FIR filter taps, valid whenSpectrumShapingType=FIRFilter

19 Integer NO

FIR_withInterp whether spectrum-shaping FIR filterwith interpolation operation or not, validwhen SpectrumShapingType=FIRFilter:NO, YES

NO Enumeration NO

FIR_FilterType spectrum-shaping FIR filter type, validwhen SpectrumShapingType=FIRFilter:RRC, Ideal Lowpass

RRC Enumeration NO

RRC_Alpha roll-off factor for root raised-cosinefilter, valid whenSpectrumShapingType=FIRFilter

.22 Float NO

Input Ports

Port Name Description Signal Type Optional

1 DataIn input signal in one frame complex NO

Output Ports

Port Name Description Signal Type Optional

2 DataOut output signal in oneframe

complex NO

Notes/Equations

This model is used to shape the spectrum of the transmitting signal by FIR filtering or1.time domain windowing.Each firing,2.

If SpectrumShapingType is selected as TimeWindowing, the number of tokensconsumed at port DataIn equals the number of samples in each subframe, which

Page 178: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

177

is determined by Bandwidth and OversamplingOption, NumSamplesPerSubframe= Fs * 2OversamplingOption * 1ms. The number of tokens produced at port

DataOut equals the number of tokens consumed at port DataIn.If SpectrumShapingType is selected as FIRFilter, the number of tokensconsumed at port DataIn equals the number of samples in each frame, which isdetermined by Bandwidth and OversamplingOption, NumSamplesPerFrame = Fs

* 2OversamplingOption * 10ms. The number of tokens produced at port DataOutequals the number of tokens consumed at port DataIn.For the default parameter configurations, each firing, the number of tokensconsumend at port DataIn and produced at port DataOut would be 7.68MHz * 2* 1ms = 15360.

For Time Windowing, Tukey window and Raised Cosine window is provided.3.To make the spectrum goes down more rapidly, windowing can be applied to theindividual OFDM symbols. Windowing on OFDM symbol makes the amplitude gosmoothly to zero at the symbol boundaries. As a result, the inter-channelinterference can be reduced.The Time Windowing figure shown below depicts the principle of thewindowing function, whereby an extended cyclic prefix and/or postfix are/isinserted to cover an overlap of the windowing functions for adjacent OFDMsymbols.

The length of prefix is equal to the absolute value of CI_StartPos. CI_StartPos isa negative value indicating that the prefix is inserted before CP.The number of CyclicInterval samples from the beginning of the extended cyclicprefix is multiplied by the raising half of the Tukey window or RC window, andthe last CyclicInterval samples including postfix is multiplied by the falling half ofthe Tukey window or RC window. The samples in the roll-off region of theadjacent symbols are overlapped.

For FIR filtering, Square-Root Raised Cosine filter and ideal lowpass filter are4.provided. The number of taps of the filter is determined by FIR_Taps, while whetherperform interpolation or not is determined by FIR_withInterp. RRC_Alpha is the roll-off factor for root raised-cosine filter.It should be noted that only TimeWindowing is supported currently when this model5.is employed in a HARQ simulation.The EquiRipple FIR filter is provided in the top level sources, see LTE_UL_Src6.(ltebasever), LTE_DL_Src (ltebasever), LTE_DL_MIMO_2Ant_Src (ltebasever) andLTE_DL_MIMO_4Ant_Src (ltebasever) for details.For Time Windowing, this model would cause |CI_StartPos| samples delay (without7.oversampling) to the input signal; for FIR filtering, there is no delay to the inputsignal.

For more information on the parameters, please refer to UL Spectrum Shaping Parameters (ltebasever)and DL Spectrum Shaping Parameters (ltebasever).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.104 v8.7.0 "Base Station (BS) radio transmission and reception",2.September 2009.TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access3.(UTRA),", V7.0.0, June 2006.Harris, F. J. "On the Use of Windows for Harmonic Analysis with the Discrete Fourier4.Transform" Proceedings of the IEEE. Vol. 66 (January 1978). pp. 66-67.

Page 179: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

178

LTE_SS_MIMO_Demod PartCategories: C++ Code Generation (ltebasever), Modulation (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_SS_MIMO_Demod (ltebasever) MIMO demodulation for Sync signals (PSS andSSS)

LTE_SS_MIMO_Demod (MIMO demodulation for Syncsignals PSS and SSS)

Description: MIMO demodulation for Sync signals (PSS and SSS)Domain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE SS MIMO Demod Part (ltebasever)

Model Parameters

Name Description Default Units Type Runtime Tunable

NumTxAnts number of Tx Antennas: Tx1, Tx2, Tx4 Tx1 Enumeration NO

NumRxAnts number of Rx Antennas: Rx1, Rx2, Rx4 Rx1 Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 H CIR for Sync signals complex matrix NO

2 RxSync received Sync signals multiple complex matrix NO

Output Ports

Port Name Description Signal Type Optional

3 DemodSignal demodulated Synsignals

multiple complex matrix NO

Notes/Equations

This model is used to perform the MIMO decoding for P-SCH and S-SCH in MIMO1.transmission.Each firing, one Matrix-based token is consumed at port RxSync. The matrx vector2.size for each bus at port RxSync should be the same, donated by A.One Matrix-based token is consumed at port H. The matrx vector size should beequal to A*M*N, where M is the number of transmit antenna determined by theNumTxAnts parameter, N is the number of receiver antenna determined by theNumRxAnts parameter.One Matrix-based token is produced at port DemodSignal. The matrx vector sizeshould be equal to A,The bus width at port RxSync should be equal to N.3.The bus width at port DemodSignal should be equal to M.4.The input at port H should be the serial CIRs for received signals.5.Firstly, the H matrix with the size N by M is constructed read from port H, and the Y6.matrix with the size N by 1 is constructed read from port RxSync. Hence the size of Hmatrices and Y matrices per each firing we can get is A. Then the following isperformed to get the decoded DemodSignal (X) matrices with the size M by 1 foreach H and Y matrix:

. The matrix X is output at port DemodSignal.Note that, when the matrix (H*H) is singular, the output DemodSignal is set to7.RxSync/NumRxAnts.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access2.(UTRA),", V7.0.0, June 2006.

Page 180: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

179

LTE_UL_DFT PartCategories: C++ Code Generation (ltebasever), Modulation (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_UL_DFT (ltebasever) Complex discrete Fourier transform for uplink

LTE_UL_DFT (Complex Discrete Fourier Transform forUplink)

Description: Complex discrete Fourier transform for uplinkDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE UL DFT Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3, Config4, Config 5, Config 6

Config 0 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW 5MHz, BW 10 MHz, BW 15 MHz, BW 20 MHz

BW 5 MHz Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

RB_AllocType RB allocation type: StartRB + NumRBs, RBindices (1D), RB indices (2D)

StartRB +NumRBs

Enumeration NO

RB_Alloc the RB allocation for the UE, in the formats of[start RB, number of RBs] or [[SF0 start RB,SF0 number of RBs]; . . .; [SF9 start RB, SF9number of RBs]]

[0, 25] Integerarray

NO

PUCCH_PUSCH PUCCH and PUSCH selection: PUSCH, PUCCH,both

PUSCH Enumeration NO

SRS_Enable sounding reference symbol is enable: NO, YES NO Enumeration NO

SRS_SF_Config the cell-specific SRS subframe configuration 0 Integer NO

Direction direction of transform: Inverse, Forward Forward Enumeration NO

SubframeIgnored number of subframes (or transport blocks)that are ignored at the beginning due tosystem delay

0 Integer NO

Input Ports

Port Name Signal Type Optional

1 input complex matrix NO

Output Ports

Port Name Signal Type Optional

2 output complex matrix NO

Notes/Equations

This model performs DFT or IDFT of LTE uplink signal using the fast Fourier transform1.(FFT) algorithm.Each firing, 1 matrix token is consumed at input and 1 matrix token is produced at2.output. The size of the matrix token equals the number of REs allocated for PUSCH inthe current subframe, which is determined by FrameMode, Bandwidth, CyclicPrefix,RB_AllocType, RB_Alloc, PUCCH_PUSCH, SRS_Enable and SRS_SF_Config, for moredetails, please refer to Resource Block Allocation (ltebasever). If there is no RBallocated for PUSCH in this subframe, an empty matrix would be output. WhenSRS_Enable is YES, the last symbol of SRS cell specific subfames would be reservedfor SRS transmission. For the default parameter configurations, the size of the matrixtoken in each subframe is 25 RBs * 12 Symbols = 3600.The direction of DFT is determined by Direction, which can be selected as Inverse and3.Forward.SubframeIgnored indicates the number of subframes ignored by this model, which4.means this model would do nothing on the input but just output an empty matrixtoken for the first SubframeIgnored execution (firing) of this model.

Page 181: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

180

SubframeIgnored is useful when HARQ closed-loop transmission is enabled.The number of REs allocated for PUSCH in each subframe also determines the length5.of FFT. FFT algorithms are based on the fundamental principle of decomposing thecomputation of the discrete Fourier transform of a sequence of length N intosuccessively smaller DFT. Many different algorithms are generated based on thedecomposing principle, all with comparable improvements in computational speed.See: LTE_FFT_M (ltebasever)6.

For more information on the parameters, please refer to UL PUSCH Parameters (ltebasever).

References

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:1.Englewood Cliffs, NJ, 1989.3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.2.TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access3.(UTRA)", V7.0.0, June 2006.

Page 182: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

181

LTE_DL_DemuxFrame PartCategories: C++ Code Generation (ltebasever), Multiplex (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_DL_DemuxFrame (ltebasever) Downlink Radio Frame De-multiplexer with Frequency Offset Compensator

LTE_DL_DemuxFrame (Downlink Radio Frame De-multiplexer with Frequency Offset Compensator)

Description: Downlink Radio Frame De-multiplexer with Frequency Offset CompensatorDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE DL DemuxFrame Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW 5MHz, BW 10 MHz, BW 15 MHz, BW 20 MHz

BW 5 MHz Enumeration NO

NumRxAnts number of Rx Antennas: Rx1, Rx2, Rx4 Rx1 Enumeration NO

OversamplingOption Ratio 1, Ratio 2, Ratio 4, Ratio 8: Ratio 1,Ratio 2, Ratio 4, Ratio 8

Ratio 2 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

PreDownsampling pre-downsampling to 1X symbol rate ?:NO, YES

NO Enumeration NO

ReceiverDelay receiver delay ( One frame delay is fornon-HARQ; One subframe delay is forclosed-loop HARQ.: One frame delay(10ms), One subframe delay (1ms)

Onesubframedelay (1ms)

Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 DataIn data in multiple complex NO

2 index propagation delay insamples

multiple int NO

3 DeltaF frequency offset multiple real float NO

Output Ports

Port Name Description Signal Type Optional

4 DataOut data out multiple complex NO

Notes/Equations

This model is used to demultiplex LTE downlink frame, which includes removing pre-1.downsampling, and compensating time and carrier frequency offsets.All the input and output ports are multiple ports whose bandwidth should be equal to2.the NumRxAnts parameter.Each firing, 1 token is consumed at index and DeltaF respectively, and SamplingFreq3.* 2OversamplingOption * (TimePerFiring) tokens are consumed at DataIn, which is thenumber of samples 20 slots and idle interval contain. TimePerFiring is equal to 0.01(the time duration of the 20 time slots which constitutes one radio frame) whenReceiverDelay = one frame delay (10ms), and is equal to 0.001 (the time duration of2 time slots which constitutes one subframe) when ReceiverDelay = one subframedelay (1ms). SamplingFreq is sampling frequency, which is denoted as Fs anddetermined by Bandwidth as follows:

Page 183: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

182

And each firing, SamplingFreq * TimePerFiring tokens are exported if4.PreDownsampling is set to YES, otherwise SamplingFreq * 2OversamplingOption *TimePerFiring tokens are exported if PreDownsampling is set to NO.Because of the transmission delay, a detected frame (or subframe depending on5.ReceiverDelay) usually falls into 2 consecutive received blocks, so the buffer lengthfor DataIn is:

DataIn = SamplingFreq * 2OversamplingOption * (TimePerFiring) * 2.The start point of the detected frame (or subframe depending on ReceiverDelay) is6.determined by the token consumed at index. Only after receiving the second inputblock, this model can output one actual frame (or subframe depending onReceiverDelay). So this model causes one frame (or subframe depending onReceiverDelay) delay .

The DeltaF inputs the estimated frequency offset ( ) of each received frame (or7.

subframe depending on ReceiverDelay). The i-th estimated frequency offset ( )

compensates for the phase in the current frame only. Assume

sequences are the input signals from DataIn, are the sequences, whosephase caused by frequency offset are removed, where N is the number of sampleswithin one radio frame (or subframe depending on ReceiverDelay).Then:8.

where is frequency offset of the i-th received frame (or subframe depending onReceiverDelay) which is the input at DeltaF,

is the sample time interval in the system.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.104 v8.7.0 "Base Station (BS) radio transmission and reception",2.September 2009.TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access3.(UTRA),", V7.0.0, June 2006.

Page 184: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

183

LTE_DL_DemuxOFDMSym PartCategories: C++ Code Generation (ltebasever), Multiplex (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_DL_DemuxOFDMSym (ltebasever) Downlink OFDM Symbol De-multiplexer in one radio frame

LTE_DL_DemuxOFDMSym (Downlink OFDM SymbolDe-multiplexer in one radio frame)

Description: Downlink OFDM Symbol De-multiplexer in one radio frameDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE DL DemuxOFDMSym Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations forTDD: Config 0, Config 1, Config 2,Config 3, Config 4, Config 5, Config 6

Config 0 Enumeration NO

SpecialSF_Config special subframe configuration forTDD: Config 0, Config 1, Config 2,Config 3, Config 4, Config 5, Config 6,Config 7, Config 8

Config 4 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz,BW 5 MHz, BW 10 MHz, BW 15 MHz,BW 20 MHz

BW 5 MHz Enumeration NO

NumTxAnts number of Tx Antennas: Tx1, Tx2,Tx4

Tx1 Enumeration NO

NumRxAnts number of Rx Antennas: Rx1, Rx2,Rx4

Rx1 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal,Extended

Normal Enumeration NO

CellID_Sector the index of cell identity within thephysical-layer cell-identity group

0 Integer NO

CellID_Group the index of cell identity group 0 Integer NO

UEs_MIMO_Mode MIMO Mode for each UE, 1 for TD, 0for SM

[0, 0, 0, 0, 0, 0] Integer array NO

RB_MappingType the mapping type of VRBs to PRBs:Localized, Distributed

Localized Enumeration NO

SS_PerTxAnt whether synchronization signals (P-SS and S-SS) are transmitted on

NO Enumeration NO

Page 185: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

184

each transmit antenna: NO, YES

RB_AllocType RB allocation type: StartRB +NumRBs, RB indices (1D), RB indices(2D)

StartRB +NumRBs

Enumeration NO

UE1_RB_Alloc the RB allocation for UE 1, in theformats of [start RB, number of RBs]or [[SF0 start RB, SF0 number ofRBs]; . . .; [SF9 start RB, SF9number of RBs]]

[0, 25] Integer array NO

UE2_RB_Alloc the RB allocation for UE 2, in theformats of [start RB, number of RBs]or [[SF0 start RB, SF0 number ofRBs]; . . .; [SF9 start RB, SF9number of RBs]]

[0, 0] Integer array NO

UE3_RB_Alloc the RB allocation for UE 3, in theformats of [start RB, number of RBs]or [[SF0 start RB, SF0 number ofRBs]; . . .; [SF9 start RB, SF9number of RBs]]

[0, 0] Integer array NO

UE4_RB_Alloc the RB allocation for UE 4, in theformats of [start RB, number of RBs]or [[SF0 start RB, SF0 number ofRBs]; . . .; [SF9 start RB, SF9number of RBs]]

[0, 0] Integer array NO

UE5_RB_Alloc the RB allocation for UE 5, in theformats of [start RB, number of RBs]or [ [SF0 start RB, SF0 number ofRBs]; . . .; [SF9 start RB, SF9number of RBs]]

[0, 0] Integer array NO

UE6_RB_Alloc the RB allocation for UE 6, in theformats of [start RB, number of RBs]or [[SF0 start RB, SF0 number ofRBs]; . . .; [SF9 start RB, SF9number of RBs]]

[0, 0] Integer array NO

PDCCH_SymsPerSF number of OFDM symbols of PDCCHfor each subframe

[2, 2, 2, 2, 2, 2,2, 2, 2, 2]

Integer array NO

PHICH_Duration type of PHICH duration:Normal_Duration, Extended_Duration

Normal_Duration Enumeration NO

PHICH_Ng PHICH Ng value: Ng 1/6, Ng 1/2, Ng1, Ng 2

Ng 1/6 Enumeration NO

PCFICH_Rb PCFICH-to-RS EPRE ratio in dB insymbols with RS

0 Float NO

PHICH_Ra PHICH-to-RS EPRE ratio in dB insymbols without RS

0 Float NO

PHICH_Rb PHICH-to-RS EPRE ratio in dB insymbols with RS

0 Float NO

PBCH_Ra PBCH-to-RS EPRE ratio in dB insymbols without RS

0 Float NO

PBCH_Rb PBCH-to-RS EPRE ratio in dB insymbols with RS

0 Float NO

PDCCH_Ra PDCCH-to-RS EPRE ratio in dB insymbols without RS

0 Float NO

PDCCH_Rb PDCCH-to-RS EPRE ratio in dB insymbols with RS

0 Float NO

PDSCH_PowerRatio PDSCH Cell Specific Ratio: p_B/p_A =1, P_B = 0, P_B = 1, P_B = 2, P_B =3

p_B/p_A = 1 Enumeration NO

UEs_Pa UE specific power parameter for eachUE

[0, 0, 0, 0, 0, 0] Floating pointarray

NO

PSS_Ra PSS-to-RS EPRE ratio in dB insymbols without RS

0 Float NO

SSS_Ra SSS-to-RS EPRE ratio in dB insymbols without RS

0 Float NO

SubframeIgnored number of subframes (or transportblocks) that are ignored at thebeginning due to system delay

0 Integer NO

ETM_Support whether to support PHICH m =1 inall transmitted subframes for TDD E-TM defined in 36.141 6.1.2.6: NO,YES

NO Enumeration NO

DisplayPortRates whether the port rates and otheruseful information are displayed inSimulation Log window: NO, YES

NO Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 DataIn downlink OFDM symbols in oneframe

multiple complex NO

Output Ports

Page 186: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

185

Port Name Description Signal Type Optional

2 Pilots output pilots multiple complex matrix NO

3 PSCH output P-SCH mapping signal multiple complex matrix NO

4 SSCH output S-SCH mapping signal multiple complex matrix NO

5 PBCH output CCPCH mapping signal multiple complex matrix NO

6 PCFICH output mapping signal of PCFICH multiple complex matrix NO

7 PHICH output mapping signal of PHICH multiple complex matrix NO

8 PDCCH output mapping signal of PDCCH multiple complex matrix NO

9 Data_UE6 output signal data for UE6 multiple complex matrix NO

10 Data_UE5 output signal data for UE5 multiple complex matrix NO

11 Data_UE4 output signal data for UE4 multiple complex matrix NO

12 Data_UE3 output signal data for UE3 multiple complex matrix NO

13 Data_UE2 output signal data for UE2 multiple complex matrix NO

14 Data_UE1 output signal data for UE1 multiple complex matrix NO

15 StdOut downlink OFDM symbols without scale factor in one frame multiple complex NO

Parameters Details

System Parameters Details:1.For the same parameters as LTE_DL_Src, refer to DL System Parameters(ltebasever).SS_PerTxAnt: whether the P-SS/S-SS are transmitted on the first antenna portor on all the transmit antenna ports.

UE1 Parameters Details:2.Refer to DL UE1 Parameters (ltebasever).

OtherUEs Parameters Details:3.Refer to DL OtherUEs Parameters (ltebasever).

Control Channel Parameters Details:4.Refer to DL Control Channel Parameters (ltebasever).

Power Parameters Details:5.Refer to DL Power Parameters (ltebasever).Note that for PSS_Rb, when SS_PerTxAnt = NO, the PSS EPRE on the firstantenna port is (RS_EPRE+PSS_Rb), when the PSS EPRE on rest ports are 0.When SS_PerTxAnt = YES, the PSS EPRE on the each antenna port is(RS_EPRE+PSS_Rb-10log10(P)), where P is the number of antenna ports.For SSS_Rb, the SSS EPRE allocation for multiple antenna ports is the same asPSS EPRE above.

Notes/Equations

This model is used to de-multiplex 3GPP LTE FDD and TDD downlink OFDM Symbol1.into various physical channels (PDCCH, PCFICH, PHICH and PBCH), synchronizationsignals (RS, PSCH, SSCH) and users information (PDSCH1, PDSCH2,..., PDSCH6) andetc.For all the input and output multiple ports, the bandwidth should be equal to the2.NumRxAnts parameter.The input/output ports are the reverse of the input/output ports inLTE_DL_MuxOFDMSym. Refer to LTE_DL_MuxOFDMSym (ltebasever) for moreinformation.For ith firing, Subframe#(i%10) is processed, where 10 is the number of subframesin one radio frame.Each firing, for each antenna port, one Matrix-based token is consumed at the inputport and each output port.For input port, the tokens consumed are equal to the number of resource elements(REs) in one subframe, determined by the Bandwidth and CyclicPrefix parameter.The matrix vector sizes generated at ports Data_UEx (x is 1~6) are equal to thenumber of resource elements (REs) allocated to this UE (PDSCH) in one radio frame(10 subframes), which are shown in Simulation log window when the DisplayMsgparameter is set to Simple or Full. For more information on how to get the number ofallocated REs given the UEx_RB_Alloc parameter (x is 1~6), refer to Resource BlockAllocation (ltebasever) and Channel Bits Calculation (ltebasever).For other control channels, the matrix vector sizes generated at corresponding outputports are equal to the number of resource elements (REs) allocated to controlchannels.The SubframeIgnored parameter specifies the number of subframes (firings) that are3.ignored at the beginning due to the receiver delay. The first SubframeIgnoredsubframes (firings) are ignored in the subframe (firing) indexing below.For ith firing (excluding first SubframeIgnored subframes (firings)), Subframe#(i%10) is processed.The transmitted UEs signal in each subframe is described by a resource grid of4.

subcarriers and OFDM symbols.The Downlink Resource Grid structure is illustrated in the following figure below:5.

Page 187: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

186

Each element in the resource grid is called a resource atom and each resource atom6.corresponds to one complex-valued modulation symbol. Resource atoms not used fortransmission of a physical channel or a physical signal in a subframe shall be set tozero.

The value of depends on the transmission bandwidth. Note that 7.does not include the DC subcarrier.The downlink reference signal (RS) is always transmitted in the first OFDM symbol8.and the last third symbol in one slot. # The RS is mapped according to Section6.10.1.2 in [1]. Resource elements (k,l) used for reference signal transmission onany of the antenna ports in a slot shall not be used for any transmission on any otherantenna port in the same slot and set to zero.The following figures illustrate the resource elements used for reference signal9.transmission according to the definition.

Mapping of downlink reference signals (normal cyclic prefix)

Mapping of downlink reference signals (extended cyclic prefix)

Page 188: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

187

The primary synchronization signal (PSS) is transmitted in the last OFDM symbol in10.slot 0 and slot 10 for FDD and is transmitted in the third OFDM symbol in subframe 1and 6 for TDD. The secondary synchronization signal (SSS) is transmitted in the lastsecond OFDM symbol in slot 0 (subframe 0) and slot 10 (subframe 5) for FDD and istransmitted in the last OFDM symbols in slot 1 (subframe 0) and slot 11 (subframe 5)for TDD. Both PSCH and SSS occupy centeral 6 resource blcoks (RB, 72 subcarriers).The SS_PerTxAnt parameter determines whether the P-SS/S-SS are transmitted onthe first antenna port or on all the transmit antenna ports.The PCFICH, PHICH and PDCCCH are transmitted in each subframe according to11.PDCCH_SymsPerSF and parameters related to PHICH mapping including PHICH_Ng,PHICH_Duration and CyclicPrefix. PDCCH_SymsPerSF[i] determines how many OFDMsymbols are used to transmit control information in the ith subframe. The valuerange of PDCCH_SymsPerSF[i] is 0, 1, 2 and 3 except subframe 1 and 6 for TDDwhich is 0, 1 and 2. Note that PDCCH_SymsPerSF is an Array Parameter (ltebasever).The allowable sizes are 1x1, 10x1.If PDCCH_SymsPerSF[i]>0, the PCFICH is mapped in the first OFDM symbol of the ith12.subframe according to section 6.7.4 in [1]. After the PCFICH mapping, the PHICH ismapped according to section 6.9.3 in [1] and then the PDCCH is mapped to theremnent resource-element groups in the first PDCCH_SymsPerSF[i] OFDM symbols ofith subframe according to section 6.8.5 in [1].PBCH is always transmitted in the first 4 OFDM symbols in slot 1(subframe 0). PBCH13.occupies centeral 6 RBs (same as PSCH and SSCH) in spectrum. The mappingoperation shall assume cell-specific reference signals for antenna ports 0-3 beingpresent irrespective of the actual configuration. Resource elements assumed to bereserved for reference signals in the mapping operation above but not used fortransmission of reference signal shall not be used for transmission of any physicalchannel.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.

Page 189: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

188

LTE_DL_DemuxSlot PartCategories: C++ Code Generation (ltebasever), Multiplex (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_DL_DemuxSlot (ltebasever) Downlink Slot De-multiplexer for LTE DLreceiver

LTE_DL_DemuxSlot (Downlink Slot De-multiplexerfor LTE DL receiver)

Description: Downlink Slot De-multiplexer for LTE DL receiverDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE DL DemuxSlot Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW 5MHz, BW 10 MHz, BW 15 MHz, BW 20 MHz

BW 5MHz

Enumeration NO

NumRxAnts number of Rx Antennas: Rx1, Rx2, Rx4 Rx1 Enumeration NO

OversamplingOption Ratio 1, Ratio 2, Ratio 4, Ratio 8: Ratio 1,Ratio 2, Ratio 4, Ratio 8

Ratio 2 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

Sym_StartPos start position (without oversampling) to getthe OFDM symbol for FFT operation for long CPand short CP symbols respectively, comparedto the start position of the OFDM body after CP

[-3, -3] Integerarray

NO

Input Ports

Port Name Description Signal Type Optional

1 FrameData input downlink framesymbol

multiple complex NO

Output Ports

Port Name Description Signal Type Optional

2 OFDMSig OFDM signal multiple complex NO

Notes/Equations

This model is used to demultiplex 3GPP LTE downlink slot.1.Each firing,2.

NumberSamplesPerSlot tokens are consumed at input port FrameData , whereNumberSamplesPerSlot = SamplingFreq * 2OversamplingOption * 0.0005.SamplingFreq is sampling frequency, which is denoted as Fs and determined by

Bandwidth as follows:Bandwidth Fs

1.4 MHz 1.92 MHz

3.0 MHz 3.84 MHz

5.0 MHz 7.68 MHz

10.0 MHz 15.36MHz

15.0 MHz 23.04MHz

20.0 MHz 30.72MHz

NumberSymsPerSlot × FFTSize tokens are produced at output port OFDMSig,where NumberSymsPerSlot is the number of OFDM symbols in each slot,FFTSize is the FFT length.For the default parameter configurations, NumberSymsPerSlot = 7, FFTSize =1024, hence, each firing, 7680 tokens are consumed at SlotData, 7168 tokens

Page 190: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

189

are produced at DemuxSlotData.Each 10 ms radio frame consists of 20 slots of length, numbered from 0 to 19. Each3.0.5 ms slot consists of 7 OFDM symbols for normal cyclic prefix or 6 OFDM symbolsfor extended cyclic prefix.The cyclic prefix of each OFDM symbol is removed in this model. For normal cyclic4.prefix, the first OFDM symbol within a slot has different cyclic prefix lengths fromother 6 OFDM symbols. For extended cyclic prefix, the 6 OFDM symbols have samecyclic prefix lengths.The start of each output OFDM symbol is illustrated in the following figure.5.

Sym_StartPos is an array of two elements, indicating the start position (without6.oversampling) of the first output OFDM symbol and other output OFDM symbols ineach slot respectively. Here the "start position" is compared to the first sample of theinput OFDM symbol body excluding the cyclic prefix. Hence the value is negativeindicating the start position locates in the CP duration of the input symbol as shownin the figure.It would be better set Sym_StartPos to a certain value so that the “Output” in the7.above figure is a whole OFDM symbol which is not affected by the spectrum shapingin the transmitter. Hence, the value of Sym_StartPos depends on the CP length(samples) and the spectrum shaping employed in LTE_DL_Src (ltebasever).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access2.(UTRA),", V7.0.0, June 2006.

Page 191: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

190

LTE_DL_EVM_Adaptor PartCategories: Multiplex (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_DL_EVM_Adaptor(ltebasever)

Transfer subframe-based matrix vector constellations into frame-basednormal data for LTE_DL_EVM_Sink

LTE_DL_EVM_Adaptor (Downlink OFDM Symbol De-multiplexer in one radio frame)

Description: Transfer subframe-based matrix vector constellations into frame-basednormal data for LTE_DL_EVM_SinkDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE DL EVM Adaptor Part (ltebasever)

Model Parameters

Page 192: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

191

Name Description Default Units Type

FrameMode frame mode: FDD, TDD FDD Enumeration

TDD_Config downlink and uplink allocations for TDD: Config0, Config 1, Config 2, Config 3, Config 4, Config5, Config 6

Config 0 Enumeration

SpecialSF_Config special subframe configuration for TDD: Config 0,Config 1, Config 2, Config 3, Config 4, Config 5,Config 6, Config 7, Config 8

Config 4 Enumeration

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW 5 MHz,BW 10 MHz, BW 15 MHz, BW 20 MHz

BW 5 MHz Enumeration

NumTxAnts number of Tx Antennas: Tx1, Tx2, Tx4 Tx1 Enumeration

NumRxAnts number of Rx Antennas: Rx1, Rx2, Rx4 Rx1 Enumeration

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration

UEs_MIMO_Mode MIMO Mode for each UE, 1 for TD, 0 for SM [0, 0, 0, 0, 0, 0] Integerarray

RB_MappingType the mapping type of VRBs to PRBs: Localized,Distributed

Localized Enumeration

SS_PerTxAnt whether synchronization signals (P-SS and S-SS)are transmitted on each transmit antenna: NO,YES

NO Enumeration

RB_AllocType RB allocation type: StartRB + NumRBs, RBindices (1D), RB indices (2D)

StartRB + NumRBs Enumeration

UE1_RB_Alloc the RB allocation for UE 1, in the formats of[start RB, number of RBs] or [[SF0 start RB, SF0number of RBs]; . . .; [SF9 start RB, SF9 numberof RBs]]

[0, 25] Integerarray

UE2_RB_Alloc the RB allocation for UE 2, in the formats of[start RB, number of RBs] or [[SF0 start RB, SF0number of RBs]; . . .; [SF9 start RB, SF9 numberof RBs]]

[0, 0] Integerarray

UE3_RB_Alloc the RB allocation for UE 3, in the formats of[start RB, number of RBs] or [[SF0 start RB, SF0number of RBs]; . . .; [SF9 start RB, SF9 numberof RBs]]

[0, 0] Integerarray

UE4_RB_Alloc the RB allocation for UE 4, in the formats of[start RB, number of RBs] or [[SF0 start RB, SF0number of RBs]; . . .; [SF9 start RB, SF9 numberof RBs]]

[0, 0] Integerarray

UE5_RB_Alloc the RB allocation for UE 5, in the formats of[start RB, number of RBs] or [ [SF0 start RB, SF0number of RBs]; . . .; [SF9 start RB, SF9 numberof RBs]]

[0, 0] Integerarray

UE6_RB_Alloc the RB allocation for UE 6, in the formats of[start RB, number of RBs] or [[SF0 start RB, SF0number of RBs]; . . .; [SF9 start RB, SF9 numberof RBs]]

[0, 0] Integerarray

PDCCH_SymsPerSF number of OFDM symbols of PDCCH for eachsubframe

[2, 2, 2, 2, 2, 2, 2,2, 2, 2]

Integerarray

PHICH_Duration type of PHICH duration: Normal_Duration,Extended_Duration

Normal_Duration Enumeration

PHICH_Ng PHICH Ng value: Ng 1/6, Ng 1/2, Ng 1, Ng 2 Ng 1/6 Enumeration

Input Ports

Port Name Description Signal Type Optional

1 Data_UE1_In Input Matrix-based (subframe-based) data for UE1 multiple complex matrix NO

2 Data_UE2_In Input Matrix-based (subframe-based) data for UE2 multiple complex matrix NO

3 Data_UE3_In Input Matrix-based (subframe-based) data for UE3 multiple complex matrix NO

4 Data_UE4_In Input Matrix-based (subframe-based) data for UE4 multiple complex matrix NO

5 Data_UE5_In Input Matrix-based (subframe-based) data for UE5 multiple complex matrix NO

6 Data_UE6_In Input Matrix-based (subframe-based) data for UE6 multiple complex matrix NO

7 PDCCH_In Input Matrix-based (subframe-based) data for PDCCH multiple complex matrix NO

8 PHICH_In Input Matrix-based (subframe-based) data for PHICH multiple complex matrix NO

9 PCFICH_In Input Matrix-based (subframe-based) data for PCFICH multiple complex matrix NO

10 PBCH_In Input Matrix-based (subframe-based) data for PBCH multiple complex matrix NO

11 SSCH_In Input Matrix-based (subframe-based) data for SSCH multiple complex matrix NO

12 PSCH_In Input Matrix-based (subframe-based) data for PSCH multiple complex matrix NO

Output Ports

Page 193: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

192

Port Name Description Signal Type Optional

13 Data_UE1_Out Output one-frame data for UE1 multiple complex NO

14 Data_UE2_Out Output one-frame data for UE2 multiple complex NO

15 Data_UE3_Out Output one-frame data for UE3 multiple complex NO

16 Data_UE4_Out Output one-frame data for UE4 multiple complex NO

17 Data_UE5_Out Output one-frame data for UE5 multiple complex NO

18 Data_UE6_Out Output one-frame data for UE6 multiple complex NO

19 PDCCH_Out Output one-frame data for PDCCH multiple complex NO

20 PHICH_Out Output one-frame data for PHICH multiple complex NO

21 PCFICH_Out Output one-frame data forPCFICH

multiple complex NO

22 PBCH_Out Output one-frame data for PBCH multiple complex NO

23 SSCH_Out Output one-frame data for SSCH multiple complex NO

24 PSCH_Out Output one-frame data for PSCH multiple complex NO

Notes/Equations

This model acts as an adaptor, to transfer subframe-based matrix vector1.constellations (outputting from LTE downlink eceiver) into frame-based normal datawhich are then sent to LTE_DL_EVM_Sink.Each firing, 10 subframe-based matrix tokens are consumed at each input port, and2.one-frame data tokens are produced at each output port. The number of symbolsproduced in one frame for each output port is shown in LTE_DL_MuxOFDMSym modelwhen the DisplayPortRates is set to YES. One exception is the PHCH_Out port, wherethe number of symbols produced in one frame is equal to the number of tokensproduced in the Constellation port of the LTE_PHICH_Demodulator model.For some physical channels, it may happen that no data are allocated in one frame.3.In this case, one dummy data are output at the corresponding ports.For each input, it is required that the total number of constellation symbols in 104.tokens (10 subframes) at each input port should be equal to the number of symbolsin one frame that are required by the corresponding output port. Otherwise, errorsmay occur.For more information on how to use this model, refer to the LTE_DL_EVM and5.LTE_DL_MIMO_EVM_2Ants subnetworks.

References

3GPP TS 36.211 v8.6.0, "Physical Channels and Modulation", March 2009.1.

Page 194: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

193

LTE_DL_MIMO_DemuxCIR PartCategories: C++ Code Generation (ltebasever), Multiplex (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_DL_MIMO_DemuxCIR (ltebasever) Downlink CIR De-multiplexer in one radioframe

LTE_DL_MIMO_DemuxCIR (Downlink CIR De-multiplexer in one radio frame)

Description: Downlink CIR De-multiplexer in one radio frameDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE DL MIMO DemuxCIR Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations forTDD: Config 0, Config 1, Config 2,Config 3, Config 4, Config 5, Config 6

Config 0 Enumeration NO

SpecialSF_Config special subframe configuration forTDD: Config 0, Config 1, Config 2,Config 3, Config 4, Config 5, Config 6,Config 7, Config 8

Config 4 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz,BW 5 MHz, BW 10 MHz, BW 15 MHz,BW 20 MHz

BW 5 MHz Enumeration NO

NumTxAnts number of Tx Antennas: Tx1, Tx2,Tx4

Tx1 Enumeration NO

NumRxAnts number of Rx Antennas: Rx1, Rx2,Rx4

Rx1 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal,Extended

Normal Enumeration NO

CellID_Sector the index of cell identity within thephysical-layer cell-identity group

0 Integer NO

CellID_Group the index of cell identity group 0 Integer NO

UEs_MIMO_Mode MIMO Mode for each UE, 1 for TD, 0for SM

[0, 0, 0, 0, 0, 0] Integer array NO

RB_MappingType the mapping type of VRBs to PRBs:Localized, Distributed

Localized Enumeration NO

SS_PerTxAnt whether synchronization signals (P-SS and S-SS) are transmitted oneach transmit antenna: NO, YES

NO Enumeration NO

RB_AllocType RB allocation type: StartRB +NumRBs, RB indices (1D), RB indices

StartRB +NumRBs

Enumeration NO

Page 195: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

194

(2D)

UE1_RB_Alloc the RB allocation for UE 1, in theformats of [start RB, number of RBs]or [[SF0 start RB, SF0 number ofRBs]; . . .; [SF9 start RB, SF9number of RBs]]

[0, 25] Integer array NO

UE2_RB_Alloc the RB allocation for UE 2, in theformats of [start RB, number of RBs]or [[SF0 start RB, SF0 number ofRBs]; . . .; [SF9 start RB, SF9number of RBs]]

[0, 0] Integer array NO

UE3_RB_Alloc the RB allocation for UE 3, in theformats of [start RB, number of RBs]or [[SF0 start RB, SF0 number ofRBs]; . . .; [SF9 start RB, SF9number of RBs]]

[0, 0] Integer array NO

UE4_RB_Alloc the RB allocation for UE 4, in theformats of [start RB, number of RBs]or [[SF0 start RB, SF0 number ofRBs]; . . .; [SF9 start RB, SF9number of RBs]]

[0, 0] Integer array NO

UE5_RB_Alloc the RB allocation for UE 5, in theformats of [start RB, number of RBs]or [ [SF0 start RB, SF0 number ofRBs]; . . .; [SF9 start RB, SF9number of RBs]]

[0, 0] Integer array NO

UE6_RB_Alloc the RB allocation for UE 6, in theformats of [start RB, number of RBs]or [[SF0 start RB, SF0 number ofRBs]; . . .; [SF9 start RB, SF9number of RBs]]

[0, 0] Integer array NO

PDCCH_SymsPerSF number of OFDM symbols of PDCCHfor each subframe

[2, 2, 2, 2, 2, 2,2, 2, 2, 2]

Integer array NO

PHICH_Duration type of PHICH duration:Normal_Duration, Extended_Duration

Normal_Duration Enumeration NO

PHICH_Ng PHICH Ng value: Ng 1/6, Ng 1/2, Ng1, Ng 2

Ng 1/6 Enumeration NO

PCFICH_Rb PCFICH-to-RS EPRE ratio in dB insymbols with RS

0 Float NO

PHICH_Ra PHICH-to-RS EPRE ratio in dB insymbols without RS

0 Float NO

PHICH_Rb PHICH-to-RS EPRE ratio in dB insymbols with RS

0 Float NO

PBCH_Ra PBCH-to-RS EPRE ratio in dB insymbols without RS

0 Float NO

PBCH_Rb PBCH-to-RS EPRE ratio in dB insymbols with RS

0 Float NO

PDCCH_Ra PDCCH-to-RS EPRE ratio in dB insymbols without RS

0 Float NO

PDCCH_Rb PDCCH-to-RS EPRE ratio in dB insymbols with RS

0 Float NO

PDSCH_PowerRatio PDSCH Cell Specific Ratio: p_B/p_A =1, P_B = 0, P_B = 1, P_B = 2, P_B =3

p_B/p_A = 1 Enumeration NO

UEs_Pa UE specific power parameter for eachUE

[0, 0, 0, 0, 0, 0] Floating pointarray

NO

PSS_Ra PSS-to-RS EPRE ratio in dB insymbols without RS

0 Float NO

SSS_Ra SSS-to-RS EPRE ratio in dB insymbols without RS

0 Float NO

SubframeIgnored number of subframes (or transportblocks) that are ignored at thebeginning due to system delay

0 Integer NO

Input Ports

Port Name Signal Type Optional

1 H_DataIn complex NO

Output Ports

Page 196: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

195

Port Name Signal Type Optional

2 H_PSCH complex matrix NO

3 H_SSCH complex matrix NO

4 H_PBCH complex matrix NO

5 H_PDCCH complex matrix NO

6 H_PCFICH complex matrix NO

7 H_PHICH complex matrix NO

8 H_Data_UE6 complex matrix NO

9 H_Data_UE5 complex matrix NO

10 H_Data_UE4 complex matrix NO

11 H_Data_UE3 complex matrix NO

12 H_Data_UE2 complex matrix NO

13 H_Data_UE1 complex matrix NO

Parameter Details

System Parameters Details:1.For the same parameters as LTE_DL_Src, refer to DL System Parameters(ltebasever).SS_PerTxAnt: whether the P-SS/S-SS are transmitted on the first antenna portor on all the transmit antenna ports.

UE1 Parameters Details:2.Refer to DL UE1 Parameters (ltebasever).

OtherUEs Parameters Details:3.Refer to DL OtherUEs Parameters (ltebasever).

Control Channel Parameters Details:4.Refer to DL Control Channel Parameters (ltebasever).

Power Parameters:5.Refer to DL Power Parameters (ltebasever).Note that for PSS_Rb, when SS_PerTxAnt = NO, the PSS EPRE on the firstantenna port is (RS_EPRE+PSS_Rb), when the PSS EPRE on rest ports are 0.When SS_PerTxAnt = YES, the PSS EPRE on the each antenna port is(RS_EPRE+PSS_Rb-10log10(P)), where P is the number of antenna ports.For SSS_Rb, the SSS EPRE allocation for multiple antenna ports is the same asPSS EPRE above.

Notes/Equations

This model is used to de-multiplex the channel estimation H of 3GPP LTE FDD and1.TDD downlink signal according to various physical channels (PDCCH, PCFICH,PHICH and PBCH), synchronization signals (RS, PSCH, SSCH) and users information(PDSCH1, PDSCH2,..., PDSCH6) and etc.This model performs the same functionality as LTE_DL_MuxOFDMSym (ltebasever)2.with the exception that, for each resource element, the channel estimation H_ishould be expressed by NumRxAnts*NumTxAnts tokens, so that the number of inputtokens is the NumRxAnts * NumTxAnts time the number of tokens inLTE_DL_MuxOFDMSym; the number of matrix size at output ports is the NumRxAnts* NumTxAnts time the number of matrix size in LTE_DL_MuxOFDMSym.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.

Page 197: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

196

LTE_DL_MuxFrame PartCategories: C++ Code Generation (ltebasever), Multiplex (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_DL_MuxFrame (ltebasever) Downlink radio frame multiplexer

LTE_DL_MuxFrame (Downlink Radio FrameMultiplexer)

Description: Downlink radio frame multiplexerDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE DL MuxFrame Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW 5MHz, BW 10 MHz, BW 15 MHz, BW 20 MHz

BW 5MHz

Enumeration NO

OversamplingOption Ratio 1, Ratio 2, Ratio 4, Ratio 8: Ratio 1,Ratio 2, Ratio 4, Ratio 8

Ratio 2 Enumeration NO

IdleInterval idle interval between two consecutive radioframes

0 s Float NO

Input Ports

Port Name Description Signal Type Optional

1 DataIn data in complex NO

Output Ports

Port Name Description Signal Type Optional

2 DataOut data out complex NO

Notes/Equations

This model is used to multiplex 20 slots into one radio frame (10 ms) and insert idle1.interval (time duration is IdleInterval) between two consecutive radio frames. Eachfiring, SamplingFreq x 2OversamplingOption x 0.01 tokens are consumed, which is thenumber of samples 20 slots contain. SamplingFreq is sampling frequency, which isdenoted as Fs and determined by Bandwidth as follows:

And each firing, SamplingFreq x 2OversamplingOption x (0.01 + IdleInterval) tokens are2.exported, which is the number of samples 20 slots and idle interval contain. The 0.01is the time duration of the 20 time slots which constitute one radio frame, andIdleInterval is the time duration of the idle.According to the spec ([2]), the IdleInterval parameter should be equal to 0.3.

References

TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access1.(UTRA),", V7.1.0, September 2006.3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.2.

Page 198: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

197

LTE_DL_MuxOFDMSym PartCategories: C++ Code Generation (ltebasever), Multiplex (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_DL_MuxOFDMSym (ltebasever) Downlink OFDM Symbol Multiplexer in one radioframe

LTE_DL_MuxOFDMSym (Downlink OFDM SymbolMultiplexer for One Radio Frame)

Description: Downlink OFDM Symbol Multiplexer in one radio frameDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE DL MuxOFDMSym Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations forTDD: Config 0, Config 1, Config 2,Config 3, Config 4, Config 5, Config 6

Config 0 Enumeration NO

SpecialSF_Config special subframe configuration forTDD: Config 0, Config 1, Config 2,Config 3, Config 4, Config 5, Config 6,Config 7, Config 8

Config 4 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz,BW 5 MHz, BW 10 MHz, BW 15 MHz,BW 20 MHz

BW 5 MHz Enumeration NO

NumTxAnts number of Tx Antennas: Tx1, Tx2,Tx4

Tx1 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal,Extended

Normal Enumeration NO

CellID_Sector the index of cell identity within thephysical-layer cell-identity group

0 Integer NO

CellID_Group the index of cell identity group 0 Integer NO

UEs_MIMO_Mode MIMO Mode for each UE, 1 for TD, 0for SM

[0, 0, 0, 0, 0, 0] Integer array NO

RB_MappingType the mapping type of VRBs to PRBs:Localized, Distributed

Localized Enumeration NO

SS_PerTxAnt whether synchronization signals (P-SS and S-SS) are transmitted oneach transmit antenna: NO, YES

NO Enumeration NO

RB_AllocType RB allocation type: StartRB +NumRBs, RB indices (1D), RB indices

StartRB +NumRBs

Enumeration NO

Page 199: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

198

(2D)

UE1_RB_Alloc the RB allocation for UE 1, in theformats of [start RB, number of RBs]or [[SF0 start RB, SF0 number ofRBs]; . . .; [SF9 start RB, SF9number of RBs]]

[0, 25] Integer array NO

UE2_RB_Alloc the RB allocation for UE 2, in theformats of [start RB, number of RBs]or [[SF0 start RB, SF0 number ofRBs]; . . .; [SF9 start RB, SF9number of RBs]]

[0, 0] Integer array NO

UE3_RB_Alloc the RB allocation for UE 3, in theformats of [start RB, number of RBs]or [[SF0 start RB, SF0 number ofRBs]; . . .; [SF9 start RB, SF9number of RBs]]

[0, 0] Integer array NO

UE4_RB_Alloc the RB allocation for UE 4, in theformats of [start RB, number of RBs]or [[SF0 start RB, SF0 number ofRBs]; . . .; [SF9 start RB, SF9number of RBs]]

[0, 0] Integer array NO

UE5_RB_Alloc the RB allocation for UE 5, in theformats of [start RB, number of RBs]or [ [SF0 start RB, SF0 number ofRBs]; . . .; [SF9 start RB, SF9number of RBs]]

[0, 0] Integer array NO

UE6_RB_Alloc the RB allocation for UE 6, in theformats of [start RB, number of RBs]or [[SF0 start RB, SF0 number ofRBs]; . . .; [SF9 start RB, SF9number of RBs]]

[0, 0] Integer array NO

PDCCH_SymsPerSF number of OFDM symbols of PDCCHfor each subframe

[2, 2, 2, 2, 2, 2,2, 2, 2, 2]

Integer array NO

PHICH_Duration type of PHICH duration:Normal_Duration, Extended_Duration

Normal_Duration Enumeration NO

PHICH_Ng PHICH Ng value: Ng 1/6, Ng 1/2, Ng1, Ng 2

Ng 1/6 Enumeration NO

RS_EPRE transmit energy per resource element(RE) for transmitted cell specific RSfor each antenna port, in unit ofdBm/15kHz

-25 Float NO

PCFICH_Rb PCFICH-to-RS EPRE ratio in dB insymbols with RS

0 Float NO

PHICH_Ra PHICH-to-RS EPRE ratio in dB insymbols without RS

0 Float NO

PHICH_Rb PHICH-to-RS EPRE ratio in dB insymbols with RS

0 Float NO

PBCH_Ra PBCH-to-RS EPRE ratio in dB insymbols without RS

0 Float NO

PBCH_Rb PBCH-to-RS EPRE ratio in dB insymbols with RS

0 Float NO

PDCCH_Ra PDCCH-to-RS EPRE ratio in dB insymbols without RS

0 Float NO

PDCCH_Rb PDCCH-to-RS EPRE ratio in dB insymbols with RS

0 Float NO

PDSCH_PowerRatio PDSCH Cell Specific Ratio: p_B/p_A =1, P_B = 0, P_B = 1, P_B = 2, P_B =3

p_B/p_A = 1 Enumeration NO

UEs_Pa UE specific power parameter for eachUE

[0, 0, 0, 0, 0, 0] Floating pointarray

NO

PSS_Ra PSS-to-RS EPRE ratio in dB insymbols without RS

0 Float NO

SSS_Ra SSS-to-RS EPRE ratio in dB insymbols without RS

0 Float NO

DisplayPortRates whether the port rates and otheruseful information are displayed inSimulation Log window: NO, YES

NO Enumeration NO

ETM_Support whether to support PHICH m =1 inall transmitted subframes for TDD E-TM defined in 36.141 6.1.2.6: NO,YES

NO Enumeration NO

Input Ports

Page 200: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

199

Port Name Description Signal Type Optional

1 Pilots input CCPCH mapping signal complex matrix NO

2 PSCH input mapping signal of PCFICH complex matrix NO

3 SSCH input mapping signal of PHICH complex matrix NO

4 PBCH input mapping signal of PDCCH multiple complex matrix NO

5 PCFICH input signal data from UE6 multiple complex matrix NO

6 PHICH input signal data from UE5 multiple complex matrix NO

7 PDCCH input signal data from UE4 multiple complex matrix NO

8 Data_UE6 input signal data from UE3 multiple complex matrix NO

9 Data_UE5 input signal data from UE2 multiple complex matrix NO

10 Data_UE4 input signal data from UE1 multiple complex matrix NO

11 Data_UE3 multiple complex matrix NO

12 Data_UE2 multiple complex matrix NO

13 Data_UE1 multiple complex matrix NO

Output Ports

Port Name Description Signal Type Optional

14 DataOut downlink OFDM symbols in one frame multiple complex NO

15 StdOut downlink OFDM symbols without scale factor in one frame multiple complex NO

16 SC_Status downlink subcarrier (resource element) status in oneframe

multiple int NO

Parameter Details

System Parameters Details:1.For the same parameters as LTE_DL_Src, refer to DL System Parameters(ltebasever).SS_PerTxAnt: whether the P-SS/S-SS are transmitted on the first antenna portor on all the transmit antenna ports.

UE1 Parameters Details:2.Refer to DL UE1 Parameters (ltebasever).

OtherUEs Parameters Details:3.Refer to DL OtherUEs Parameters (ltebasever).

Control Channel Parameters Details:4.Refer to DL Control Channel Parameters (ltebasever).

Power Parameters:5.Refer to DL Power Parameters (ltebasever).Note that for PSS_Rb, when SS_PerTxAnt = NO, the PSS EPRE on the firstantenna port is (RS_EPRE+PSS_Rb), when the PSS EPRE on rest ports are 0.When SS_PerTxAnt = YES, the PSS EPRE on the each antenna port is(RS_EPRE+PSS_Rb-10log10(P)), where P is the number of antenna ports.For SSS_Rb, the SSS EPRE allocation for multiple antenna ports is the same asPSS EPRE above.

DisplayPortRates: if this parameter is set to YES, the port rates and other useful6.information are displayed in Simulation Log window.

Notes/Equations

This model is used to constitute 3GPP LTE FDD and TDD downlink OFDM Symbol. It1.multiplex control channels PCFICH, PHICH PDCCH and PBCH), synchronizationsignals( PSS, SSS, RS) and data channels PDSCH1 to PDSCH6 into one OFDM frame.For all the input and output multiple ports, the bandwidth should be equal to the2.NumTxAnts parameter.For ith firing, Subframe#(i%10) is processed, where 10 is the number of subframesin one radio frame.

Each firing, for each antenna port, one Matrix-based token is consumed at eachinput port.The matrix vector sizes needed at ports Data_UEx (x is 1~6) are equal to thenumber of resource elements (REs) allocated to this UE (PDSCH) in one radioframe (10 subframes), which are shown in Simulation log window when theDisplayMsg parameter is set to Simple or Full. For more information on how toget the number of allocated REs given the UEx_RB_Alloc parameter (x is 1~6),refer to Resource Block Allocation (ltebasever) and Channel Bits Calculation(ltebasever).For other control channels, the matrix vector sizes needed at correspondinginput ports are equal to the number of resource elements (REs) allocated tocontrol channels.For output ports, the number of tokens produced is equal to the number ofresource elements (REs) in one subframe, determined by the Bandwidth andCyclicPrefix parameter.

Page 201: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

200

For each channel, when the input matrix vector size is less than the desired matrix vectorsize, an error message will be given, showing the desired matrix vector size and the actualmatrix vector size which are helpful for troubleshooting.when the input matrix vector size is greater than the desired matrix vector size, thesimulation will continue and the desired data are collected from the beginning of the inputmatrix vector.

For the default parameter configurations, the details of the matrix size at allports as follows:

For the Pilots input port, the matrix vector sizes are[200,200,200,200,200,200,200,200,200,200] in 10 subframesrespectively.For the PSCH input port, the matrix vector sizes are [72,0,0,0,0,72,0,0,0,0]in 10 subframes respectively.For the SSCH input port, the matrix vector sizes are[72,0,0,0,0,72,0,0,0,0] in 10 subframes respectively.For the PBCH input port, the matrix vector sizes are [240,0,0,0,0,0,0,0,0,0]in 10 subframes respectively.For the PCFICH input port, the matrix vector sizes are[16,16,16,16,16,16,16,16,16,16] in 10 subframes respectively.For the PHICH input port, the matrix vector sizes are[12,12,12,12,12,12,12,12,12,12] in 10 subframes respectively.For the PDCCH input port, the matrix vector sizes are[472,472,472,472,472,472,472,472,472,472] in 10 subframesrespectively.For the Data_UE6 input port, the matrix vector sizes are[0,0,0,0,0,0,0,0,0,0] in 10 subframes respectively.For the Data_UE5 input port, the matrix vector sizes are[0,0,0,0,0,0,0,0,0,0] in 10 subframes respectively.For the Data_UE4 input port, the matrix vector sizes are[0,0,0,0,0,0,0,0,0,0] in 10 subframes respectively.For the Data_UE3 input port, the matrix vector sizes are[0,0,0,0,0,0,0,0,0,0] in 10 subframes respectively.For the Data_UE2 input port, the matrix vector sizes are[0,0,0,0,0,0,0,0,0,0] in 10 subframes respectively.For the Data_UE1 input port, the matrix vector sizes are[3030,3450,3450,3450,3450,3306,3450,3450,3450,3450] in 10 subframesrespectively.For the DataOut output port, 4200 tokens are produced each firing(subframe).For the StdOut output port, 4200 tokens are produced each firing(subframe).For the SC_Status output port, 4200 tokens are produced each firing(subframe).

The transmitted UEs signal in each subframe is described by a resource grid of3.

subcarriers and OFDM symbols. The Downlink Resource Grid isillustrated in the following figure.

Page 202: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

201

Each element in the resource grid is called a resource atom and each resource atom4.corresponds to one complex-valued modulation symbol. Resource atoms not used fortransmission of a physical channel or a physical signal in a subframe shall be set tozero.

The value of depends on the transmission bandwidth. Note that 5.does not include the DC subcarrier.The downlink reference signal (RS) are always transmitted in the first OFDM symbol6.and the last third symbol in one slot. The RS are mapped according to Section6.10.1.2 in [1]. Resource elements (k,l) used for reference signal transmission onany of the antenna ports in a slot shall not be used for any transmission on any otherantenna port in the same slot and set to zero.The following figures illustrate the resource elements used for reference signal7.transmission according to the definition.

Mapping of downlink reference signals (normal cyclic prefix):

Mapping of downlink reference signals (extended cyclic prefix)

The primary synchronization signal (PSS) is transmitted in the last OFDM symbol in8.slot 0 and slot 10 for FDD and is transmitted in the third OFDM symbol in subframe 1and 6 for TDD. The secondary synchronization signal (SSS) is transmitted in the lastsecond OFDM symbol in slot 0 (subframe 0) and slot 10 (subframe 5) for FDD and istransmitted in the last OFDM symbols in slot 1 (subframe 0) and slot 11 (subframe 5)

Page 203: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

202

for TDD. Both PSCH and SSS occupy centeral 6 resource blcoks (RB, 72 subcarriers).The SS_PerTxAnt parameter determines whether the P-SS/S-SS are transmitted onthe first antenna port or on all the transmit antenna ports.The PCFICH, PHICH and PDCCCH are transmitted in each subframe according to9.PDCCH_SymsPerSF and parameters related to PHICH mapping including PHICH_Ng,PHICH_Duration and CyclicPrefix. PDCCH_SymsPerSF[i] determines how many OFDMsymbols are used to transmit control information in the ith subframe. The valuerange of PDCCH_SymsPerSF[i] is 0, 1, 2 and 3 except subframe 1 and 6 for TDDwhich is 0, 1 and 2. Note that PDCCH_SymsPerSF is an Array Parameter (ltebasever).The allowable sizes are 1x1, 10x1.If PDCCH_SymsPerSF[i]>0, the PCFICH is mapped in the first OFDM symbol of the ithsubframe according to section 6.7.4 in [1]. After the PCFICH mapping, the PHICH ismapped according to section 6.9.3 in [1] and then the PDCCH is mapped to theremnent resource-element groups in the first PDCCH_SymsPerSF[i] OFDM symbols ofith subframe according to section 6.8.5 in [1].PBCH is always transmitted in the first 4 OFDM symbols in slot 1(subframe 0). PBCH10.occupies centeral 6 RBs (same as PSCH and SSCH) in spectrum. The mappingoperation shall assume cell-specific reference signals for antenna ports 0-3 beingpresent irrespective of the actual configuration. Resource elements assumed to bereserved for reference signals in the mapping operation above but not used fortransmission of reference signal shall not be used for transmission of any physicalchannel.The output at port SC_Status is the status for each subcarrier (resource element).11.The first value is the status for the first subcarrier (resource element) in the firstOFDM symbol, and then the second is for the second subcarrier (resource element) inthe first OFDM symbol. When the last subcarrier (resource element) in the first OFDMsymbol is output, then next the first subcarrier (resource element) in the secondOFDM symbol is output, and so on. The 8 LSB bits of each status value represent thechannel type allocated on each subcarrier (resource element). The meaning of the8 LSB bits is shown in the table below:Value ChannelType

0 EMPTY

1 RS

2 PSS

3 SSS

4 PBCH

5 PCFICH

6 PHICH

7 PDCCH

8 PDSCH 1 (UE 1)

9 PDSCH 2 (UE 2)

10 PDSCH 3 (UE 3)

11 PDSCH 4 (UE 4)

12 PDSCH 5 (UE 5)

13 PDSCH 6 (UE 6)

References

TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access1.(UTRA),", V7.1.0, September 2006.3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.2.

Page 204: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

203

LTE_DL_MuxSlot PartCategories: C++ Code Generation (ltebasever), Multiplex (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_DL_MuxSlot (ltebasever) Downlink slotmultiplexer

LTE_DL_MuxSlot (Downlink Slot Multiplexer)

Description: Downlink slot multiplexerDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE DL MuxSlot Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW 5MHz, BW 10 MHz, BW 15 MHz, BW 20 MHz

BW 5MHz

Enumeration NO

OversamplingOption Ratio 1, Ratio 2, Ratio 4, Ratio 8: Ratio 1,Ratio 2, Ratio 4, Ratio 8

Ratio 2 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 OFDMSig input OFDMsymbol

complex NO

Output Ports

Port Name Description Signal Type Optional

2 FrameData downlink frame signal complex NO

Notes/Equations

This model is used to multiplex 3GPP LTE downlink slot.1.Each 10 ms radio frame consists of 20 slots, numbered from 0 to 19. Each 0.5 ms2.slot consists of 7 OFDM symbols for normal cyclic prefix or 6 OFDM symbols forextended cyclic prefix. The cyclic prefix of each OFDM symbol is added in this model.For normal cyclic prefix, the first OFDM symbol within a slot has different cyclic prefix3.lengths from other 6 OFDM symbols.For extended cyclic prefix, the 6 OFDM symbols have same cyclic prefix lengths.4.

References

TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access1.(UTRA),", V7.1.0, September 2006.3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.2.

Page 205: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

204

LTE_UL_DemuxFrame PartCategories: C++ Code Generation (ltebasever), Multiplex (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_UL_DemuxFrame (ltebasever) Uplink radio frame de-multiplexer with frequency offset compensator

LTE_UL_DemuxFrame (Uplink radio frame de-multiplexer)

Description: Uplink radio frame de-multiplexer with frequency offset compensatorDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE UL DemuxFrame Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW 5MHz, BW 10 MHz, BW 15 MHz, BW 20 MHz

BW 5 MHz Enumeration NO

OversamplingOption Ratio 1, Ratio 2, Ratio 4, Ratio 8: Ratio 1,Ratio 2, Ratio 4, Ratio 8

Ratio 2 Enumeration NO

PreDownsampling pre-downsampling to 1X symbol rate ornot: NO, YES

NO Enumeration NO

ReceiverDelay receiver delay ( One frame delay is fornon-HARQ; One subframe delay is forclosed-loop HARQ.: One frame delay(10ms), One subframe delay (1ms)

Onesubframedelay (1ms)

Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 DataIn data in complex NO

2 index propagation delay insamples

int NO

3 DeltaF frequency offset real float NO

Output Ports

Port Name Description Signal Type Optional

4 DataOut data out complex NO

Notes/Equations

This model is used to demultiplex LTE uplink frame, which includes pre-1.downsampling and compensating time and carrier frequency offsets.Each firing,2.

1 token is consumed at index and DeltaF respectively.NumberSamplesPerBlock tokens are consumed at DataIn.

If ReceiverDelay is selected as 0:One frame delay (10ms),NumberSamplesPerBlock = NumberSamplesPerFrame.If ReceiverDelay is selected as 1:One subframe delay (1ms),NumberSamplesPerBlock = NumberSamplesPerSubframe.

If PreDownsampling is set to YES, NumberSamplesPerBlock tokens are producedat DataOut;If PreDownsampling is set to NO, NumberSamplesPerBlock / 2OversamplingOption

tokens are produced at DataOut.wherein NumberSamplesPerSubframe is the number of samples (takeoversampling into consideration) in 1 subframe, andNumberSamplesPerSubframe = SamplingFreq * 2OversamplingOption * 0.001s;NumberSamplesPerFrame is the number of samples in 1 frame, andNumberSamplesPerFrame = 10 * NumberSamplesPerSubframe.where SamplingFreq is sampling frequency, which is denoted as Fs and

determined by Bandwidth as follows:

Page 206: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

205

Bandwidth Fs

1.4 MHz 1.92 MHz

3.0 MHz 3.84 MHz

5.0 MHz 7.68 MHz

10.0 MHz 15.36MHz

15.0 MHz 23.04MHz

20.0 MHz 30.72MHz

For the default parameter configurations, NumberSamplesPerBlock = 15360.Because of the transmission delay, a detected block usually falls into 2 consecutive3.received blocks, so the buffer length for DataIn is NumberSamplesPerBlock * 2. Thestart point of the detected block is determined by the token read from index. Onlyafter receiving the second input block, this model can output one actual block. So thismodel causes one block delay, wherein a block indicates a frame when ReceiverDelayis selected as 0:One frame delay (10ms) and a subframe when ReceiverDelay isselected as 1:One subframe delay (1ms), respectively.The DeltaF inputs the estimated frequency offset Δfi of each received block. The i-th4.

estimated frequency offset Δfi compensates for the phase in the current block only.

Assume x0, x1, ..., xN sequences are the input signals from DataIn, y0, y1, ..., yN are

the sequences whose phase caused by frequency offset are removed, where N is thenumber of samples within one block. Then:

where Δfi is frequency offset of the i-th received frame which is the input at DeltaF,

is the sample time interval in the system.See LTE_UL_MuxFrame (ltebasever).5.

For more information on the parameters, please refer to UL System Parameters (ltebasever).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access2.(UTRA),", V7.0.0, June 2006.

Page 207: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

206

LTE_UL_DemuxSCFDMASym PartCategories: C++ Code Generation (ltebasever), Multiplex (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_UL_DemuxSCFDMASym (ltebasever) Uplink SC-FDMA symbol Demultiplexer

LTE_UL_DemuxSCFDMASym (Uplink SC-FDMA symbolDemultiplexer)

Description: Uplink SC-FDMA symbol DemultiplexerDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE UL DemuxSCFDMASym Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations forTDD: Config 0, Config 1, Config 2,Config 3, Config 4, Config 5, Config 6

Config 0 Enumeration NO

SpecialSF_Config special subframe configuration forTDD: Config 0, Config 1, Config 2,Config 3, Config 4, Config 5, Config 6,Config 7, Config 8

Config 4 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz,BW 5 MHz, BW 10 MHz, BW 15 MHz,BW 20 MHz

BW 5 MHz Enumeration NO

CyclicPrefix type of cyclic prefix: Normal,Extended

Normal Enumeration NO

CellID_Sector the index of cell identity within thephysical-layer cell-identity group

0 Integer NO

CellID_Group the index of cell identity group 0 Integer NO

FrameNum frame number 0 Integer NO

FrameIncreased frame number increasing or not: NO,YES

NO Enumeration NO

RB_AllocType RB allocation type: StartRB +NumRBs, RB indices (1D), RB indices(2D)

StartRB +NumRBs

Enumeration NO

RB_Alloc the RB allocation for the UE, in theformats of [start RB, number of RBs]or [[SF0 start RB, SF0 number ofRBs]; . . .; [SF9 start RB, SF9number of RBs]]

[0, 25] Integerarray

NO

DL_CyclicPrefix type of cyclic prefix in downlink:Normal, Extended

Normal Enumeration NO

PUCCH_PUSCH PUCCH and PUSCH selection: PUSCH,PUCCH, both

PUSCH Enumeration NO

DFTSwap_Enable PUSCH DFT swap is enable: NO, YES NO Enumeration NO

PUSCH_HoppingEnable whether PUSCH frequency-hopping isenabled or not: NO, YES

NO Enumeration NO

PUSCH_HoppingMode PUSCH frequency hopping mode:interSubFrame,intraAndInterSubFrame

interSubFrame Enumeration NO

PUSCH_HoppingOffset the offset used for PUSCH frequencyhopping

0 Integer NO

PUSCH_Hopping_Nsb number of sub-bands for PUSCHfrequency hopping

1 Integer NO

PUSCH_HoppingBits information in hopping bits: 0 or 00,1 or 01, 10, 11

0 or 00 Enumeration NO

Page 208: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

207

PUCCH_Format PUCCH format: Format 1, Format 1a,Format 1b, Shortened 1, Shortened1a, Shortened 1b, Format 2, Format2a, Format 2b

Format 1 Enumeration NO

PUCCH_Delta_shift used to calculate PUCCH cyclic shiftAlfa

2 Integer NO

PUCCH_SF_Alloc which sub frames contain the PUCCH,valid when PUCCH_PUSCH is otherthan PUSCH

[2] Integerarray

NO

PUCCH_NRB2 number of RBs used for transmisstionPUCCH format 2/2a/2b

1 Integer NO

PUCCH_n1 resources used for transmisstionPUCCH format 1/1a/1b

11 Integer NO

PUCCH_n2 resources used for transmissionPUCCH format 2/2a/2b

11 Integer NO

PRACH_Enable whether or not to enable PRACH: NO,YES

YES Enumeration NO

PRACH_Config PRACH configuration index 0 Integer NO

PRACH_ResourceIndex the PRACH Resource Index. In FDD, itindicates the subframe number wherethe preamble starts; in TDD, itindicates the preamble mapping intime and frequency

[1] Integerarray

NO

PRACH_RBOffset PRACH frequency offset, the first RBavailable for PRACH

0 Integer NO

SRS_Enable sounding reference symbol is enable:NO, YES

NO Enumeration NO

SRS_BandwidthConfig the cell-specific SRS bandwidthconfiguration

7 Integer NO

SRS_SF_Config the cell-specific SRS subframeconfiguration

0 Integer NO

SRS_MaxUpPts whether enable the reconfiguration ofmaximum m_SRS_0 or not: NO, YES

NO Enumeration NO

SRS_Bandwidth the UE-specific SRS bandwidth 0 Integer NO

SRS_HoppingBandwidth the SRS hopping bandwidth 3 Integer NO

SRS_FreqPosition the SRS frequency domain position 0 Integer NO

SRS_ConfigIndex the UE-specific SRS configuration 0 Integer NO

SRS_TransmissionComb transmission comb 0 Integer NO

PUSCH_PwrOffset the power offset in dB for PUSCH 0 Float NO

PUSCH_RS_PwrOffset the power offset in dB for PUSCH RS 0 Float NO

PUCCH_PwrOffset the power offset in dB for PUCCH 0 Float NO

PUCCH_RS_PwrOffset the power offset in dB for PUCCH RS 0 Float NO

SRS_PwrOffset the power offset in dB for SRS 0 Float NO

SubframeIgnored number of subframes (or transportblocks) that are ignored at thebeginning due to system delay

0 Integer NO

DisplayPortRates whether the port rates and otheruseful information are displayed inSimulation Log window: NO, YES

NO Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 Input uplink SCFDMA symbols in oneframe

complex NO

Output Ports

Port Name Description Signal Type Optional

2 PUSCH_Sym uplink Shared Channel Symbol complex matrix NO

3 PUCCH_Sym uplink Control ChannelSymbol

complex matrix NO

4 PUSCH_RS uplink Shared Channel DMRS complex matrix NO

5 PUCCH_RS uplink Control Channel DMRS complex matrix NO

6 SRS uplink sounding RS complex matrix NO

7 RBOut valid RB output without RS complex matrix NO

Notes/Equations

This model is used to demultiplex UL frames into physical channels and physical1.signals. PUSCH, PUCCH, DMRS for PUSCH, DMRS for PUCCH and Sounding referencesignals are output.Each firing,2.

NumberREsPerSubframe tokens are consumed at port Input, whereNumberREsPerSubframe is the total number of REs in each subframe.NumberREsPerSubframe = NumOfTotalRBs * 12 (subcarriers per RB) *NumberOfSymbolsPerSubframe.1 matrix token is produced at port PUSCH_Sym, the size of the matrix token isequal to the number of REs allocated for PUSCH transmission in this subframe.

Page 209: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

208

If PUSCH is not transmitted in this subframe, the output matrix token is empty.1 matrix token is produced at port PUCCH_Sym, the size of the matrix token isequal to the number of REs allocated for PUCCH transmission in this subframe.If PUCCH is not transmitted in this subframe, the output matrix token is empty.1 matrix token is produced at port PUSCH_RS, the size of the matrix token isequal to the number of REs allocated for PUSCH DMRS transmission in thissubframe. If PUSCH is not transmitted in this subframe, the output matrix tokenis empty.1 matrix token is produced at port RS_PUCCH, the size of the matrix token isequal to the number of REs allocated for PUCCH DMRS transmission in thissubframe. If PUCCH is not transmitted in this subframe, the output matrix tokenis empty.1 matrix token is produced at port SRS, the size of the matrix token is equal tothe number of REs allocated for SRS transmission in this subframe. If SRS is nottransmitted in this subframe, the output matrix token is empty.1 matrix token is produced at port RBOut, the size of matrix token is equal tothe number of REs allocated for PUSCH and PUCCH transmission.For the default parameter configurations, NumberREsPerSubframe = 7200; thesize of matrix token output at Sym_PUSCH is 3600; the size of matrix tokenoutput at RS_PUSCH is 600; the matrix tokens output at PUCCH_Sym andPUCCH_RS are empty; the matrix token output at SRS is empty; the size ofmatrix token output at RBOut is 3600.

Port RBout output data symbols transmitted in each allocated RB for PUSCH and3.PUCCH. Reference signals are not output from this port.For the first SubframeIgnored subframes(firings), this model does nothing on the4.input but produces empty tokens at all output ports.It should be noted that the parameter DFTSwap_Enable should be set to NO5.according to the LTE specifications.See LTE_UL_MuxSCFDMASym (ltebasever).6.

For more information on the mapping of UL physical channels and signals, please refer toLTE_UL_MuxSCFDMASym (ltebasever).For more information on the System Parameters details please refer to UL System Parameters(ltebasever).For more information on the PUSCH Parameters details please refer to UL PUSCH Parameters(ltebasever).For more information on the PUCCH Parameters details please refer to UL PUCCH Parameters(ltebasever).For more information on the PRACH Parameters details please refer to UL PRACH Parameters(ltebasever).For more information on the SRS Parameters details please refer to UL SRS Parameters(ltebasever).For more information on the Power Parameters details please refer to UL Power Parameters(ltebasever).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access2.(UTRA),", V7.0.0, June 2006.

Page 210: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

209

LTE_UL_DemuxSlot PartCategories: C++ Code Generation (ltebasever), Multiplex (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_UL_DemuxSlot (ltebasever) Uplink slot de-multiplexer

LTE_UL_DemuxSlot (Uplink slot de-multiplexer)

Description: Uplink slot de-multiplexerDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE UL DemuxSlot Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW 5MHz, BW 10 MHz, BW 15 MHz, BW 20 MHz

BW 5MHz

Enumeration NO

OversamplingOption Ratio 1, Ratio 2, Ratio 4, Ratio 8: Ratio 1,Ratio 2, Ratio 4, Ratio 8

Ratio 2 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

HalfCarrierShift_Enable whether or not to enable 1/2 subcarriershifting: NO, YES

YES Enumeration NO

Sym_StartPos start position (without oversampling) to getthe OFDM symbol for FFT operation for longCP and short CP symbols respectively,compared to the start position of the OFDMbody after CP

[-3 -3] Integerarray

NO

Input Ports

Port Name Description Signal Type Optional

1 SlotData slot signal complex NO

Output Ports

Port Name Description Signal Type Optional

2 DemuxSlotData SC-FDMA datasymbol

complex NO

Notes/Equations

This model is used to demultiplex each slot into seven and six SC-FDMA symbols for1.normal cyclic prefix and extended cyclic prefix respectively, where the start of eachoutput SC-FDMA symbol is calculated from Sym_StartPos.Each firing,2.

NumberSamplesPerSlot tokens are consumed at SlotData , whereNumberSamplesPerSlot = SamplingFreq * 2OversamplingOption * 0.0005.SamplingFreq is sampling frequency, which is denoted as Fs and determined by

Bandwidth as follows:Bandwidth Fs

1.4 MHz 1.92 MHz

3.0 MHz 3.84 MHz

5.0 MHz 7.68 MHz

10.0 MHz 15.36MHz

15.0 MHz 23.04MHz

20.0 MHz 30.72MHz

NumberSymsPerSlot × FFTSize tokens are produced at DemuxSlotData, whereNumberSymsPerSlot is the number of SC-FDMA symbols in each slot, FFTSize isthe FFT length.For the default parameter configurations, NumberSymsPerSlot = 7, FFTSize =1024, hence, each firing, 7680 tokens are consumed at SlotData, 7168 tokensare produced at DemuxSlotData.

Page 211: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

210

The start of each output SC-FDMA symbol is illustrated in the UL demux Slot3.structure below:

|Sym_StartPos is an array of two elements, indicating the start position (without4.oversampling) of the first output SC-FDMA symbol and other output SC-FDMAsymbols in each slot respectively. Here the "start position" is compared to the firstsample of the input SC-FDMA symbol body excluding the cyclic prefix. Hence thevalue is negative indicating the start position locates in the CP duration of the inputsymbol as shown in the figure.It would be better set Sym_StartPos to a certain value so that the “Output” in the5.above figure is a whole SC-FDMA symbol which is not affected by the spectrumshaping in the transmitter. Hence, the value of Sym_StartPos depends on the CPlength (samples) and the spectrum shaping employed in LTE_UL_Src (ltebasever).The negative half carrier shift is performed if HalfCarrierShift_Enable = YES.6.It should be noted that the parameter HalfCarrierShift_Enable should be set to YES7.according to the LTE specifications.See LTE_UL_MuxSlot (ltebasever).8.

For more information on Bandwidth, CyclicPrefix, OversamplingOption and HalfCarrierShift_Enable, pleaserefer to UL System Parameters (ltebasever).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access2.(UTRA),", V7.0.0, June 2006.

Page 212: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

211

LTE_UL_MuxFrame PartCategories: C++ Code Generation (ltebasever), Multiplex (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_UL_MuxFrame (ltebasever) Uplink radio framemultiplexer

LTE_UL_MuxFrame (Uplink radio frame multiplexer)

Description: Uplink radio frame multiplexerDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE UL MuxFrame Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW 5MHz, BW 10 MHz, BW 15 MHz, BW 20 MHz

BW 5MHz

Enumeration NO

OversamplingOption Ratio 1, Ratio 2, Ratio 4, Ratio 8: Ratio 1,Ratio 2, Ratio 4, Ratio 8

Ratio 2 Enumeration NO

FrameNum frame number 0 Integer NO

FrameIncreased frame number increasing or not: NO, YES NO Enumeration NO

PRACH_Enable whether or not to enable PRACH: NO, YES YES Enumeration NO

PRACH_Config PRACH configuration index 0 Integer NO

PRACH_ResourceIndex the PRACH Resource Index. In FDD, itindicates the subframe number where thepreamble starts; in TDD, it indicates thepreamble mapping in time and frequency

[1] Integerarray

NO

DisplayPortRates whether the port rates and other usefulinformation are displayed in Simulation Logwindow: NO, YES

NO Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 DataIn data in complex NO

2 RACHIn RACH in complex NO

Output Ports

Port Name Description Signal Type Optional

3 DataOut data out complex NO

Notes/Equations

This model is used to multiplex slots and PRACH signal into one uplink radio frame for1.both FDD and TDD mode.Each firing,2.

NumberSamplesPerSubframe tokens are consumed at DataIn.NumberSamplesPerRACHPreamble tokens are consumed at RACHIn.NumberSamplesPerSubframe tokens are produced at DataOut.NumberSamplesPerSubframe = SamplingFreq * 2OversamplingOption * 0.001s,wherein SamplingFreq is sampling frequency, which is denoted as Fs and

determined by Bandwidth as follows:

Page 213: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

212

Bandwidth Fs

1.4 MHz 1.92 MHz

3.0 MHz 3.84 MHz

5.0 MHz 7.68 MHz

10.0 MHz 15.36MHz

15.0 MHz 23.04MHz

20.0 MHz 30.72MHz

NumberSamplesPerRACHPreamble = SamplingFreq * 2OversamplingOption *PreambleLength, wherein PreambleLength is determined by FrameMode andPRACH_Config, for more information, please refer to LTE_RACH (ltebasever).For the default parameter configuraions, NumberSamplesPerSubframe = 15360,NumberSamplesPerRACHPreamble = 15360.

It should be noted that even if PRACH is not transmitted in this subframe, this model3.would also read NumberSamplesPerRACHPreamble tokens from RACHIn each firing.If NumberSamplesPerRACHPreamble is larger than NumberSamplesPerSubframe, (NumberSamplesPerRACHPreamble - NumberSamplesPerSubframe) samples arestored and would be added to the samples in next subframe.See LTE_UL_DemuxFrame (ltebasever) and LTE_RACH (ltebasever).4.

For more information on the parameters, please refer to UL System Parameters (ltebasever) and ULPRACH Parameters (ltebasever).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access2.(UTRA),", V7.0.0, June 2006.

Page 214: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

213

LTE_UL_MuxSCFDMASym PartCategories: C++ Code Generation (ltebasever), Multiplex (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_UL_MuxSCFDMASym (ltebasever) Uplink SC-FDMA symbolmultiplexer

LTE_UL_MuxSCFDMASym (Uplink SC-FDMA symbolmultiplexer)

Description: Uplink SC-FDMA symbol multiplexerDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE UL MuxSCFDMASym Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations forTDD: Config 0, Config 1, Config 2,Config 3, Config 4, Config 5, Config 6

Config 0 Enumeration NO

SpecialSF_Config special subframe configuration forTDD: Config 0, Config 1, Config 2,Config 3, Config 4, Config 5, Config 6,Config 7, Config 8

Config 4 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz,BW 5 MHz, BW 10 MHz, BW 15 MHz,BW 20 MHz

BW 5 MHz Enumeration NO

CyclicPrefix type of cyclic prefix: Normal,Extended

Normal Enumeration NO

CellID_Sector the index of cell identity within thephysical-layer cell-identity group

0 Integer NO

CellID_Group the index of cell identity group 0 Integer NO

FrameNum frame number 0 Integer NO

FrameIncreased frame number increasing or not: NO,YES

NO Enumeration NO

RB_AllocType RB allocation type: StartRB +NumRBs, RB indices (1D), RB indices(2D)

StartRB +NumRBs

Enumeration NO

RB_Alloc the RB allocation for the UE, in theformats of [start RB, number of RBs]or [[SF0 start RB, SF0 number ofRBs]; . . .; [SF9 start RB, SF9number of RBs]]

[0, 25] Integerarray

NO

DL_CyclicPrefix type of cyclic prefix in downlink:Normal, Extended

Normal Enumeration NO

Printf_RB_SF_Alloc print the RB_SF allocation to file: NO,YES

NO Enumeration NO

PUCCH_PUSCH PUCCH and PUSCH selection: PUSCH,PUCCH, both

PUSCH Enumeration NO

DFTSwap_Enable PUSCH DFT swap is enable: NO, YES NO Enumeration NO

PUSCH_HoppingEnable whether PUSCH frequency-hopping isenabled or not: NO, YES

NO Enumeration NO

PUSCH_HoppingMode PUSCH frequency hopping mode:interSubFrame,intraAndInterSubFrame

interSubFrame Enumeration NO

PUSCH_HoppingOffset the offset used for PUSCH frequencyhopping

0 Integer NO

PUSCH_Hopping_Nsb number of sub-bands for PUSCHfrequency hopping

1 Integer NO

PUSCH_HoppingBits information in hopping bits: 0 or 00, 0 or 00 Enumeration NO

Page 215: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

214

1 or 01, 10, 11

PUCCH_Format PUCCH format: Format 1, Format 1a,Format 1b, Shortened 1, Shortened1a, Shortened 1b, Format 2, Format2a, Format 2b

Format 1 Enumeration NO

PUCCH_Delta_shift used to calculate PUCCH cyclic shiftAlfa

2 Integer NO

PUCCH_SF_Alloc which sub frames contain the PUCCH,valid when PUCCH_PUSCH is otherthan PUSCH

[2] Integerarray

NO

PUCCH_NRB2 number of RBs used for transmisstionPUCCH format 2/2a/2b

1 Integer NO

PUCCH_n1 resources used for transmisstionPUCCH format 1/1a/1b

11 Integer NO

PUCCH_n2 resources used for transmissionPUCCH format 2/2a/2b

11 Integer NO

PRACH_Enable whether or not to enable PRACH: NO,YES

YES Enumeration NO

PRACH_Config PRACH configuration index 0 Integer NO

PRACH_ResourceIndex the PRACH Resource Index. In FDD, itindicates the subframe number wherethe preamble starts; in TDD, itindicates the preamble mapping intime and frequency

[1] Integerarray

NO

PRACH_RBOffset PRACH frequency offset, the first RBavailable for PRACH

0 Integer NO

SRS_Enable sounding reference symbol is enable:NO, YES

NO Enumeration NO

SRS_BandwidthConfig the cell-specific SRS bandwidthconfiguration

7 Integer NO

SRS_SF_Config the cell-specific SRS subframeconfiguration

0 Integer NO

SRS_MaxUpPts whether enable the reconfiguration ofmaximum m_SRS_0 or not: NO, YES

NO Enumeration NO

SRS_Bandwidth the UE-specific SRS bandwidth 0 Integer NO

SRS_HoppingBandwidth the SRS hopping bandwidth 3 Integer NO

SRS_FreqPosition the SRS frequency domain position 0 Integer NO

SRS_ConfigIndex the UE-specific SRS configuration 0 Integer NO

SRS_TransmissionComb transmission comb 0 Integer NO

PUSCH_PwrOffset the power offset in dB for PUSCH 0 Float NO

PUSCH_RS_PwrOffset the power offset in dB for PUSCH RS 0 Float NO

PUCCH_PwrOffset the power offset in dB for PUCCH 0 Float NO

PUCCH_RS_PwrOffset the power offset in dB for PUCCH RS 0 Float NO

SRS_PwrOffset the power offset in dB for SRS 0 Float NO

DisplayPortRates whether the port rates and otheruseful information are displayed inSimulation Log window: NO, YES

NO Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 Sym_PUCCH uplink Control Channel Symbol complex matrix NO

2 RS_PUCCH uplink PUCCH Reference Signal complex matrix NO

3 Sym_PUSCH uplink Shared Channel Symbol complex matrix NO

4 RS_PUSCH uplink PUSCH Reference Signal complex matrix NO

5 SRS uplink Sounding Reference Signal complex matrix NO

Output Ports

Port Name Description Signal Type Optional

6 Output uplink SCFDMA symbols in one frame complex NO

7 Out uplink SCFDMA symbols without scale factor and gain in oneframe

complex NO

8 RBOut valid RB output without RS complexmatrix

NO

9 Channel_Type Output the channel and RS type for each output data int NO

Notes/Equations

This model is used to multiplex uplink SC-FDMA symbols of one radio frame. Data for1.PUSCH, PUCCH and reference signals are mapped onto the allocated physicalresources.Each firing,2.

1 matrix token is consumed at port Sym_PUCCH, the size of the matrix tokenshould be equal to the number of REs allocated for PUCCH transmission in thissubframe. If PUCCH is not transmitted in this subframe, the input matrix tokenis empty.1 matrix token is consumed at port RS_PUCCH, the size of the matrix token

Page 216: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

215

should be equal to the number of REs allocated for PUCCH DMRS transmission inthis subframe. If PUCCH is not transmitted in this subframe, the input matrixtoken is empty.1 matrix token is consumed at port Sym_PUSCH, the size of the matrix tokenshould be equal to the number of REs allocated for PUSCH transmission in thissubframe. If PUSCH is not transmitted in this subframe, the input matrix tokenis empty.1 matrix token is consumed at port RS_PUSCH, the size of the matrix tokenshould be equal to the number of REs allocated for PUSCH DMRS transmission inthis subframe. If PUSCH is not transmitted in this subframe, the input matrixtoken is empty.1 matrix token is consumed at port SRS, the size of the matrix token should beequal to the number of REs allocated for SRS transmission in this subframe. IfSRS is not transmitted in this subframe, the input matrix token is empty.NumberREsPerSubframe tokens are produced at port Output, Out andChannelType, respectively, where NumberREsPerSubframe is the total numberof REs in each subframe. NumberREsPerSubframe = NumOfTotalRBs * 12(subcarriers per RB) * NumberOfSymbolsPerSubframe.1 matrix token is produced at port RBOut, the size of matrix token is equal tothe number of REs allocated for PUSCH and PUCCH transmission.For the default parameter configurations, the matrix token read fromSym_PUCCH and RS_PUCCH is empty; the size of matrix token read fromSym_PUSCH is 3600; the size of matrix token read from RS_PUSCH is 600; thematrix token read from SRS is empty; NumberREsPerSubframe = 7200; the sizeof matrix token output at RBOut is 3600.

The transmitted signal in each slot is described by a resource grid of NRBULNsc

RB3.

subcarriers and NsymbUL SC-FDMA symbols. The Uplink Resource Grid is illustrated

below:

The number of SC-FDMA symbols in a slot depends on the cyclic prefix length4.configured by higher layers and is illustrated in the Resource block parameterstable below:Configuration Nsc

RB NsymbUL

Normal cyclic prefix 12 7

Extended cyclic prefix 12 6

The RBs allocated for PUSCH are decided by the parameters "RB_AllocType" and5."RB_Alloc", for more information, please refer to Resource Block Allocation(ltebasever).The demodulation reference signal for PUSCH is mapped to resource elements (k,l) ,6.with l = 3 for normal cyclic prefix and l = 2 for extended cyclic prefix, in thesubframe shall be in increasing order of first k, then the slot number.If PUCCH_PUSCH is PUCCH or both, PUCCH would be transmitted. The physical7.resources used for PUCCH depends on two parameters, PUCCH_NRB2 (NRB

(2)) and N

CS(1). NCS

(1) is always set to '0' in current EESof implementation which means no

mixed resource block for of formats 1/1a/1b and 2/2a/2b is present.The subframes in which PUCCH are transmitted is determined by PUCCH_SF_Alloc,8.which is an Array Parameter (ltebasever). The Demodulation reference signal

Page 217: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

216

location for different PUCCH formats is illustrated in the table below:PUCCH format Set of Values for l

Normal cyclic prefixSet of Values for lExtended cyclic prefix

1, 1a, 1b 2, 3, 4 2, 3

2 1, 5 3

2a, 2b 1, 5 N/A

If SRS transmission is enabled (SRS_Enable = YES), SRS would be transmitted on9.the time and frequency resources determined by SRS_BandwidthConfig,SRS_SF_Config, SRS_MaxUpPts, SRS_Bandwidth, SRS_HoppingBandwidth,SRS_FreqPosition, SRS_ConfigIndex and SRS_TransmissionComb.If PRACH transmission is enabled (PRACH_Enable = YES), the time and frequency10.resources for PRACH transmission determined by PRACH_Config,PRACH_ResourceIndex and PRACH_RBOffset are reserved. Allocating those RBs forother physical channels and signals are not allowed.The module will output error message if there is any RB allocation conflict among11.PUSCH, PUCCH and PRACH.The following two figures illustrate the resource allocation for UL physical channels12.and physical signals in FDD and TDD respectively.

An example of 2-D RB allocation in FDD (5MHz) is shown in the tableand figure below:Parameters Value

FrameMode FDD

Bandwidth 5 MHz

PUCCH_PUSCH both

RB_AllocType StartRB + NumRBs

RB_Alloc {12,5},{8,15},{3,10},{4,4},{10,1},{23,2},{10,10},{0,25},{3,3},{4,8}

PUCCH_Format Format 2a

PUCCH_Delta_shift 1

PUCCH_SF_Alloc 3

PUCCH_NRB2 0

PUCCH_n1 0

PUCCH_n2 0

PRACH_Enable YES

PRACH_Config 1

PRACH_Mapping 4

SRS_Enable YES

SRS_BandwidthConfig 7

SRS_SF_Config 3

SRS_Bandwidth 0

SRS_HoppingBandwidth 3

SRS_FreqPosition 0

SRS_ConfigIndex 0

SRS_TransmissionComb 0

Another example of 2-D RB Allocation in TDD (5MHz) is shown in thetable and figure below:

Page 218: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

217

Parameters Value

FrameMode TDD

TDD_Config Config 0

SpecialSF_Config Config 4

CyclicPrefix Normal

DL_CyclicPrefix Normal

Bandwidth 5 MHz

PUCCH_PUSCH both

RB_AllocType StartRB + NumRBs

RB_Alloc {8,10}

PUCCH_Format Format Shortened 1a

PUCCH_Delta_shift 1

PUCCH_SF_Alloc 2

PUCCH_NRB2 0

PUCCH_n1 0

PUCCH_n2 0

PRACH_Enable YES

PRACH_Config 29

PRACH_ResourceIndex {0, 1}

SRS_Enable YES

SRS_BandwidthConfig 6

SRS_SF_Config 4

SRS_MaxUpPts YES

SRS_Bandwidth 0

SRS_HoppingBandwidth 3

SRS_FreqPosition 0

SRS_ConfigIndex 0

SRS_TransmissionComb 0

The meaning of the output at port Channel_Type is as follows:13.output integer Meaning

0 nothing

1 PUCCH

2 DMRS for PUCCH

3 PUSCH

4 DMRS for PUSCH

5 SRS

6 PRACH

DL_CyclicPrefix is used to determine the length of UpPTS in TDD mode in company14.with SpecialSF_Config and CyclicPrefix.FrameNum indicates the system frame number of the first transmitted frame.15.FrameIncreased controls whether the FrameNum is increased during simulation.These two parameters affects the PRACH and SRS transmission which may vary fromframes.It should be noted that the parameter DFTSwap_Enable should be set to NO16.according to the LTE specifications.See LTE_UL_DemuxSCFDMASym (ltebasever).17.

Page 219: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

218

For more information on the System Parameters details please refer to UL System Parameters(ltebasever).For more information on the PUSCH Parameters details please refer to UL PUSCH Parameters(ltebasever).For more information on the PUCCH Parameters details please refer to UL PUCCH Parameters(ltebasever).For more information on the PRACH Parameters details please refer to UL PRACH Parameters(ltebasever).For more information on the SRS Parameters details please refer to UL SRS Parameters(ltebasever).For more information on the Power Parameters details please refer to UL Power Parameters(ltebasever).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access2.(UTRA),", V7.0.0, June 2006.

Page 220: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

219

LTE_UL_MuxSlot PartCategories: C++ Code Generation (ltebasever), Multiplex (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_UL_MuxSlot (ltebasever) Uplink slotmultiplexer

LTE_UL_MuxSlot (Uplink slot multiplexer)

Description: Uplink slot multiplexerDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE UL MuxSlot Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW5 MHz, BW 10 MHz, BW 15 MHz, BW 20MHz

BW 5MHz

Enumeration NO

OversamplingOption Ratio 1, Ratio 2, Ratio 4, Ratio 8: Ratio 1,Ratio 2, Ratio 4, Ratio 8

Ratio 2 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

HalfCarrierShift_Enable whether or not to enable 1/2 subcarriershifting: NO, YES

YES Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 SCFDMASig input SC-FDMA symbol complex NO

Output Ports

Port Name Description Signal Type Optional

2 FrameData uplink slotsignal

complex NO

Notes/Equations

This model is used to multiplex reference signals (RS symbol) and data SC-FDMA1.symbols into uplink slots by inserting cyclic prefix. Half carrier shift can also beperformed in this model if enabled.Each firing,2.

NumberSymsPerSlot * FFTSize tokens are consumed at SCFDMASig, whereNumberSymsPerSlot is the number of SC-FDMA symbols in each slot, FFTSize isthe FFT length.NumberSamplesPerSlot tokens are produced at FrameData, whereNumberSamplesPerSlot = SamplingFreq * 2OversamplingOption * 0.0005.SamplingFreq is sampling frequency, which is denoted as Fs and determined by

Bandwidth as follows:Bandwidth Fs

1.4 MHz 1.92 MHz

3.0 MHz 3.84 MHz

5.0 MHz 7.68 MHz

10.0 MHz 15.36MHz

15.0 MHz 23.04MHz

20.0 MHz 30.72MHz

For the default parameter configurations, NumberSymsPerSlot = 7, FFTSize =1024, hence, each firing, 7168 tokens are consumed at SCFDMASig, 7680tokens are produced at FrameData.

The transmitted signal in each slot is described by a resource grid of NRBULNsc

RB3.

subcarriers and NsymbUL SC-FDMA symbols. The quantity NRB

UL depends on the

Page 221: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

220

uplink transmission bandwidth configured in the cell and shall fulfilNRB

min,UL ≤ NRBUL ≤ NRB

max,UL

Where NRBmin,UL = 6 and NRB

max,UL = 110 is the smallest and largest uplink

bandwidth, respectively.The set of allowed values for NUL

RB is given by the Transmission bandwidth4.configuration NRB in E-UTRA channel bandwidths table shown below:

Channel BandwidthBW~Channel~[MHz]

1.4 3 5 10 15 20

Transmission bandwidthconfiguration NRB

6 15 25 50 75 100

The number of SC-FDMA symbols in a slot depends on the cyclic prefix length5.configured by higher layers and is given by the Resource block parameters tableshown below:Configuration Nsc

RB NsymbUL

Normal cyclic prefix 12 7

Extended cyclic prefix 12 6

The following two tables specifies the cyclic prefix length NCP,l and FFT size for6.

normal cyclic prefix and extended cyclic prefix respectively.SC-FDMA parameters for normal CPChannel Bandwidth(MHz)

FFT Size Cyclic prefix lengthfor symbols 0in FFT samples

Cyclic prefix lengthfor symbols 1-6in FFT samples

1.4 128 10 9

3 256 20 18

5 512 40 36

10 1024 80 72

15 1536 120 108

20 2048 160 144

SC-FDMA parameters for extended CP

Channel Bandwidth(MHz)

FFT Size Cyclic prefix lengthin FFT samples

1.4 128 32

3 256 64

5 512 128

10 1024 256

15 1536 384

20 2048 512

The half carrier shift is referred to the item 1/2 in the following equation for SC-FDMA7.baseband signal generation. The time-continuous signal sl(t) in SC-FDMA symbol l in

an uplink slot is defined by

for 0 ≤ t ≤ (NCP,l _ N) × Ts where , N = 2048, Δ f = 15kHz and a

k,l is the content of resource element (k, l).

The SC-FDMA symbols in a slot shall be transmitted in increasing order of l, starting8.with l = 0, where SC-FDMA symbol l > 0 starts at time ∑l'=0

l-1(NCP,l' + N)Ts within

the slot.It should be noted that the parameter HalfCarrierShift_Enable should be set to YES9.according to the LTE specifications.See LTE_UL_DemuxSlot (ltebasever).10.

For more information on the parameters, please refer to UL System Parameters (ltebasever).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access2.(UTRA),", V7.0.0, June 2006.

Page 222: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

221

LTE_DL_MIMO_2Ant_Rcv Part Downlink baseband MIMO receiver

Categories: Receiver (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model

LTE_DL_MIMO_2Ant_Rcv (ltebasever)

LTE_DL_MIMO_2Ant_Rcv

Description: Downlink baseband MIMO receiverAssociated Parts: LTE DL MIMO 2Ant Rcv Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

ShowSystemParameters show systemparameters for LTEdownlink signals:NO, YES

YES Enumeration NO

FrameMode frame mode: FDD,TDD

FDD Enumeration NO

TDD_Config downlink anduplink allocationsfor TDD: Config 0,Config 1, Config 2,Config 3, Config 4,Config 5, Config 6

Config 0 Enumeration NO

SpecialSF_Config downlink anduplink allocationsfor TDD: Config 0,Config 1, Config 2,Config 3, Config 4,Config 5, Config 6,Config 7, Config 8

Config 0 Enumeration NO

Bandwidth bandwidth: BW1.4 MHz, BW 3MHz, BW 5 MHz,BW 10 MHz, BW15 MHz, BW 20MHz

BW 5 MHz Enumeration NO

NumTxAnts number of TxAntennas: Tx1,Tx2, Tx4

Tx2 Enumeration NO

OversamplingOption oversamplingoption: Ratio 1,Ratio 2, Ratio 4,Ratio 8

Ratio 2 Enumeration NO

CyclicPrefix type of cyclicprefix: Normal,Extended

Normal Enumeration NO

Page 223: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

222

CellID_Sector the index of cellidentity group

0 Integer NO

CellID_Group the index of cellidentity within thephysical-layer cell-identity group

0 Integer NO

RB_MappingType the mapping typeof VRBs to PRBs:Localized,Distributed

Localized Enumeration NO

SS_PerTxAnt whethersynchronizationsignals (P-SS andS-SS) aretransmitted oneach transmitantenna: NO, YES

NO Enumeration NO

ShowMIMO_Parameters show MIMO-related parametersfor all six Ues: NO,YES

YES Enumeration NO

UEs_MIMO_Mode MIMO Mode foreach UE, 1 for TD,0 for SM

[0,0,0,0,0,0] Integerarray

NO

UEs_CDD_Mode CDD Mode foreach UE, 1 forZero-Delay, 0 forLarge-Delay

[0,0,0,0,0,0] Integerarray

NO

UEs_CdBlk_Index codebook index forprecoding for eachUE

[0,0,0,0,0,0] Integerarray

NO

UEs_NumOfCWs number of codewords for each UE

[1,1,1,1,1,1] Integerarray

NO

UEs_NumOfLayers number of layersfor each UE

[1,1,1,1,1,1] Integerarray

NO

ShowUE1_Parameters show parametersfor coded UE1:NO, YES

YES Enumeration NO

UE1_HARQ_Enable Whether HARQclosed-looptransmission isenable for UE1:NO, YES

YES Enumeration NO

UE1_NumHARQ Number of HARQprocesses for UE1

8 Integer NO

UE1_MaxHARQTrans Maximum numberof HARQtransmission pereach HARQprocess for UE1

4 Integer NO

UE1_CL_Precoding_Enable whether closed-loop MIMOprecoding for UE1is enabled: NO,YES

NO Enumeration NO

UE1_PMI_Granularity closed-loop PMIreportinggranularity in unitsof resource blocks(RBs) for UE1

25 Integer NO

UE1_PMI_Delay closed-loop PMIreporting delay inunits of sub-frames (1ms) forUE1

6 Integer NO

UE1_Config the configurationmode of input datafor UE 1.: MCSindex, Transportblock size, Coderate

Transport block size Enumeration NO

UE1_Payload the input payloadfor UE 1, themeaning of theinput is defined inUE1_Config

[2555,2555,2555,2555,2555,2555,2555,2555,2555,2555] Floatingpoint array

NO

UE1_MappingType the modulationorders for UE 1 ineach subframe,valid whenUE1_Payload isnot set to MCSindex. (0:QPSK,1:16QAM,

[0,0,0,0,0,0,0,0,0,0] Integerarray

NO

Page 224: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

223

2:64QAM)

UE1_RV_Sequence RedundancyVersion Sequencefor HARQtransmission forUE 1

[0, 1, 2, 3] Integerarray

NO

UE1_n_RNTI Radio networktemporaryidentifier for UE 1

1 Integer NO

UE1_Category defines UE1capability, used toget the totalnumber of softchannel bits forderate-matching indownlink.:Category 1,Category 2,Category 3,Category 4,Category 5

Category 1 Enumeration NO

RB_AllocType RB allocation type:StartRB +NumRBs, RBindices (1D), RBindices (2D)

StartRB + NumRBs Enumeration NO

UE1_RB_Alloc the RB allocationfor UE 1, in theformats of [startRB, number ofRBs] or [SF0 startRB, SF0 number ofRBs; . . . ; SF9start RB, SF9number of RBs]

[0,25] Integerarray

NO

ShowOtherUEs_Parameters show parametersfor other uncodedUes: NO, YES

YES Enumeration NO

OtherUEs_MappingType the modulationorders for otherUEs except UE 1 inall subframes.(0:QPSK,1:16QAM,2:64QAM)

[0,0,0,0,0] Integerarray

NO

UE2_RB_Alloc the RB allocationfor UE 2, in theformats of [startRB, number ofRBs] or [SF0 startRB, SF0 number ofRBs; . . . ; SF9start RB, SF9number of RBs]

[0,0] Integerarray

NO

UE3_RB_Alloc the RB allocationfor UE 3, in theformats of [startRB, number ofRBs] or [SF0 startRB, SF0 number ofRBs; . . . ; SF9start RB, SF9number of RBs]

[0,0] Integerarray

NO

UE4_RB_Alloc the RB allocationfor UE 4, in theformats of [startRB, number ofRBs] or [SF0 startRB, SF0 number ofRBs; . . . ; SF9start RB, SF9number of RBs]

[0,0] Integerarray

NO

UE5_RB_Alloc the RB allocationfor UE 5, in theformats of [startRB, number ofRBs] or [SF0 startRB, SF0 number ofRBs; . . . ; SF9start RB, SF9number of RBs]

[0,0] Integerarray

NO

UE6_RB_Alloc the RB allocationfor UE 6, in theformats of [startRB, number ofRBs] or [SF0 startRB, SF0 number of

[0,0] Integerarray

NO

Page 225: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

224

RBs; . . . ; SF9start RB, SF9number of RBs]

ShowControlChannelParameters show parametersfor controlchannels: NO, YES

YES Enumeration NO

PDCCH_SymsPerSF number of OFDMsymbols of PDCCHfor each subframe

[2,2,2,2,2,2,2,2,2,2] Integerarray

NO

PHICH_Duration type of PHICHduration :Normal_Duration,Extended_Duration

Normal_Duration Enumeration NO

PHICH_Ng type of PHICHduration : Ng 1/6,Ng 1/2, Ng 1, Ng 2

Ng 1/6 Enumeration NO

ShowPowerParameters show power-relatedparameters: NO,YES

YES Enumeration NO

PCFICH_Rb PCFICH-to-RSEPRE ratio in dB insymbols with RS

0 Float NO

PHICH_Ra PHICH-to-RS EPREratio in dB insymbols with RS

0 Float NO

PHICH_Rb PHICH-to-RS EPREratio in dB insymbols withoutRS

0 Float NO

PBCH_Ra PBCH-to-RS EPREratio in dB insymbols with RS

0 Float NO

PBCH_Rb PBCH-to-RS EPREratio in dB insymbols withoutRS

0 Float NO

PDCCH_Ra PDCCH-to-RSEPRE ratio in dB insymbols with RS

0 Float NO

PDCCH_Rb PDCCH-to-RSEPRE ratio in dB insymbols withoutRS

0 Float NO

PDSCH_PowerRatio PDSCH CellSpecific Ratio:p_B/p_A = 1, P_B= 0, P_B = 1, P_B= 2, P_B = 3

p_B/p_A = 1 Enumeration NO

UEs_Pa UE specific powerparameter foreach UE

[0,0,0,0,0,0] Floatingpoint array

NO

PSS_Ra PSS-to-RS EPREratio in dB insymbols withoutRS

0 Float NO

SSS_Ra SSS-to-RS EPREratio in dB insymbols withoutRS

0 Float NO

ShowRxAlgorithmParameters show Parametersfor LTE downlinkreceiver algorithm:NO, YES

YES Enumeration NO

PreDownsampling pre-downsamplingto 1x symbol rate?: NO, YES

NO Enumeration NO

ReceiverDelay receiver delay (One frame delay isfor non-HARQ;One subframedelay is for closed-loop HARQ.: Oneframe delay(10ms), Onesubframe delay(1ms)

One subframe delay (1ms) Enumeration NO

SyncMode synchronization forevery port or onesynchronization forall ports:SyncPerPort,AverageSync

AverageSync Enumeration NO

Page 226: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

225

SearchType start a new timingand frequencesynchronizationsearch for everyframe or not:Search everyframe,Search+Track

Search+Track Enumeration NO

SearchRange timing andfrequencesynchronizationsearching rangefor the first frame

0.003 s Float NO

TrackRange timing andfrequencesynchronizationtracking range forthe frames exceptthe first frame,valid whenSearchType is setto Search+Track

0 s Float NO

FreqSync frequencyestimation rangeselect: non, lessthan 100Hz, lessthan 15kHz, lessthan 45kHz

less than 15kHz Enumeration NO

ChEstimatorMode mode ofinterpolationalgorithm inchannel estimator:Linear, MMSE_2D,For EVM

Linear Enumeration NO

MMSE_RBWinLen number of RBs foreach MMSE-2Dinterpolation

3 Integer NO

SNR SNR in dB. (usedby 2D-MMSEchannel estimatorin PDSCH)

15 Float NO

Tmax the maximumdelay of multi-pathchannel. (used by2D-MMSE channelestimator inPDSCH)

0 s Float NO

Fmax the maximumdoppler frequency.(used by 2D-MMSEchannel estimatorin PDSCH)

100 Hz Float NO

Sym_StartPos start position(withoutoversampling) toget the OFDMsymbol for FFToperation for longCP and short CPsymbolsrespectively,compared to thestart position ofthe OFDM bodyafter CP

[-3, -3] Integerarray

NO

DemapperType symboldemodulationtype: Hard, Soft,CSI

Soft Enumeration NO

DemapperMaxLevel the maximumlevel for softdemapping outputwhenDemapperType isSoft or CSI

1 Float NO

MIMO_Decoder MIMO decodermode for spatialmultiplexing forUE1: ZF, MMSE

MMSE Enumeration NO

TC_Iteration Turbo decoderiteration number

4 Integer NO

Input Ports

Page 227: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

226

Port Name Description Signal Type Optional

1 Ant1_TD Input of received IQ data for Rx Antenna1 complex NO

2 Ant2_TD Input of received IQ data for Rx Antenna2 complex NO

Output Ports

Port Name Description Signal Type Optional

0 UE1_PMI Output of UE1 PMI int matrix NO

3 UE1_RawBits Output of UE1 information (raw) bits (non-Matrix-based) for at most 2 codewords

multiple int NO

4 UE1_ChannelBits Output of UE1 channel bits (non-Matrix-based) for atmost 2 codewords

multiple int NO

5 UE1_ModSymbols Output of UE1 Matrix-based (subframe-based)modulation symbols for at most 2 codewords

multiplecomplex matrix

NO

6 UE2_ModSymbols Output of UE2 Matrix-based (subframe-based)modulation symbols for at most 2 codewords

multiplecomplex matrix

NO

7 UE3_ModSymbols Output of UE3 Matrix-based (subframe-based)modulation symbols for at most 2 codewords

multiplecomplex matrix

NO

8 UE4_ModSymbols Output of UE4 Matrix-based (subframe-based)modulation symbols for at most 2 codewords

multiplecomplex matrix

NO

9 UE5_ModSymbols Output of UE5 Matrix-based (subframe-based)modulation symbols for at most 2 codewords

multiplecomplex matrix

NO

10 UE6_ModSymbols Output of UE6 Matrix-based (subframe-based)modulation symbols for at most 2 codewords

multiplecomplex matrix

NO

11 PDCCH_ModSymbols Output of PDCCH Matrix-based (subframe-based)modulation symbols

multiplecomplex matrix

NO

12 PHICH_ModSymbols Output of PHICH Matrix-based (subframe-based)modulation symbols

multiplecomplex matrix

NO

13 PCFICH_ModSymbols Output of PCFICH Matrix-based (subframe-based)modulation symbols

multiplecomplex matrix

NO

14 PBCH_ModSymbols Output of PBCH Matrix-based (subframe-based)modulation symbols

multiplecomplex matrix

NO

15 SSS_ModSymbols Output of SSS Matrix-based (subframe-based)modulation symbols

multiplecomplex matrix

NO

16 PSS_ModSymbols Output of PSS Matrix-based (subframe-based)modulation symbols

multiplecomplex matrix

NO

17 DataOut Output of demodulated frequency data for all 2 RXAntennas

multiplecomplex

NO

18 UE1_HARQ_Bits Output of UE1 HARQ ACK/NACK bits for at most 2codewords

multiple int NO

19 UE1_TBS Output of UE1 transparent block size for eachsubframe for at most 2 codewords

multiple int NO

Parameters Details

For System Parameters details please refer to DL System Parameters (ltebasever).SS_PerTxAnt: whether the P-SS/S-SS are transmitted on the first antenna port or onall the transmit antenna ports.For UE1 Parameters details details refer to DL UE1 Parameters (ltebasever).For OtherUEs Parameters details please refer to DL OtherUEs Parameters(ltebasever).For Control Channel Parameters details please refer to DL Control ChannelParameters (ltebasever).For Power Parameters details please refer to DL Power Parameters (ltebasever).Rx Algorithm Parameters:PreDownsampling: Is the pre-downsampling to 1X symbol rate or not? IfPreDownsampling=YES, LTE_DL_DemuxFrame outputs the radio frame withoversampling ratio 1 and the FFT size in LTE_DL_OFDM_Demodulator is just the basicsize defined in the specification. This setting can save some resources and speed upthe simulation. If PreDownsampling=NO, LTE_DL_DemuxFrame outputs the radioframe with oversampling ratio and the FFT size in LTE_DL_OFDM_Demodulator is thebasic size (defined in the specification) multiply oversampling ratio (defined in the toplevel model).

When PreDownsampling = YES, the downsampling operation is performed inside this receiver. Notethat there is no internal anti-aliasing filter provided by the receiver. Users need to add external anti-aliasing filter to make sure no aliasing occurs when downsampling.

ReceiverDelay: the delay introduced in the receiver, selected from one-frame delayand one-subframe delay. If the receiver is used in closed-loop HARQ simulation orclosed-loop MIMO precoding, this parameter should be set to 'One subframe delay(1ms)'; for other simulation (non-HARQ simulation and EVM measurements), thisparameter should be set to 'One frame delay (10ms)'. This parameter affects thebehavior of the timing and frequency synchronization. For more information on howthe timing and frequency synchronization performs in both modes, refer toLTE_DL_TimeFreqSync (ltebasever).SyncMode: timing and frequency synchronization mode. When SyncMode =AverageSync, the timing indices and frequency offsets on all the receiver antennasare combined with MRC method to generate a composite timing index and frequencyoffset which are then sent to LTE_DL_DemuxFrame. This mode is useful when P-SCH

Page 228: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

227

and S-SCH are only received on one of the receiver antennas. When SyncMode =SyncPerPort, the timing indices and frequency offset for each receiver antenna aresent to LTE_DL_DemuxFrame independently. This mode (SyncMode = SyncPerPort)may have better performance if P-SCH and S-SCH are received on all the receiverantennas.SearchType: the search type for the timing synchronization. When SearchType =Search every frame, the complete search is performed for each frame, whose searchrange is defined in SearchRange; When SearchType = Search+Track, the first frameperforms the complete search whose search range is defined in SearchRange, therest frames perform the tracking search whose search range is defined inTrackRange. This parameter is valid only when ReceiverDelay = 'One frame delay(10ms)'.SearchRange: search range for all frames when SearchType = Search every frame,and for the first frame when SearchType = Search+Track. This parameter is validonly when ReceiverDelay = 'One frame delay (10ms)'.TrackRange: tracking range for the rest frames when SearchType = Search+Track.This parameter is valid only when ReceiverDelay = 'One frame delay (10ms)'.FreqSync: frequency synchronization range, chosen from non, <100Hz, <15kHz,<35kHz.ChEstimatorMode: channel estimation modes, chosen from Linear, MMSE_2D, ForEVM. When For EVM is selected, the estimation process defined in E.6 of [2] isemployed.MMSE_RBWinLen: the number of RBs included to perform MMSE 2D estimation, validwhen ChEstimatorMode = MMSE_2D.SNR: the signal noise ratio at each receiver antenna in dB for PDSCHs. Thisparameter is useful for the channel estimator.Tmax: the maximum echo delay in multi-path channel. This parameter is useful forthe channel estimator.Fmax: the maximum Doppler frequency. This parameter is useful for the channelestimator.Sym_StartPos: start position (without oversampling) to get the OFDM symbol for FFToperation for long CP and short CP symbols respectively, compared to the startposition of the OFDM body after CP. The first value is for Long CP and the second isfor Short CP. For more information, refer to DL Demux Slot (ltebasever).DemapperType: the type of Demapper, chosen from Hard, Soft and CSI. CSI(Channel State Information) is a channel estimate profile. Generally, the decoderwith CSI has best performance while the decoder with Hard has worst performance.DemapperMaxLevel: the level of the output soft bits after Demapper which arerestricted in the range [-DemapperMaxLevel, DemapperMaxLevel], valid whenDemapperType is soft and CSI.MIMO_Decoder: MIMO decoder mode when UE1 MIMO mode is set to SpatialMultiplexing (i.e. UEs_MIMO_Mode[1]=0), which is selected from Zero Foring (ZF) orMinimum Mean Square Error (MMSE). Note that when MMSE is selected, the requriedSNR is read from the SNR parameter. Note that this parameter is only for UE1 inSpatial Multiplexing mode.TC_Iteration: the number of iterations for Turbo decoder.

Notes/Equations

This subnetwork completes 3GPP LTE downlink FDD/TDD baseband receiver with two1.receiver antennas.The LTE_DL_MIMO_2Ant_Rcv schematic is shown below:2.

Page 229: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

228

The number of input receiver antennas supported in this receiver is 2. The number of3.transmit antenna ports is defined in the NumTxAnts parameter. All the configurationsof NumTxAnts and NumRxAnts are supported in this source, including 1x2, 2x2, and4x2. For 1x2 which is the case of receiver diversity, MRC (maximal ratio combining)method is employed.The description of input and output ports are shown below.4.In this receiver, the data type in most input/output ports are matrix which should be5.column vector (i.e the matrix size should be Nx1, N is the size of vector). Refer toMatrix-based Ports (ltebasever) for more information.LTE_DL_TimeFreqSync component is for timing and frequency synchronization by6.using P-SCH time domain signal and outputs synchronization index and estimatedsmall frequency offset. The integer frequency offset is further estimated in thefrequency domain S-SCH. Both synchronization index and estimated frequency offsetare input to LTE_DL_DemuxFrame.First, LTE_DL_DemuxFrame compensates frequency offset by using the estimated7.frequency offset. Then, it outputs the real radio frame by using synchronization. Thismodel causes one frame radio delay or one subframe delay determined by theReceiverDelay parameter.One radio frame (10 ms) includes 20 slots. LTE_DL_DemuxSlot is used to demultiplex8.one slot into seven or six OFDM symbols by removing cyclic prefix. The position toselect OFDM useful symbols is determined by Sym_StartPos. There are 7 OFDMsymbols for Normal Cyclic Prefix and 6 OFDM symbols for Extended Cyclic Prefix.Then, LTE_OFDM_Demodulator transfers input time domain signals into frequency9.domain signal by FFT procedure. The demodulated signals are generated by removingNULL subcarriers and exchanging plus frequency subcarriers and minus frequencysubcarriers.The demodulated signals are input to LTE_DL_ChEstimator to get channel impulse10.response (CIR) for each active subcarrier. LTE_DL_ChEstimator has three estimationmodes: linear, MMSE_2D and For_EVM.The obtained CIR of each active subcarrier is sent to LTE_DL_MIMO_DemuxCIR to11.get corresponding CIRs for P-SCH, S-SCH, BCH, PCFICH, PDCCH and six UEs(PDSCHs) respectively.Meanwhile, LTE_DL_DemuxOFDMSym demultiplexes the un-equalized OFDM symbols12.(in one radio frame) into P-SCH, S-SCH, BCH, PCFICH, PDCCH and six UEs (PDSCHs)un-equalized symbols and output all these signals.Then these un-equalized symbols, along with corresponding CIRs, are equalized, de-13.precoded and layer de-mapped into modulation symbols in corresponding LayerDemapper and Deprecoder components. For UE1, the MIMO deprecoder may employZF or MMSE MIMO decoder according to the MIMO_Decoder parameter, and theLTE_DL_PMI_Generator model is used to generate the desired PMI (Precoding MatrixIndex) when closed-loop MIMO precoding for UE1 is enable (i.e.UE1_CL_Precoding_Enable=1). The calculated PMI will be also sent to MIMOdeprecoder for UE1 with a fixed delay.Note that for all UEs (PDSCHs), the number of code words output from Layer14.

Page 230: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

229

Demapper and Deprecoder are fixed to 2 regardless of the actual number of codewords defined in the UEs_NumOfCWs parameter. When the actual number of codeword is 1, the second code word output from Layer Demapper and Deprecoder isinvalid.For UE 1 (PDSCH 1), the modulation symbols in each code word are demapped in15.LTE_Demapper with two methods: Hard and Soft, results in received channel bitswhich are output at port UE1_ChannelBits. The demapped bits are delivered toLTE_DL_ChannelDecoder in which the de-scrambler, rate de-matching, Turbodecoder, code block de-segmentation and CRC decoder are performed. At last thereceived transport block bits are output at port UE1_RawBits.For UE 2 to UE 6 (PDSCH 2 to PDSCH 6), only complex-valued modulation symbols16.from LTE_DL_DemuxOFDMSym are output.Description of input and output ports.17.For each firing,One Matrix-based token is produced at ports with the postfix ModSymbols, in whichthe complex-valued modulation symbols for this UE for each subframe (firing) areoutput. The corresponding matrix vector size for each subframe (firing) is describedin LTE_DL_MuxOFDMSym.The outputs at port UE1_ChannelBits are the channel bits for UE 1 (PDSCH 1) for atmost two codewords which are the output of demapper. These outputs are thereceived bits for uncoded BER and PER measurement.The outputs at port UE1_RawBits are the decoded transport block bits for UE 1(PDSCH 1) for at most two codewords. These outputs are the received bits for codedBER and PER measurement.The outputs at port DataOut are the frequency subcarrier data without power scaling.One token is produced at port UE1_HARQ_Bits for each firing for at most twocodewords.One token is produced at port UE1_TBS for each firing for at most two codewords.One Matrix-based token is produced at port UE1_PMI. The size of the matrix isceil(NumRBsForUE1/UE1_PMI_Granularity), where NumRBsForUE1 is the number ofRBs for UE1.

When ReceiverDelay='One frame delay (10ms)', one frame delay is introduced in all output ports.More specifically,1. The number of tokens delayed in UE1_RawBits port is the number of raw bits (transport blocksizes) in one radio frame.2. The number of tokens delayed in UE1_ChannelBits port is the number of channel bits in one radioframe3. The number of tokens delayed in DataOut port is the total number of useful resource elements inone radio frame4. For other ports, the number of tokens delayed is 10 (the number of subframes per one radioframe).When ReceiverDelay='One subframe delay (1ms)',1. No token is delayed in UE1_RawBits port.2. No token is delayed in UE1_ChannelBits port.3. The number of tokens delayed in DataOut port is the total number of useful resource elements inone subframe4. For other ports, the number of tokens delayed is 1 (one subframe delay).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.104 v8.7.0 "Base Station (BS) radio transmission and reception",2.September 2009.TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access3.(UTRA),", V7.0.0, June 2006.

Page 231: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

230

LTE_DL_MIMO_4Ant_Rcv Part Downlink baseband MIMO receiver

Categories: Receiver (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model

LTE_DL_MIMO_4Ant_Rcv (ltebasever)

LTE_DL_MIMO_4Ant_Rcv

Description: Downlink baseband MIMO receiverAssociated Parts: LTE DL MIMO 4Ant Rcv Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

ShowSystemParameters show systemparameters for LTEdownlink signals:NO, YES

YES Enumeration NO

FrameMode frame mode: FDD,TDD

FDD Enumeration NO

TDD_Config downlink anduplink allocationsfor TDD: Config 0,Config 1, Config 2,Config 3, Config 4,Config 5, Config 6

Config 0 Enumeration NO

SpecialSF_Config downlink anduplink allocationsfor TDD: Config 0,Config 1, Config 2,Config 3, Config 4,Config 5, Config 6,Config 7, Config 8

Config 0 Enumeration NO

Bandwidth bandwidth: BW1.4 MHz, BW 3MHz, BW 5 MHz,BW 10 MHz, BW15 MHz, BW 20MHz

BW 5 MHz Enumeration NO

NumTxAnts number of TxAntennas: Tx1,Tx2, Tx4

Tx4 Enumeration NO

Page 232: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

231

OversamplingOption oversamplingoption: Ratio 1,Ratio 2, Ratio 4,Ratio 8

Ratio 2 Enumeration NO

CyclicPrefix type of cyclicprefix: Normal,Extended

Normal Enumeration NO

CellID_Sector the index of cellidentity group

0 Integer NO

CellID_Group the index of cellidentity within thephysical-layer cell-identity group

0 Integer NO

RB_MappingType the mapping typeof VRBs to PRBs:Localized,Distributed

Localized Enumeration NO

SS_PerTxAnt whethersynchronizationsignals (P-SS andS-SS) aretransmitted oneach transmitantenna: NO, YES

NO Enumeration NO

ShowMIMO_Parameters show MIMO-related parametersfor all six Ues: NO,YES

YES Enumeration NO

UEs_MIMO_Mode MIMO Mode foreach UE, 1 for TD,0 for SM

[0,0,0,0,0,0] Integerarray

NO

UEs_CDD_Mode CDD Mode foreach UE, 1 forZero-Delay, 0 forLarge-Delay

[0,0,0,0,0,0] Integerarray

NO

UEs_CdBlk_Index codebook index forprecoding for eachUE

[0,0,0,0,0,0] Integerarray

NO

UEs_NumOfCWs number of codewords for each UE

[2,1,1,1,1,1] Integerarray

NO

UEs_NumOfLayers number of layersfor each UE

[2,1,1,1,1,1] Integerarray

NO

ShowUE1_Parameters show parametersfor coded UE1:NO, YES

YES Enumeration NO

UE1_HARQ_Enable Whether HARQclosed-looptransmission isenable for UE1:NO, YES

YES Enumeration NO

UE1_NumHARQ Number of HARQprocesses for UE1

8 Integer NO

UE1_MaxHARQTrans Maximum numberof HARQtransmission pereach HARQprocess for UE1

4 Integer NO

UE1_CL_Precoding_Enable whether closed-loop MIMOprecoding for UE1is enabled: NO,YES

NO Enumeration NO

UE1_PMI_Granularity closed-loop PMIreportinggranularity in unitsof resource blocks(RBs) for UE1

25 Integer NO

UE1_PMI_Delay closed-loop PMIreporting delay inunits of sub-frames (1ms) forUE1

6 Integer NO

UE1_Config the configurationmode of input datafor UE 1.: MCSindex, Transportblock size, Coderate

Transport block size Enumeration NO

UE1_Payload the input payloadfor UE 1, themeaning of theinput is defined inUE1_Config

[2555,2555,2555,2555,2555,2555,2555,2555,2555,2555] Floatingpoint array

NO

Page 233: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

232

UE1_MappingType the modulationorders for UE 1 ineach subframe,valid whenUE1_Payload isnot set to MCSindex. (0:QPSK,1:16QAM,2:64QAM)

[0,0,0,0,0,0,0,0,0,0] Integerarray

NO

UE1_RV_Sequence RedundancyVersion Sequencefor HARQtransmission forUE 1

[0, 1, 2, 3] Integerarray

NO

UE1_n_RNTI Radio networktemporaryidentifier for UE 1

1 Integer NO

UE1_Category defines UE1capability, used toget the totalnumber of softchannel bits forderate-matching indownlink.:Category 1,Category 2,Category 3,Category 4,Category 5

Category 1 Enumeration NO

RB_AllocType RB allocation type:StartRB +NumRBs, RBindices (1D), RBindices (2D)

StartRB + NumRBs Enumeration NO

UE1_RB_Alloc the RB allocationfor UE 1, in theformats of [startRB, number ofRBs] or [SF0 startRB, SF0 number ofRBs; . . . ; SF9start RB, SF9number of RBs]

[0,25] Integerarray

NO

ShowOtherUEs_Parameters show parametersfor other uncodedUes: NO, YES

YES Enumeration NO

OtherUEs_MappingType the modulationorders for otherUEs except UE 1 inall subframes.(0:QPSK,1:16QAM,2:64QAM)

[0,0,0,0,0] Integerarray

NO

UE2_RB_Alloc the RB allocationfor UE 2, in theformats of [startRB, number ofRBs] or [SF0 startRB, SF0 number ofRBs; . . . ; SF9start RB, SF9number of RBs]

[0,0] Integerarray

NO

UE3_RB_Alloc the RB allocationfor UE 3, in theformats of [startRB, number ofRBs] or [SF0 startRB, SF0 number ofRBs; . . . ; SF9start RB, SF9number of RBs]

[0,0] Integerarray

NO

UE4_RB_Alloc the RB allocationfor UE 4, in theformats of [startRB, number ofRBs] or [SF0 startRB, SF0 number ofRBs; . . . ; SF9start RB, SF9number of RBs]

[0,0] Integerarray

NO

UE5_RB_Alloc the RB allocationfor UE 5, in theformats of [startRB, number ofRBs] or [SF0 startRB, SF0 number ofRBs; . . . ; SF9

[0,0] Integerarray

NO

Page 234: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

233

start RB, SF9number of RBs]

UE6_RB_Alloc the RB allocationfor UE 6, in theformats of [startRB, number ofRBs] or [SF0 startRB, SF0 number ofRBs; . . . ; SF9start RB, SF9number of RBs]

[0,0] Integerarray

NO

ShowControlChannelParameters show parametersfor controlchannels: NO, YES

YES Enumeration NO

PDCCH_SymsPerSF number of OFDMsymbols of PDCCHfor each subframe

[2,2,2,2,2,2,2,2,2,2] Integerarray

NO

PHICH_Duration type of PHICHduration :Normal_Duration,Extended_Duration

Normal_Duration Enumeration NO

PHICH_Ng type of PHICHduration : Ng 1/6,Ng 1/2, Ng 1, Ng 2

Ng 1/6 Enumeration NO

ShowPowerParameters show power-relatedparameters: NO,YES

YES Enumeration NO

PCFICH_Rb PCFICH-to-RSEPRE ratio in dB insymbols with RS

0 Float NO

PHICH_Ra PHICH-to-RS EPREratio in dB insymbols with RS

0 Float NO

PHICH_Rb PHICH-to-RS EPREratio in dB insymbols withoutRS

0 Float NO

PBCH_Ra PBCH-to-RS EPREratio in dB insymbols with RS

0 Float NO

PBCH_Rb PBCH-to-RS EPREratio in dB insymbols withoutRS

0 Float NO

PDCCH_Ra PDCCH-to-RSEPRE ratio in dB insymbols with RS

0 Float NO

PDCCH_Rb PDCCH-to-RSEPRE ratio in dB insymbols withoutRS

0 Float NO

PDSCH_PowerRatio PDSCH CellSpecific Ratio:p_B/p_A = 1, P_B= 0, P_B = 1, P_B= 2, P_B = 3

p_B/p_A = 1 Enumeration NO

UEs_Pa UE specific powerparameter foreach UE

[0,0,0,0,0,0] Floatingpoint array

NO

PSS_Ra PSS-to-RS EPREratio in dB insymbols withoutRS

0 Float NO

SSS_Ra SSS-to-RS EPREratio in dB insymbols withoutRS

0 Float NO

ShowRxAlgorithmParameters show Parametersfor LTE downlinkreceiver algorithm:NO, YES

YES Enumeration NO

PreDownsampling pre-downsamplingto 1x symbol rate?: NO, YES

NO Enumeration NO

ReceiverDelay receiver delay (One frame delay isfor non-HARQ;One subframedelay is for closed-loop HARQ.: Oneframe delay(10ms), Onesubframe delay

One subframe delay (1ms) Enumeration NO

Page 235: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

234

(1ms)

SyncMode synchronization forevery port or onesynchronization forall ports:SyncPerPort,AverageSync

AverageSync Enumeration NO

SearchType start a new timingand frequencesynchronizationsearch for everyframe or not:Search everyframe,Search+Track

Search+Track Enumeration NO

SearchRange timing andfrequencesynchronizationsearching rangefor the first frame

0.003 s Float NO

TrackRange timing andfrequencesynchronizationtracking range forthe frames exceptthe first frame,valid whenSearchType is setto Search+Track

0 s Float NO

FreqSync frequencyestimation rangeselect: non, lessthan 100Hz, lessthan 15kHz, lessthan 45kHz

less than 15kHz Enumeration NO

ChEstimatorMode mode ofinterpolationalgorithm inchannel estimator:Linear, MMSE_2D,For EVM

Linear Enumeration NO

MMSE_RBWinLen number of RBs foreach MMSE-2Dinterpolation

3 Integer NO

SNR SNR in dB. (usedby 2D-MMSEchannel estimatorin PDSCH)

15 Float NO

Tmax the maximumdelay of multi-pathchannel. (used by2D-MMSE channelestimator inPDSCH)

0 s Float NO

Fmax the maximumdoppler frequency.(used by 2D-MMSEchannel estimatorin PDSCH)

100 Hz Float NO

Sym_StartPos start position(withoutoversampling) toget the OFDMsymbol for FFToperation for longCP and short CPsymbolsrespectively,compared to thestart position ofthe OFDM bodyafter CP

[-3, -3] Integerarray

NO

DemapperType symboldemodulationtype: Hard, Soft,CSI

Soft Enumeration NO

DemapperMaxLevel the maximumlevel for softdemapping outputwhenDemapperType isSoft or CSI

1 Float NO

MIMO_Decoder MIMO decodermode for spatialmultiplexing forUE1: ZF, MMSE

MMSE Enumeration NO

Page 236: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

235

TC_Iteration Turbo decoderiteration number

4 Integer NO

Input Ports

Port Name Description Signal Type Optional

1 Ant1_TD Input of received IQ data for Rx Antenna1 complex NO

2 Ant2_TD Input of received IQ data for Rx Antenna2 complex NO

3 Ant3_TD Input of received IQ data for Rx Antenna3 complex NO

4 Ant4_TD Input of received IQ data for Rx Antenna4 complex NO

Output Ports

Port Name Description Signal Type Optional

0 UE1_PMI Output of UE1 PMI int matrix NO

5 UE1_RawBits Output of UE1 information (raw) bits (non-Matrix-based) for at most 2 codewords

multiple int NO

6 UE1_ChannelBits Output of UE1 channel bits (non-Matrix-based) for atmost 2 codewords

multiple int NO

7 UE1_ModSymbols Terminal: Standard Data Port Terminal multiplecomplex matrix

NO

8 UE2_ModSymbols Output of UE2 Matrix-based (subframe-based)modulation symbols for at most 2 codewords

multiplecomplex matrix

NO

9 UE3_ModSymbols Output of UE3 Matrix-based (subframe-based)modulation symbols for at most 2 codewords

multiplecomplex matrix

NO

10 UE4_ModSymbols Output of UE4 Matrix-based (subframe-based)modulation symbols for at most 2 codewords

multiplecomplex matrix

NO

11 UE5_ModSymbols Output of UE5 Matrix-based (subframe-based)modulation symbols for at most 2 codewords

multiplecomplex matrix

NO

12 UE6_ModSymbols Output of UE6 Matrix-based (subframe-based)modulation symbols for at most 2 codewords

multiplecomplex matrix

NO

13 PDCCH_ModSymbols Output of PDCCH Matrix-based (subframe-based)modulation symbols

multiplecomplex matrix

NO

14 PHICH_ModSymbols Output of PHICH Matrix-based (subframe-based)modulation symbols

multiplecomplex matrix

NO

15 PCFICH_ModSymbols Output of PCFICH Matrix-based (subframe-based)modulation symbols

multiplecomplex matrix

NO

16 PBCH_ModSymbols Output of PBCH Matrix-based (subframe-based)modulation symbols

multiplecomplex matrix

NO

17 SSS_ModSymbols Output of SSS Matrix-based (subframe-based)modulation symbols

multiplecomplex matrix

NO

18 PSS_ModSymbols Output of PSS Matrix-based (subframe-based)modulation symbols

multiplecomplex matrix

NO

19 DataOut Output of demodulated frequency data for all 4 RXAntennas

multiplecomplex

NO

20 UE1_HARQ_Bits Output of UE1 HARQ ACK/NACK bits for at most 2codewords

multiple int NO

21 UE1_TBS Output of UE1 transparent block size for eachsubframe for at most 2 codewords

multiple int NO

Parameters Details

For System Parameters details please refer to DL System Parameters (ltebasever).SS_PerTxAnt: whether the P-SS/S-SS are transmitted on the first antenna port or onall the transmit antenna ports.For UE1 Parameters details details refer to DL UE1 Parameters (ltebasever).For OtherUEs Parameters details please refer to DL OtherUEs Parameters(ltebasever).For Control Channel Parameters details please refer to DL Control ChannelParameters (ltebasever).For Power Parameters details please refer to DL Power Parameters (ltebasever).Rx Algorithm Parameters:PreDownsampling: Is the pre-downsampling to 1X symbol rate or not? IfPreDownsampling=YES, LTE_DL_DemuxFrame outputs the radio frame withoversampling ratio 1 and the FFT size in LTE_DL_OFDM_Demodulator is just the basicsize defined in the specification. This setting can save some resources and speed upthe simulation. If PreDownsampling=NO, LTE_DL_DemuxFrame outputs the radioframe with oversampling ratio and the FFT size in LTE_DL_OFDM_Demodulator is thebasic size (defined in the specification) multiply oversampling ratio (defined in the toplevel model).

When PreDownsampling = YES, the downsampling operation is performed inside this receiver. Notethat there is no internal anti-aliasing filter provided by the receiver. Users need to add external anti-aliasing filter to make sure no aliasing occurs when downsampling.

ReceiverDelay: the delay introduced in the receiver, selected from one-frame delayand one-subframe delay. If the receiver is used in closed-loop HARQ simulation orclosed-loop MIMO precoding, this parameter should be set to 'One subframe delay(1ms)'; for other simulation (non-HARQ simulation and EVM measurements), thisparameter should be set to 'One frame delay (10ms)'. This parameter affects thebehavior of the timing and frequency synchronization. For more information on how

Page 237: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

236

the timing and frequency synchronization performs in both modes, refer toLTE_DL_TimeFreqSync (ltebasever).SyncMode: timing and frequency synchronization mode. When SyncMode =AverageSync, the timing indices and frequency offsets on all the receiver antennasare combined with MRC method to generate a composite timing index and frequencyoffset which are then sent to LTE_DL_DemuxFrame. This mode is useful when P-SCHand S-SCH are only received on one of the receiver antennas. When SyncMode =SyncPerPort, the timing indices and frequency offset for each receiver antenna aresent to LTE_DL_DemuxFrame independently. This mode (SyncMode = SyncPerPort)may have better performance if P-SCH and S-SCH are received on all the receiverantennas.SearchType: the search type for the timing synchronization. When SearchType =Search every frame, the complete search is performed for each frame, whose searchrange is defined in SearchRange; When SearchType = Search+Track, the first frameperforms the complete search whose search range is defined in SearchRange, therest frames perform the tracking search whose search range is defined inTrackRange. This parameter is valid only when ReceiverDelay = 'One frame delay(10ms)'.SearchRange: search range for all frames when SearchType = Search every frame,and for the first frame when SearchType = Search+Track. This parameter is validonly when ReceiverDelay = 'One frame delay (10ms)'.TrackRange: tracking range for the rest frames when SearchType = Search+Track.This parameter is valid only when ReceiverDelay = 'One frame delay (10ms)'.FreqSync: frequency synchronization range, chosen from non, <100Hz, <15kHz,<35kHz.ChEstimatorMode: channel estimation modes, chosen from Linear, MMSE_2D, ForEVM. When For EVM is selected, the estimation process defined in E.6 of [2] isemployed.MMSE_RBWinLen: the number of RBs included to perform MMSE 2D estimation, validwhen ChEstimatorMode = MMSE_2D.SNR: the signal noise ratio at each receiver antenna in dB for PDSCHs. Thisparameter is useful for the channel estimator.Tmax: the maximum echo delay in multi-path channel. This parameter is useful forthe channel estimator.Fmax: the maximum Doppler frequency. This parameter is useful for the channelestimator.Sym_StartPos: start position (without oversampling) to get the OFDM symbol for FFToperation for long CP and short CP symbols respectively, compared to the startposition of the OFDM body after CP. The first value is for Long CP and the second isfor Short CP. For more information, refer to DL Demux Slot (ltebasever).DemapperType: the type of Demapper, chosen from Hard, Soft and CSI. CSI(Channel State Information) is a channel estimate profile. Generally, the decoderwith CSI has best performance while the decoder with Hard has worst performance.DemapperMaxLevel: the level of the output soft bits after Demapper which arerestricted in the range [-DemapperMaxLevel, DemapperMaxLevel], valid whenDemapperType is soft and CSI.MIMO_Decoder: MIMO decoder mode when UE1 MIMO mode is set to SpatialMultiplexing (i.e. UEs_MIMO_Mode[1]=0), which is selected from Zero Foring (ZF) orMinimum Mean Square Error (MMSE). Note that when MMSE is selected, the requriedSNR is read from the SNR parameter. Note that this parameter is only for UE1 inSpatial Multiplexing mode.TC_Iteration: the number of iterations for Turbo decoder.

Notes/Equations

This subnetwork completes 3GPP LTE downlink FDD/TDD baseband receiver with four1.receiver antennas.The LTE_DL_MIMO_4Ant_Rcv schematic is shown below:2.

Page 238: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

237

The number of input receiver antennas supported in this receiver is 4. The number of3.transmit antenna ports is defined in the NumTxAnts parameter. All the configurationsof NumTxAnts and NumRxAnts are supported in this source, including 1x4, 2x4, and4x4. For 1x4 which is the case of receiver diversity, MRC (maximal ratio combining)method is employed.The description of input and output ports are shown below.4.In this receiver, the data type in most input/output ports are matrix which should be5.column vector (i.e the matrix size should be Nx1, N is the size of vector). Refer toMatrix-based Ports (ltebasever) for more information.LTE_DL_TimeFreqSync component is for timing and frequency synchronization by6.using P-SCH time domain signal and outputs synchronization index and estimatedsmall frequency offset. The integer frequency offset is further estimated in thefrequency domain S-SCH. Both synchronization index and estimated frequency offsetare input to LTE_DL_DemuxFrame.First, LTE_DL_DemuxFrame compensates frequency offset by using the estimated7.frequency offset. Then, it outputs the real radio frame by using synchronization. Thismodel causes one frame radio delay or one subframe delay determined by theReceiverDelay parameter.One radio frame (10 ms) includes 20 slots. LTE_DL_DemuxSlot is used to demultiplex8.one slot into seven or six OFDM symbols by removing cyclic prefix. The position toselect OFDM useful symbols is determined by Sym_StartPos. There are 7 OFDMsymbols for Normal Cyclic Prefix and 6 OFDM symbols for Extended Cyclic Prefix.Then, LTE_OFDM_Demodulator transfers input time domain signals into frequency9.domain signal by FFT procedure. The demodulated signals are generated by removingNULL subcarriers and exchanging plus frequency subcarriers and minus frequencysubcarriers.The demodulated signals are input to LTE_DL_ChEstimator to get channel impulse10.response (CIR) for each active subcarrier. LTE_DL_ChEstimator has three estimationmodes: linear, MMSE_2D and For_EVM.The obtained CIR of each active subcarrier is sent to LTE_DL_MIMO_DemuxCIR to11.get corresponding CIRs for P-SCH, S-SCH, BCH, PCFICH, PDCCH and six UEs(PDSCHs) respectively.Meanwhile, LTE_DL_DemuxOFDMSym demultiplexes the un-equalized OFDM symbols12.(in one radio frame) into P-SCH, S-SCH, BCH, PCFICH, PDCCH and six UEs (PDSCHs)un-equalized symbols and output all these signals.Then these un-equalized symbols, along with corresponding CIRs, are equalized, de-13.precoded and layer de-mapped into modulation symbols in corresponding LayerDemapper and Deprecoder components. For UE1, the MIMO deprecoder may employZF or MMSE MIMO decoder according to the MIMO_Decoder parameter, and theLTE_DL_PMI_Generator model is used to generate the desired PMI (Precoding MatrixIndex) when closed-loop MIMO precoding for UE1 is enable (i.e.UE1_CL_Precoding_Enable=1). The calculated PMI will be also sent to MIMOdeprecoder for UE1 with a fixed delay.

Page 239: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

238

Note that for all UEs (PDSCHs), the number of code words output from Layer14.Demapper and Deprecoder are fixed to 2 regardless of the actual number of codewords defined in the UEs_NumOfCWs parameter. When the actual number of codeword is 1, the second code word output from Layer Demapper and Deprecoder isinvalid.For UE 1 (PDSCH 1), the modulation symbols in each code word are demapped in15.LTE_Demapper with two methods: Hard and Soft, results in received channel bitswhich are output at port UE1_ChannelBits. The demapped bits are delivered toLTE_DL_ChannelDecoder in which the de-scrambler, rate de-matching, Turbodecoder, code block de-segmentation and CRC decoder are performed. At last thereceived transport block bits are output at port UE1_RawBits.For UE 2 to UE 6 (PDSCH 2 to PDSCH 6), only complex-valued modulation symbols16.from LTE_DL_DemuxOFDMSym are output.Description of input and output ports.17.For each firing,One Matrix-based token is produced at ports with the postfix ModSymbols, in whichthe complex-valued modulation symbols for this UE for each subframe (firing) areoutput. The corresponding matrix vector size for each subframe (firing) is describedin LTE_DL_MuxOFDMSym.The outputs at port UE1_ChannelBits are the channel bits for UE 1 (PDSCH 1) for atmost two codewords which are the output of demapper. These outputs are thereceived bits for uncoded BER and PER measurement.The outputs at port UE1_RawBits are the decoded transport block bits for UE 1(PDSCH 1) for at most two codewords. These outputs are the received bits for codedBER and PER measurement.The outputs at port DataOut are the frequency subcarrier data without power scaling.One token is produced at port UE1_HARQ_Bits for each firing for at most twocodewords.One token is produced at port UE1_TBS for each firing for at most two codewords.One Matrix-based token is produced at port UE1_PMI. The size of the matrix isceil(NumRBsForUE1/UE1_PMI_Granularity), where NumRBsForUE1 is the number ofRBs for UE1.

When ReceiverDelay='One frame delay (10ms)', one frame delay is introduced in all output ports.More specifically,1. The number of tokens delayed in UE1_RawBits port is the number of raw bits (transport blocksizes) in one radio frame.2. The number of tokens delayed in UE1_ChannelBits port is the number of channel bits in one radioframe3. The number of tokens delayed in DataOut port is the total number of useful resource elements inone radio frame4. For other ports, the number of tokens delayed is 10 (the number of subframes per one radioframe).When ReceiverDelay='One subframe delay (1ms)',1. No token is delayed in UE1_RawBits port.2. No token is delayed in UE1_ChannelBits port.3. The number of tokens delayed in DataOut port is the total number of useful resource elements inone subframe4. For other ports, the number of tokens delayed is 1 (one subframe delay).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.104 v8.7.0 "Base Station (BS) radio transmission and reception",2.September 2009.TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access3.(UTRA),", V7.0.0, June 2006.

Page 240: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

239

LTE_DL_Receiver Part Downlink baseband receiver

Categories: Receiver (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model

LTE_DL_Receiver (ltebasever)

LTE_DL_Receiver

Description: Downlink baseband receiverAssociated Parts: LTE DL Receiver Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

ShowSystemParameters show systemparameters for LTEdownlink signals:NO, YES

YES Enumeration NO

FrameMode frame mode: FDD,TDD

FDD Enumeration NO

TDD_Config downlink anduplink allocationsfor TDD: Config 0,Config 1, Config 2,Config 3, Config 4,Config 5, Config 6

Config 0 Enumeration NO

SpecialSF_Config downlink anduplink allocationsfor TDD: Config 0,Config 1, Config 2,Config 3, Config 4,Config 5, Config 6,Config 7, Config 8

Config 4 Enumeration NO

Bandwidth bandwidth: BW1.4 MHz, BW 3MHz, BW 5 MHz,BW 10 MHz, BW15 MHz, BW 20MHz

BW 5 MHz Enumeration NO

NumTxAnts number of TxAntennas: Tx1,Tx2, Tx4

Tx1 Enumeration NO

OversamplingOption oversamplingoption: Ratio 1,Ratio 2, Ratio 4,Ratio 8

Ratio 2 Enumeration NO

Page 241: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

240

CyclicPrefix type of cyclicprefix: Normal,Extended

Normal Enumeration NO

CellID_Sector the index of cellidentity group

0 Integer NO

CellID_Group the index of cellidentity within thephysical-layer cell-identity group

0 Integer NO

RB_MappingType the mapping typeof VRBs to PRBs:Localized,Distributed

Localized Enumeration NO

ShowUE1_Parameters show parametersfor coded UE1:NO, YES

YES Enumeration NO

UE1_HARQ_Enable Whether HARQclosed-looptransmission isenable for UE 1:NO, YES

YES Enumeration NO

UE1_NumHARQ Number of HARQprocesses for UE1when HARQ isenabled

8 Integer NO

UE1_MaxHARQTrans Maximum numberof HARQtransmission pereach HARQprocess for UE1when HARQ isenabled

4 Integer NO

UE1_Config the configurationmode of input datafor UE 1.: MCSindex, Transportblock size, Coderate

Transport block size Enumeration NO

UE1_Payload the input payloadfor UE 1, themeaning of theinput is defined inUE1_Config

[2555,2555,2555,2555,2555,2555,2555,2555,2555,2555] Floatingpoint array

NO

UE1_MappingType the modulationorders for UE 1 ineach subframe,valid whenUE1_Payload isnot set to MCSindex. (0:QPSK,1:16QAM,2:64QAM)

[0,0,0,0,0,0,0,0,0,0] Integerarray

NO

UE1_RV_Sequence RedundancyVersion Sequencefor HARQtransmission

[0,1,2,3] Integerarray

NO

UE1_n_RNTI Radio networktemporaryidentifier for UE 1

1 Integer NO

UE1_Category defines UE1capability, used toget the totalnumber of softchannel bits forderate-matching indownlink.:Category 1,Category 2,Category 3,Category 4,Category 5

Category 1 Enumeration NO

RB_AllocType RB allocation type:StartRB +NumRBs, RBindices (1D), RBindices (2D)

StartRB + NumRBs Enumeration NO

UE1_RB_Alloc the RB allocationfor UE 1, in theformats of [startRB, number ofRBs] or [SF0 startRB, SF0 number ofRBs; . . . ; SF9start RB, SF9number of RBs]

[0,25] Integerarray

NO

Page 242: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

241

ShowOtherUEs_Parameters show parametersfor other uncodedUes: NO, YES

YES Enumeration NO

UE2_RB_Alloc the RB allocationfor UE 2, in theformats of [startRB, number ofRBs] or [SF0 startRB, SF0 number ofRBs; . . . ; SF9start RB, SF9number of RBs]

[0,0] Integerarray

NO

UE3_RB_Alloc the RB allocationfor UE 3, in theformats of [startRB, number ofRBs] or [SF0 startRB, SF0 number ofRBs; . . . ; SF9start RB, SF9number of RBs]

[0,0] Integerarray

NO

UE4_RB_Alloc the RB allocationfor UE 4, in theformats of [startRB, number ofRBs] or [SF0 startRB, SF0 number ofRBs; . . . ; SF9start RB, SF9number of RBs]

[0,0] Integerarray

NO

UE5_RB_Alloc the RB allocationfor UE 5, in theformats of [startRB, number ofRBs] or [SF0 startRB, SF0 number ofRBs; . . . ; SF9start RB, SF9number of RBs]

[0,0] Integerarray

NO

UE6_RB_Alloc the RB allocationfor UE 6, in theformats of [startRB, number ofRBs] or [SF0 startRB, SF0 number ofRBs; . . . ; SF9start RB, SF9number of RBs]

[0,0] Integerarray

NO

ShowControlChannelParameters show parametersfor controlchannels: NO, YES

YES Enumeration NO

PDCCH_SymsPerSF number of OFDMsymbols of PDCCHfor each subframe

[2,2,2,2,2,2,2,2,2,2] Integerarray

NO

PHICH_Duration type of PHICHduration :Normal_Duration,Extended_Duration

Normal_Duration Enumeration NO

PHICH_Ng type of PHICHduration : Ng 1/6,Ng 1/2, Ng 1, Ng 2

Ng 1/6 Enumeration NO

ShowPowerParameters show power-relatedparameters: NO,YES

YES Enumeration NO

PCFICH_Rb PCFICH-to-RSEPRE ratio in dB insymbols with RS

0 Float NO

PHICH_Ra PHICH-to-RS EPREratio in dB insymbols with RS

0 Float NO

PHICH_Rb PHICH-to-RS EPREratio in dB insymbols withoutRS

0 Float NO

PBCH_Ra PBCH-to-RS EPREratio in dB insymbols with RS

0 Float NO

PBCH_Rb PBCH-to-RS EPREratio in dB insymbols withoutRS

0 Float NO

PDCCH_Ra PDCCH-to-RSEPRE ratio in dB insymbols with RS

0 Float NO

Page 243: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

242

PDCCH_Rb PDCCH-to-RSEPRE ratio in dB insymbols withoutRS

0 Float NO

PDSCH_PowerRatio PDSCH CellSpecific Ratio:p_B/p_A = 1, P_B= 0, P_B = 1, P_B= 2, P_B = 3

p_B/p_A = 1 Enumeration NO

UEs_Pa UE specific powerparameter foreach UE

[0,0,0,0,0,0] none Floatingpoint array

NO

PSS_Ra PSS-to-RS EPREratio in dB insymbols withoutRS

0.65 none Float NO

SSS_Ra SSS-to-RS EPREratio in dB insymbols withoutRS

0.65 Float NO

ShowRxAlgorithmParameters show parametersfor LTE downlinkreceiver algorithm:NO, YES

YES Enumeration NO

PreDownsampling whether pre-downsampling to1X symbol: NO,YES

NO Enumeration NO

ReceiverDelay receiver delay (One frame delay isfor non-HARQ;One subframedelay is for closed-loop HARQ.: Oneframe delay(10ms), Onesubframe delay(1ms)

One subframe delay (1ms) Enumeration NO

SearchType start a new timingand frequencesynchronizationsearch for everyframe or not:Search everyframe,Search+Track

Search+Track Enumeration NO

SearchRange timing andfrequencesynchronizationsearching rangefor the first frame

0.003 s Float NO

TrackRange timing andfrequencesynchronizationtracking range forthe frames exceptthe first frame,valid whenSearchType is setto Search+Track

0 s Float NO

FreqSync frequencyestimation rangeselect: non, lessthan 100Hz, lessthan 15kHz, lessthan 45kHz

non Enumeration NO

ChEstimatorMode mode ofinterpolationalgorithm inchannel estimator:Linear, MMSE_2D,For EVM

Linear Enumeration NO

MMSE_RBWinLen number of RBs foreach MMSE-2Dinterpolation

3 Integer NO

SNR SNR in dB. (usedby 2D-MMSEchannel estimatorin PDSCH)

15 Float NO

Tmax the maximumdelay of multi-pathchannel. (used by2D-MMSE channelestimator inPDSCH)

0 s Float NO

Page 244: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

243

Fmax the maximumdoppler frequency.(used by 2D-MMSEchannel estimatorin PDSCH)

100 Hz Float NO

Sym_StartPos start position(withoutoversampling) toget the OFDMsymbol for FFToperation for longCP and short CPsymbolsrespectively,compared to thestart position ofthe OFDM bodyafter CP

[-3,-3] Integerarray

NO

DemapperType symboldemodulationtype: Hard, Soft,CSI

Soft Enumeration NO

DemapperMaxLevel the maximumlevel for softdemapping outputwhenDemapperType isSoft or CSI

1 Float NO

TC_Iteration Turbo decoderiteration number

4 Float NO

Input Ports

Port Name Description Signal Type Optional

1 Ants_TD Input of received IQ data complex NO

Output Ports

Port Name Description Signal Type Optional

2 UE1_RawBits Output of UE1 information (raw) bits (non-Matrix-based) int NO

3 UE1_ChannelBits Output of UE1 channel bits (non-Matrix-based) int NO

4 UE1_ModSymbols Output of UE1 Matrix-based (subframe-based)modulation symbols

complexmatrix

NO

5 UE2_ModSymbols Output of UE2 Matrix-based (subframe-based)modulation symbols

complexmatrix

NO

6 UE3_ModSymbols Output of UE3 Matrix-based (subframe-based)modulation symbols

complexmatrix

NO

7 UE4_ModSymbols Output of UE4 Matrix-based (subframe-based)modulation symbols

complexmatrix

NO

8 UE5_ModSymbols Output of UE5 Matrix-based (subframe-based)modulation symbols

complexmatrix

NO

9 UE6_ModSymbols Output of UE6 Matrix-based (subframe-based)modulation symbols

complexmatrix

NO

10 PDCCH_ModSymbols Output of PDCCH Matrix-based (subframe-based)modulation symbols

complexmatrix

NO

11 PHICH_ModSymbols Output of PHICH Matrix-based (subframe-based)modulation symbols

complexmatrix

NO

12 PCFICH_ModSymbols Output of PCFICH Matrix-based (subframe-based)modulation symbols

complexmatrix

NO

13 PBCH_ModSymbols Output of PBCH Matrix-based (subframe-based)modulation symbols

complexmatrix

NO

14 SSS_ModSymbols Output of SSS Matrix-based (subframe-based)modulation symbols

complexmatrix

NO

15 PSS_ModSymbols Output of PSS Matrix-based (subframe-based)modulation symbols

complexmatrix

NO

16 DataOut Output of demodulated frequency data complex NO

17 UE1_HARQ_Bits Output of UE1 HARQ ACK/NACK bits int NO

18 UE1_TBS Output of UE1 transparent block size for each subframe int NO

Parameters Details

For System Parameters details please refer to DL System Parameters (ltebasever).For UE1 Parameters details details refer to DL UE1 Parameters (ltebasever).For OtherUEs Parameters details please refer to DL OtherUEs Parameters(ltebasever).For Control Channel Parameters details please refer to DL Control ChannelParameters (ltebasever).For Power Parameters details please refer to DL Power Parameters (ltebasever).Rx Algorithm Parameters Details:PreDownsampling: Is the pre-downsampling to 1X symbol rate or not? If

Page 245: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

244

PreDownsampling=YES, LTE_DL_DemuxFrame outputs the radio frame withoversampling ratio 1 and the FFT size in LTE_DL_OFDM_Demodulator is just the basicsize defined in the specification. This setting can save some resources and speed upthe simulation. If PreDownsampling=NO, LTE_DL_DemuxFrame outputs the radioframe with oversampling ratio and the FFT size in LTE_DL_OFDM_Demodulator is thebasic size (defined in the specification) multiply oversampling ratio (defined in the toplevel model).

When PreDownsampling = YES, the downsampling operation is performed inside this receiver. Notethat there is no internal anti-aliasing filter provided by the receiver. Users need to add external anti-aliasing filter to make sure no aliasing occurs when downsampling.

ReceiverDelay: the delay introduced in the receiver, selected from one-frame delayand one-subframe delay. If the receiver is used in closed-loop HARQ simulation, thisparameter should be set to 'One subframe delay (1ms)'; for other simulation (non-HARQ simulation and EVM measurements), this parameter should be set to 'Oneframe delay (10ms)'. This parameter affects the behavior of the timing and frequencysynchronization. For more information on how the timing and frequencysynchronization performs in both modes, refer to LTE_DL_TimeFreqSync(ltebasever).SearchType: the search type for the timing synchronization. When SearchType =Search every frame, the complete search is performed for each frame, whose searchrange is defined in SearchRange; When SearchType = Search+Track, the first frameperforms the complete search whose search range is defined in SearchRange, therest frames perform the tracking search whose search range is defined inTrackRange. This parameter is valid only when ReceiverDelay = 'One frame delay(10ms)'.SearchRange: search range for all frames when SearchType = Search every frame,and for the first frame when SearchType = Search+Track. This parameter is validonly when ReceiverDelay = 'One frame delay (10ms)'.TrackRange: tracking range for the rest frames when SearchType = Search+Track.This parameter is valid only when ReceiverDelay = 'One frame delay (10ms)'.FreqSync: frequency synchronization range, chosen from non, <100Hz, <15kHz,<35kHz.ChEstimatorMode: channel estimation modes, chosen from Linear, MMSE_2D, ForEVM. When For EVM is selected, the estimation process defined in E.6 of [2] isemployed.MMSE_RBWinLen: the number of RBs included to perform MMSE 2D estimation, validwhen ChEstimatorMode = MMSE_2D.SNR: the signal noise ratio at each receiver antenna in dB for PDSCHs. Thisparameter is useful for the channel estimator.Tmax: the maximum echo delay in multi-path channel. This parameter is useful forthe channel estimator.Fmax: the maximum Doppler frequency. This parameter is useful for the channelestimator.

Generally speaking, MMSE_2D channel estimator provides better BER/FER performance than1.Linear channel estimator, but it is more complicated at the same time. It requires morememory and costs more simulation time. If you just want to get a quick result but don’t caremuch about the performance, Linear channel estimator would be a good choice.If ChEstimatorMode is selected as MMSE_2D, SNR should be set as the signal to noise ratio2.in dB, Tmax should be set as the maximum delay of the channel, and Fmax should be set asthe maximum doppler frequency. For example,

In EPA5 channel, SNR should equal the actual SNR, Tmax should equal 0.41μs, andFmax should equal 5Hz.In AWGN channel, SNR should equal the actual SNR, Tmax and Fmax should be set tosmall values, e.g. 1e-8s and 0.01Hz respectively.In connected solution, SNR can be set as a relatively large value e.g. 20dB, while Tmaxand Fmax should be set to small values.

MMSE_RBWinLen indicates the number of RBs for each MMSE_2D interpolation. Obviously,3.it is only active when ChEstimatorMode is selected as MMSE_2D. This parameter impactsthe complexity of the channel estimator. Larger MMSE_RBWinLen increases the computationcomplexity but not always leads to better performance. It depends on the channelcharacteristic. The default value 3 or 5 would work efficiently at most of the time.

Sym_StartPos: start position (without oversampling) to get the OFDM symbol for FFToperation for long CP and short CP symbols respectively, compared to the startposition of the OFDM body after CP. The first value is for Long CP and the second isfor Short CP. For more information, refer to DL Demux Slot (ltebasever).DemapperType: the type of Demapper, chosen from Hard, Soft and CSI. CSI(Channel State Information) is a channel estimate profile. Generally, the decoderwith CSI has best performance while the decoder with Hard has worst performance.DemapperMaxLevel: the level of the output soft bits after Demapper which arerestricted in the range [-DemapperMaxLevel, DemapperMaxLevel], valid whenDemapperType is soft and CSI.

Usually, DemapperMaxLevel is set to 100.0 for QPSK and 1.0 for 16QAM and 64QAM.

TC_Iteration: the number of iterations for Turbo decoder.

Notes/Equations

Page 246: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

245

This subnetwork completes 3GPP LTE downlink FDD/TDD baseband receiver.1.The LTE_DL_Receiver schematic is shown below:2.

The description of input and output ports are shown below.3.The number of input receiver antennas in this receiver is fixed to 1.4.In this receiver, the data type in most input/output ports are matrix which should be5.column vector (i.e the matrix size should be Nx1, N is the size of vector). Refer toMatrix-based Ports (ltebasever) for more information.LTE_DL_TimeFreqSync component is for timing and frequency synchronization by6.using P-SCH time domain signal and outputs synchronization index and estimatedsmall frequency offset. The integer frequency offset is further estimated in thefrequency domain S-SCH. Both synchronization index and estimated frequency offsetare input to LTE_DL_DemuxFrame.First, LTE_DL_DemuxFrame compensates frequency offset by using the estimated7.frequency offset. Then, it outputs the real radio frame by using synchronization. Thismodel causes one frame radio delay or one subframe delay determined by theReceiverDelay parameter.One radio frame (10 ms) includes 20 slots. LTE_DL_DemuxSlot is used to demultiplex8.one slot into seven or six OFDM symbols by removing cyclic prefix.The position to select OFDM useful symbols is determined by Sym_StartPos. There9.are 7 OFDM symbols for Normal Cyclic Prefix and 6 OFDM symbols for ExtendedCyclic Prefix.Then, LTE_OFDM_Demodulator transfers input time domain signals into frequency10.domain signal by FFT procedure. The demodulated signals are generated by removingNULL subcarriers and exchanging plus frequency subcarriers and minus frequencysubcarriers.The demodulated signals are input to LTE_DL_ChEstimator to get channel impulse11.response (CIR) for each active subcarrier. LTE_DL_ChEstimator has three estimationmodes: linear, MMSE_2D and For_EVM.After obtaining the CIR of each active subcarrier in each OFDM symbols, the12.frequency domain equalizer (one tap) or channel compensator can be used.The demodulated OFDM symbol can be achieved by this frequency domain equalizer.13.LTE_DL_DemuxOFDMSym demultiplexes the demodulated OFDM symbols (in oneradio frame) into P-SCH, S-SCH, BCH, PCFICH, PDCCH and six UEs (PDSCHs)modulation symbols and output all these signals.For UE 1 (PDSCH 1), the modulation symbols are demapped in LTE_Demapper with14.three methods: Hard, Soft and CSI, results in received channel bits which are outputat port UE1_ChannelBits.The demapped bits are delivered to LTE_DL_ChannelDecoder in which the de-15.scrambler, rate de-matching, Turbo decoder, code block de-segmentation and CRCdecoder are performed. For UE 1, it can be set to closed-loop HARQ transmission ornon-HARQ transmission by the UE1_HARQ_Enable parameter. For more information,refer to Closed-loop HARQ Transmission (ltebasever). When closed-loop HARQtransmission is enabled, the HARQ ACK/NACK bits are feedbacked fromLTE_CRCDecoder to control the behavior of LTE_DL_ChannelDecoder component. Atlast the received transport block bits are output at port UE1_RawBits.For UE 2 to UE 6 (PDSCH 2 to PDSCH 6), only complex-valued modulation symbols16.from LTE_DL_DemuxOFDMSym are output.Description of input and output ports.17.For each firing,One Matrix-based token is produced at ports with the postfix ModSymbols, in whichthe complex-valued modulation symbols for this UE for each subframe (firing) areoutput. The corresponding matrix vector size for each subframe (firing) is described

Page 247: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

246

in LTE_DL_MuxOFDMSym.The outputs at port UE1_ChannelBits are the channel bits for UE 1 (PDSCH 1) whichare the output of demapper. These outputs are the received bits for uncoded BER andPER measurement.The outputs at port UE1_RawBits are the decoded transport block bits for UE 1(PDSCH 1). These outputs are the received bits for coded BER and PERmeasurement.The outputs at port DataOut are the frequency subcarrier data without power scaling.One token is produced at port UE1_HARQ_Bits for each firing.One token is produced at port UE1_TBS for each firing.

When ReceiverDelay='One frame delay (10ms)', one frame delay is introduced in all output ports.More specifically,1. The number of tokens delayed in UE1_RawBits port is the number of raw bits (transport blocksizes) in one radio frame.2. The number of tokens delayed in UE1_ChannelBits port is the number of channel bits in one radioframe3. The number of tokens delayed in DataOut port is the total number of useful resource elements inone radio frame4. For other ports, the number of tokens delayed is 10 (the number of subframes per one radioframe).When ReceiverDelay='One subframe delay (1ms)',1. No token is delayed in UE1_RawBits port.2. No token is delayed in UE1_ChannelBits port.3. The number of tokens delayed in DataOut port is the total number of useful resource elements inone subframe4. For other ports, the number of tokens delayed is 1 (one subframe delay).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.104 v8.7.0 "Base Station (BS) radio transmission and reception",2.September 2009.TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access3.(UTRA),", V7.0.0, June 2006.

Page 248: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

247

LTE_UL_MIMO_2Ant_Rcv Part Uplink baseband receiver with two antennas (receiver diversity)

Categories: Receiver (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model

LTE_UL_MIMO_2Ant_Rcv (ltebasever)

LTE_UL_MIMO_2Ant_Rcv

Description: Uplink baseband receiver with two antennas (receiver diversity)Associated Parts: LTE UL MIMO 2Ant Rcv Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

ShowSystemParameters show system parameters forLTE uplink signals: NO, YES

YES none Enumeration NO

FrameMode frame mode: FDD, TDD FDD none Enumeration NO

TDD_Config downlink and uplink allocationsfor TDD: Config 0, Config 1,Config 2, Config 3, Config 4,Config 5, Config 6

Config 0 none Enumeration NO

SpecialSF_Config special subframe configurationfor TDD: Config 0, Config 1,Config 2, Config 3, Config 4,Config 5, Config 6, Config 7,Config 8

Config 4 none Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3MHz, BW 5 MHz, BW 10 MHz,BW 15 MHz, BW 20 MHz

BW 5 MHz none Enumeration NO

OversamplingOption oversampling ratio option:Ratio 1, Ratio 2, Ratio 4, Ratio8

Ratio 2 none Enumeration NO

CyclicPrefix type of cyclic prefix: Normal,Extended

Normal none Enumeration NO

CellID_Sector the index of cell identity withinthe physical-layer cell-identitygroup ([0, 2])

0 none Integer NO

CellID_Group the index of cell identity group([0, 167])

0 none Integer NO

n_RNTI radio network temporaryidentifier ([0, 65535])

0 none Integer NO

HalfCarrierShift_Enable whether or not to enable 1/2subcarrier shifting: NO, YES

YES none Enumeration NO

FrameNum frame number ([0, inf)) 0 none Integer NO

FrameIncreased frame number increasing ornot: NO, YES

NO none Enumeration NO

DL_CyclicPrefix type of cyclic prefix indownlink: Normal, Extended

Normal none Enumeration NO

Page 249: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

248

ShowPUSCH_Parameters show PUSCH parameters forLTE uplink signals: NO, YES

YES none Enumeration NO

PUCCH_PUSCH PUCCH and PUSCH selection:PUSCH, PUCCH, both

PUSCH none Enumeration NO

HARQ_Enable whether enable HARQ or not:NO, YES

YES Enumeration NO

NumHARQ Number of HARQ processes 8 Integer NO

MaxHARQTrans Maximum number of HARQtransmission per each HARQprocess

4 Integer NO

Payload_Config the configuration mode ofinput data of PUSCH.: MCSindex, Transport block size,Code rate

Transport blocksize

none Enumeration NO

Payload the input payload for PUSCH,the meaning of the input isdefined in Payload_Config

[2555, 2555,2555, 2555,2555, 2555,2555, 2555,2555, 2555]

none Floatingpoint array

NO

Enable64QAM indicates whether 64QAM isallowed in uplink: NO, YES

YES Enumeration NO

MappingType the modulation orders for thePUSCH in each subframe.(0:QPSK, 1:16QAM, 2:64QAM)

[0, 0, 0, 0, 0, 0,0, 0, 0, 0]

none Integerarray

NO

RV_Sequence Redundancy Version Index ([0,3])

[0,1,2,3] none Integerarray

NO

DFTSwap_Enable PUSCH DFT swap is enable:NO, YES

NO none Enumeration NO

PUSCH_HoppingEnable whether PUSCH frequency-hopping is enabled or not: NO,YES

NO none Enumeration NO

PUSCH_HoppingMode PUSCH frequency hoppingmode: interSubFrame,intraAndInterSubFrame

interSubFrame none Enumeration NO

PUSCH_HoppingOffset the offset used for PUSCHfrequency hopping ([0, 63])

0 none Integer NO

PUSCH_Hopping_Nsb number of sub-bands forPUSCH frequency hopping ([1,4])

1 none Integer NO

PUSCH_HoppingBits information in PUSCH hoppingbits: 0 or 00, 1 or 01, 10, 11

0 or 00 none Enumeration NO

PUSCH_TransMode whether control and data aresent via PUSCH: Data andControl Multiplexing, DataOnly, Control Only

Data and ControlMultiplexing

Enumeration NO

RB_AllocType RB allocation type: StartRB +NumRBs, RB indices (1D), RBindices (2D)

StartRB +NumRBs

none Enumeration NO

RB_Alloc the RB allocation for PUSCH, inthe fomats of [start RB,number of RBs] or[SF0 startRB, SF0 number of RBs; ...;SF9 start RB, SF9 number ofRBs]

[0, 25] none Integerarray

NO

GroupHop_Enable whether enable group hoppingfor DMRS on PUCCH andPUSCH or not: NO, YES

NO none Enumeration NO

SeqHop_Enable whether enable sequencehopping for DMRS on PUSCHor not: NO, YES

NO none Enumeration NO

PUSCH_Delta_ss used in determining thesequence-shift pattern forPUSCH ([0, 29])

0 none Integer NO

PUSCH_n_DMRS1 used in computing the cyclicshift for PUSCH DMRS

[0] none Integerarray

NO

PUSCH_n_DMRS2 used in computing the cyclicshift for PUSCH DMRS

[0] none Integerarray

NO

ShowPUCCH_Parameters show PUCCH parameters forLTE uplink signals: NO, YES

YES none Enumeration NO

PUCCH_Format PUCCH format: Format 1,Format 1a, Format 1b,Shortened 1, Shortened 1a,Shortened 1b, Format 2,Format 2a, Format 2b

Format 1 none Enumeration NO

PUCCH_NumCQIBits number of CQI bits for PUCCHformat 2/2a/2b

5 Integer NO

PUCCH_NumHARQACKBits number of HARQ-ACK bits forPUCCH format 2 in ExtendedCP mode: 1 bit, 2 bits

1 bit Enumeration NO

PUCCH_Delta_shift used to calculate PUCCH cyclicshift Alfa ([1, 3])

2 none Integer NO

Page 250: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

249

PUCCH_SF_Alloc which sub frames contain thePUCCH, valid whenPUCCH_PUSCH is other thanPUSCH ([0, 9])

[2] none Integerarray

NO

PUCCH_NRB2 number of RBs used fortransmisstion PUCCH format2/2a/2b ([0, 99])

1 none Integer NO

PUCCH_n1 resources used fortransmisstion PUCCH format1/1a/1b ([0, 12*100-1])

11 none Integer NO

PUCCH_n2 resources used fortransmission PUCCH format2/2a/2b ([0, 12*PUCCH_NB2-1])

11 none Integer NO

ShowPRACH_Parameters show PRACH parameters forLTE uplink signals: NO, YES

YES none Enumeration NO

PRACH_Enable whether or not to enablePRACH: NO, YES

NO none Enumeration NO

PRACH_Config PRACH configuration index ([0,63])

0 none Integer NO

PRACH_ResourceIndex the PRACH Resource Index. InFDD, it indicates the subframenumber where the preamblestarts; in TDD, it indicates thepreamble mapping in time andfrequency ([0, 9])

[1] none Integerarray

NO

PRACH_PrmbleIndex preamble indexes, used toselect preamble sequencesfrom 64 preambles available inthis cell ([0, 63])

[0] none Integerarray

NO

PRACH_RBOffset PRACH frequency offset, thefirst RB available for PRACH([0, 94])

0 none Integer NO

PRACH_LogicalIndex logical index of root ZCsequence ([0, 837])

0 none Integer NO

PRACH_Ncs cyclic shifts of ZC sequence([0, 15])

0 none Integer NO

PRACH_HS_flag high speed flag: NO, YES NO none Enumeration NO

ShowSRS_Parameters show SRS parameters for LTEuplink signals: NO, YES

YES none Enumeration NO

SRS_Enable sounding reference symbol isenable: NO, YES

NO none Enumeration NO

SRS_BandwidthConfig the cell-specific SRSbandwidth configuration ([0,7])

7 none Integer NO

SRS_SF_Config the cell-specific SRS subframeconfiguration ([0, 14])

0 none Integer NO

SRS_MaxUpPts whether enable thereconfiguration of maximumm_SRS_0 or not ([0, 15]):NO, YES

NO none Enumeration NO

SRS_Bandwidth the UE-specific SRS bandwidth([0, 3])

0 none Integer NO

SRS_HoppingBandwidth the SRS hopping bandwidth([0, 3])

3 none Integer NO

SRS_FreqPosition the SRS frequency domainposition ([0, 23])

0 none Integer NO

SRS_ConfigIndex the UE-specific SRSconfiguration ([0, 1023])

0 none Integer NO

SRS_TransmissionComb transmission comb ([0, 1]) 0 none Integer NO

SRS_CyclicShift used in computing the cyclicshift of SRS ([0, 7])

0 none Integer NO

ShowPowerParameters show power-relatedparameters: NO, YES

YES none Enumeration NO

PUSCH_PwrOffset the power offset in dB forPUSCH ((-inf, +inf))

0 none Float NO

PUSCH_RS_PwrOffset the power offset in dB forPUSCH RS ((-inf, +inf))

0 none Float NO

PUCCH_PwrOffset the power offset in dB forPUCCH ((-inf, +inf))

0 none Float NO

PUCCH_RS_PwrOffset the power offset in dB forPUCCH RS ((-inf, +inf))

0 none Float NO

PRACH_PwrOffset the power offset in dB forPRACH ((-inf, +inf))

0 none Float NO

SRS_PwrOffset the power offset in dB for SRS((-inf, +inf))

0 none Float NO

ShowControlInfoParameters show control informationparameters for LTE uplinksignals: NO, YES

YES none Enumeration NO

Page 251: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

250

RI_NumInfoBits number of RI infomation bits([0,2])

[0] Integerarray

NO

RI_BetaOffsetIndex RI offset values, used incalculating the number ofcoded RI symbols

[0] Integerarray

NO

CQI_NumInfoBits CQI information bits size [0] Integerarray

NO

CQI_BetaOffsetIndex CQI offset values, used incalculating the number ofcoded CQI symbols

[2] Integerarray

NO

HARQACK_NumInfoBits HARQ-ACK information bitssize

[0] Integerarray

NO

HARQACK_BetaOffsetIndex HARQ-ACK offset values, usedin calculating the number ofcoded HARQ-ACK symbols

[0] Integerarray

NO

ShowRxAlgorithmParameters show parameters for LTEuplink receiver algorithm: NO,YES

YES none Enumeration NO

IQ_Offset_Correct whether or not to correct IQoffset: NO, YES

YES none Enumeration NO

PreDownsampling pre-downsampling to 1Xsymbol rate: NO, YES

NO none Enumeration NO

ReceiverDelay receiver delay ( One framedelay is for non-HARQ; Onesubframe delay is for closed-loop HARQ.: One frame delay(10ms), One subframe delay(1ms)

One subframedelay (1ms)

Enumeration NO

Sym_StartPos the start position of thenegative offset value to the CPlength(without oversampling)to get the OFDM symbol forFFT operation

[-3,-3] none Integerarray

NO

ChEstimatorMode mode of interpolationalgorithm in channelestimator: Linear, MMSE

Linear none Enumeration NO

SNR SNR in dB. (used by MMSEchannel estimator in PUSCH)((-inf:inf))

15 none Float NO

Tmax the maximum delay of multi-path channel. (used by MMSEchannel estimator in PUSCH)([0:inf))

0 s Float NO

Fmax the maximum dopplerfrequency. (used by MMSEchannel estimator in PUSCH)([0:inf))

100 Hz Float NO

DemapperType symbol demodulation type:Hard, Soft

Soft none Enumeration NO

DemapperMaxLevel the maximum level for softdemapping output whenDemapperType is Soft or CSI((0:inf))

1 none Float NO

TC_Iteration Turbo decoder iterationnumber ([1:20])

4 none Integer NO

DesiredTimingFreqSync whether use given timing andfrequence offsets below: NO,YES

NO Enumeration NO

DesiredDelay the desired timing offset 0 Integer NO

DesiredFreq the desired frequence offset 0 Float NO

NullingThreshold threshold to null subcarriers infrequence domain, in range[0:inf)

0.1 Float NO

Input Ports

Port Name Description Signal Type Optional

1 Ant1_TD Input receiverd uplinksignal

complex NO

13 Ant2_TD Input receiverd uplinksignal

complex NO

Output Ports

Page 252: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

251

Port Name Description SignalType

Optional

2 UE_RawBits Output PUSCH information (raw) bits after channeldecoding

int NO

3 PUSCH_ChannelBits Output channel bits int NO

4 RI_Out Output RI bits (matrix based) after channel deinterleaving(not decoded yet)

int matrix NO

5 HARQACK_Out Output HARQ-ACK bits (matrix based) after channeldeinterleaving (not decoded yet)

int matrix NO

6 CQI_Out Output CQI bits (matrix based) after channeldeinterleaving (not decoded yet)

int matrix NO

7 PUSCH_ModSymbols Output PUSCH modulation symbols in time domain complexmatrix

NO

8 PUSCH_FD Output PUSCH signal in frequency domain complexmatrix

NO

9 PUCCH_Sym Output PUCCH signal in frequency domain complexmatrix

NO

10 FRM_FD Output frame signal in frequency domain complex NO

11 HARQ_Bits Output HARQ ACK/NACK bits int NO

12 TBS Output transport block size for each subframe int NO

Parameters Details

For more information on the System Parameters details please refer to UL System Parameters(ltebasever).For more information on the PUSCH Parameters details please refer to UL PUSCH Parameters(ltebasever).For more information on the PUCCH Parameters details please refer to UL PUCCH Parameters(ltebasever).For more information on the PRACH Parameters details please refer to UL PRACH Parameters(ltebasever).For more information on the SRS Parameters details please refer to UL SRS Parameters(ltebasever).For more information on the Power Parameters details please refer to UL Power Parameters(ltebasever).For more information on the Control Parameters details please refer to UL Control InformationParameters (ltebasever).

Rx Algorithm Parameters Details:

DesiredTimingFreqSync: If no, the timing index and frequency offset areautomatically estimated inside LTE receiver. Otherwise these two values are readfrom the DesiredDelay and DesiredFreq below respectively.DesiredDelay: specify the desired timing index (in unit of samples) whenDesiredTimingFreqSync is set to YES.DesiredFreq: specify the desired frequency offset (in unit of Hz) whenDesiredTimingFreqSync is set to YES.NullingThreshold: specify the threshold for nulling the data in resource elemetns(subcarriers) in frequency domain. If the resource elemetns have the power less thanMeanPwr*NullingThreshold, the equalized data will be set to 0, where MeanPwr is themean power in one subframe.For the other Rx Algorithm parameters, refer to LTE UL Receiver (ltebasever).

Notes/Equations

This subnetwork constructs 3GPP LTE uplink baseband receiver with two receiver1.antennas for both frame structure type 1 and frame structure type 2.The LTE_UL_MIMO_2Ant_Rcv schematic is shown below:2.

Page 253: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

252

This subnetwork model performs the same functionality as LTE UL Receiver3.(ltebasever). The only exception is that the number of receiver antenna ports is 2with receiver diversity. So two independent branches exist in this model, includingtiming/frequency synchronization, frame demux, slot demux, OFDM demodulator,and channel estimator. These two branch data are combined together inLTE_UL_ChEqualizer by employing maximal ratio combining (MRC) method. Theprocesses after LTE_UL_ChEqualizer is the same as in LTE_UL_Receiver.Note that since LTE uplink does not support multiple transmit antenna ports, this4.model is only used in UL receiver diversity mode with two receiver antennas.Refer to LTE UL Receiver (ltebasever).5.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.

Page 254: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

253

LTE_UL_MIMO_4Ant_Rcv Part Uplink baseband receiver with four antennas (receiver diversity)

Categories: Receiver (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model

LTE_UL_MIMO_4Ant_Rcv (ltebasever)

LTE_UL_MIMO_4Ant_Rcv

Description: Uplink baseband receiver with four antennas (receiver diversity)Associated Parts: LTE UL MIMO 4Ant Rcv Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

ShowSystemParameters show system parameters forLTE uplink signals: NO, YES

YES none Enumeration NO

FrameMode frame mode: FDD, TDD FDD none Enumeration NO

TDD_Config downlink and uplink allocationsfor TDD: Config 0, Config 1,Config 2, Config 3, Config 4,Config 5, Config 6

Config 0 none Enumeration NO

SpecialSF_Config special subframe configurationfor TDD: Config 0, Config 1,Config 2, Config 3, Config 4,Config 5, Config 6, Config 7,Config 8

Config 4 none Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3MHz, BW 5 MHz, BW 10 MHz,BW 15 MHz, BW 20 MHz

BW 5 MHz none Enumeration NO

OversamplingOption oversampling ratio option:Ratio 1, Ratio 2, Ratio 4, Ratio8

Ratio 2 none Enumeration NO

CyclicPrefix type of cyclic prefix: Normal,Extended

Normal none Enumeration NO

CellID_Sector the index of cell identity withinthe physical-layer cell-identitygroup ([0, 2])

0 none Integer NO

CellID_Group the index of cell identity group([0, 167])

0 none Integer NO

n_RNTI radio network temporaryidentifier ([0, 65535])

0 none Integer NO

HalfCarrierShift_Enable whether or not to enable 1/2subcarrier shifting: NO, YES

YES none Enumeration NO

FrameNum frame number ([0, inf)) 0 none Integer NO

FrameIncreased frame number increasing ornot: NO, YES

NO none Enumeration NO

DL_CyclicPrefix type of cyclic prefix indownlink: Normal, Extended

Normal none Enumeration NO

ShowPUSCH_Parameters show PUSCH parameters for YES none Enumeration NO

Page 255: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

254

LTE uplink signals: NO, YES

PUCCH_PUSCH PUCCH and PUSCH selection:PUSCH, PUCCH, both

PUSCH none Enumeration NO

HARQ_Enable whether enable HARQ or not:NO, YES

YES Enumeration NO

NumHARQ Number of HARQ processes 8 Integer NO

MaxHARQTrans Maximum number of HARQtransmission per each HARQprocess

4 Integer NO

Payload_Config the configuration mode ofinput data of PUSCH.: MCSindex, Transport block size,Code rate

Transport blocksize

none Enumeration NO

Payload the input payload for PUSCH,the meaning of the input isdefined in Payload_Config

[2555, 2555,2555, 2555,2555, 2555,2555, 2555,2555, 2555]

none Floatingpoint array

NO

Enable64QAM indicates whether 64QAM isallowed in uplink: NO, YES

YES Enumeration NO

MappingType the modulation orders for thePUSCH in each subframe.(0:QPSK, 1:16QAM, 2:64QAM)

[0, 0, 0, 0, 0, 0,0, 0, 0, 0]

none Integerarray

NO

RV_Sequence Redundancy Version Index ([0,3])

[0,1,2,3] none Integerarray

NO

DFTSwap_Enable PUSCH DFT swap is enable:NO, YES

NO none Enumeration NO

PUSCH_HoppingEnable whether PUSCH frequency-hopping is enabled or not: NO,YES

NO none Enumeration NO

PUSCH_HoppingMode PUSCH frequency hoppingmode: interSubFrame,intraAndInterSubFrame

interSubFrame none Enumeration NO

PUSCH_HoppingOffset the offset used for PUSCHfrequency hopping ([0, 63])

0 none Integer NO

PUSCH_Hopping_Nsb number of sub-bands forPUSCH frequency hopping ([1,4])

1 none Integer NO

PUSCH_HoppingBits information in PUSCH hoppingbits: 0 or 00, 1 or 01, 10, 11

0 or 00 none Enumeration NO

PUSCH_TransMode whether control and data aresent via PUSCH: Data andControl Multiplexing, DataOnly, Control Only

Data and ControlMultiplexing

Enumeration NO

RB_AllocType RB allocation type: StartRB +NumRBs, RB indices (1D), RBindices (2D)

StartRB +NumRBs

none Enumeration NO

RB_Alloc the RB allocation for PUSCH, inthe fomats of [start RB,number of RBs] or[SF0 startRB, SF0 number of RBs; ...;SF9 start RB, SF9 number ofRBs]

[0, 25] none Integerarray

NO

GroupHop_Enable whether enable group hoppingfor DMRS on PUCCH andPUSCH or not: NO, YES

NO none Enumeration NO

SeqHop_Enable whether enable sequencehopping for DMRS on PUSCHor not: NO, YES

NO none Enumeration NO

PUSCH_Delta_ss used in determining thesequence-shift pattern forPUSCH ([0, 29])

0 none Integer NO

PUSCH_n_DMRS1 used in computing the cyclicshift for PUSCH DMRS

[0] none Integerarray

NO

PUSCH_n_DMRS2 used in computing the cyclicshift for PUSCH DMRS

[0] none Integerarray

NO

ShowPUCCH_Parameters show PUCCH parameters forLTE uplink signals: NO, YES

YES none Enumeration NO

PUCCH_Format PUCCH format: Format 1,Format 1a, Format 1b,Shortened 1, Shortened 1a,Shortened 1b, Format 2,Format 2a, Format 2b

Format 1 none Enumeration NO

PUCCH_NumCQIBits number of CQI bits for PUCCHformat 2/2a/2b

5 Integer NO

PUCCH_NumHARQACKBits number of HARQ-ACK bits forPUCCH format 2 in ExtendedCP mode: 1 bit, 2 bits

1 bit Enumeration NO

PUCCH_Delta_shift used to calculate PUCCH cyclicshift Alfa ([1, 3])

2 none Integer NO

Page 256: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

255

PUCCH_SF_Alloc which sub frames contain thePUCCH, valid whenPUCCH_PUSCH is other thanPUSCH ([0, 9])

[2] none Integerarray

NO

PUCCH_NRB2 number of RBs used fortransmisstion PUCCH format2/2a/2b ([0, 99])

1 none Integer NO

PUCCH_n1 resources used fortransmisstion PUCCH format1/1a/1b ([0, 12*100-1])

11 none Integer NO

PUCCH_n2 resources used fortransmission PUCCH format2/2a/2b ([0, 12*PUCCH_NB2-1])

11 none Integer NO

ShowPRACH_Parameters show PRACH parameters forLTE uplink signals: NO, YES

YES none Enumeration NO

PRACH_Enable whether or not to enablePRACH: NO, YES

NO none Enumeration NO

PRACH_Config PRACH configuration index ([0,63])

0 none Integer NO

PRACH_ResourceIndex the PRACH Resource Index. InFDD, it indicates the subframenumber where the preamblestarts; in TDD, it indicates thepreamble mapping in time andfrequency ([0, 9])

[1] none Integerarray

NO

PRACH_PrmbleIndex preamble indexes, used toselect preamble sequencesfrom 64 preambles available inthis cell ([0, 63])

[0] none Integerarray

NO

PRACH_RBOffset PRACH frequency offset, thefirst RB available for PRACH([0, 94])

0 none Integer NO

PRACH_LogicalIndex logical index of root ZCsequence ([0, 837])

0 none Integer NO

PRACH_Ncs cyclic shifts of ZC sequence([0, 15])

0 none Integer NO

PRACH_HS_flag high speed flag: NO, YES NO none Enumeration NO

ShowSRS_Parameters show SRS parameters for LTEuplink signals: NO, YES

YES none Enumeration NO

SRS_Enable sounding reference symbol isenable: NO, YES

NO none Enumeration NO

SRS_BandwidthConfig the cell-specific SRSbandwidth configuration ([0,7])

7 none Integer NO

SRS_SF_Config the cell-specific SRS subframeconfiguration ([0, 14])

0 none Integer NO

SRS_MaxUpPts whether enable thereconfiguration of maximumm_SRS_0 or not ([0, 15]):NO, YES

NO none Enumeration NO

SRS_Bandwidth the UE-specific SRS bandwidth([0, 3])

0 none Integer NO

SRS_HoppingBandwidth the SRS hopping bandwidth([0, 3])

3 none Integer NO

SRS_FreqPosition the SRS frequency domainposition ([0, 23])

0 none Integer NO

SRS_ConfigIndex the UE-specific SRSconfiguration ([0, 1023])

0 none Integer NO

SRS_TransmissionComb transmission comb ([0, 1]) 0 none Integer NO

SRS_CyclicShift used in computing the cyclicshift of SRS ([0, 7])

0 none Integer NO

ShowPowerParameters show power-relatedparameters: NO, YES

YES none Enumeration NO

PUSCH_PwrOffset the power offset in dB forPUSCH ((-inf, +inf))

0 none Float NO

PUSCH_RS_PwrOffset the power offset in dB forPUSCH RS ((-inf, +inf))

0 none Float NO

PUCCH_PwrOffset the power offset in dB forPUCCH ((-inf, +inf))

0 none Float NO

PUCCH_RS_PwrOffset the power offset in dB forPUCCH RS ((-inf, +inf))

0 none Float NO

PRACH_PwrOffset the power offset in dB forPRACH ((-inf, +inf))

0 none Float NO

SRS_PwrOffset the power offset in dB for SRS((-inf, +inf))

0 none Float NO

ShowControlInfoParameters show control informationparameters for LTE uplinksignals: NO, YES

YES none Enumeration NO

Page 257: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

256

RI_NumInfoBits number of RI infomation bits([0,2])

[0] Integerarray

NO

RI_BetaOffsetIndex RI offset values, used incalculating the number ofcoded RI symbols

[0] Integerarray

NO

CQI_NumInfoBits CQI information bits size [0] Integerarray

NO

CQI_BetaOffsetIndex CQI offset values, used incalculating the number ofcoded CQI symbols

[2] Integerarray

NO

HARQACK_NumInfoBits HARQ-ACK information bitssize

[0] Integerarray

NO

HARQACK_BetaOffsetIndex HARQ-ACK offset values, usedin calculating the number ofcoded HARQ-ACK symbols

[0] Integerarray

NO

ShowRxAlgorithmParameters show parameters for LTEuplink receiver algorithm: NO,YES

YES none Enumeration NO

IQ_Offset_Correct whether or not to correct IQoffset: NO, YES

YES none Enumeration NO

PreDownsampling pre-downsampling to 1Xsymbol rate: NO, YES

NO none Enumeration NO

ReceiverDelay receiver delay ( One framedelay is for non-HARQ; Onesubframe delay is for closed-loop HARQ.: One frame delay(10ms), One subframe delay(1ms)

One subframedelay (1ms)

Enumeration NO

Sym_StartPos the start position of thenegative offset value to the CPlength(without oversampling)to get the OFDM symbol forFFT operation

[-3,-3] none Integerarray

NO

ChEstimatorMode mode of interpolationalgorithm in channelestimator: Linear, MMSE

Linear none Enumeration NO

SNR SNR in dB. (used by MMSEchannel estimator in PUSCH)((-inf:inf))

15 none Float NO

Tmax the maximum delay of multi-path channel. (used by MMSEchannel estimator in PUSCH)([0:inf))

0 s Float NO

Fmax the maximum dopplerfrequency. (used by MMSEchannel estimator in PUSCH)([0:inf))

100 Hz Float NO

DemapperType symbol demodulation type:Hard, Soft

Soft none Enumeration NO

DemapperMaxLevel the maximum level for softdemapping output whenDemapperType is Soft or CSI((0:inf))

1 none Float NO

TC_Iteration Turbo decoder iterationnumber ([1:20])

4 none Integer NO

DesiredTimingFreqSync whether use given timing andfrequence offsets below: NO,YES

NO Enumeration NO

DesiredDelay the desired timing offset 0 Integer NO

DesiredFreq the desired frequence offset 0 Float NO

NullingThreshold threshold to null subcarriers infrequence domain, in range[0:inf)

0.1 Float NO

Input Ports

Port Name Description Signal Type Optional

1 Ant1_TD Input receiverd uplinksignal

complex NO

13 Ant2_TD Input receiverd uplinksignal

complex NO

14 Ant3_TD Input receiverd uplinksignal

complex NO

15 Ant4_TD Input receiverd uplinksignal

complex NO

Output Ports

Page 258: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

257

Port Name Description SignalType

Optional

2 UE_RawBits Output PUSCH information (raw) bits after channeldecoding

int NO

3 PUSCH_ChannelBits Output channel bits int NO

4 RI_Out Output RI bits (matrix based) after channel deinterleaving(not decoded yet)

int matrix NO

5 HARQACK_Out Output HARQ-ACK bits (matrix based) after channeldeinterleaving (not decoded yet)

int matrix NO

6 CQI_Out Output CQI bits (matrix based) after channeldeinterleaving (not decoded yet)

int matrix NO

7 PUSCH_ModSymbols Output PUSCH modulation symbols in time domain complexmatrix

NO

8 PUSCH_FD Output PUSCH signal in frequency domain complexmatrix

NO

9 PUCCH_Sym Output PUCCH signal in frequency domain complexmatrix

NO

10 FRM_FD Output frame signal in frequency domain complex NO

11 HARQ_Bits Output HARQ ACK/NACK bits int NO

12 TBS Output transport block size for each subframe int NO

Parameters Details

For more information on the System Parameters details please refer to UL System Parameters(ltebasever).For more information on the PUSCH Parameters details please refer to UL PUSCH Parameters(ltebasever).For more information on the PUCCH Parameters details please refer to UL PUCCH Parameters(ltebasever).For more information on the PRACH Parameters details please refer to UL PRACH Parameters(ltebasever).For more information on the SRS Parameters details please refer to UL SRS Parameters(ltebasever).For more information on the Power Parameters details please refer to UL Power Parameters(ltebasever).For more information on the Control Parameters details please refer to UL Control InformationParameters (ltebasever).

Rx Algorithm Parameters Details:

DesiredTimingFreqSync: If no, the timing index and frequency offset areautomatically estimated inside LTE receiver. Otherwise these two values are readfrom the DesiredDelay and DesiredFreq below respectively.DesiredDelay: specify the desired timing index (in unit of samples) whenDesiredTimingFreqSync is set to YES.DesiredFreq: specify the desired frequency offset (in unit of Hz) whenDesiredTimingFreqSync is set to YES.NullingThreshold: specify the threshold for nulling the data in resource elemetns(subcarriers) in frequency domain. If the resource elemetns have the power less thanMeanPwr*NullingThreshold, the equalized data will be set to 0, where MeanPwr is themean power in one subframe.For the other Rx Algorithm parameters, refer to LTE UL Receiver (ltebasever).

Notes/Equations

This subnetwork constructs 3GPP LTE uplink baseband receiver with four receiver1.antennas for both frame structure type 1 and frame structure type 2.The LTE_UL_MIMO_4Ant_Rcv schematic is shown below:2.

Page 259: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

258

This subnetwork model performs the same functionality as LTE UL Receiver3.(ltebasever). The only exception is that the number of receiver antenna ports is 4with receiver diversity. So four independent branches exist in this model, includingtiming/frequency synchronization, frame demux, slot demux, OFDM demodulator,and channel estimator. These four branch data are combined together inLTE_UL_ChEqualizer by employing maximal ratio combining (MRC) method. Theprocesses after LTE_UL_ChEqualizer is the same as in LTE_UL_Receiver.Note that since LTE uplink does not support multiple transmit antenna ports, this4.model is only used in UL receiver diversity mode with four receiver antennas.Refer to LTE UL Receiver (ltebasever).5.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.

Page 260: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

259

LTE_UL_Receiver Part Uplink baseband receiver

Categories: Receiver (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model

LTE_UL_Receiver (ltebasever)

LTE_UL_Receiver

Description: Uplink baseband receiverAssociated Parts: LTE UL Receiver Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

ShowSystemParameters show system parameters forLTE uplink signals: NO, YES

YES none Enumeration NO

FrameMode frame mode: FDD, TDD FDD none Enumeration NO

TDD_Config downlink and uplink allocationsfor TDD: Config 0, Config 1,Config 2, Config 3, Config 4,Config 5, Config 6

Config 0 none Enumeration NO

SpecialSF_Config special subframe configurationfor TDD: Config 0, Config 1,Config 2, Config 3, Config 4,Config 5, Config 6, Config 7,Config 8

Config 4 none Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3MHz, BW 5 MHz, BW 10 MHz,BW 15 MHz, BW 20 MHz

BW 5 MHz none Enumeration NO

OversamplingOption oversampling ratio option:Ratio 1, Ratio 2, Ratio 4, Ratio8

Ratio 2 none Enumeration NO

CyclicPrefix type of cyclic prefix: Normal,Extended

Normal none Enumeration NO

CellID_Sector the index of cell identity withinthe physical-layer cell-identitygroup ([0, 2])

0 none Integer NO

CellID_Group the index of cell identity group([0, 167])

0 none Integer NO

n_RNTI radio network temporaryidentifier ([0, 65535])

0 none Integer NO

HalfCarrierShift_Enable whether or not to enable 1/2subcarrier shifting: NO, YES

YES none Enumeration NO

FrameNum frame number ([0, inf)) 0 none Integer NO

FrameIncreased frame number increasing ornot: NO, YES

NO none Enumeration NO

DL_CyclicPrefix type of cyclic prefix indownlink: Normal, Extended

Normal none Enumeration NO

ShowPUSCH_Parameters show PUSCH parameters forLTE uplink signals: NO, YES

YES none Enumeration NO

PUCCH_PUSCH PUCCH and PUSCH selection:PUSCH, PUCCH, both

PUSCH none Enumeration NO

HARQ_Enable whether enable HARQ or not: YES Enumeration NO

Page 261: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

260

NO, YES

NumHARQ Number of HARQ processes 8 Integer NO

MaxHARQTrans Maximum number of HARQtransmission per each HARQprocess

4 Integer NO

Payload_Config the configuration mode ofinput data of PUSCH.: MCSindex, Transport block size,Code rate

Transport blocksize

none Enumeration NO

Payload the input payload for PUSCH,the meaning of the input isdefined in Payload_Config

[2555, 2555,2555, 2555,2555, 2555,2555, 2555,2555, 2555]

none Floatingpoint array

NO

Enable64QAM indicates whether 64QAM isallowed in uplink: NO, YES

YES Enumeration NO

MappingType the modulation orders for thePUSCH in each subframe.(0:QPSK, 1:16QAM, 2:64QAM)

[0, 0, 0, 0, 0, 0,0, 0, 0, 0]

none Integerarray

NO

RV_Sequence Redundancy Version Index ([0,3])

[0,1,2,3] none Integerarray

NO

DFTSwap_Enable PUSCH DFT swap is enable:NO, YES

NO none Enumeration NO

PUSCH_HoppingEnable whether PUSCH frequency-hopping is enabled or not: NO,YES

NO none Enumeration NO

PUSCH_HoppingMode PUSCH frequency hoppingmode: interSubFrame,intraAndInterSubFrame

interSubFrame none Enumeration NO

PUSCH_HoppingOffset the offset used for PUSCHfrequency hopping ([0, 63])

0 none Integer NO

PUSCH_Hopping_Nsb number of sub-bands forPUSCH frequency hopping ([1,4])

1 none Integer NO

PUSCH_HoppingBits information in PUSCH hoppingbits: 0 or 00, 1 or 01, 10, 11

0 or 00 none Enumeration NO

PUSCH_TransMode whether control and data aresent via PUSCH: Data andControl Multiplexing, DataOnly, Control Only

Data and ControlMultiplexing

Enumeration NO

RB_AllocType RB allocation type: StartRB +NumRBs, RB indices (1D), RBindices (2D)

StartRB +NumRBs

none Enumeration NO

RB_Alloc the RB allocation for PUSCH, inthe fomats of [start RB,number of RBs] or[SF0 startRB, SF0 number of RBs; ...;SF9 start RB, SF9 number ofRBs]

[0, 25] none Integerarray

NO

GroupHop_Enable whether enable group hoppingfor DMRS on PUCCH andPUSCH or not: NO, YES

NO none Enumeration NO

SeqHop_Enable whether enable sequencehopping for DMRS on PUSCHor not: NO, YES

NO none Enumeration NO

PUSCH_Delta_ss used in determining thesequence-shift pattern forPUSCH ([0, 29])

0 none Integer NO

PUSCH_n_DMRS1 used in computing the cyclicshift for PUSCH DMRS

[0] none Integerarray

NO

PUSCH_n_DMRS2 used in computing the cyclicshift for PUSCH DMRS

[0] none Integerarray

NO

ShowPUCCH_Parameters show PUCCH parameters forLTE uplink signals: NO, YES

YES none Enumeration NO

PUCCH_Format PUCCH format: Format 1,Format 1a, Format 1b,Shortened 1, Shortened 1a,Shortened 1b, Format 2,Format 2a, Format 2b

Format 1 none Enumeration NO

PUCCH_NumCQIBits number of CQI bits for PUCCHformat 2/2a/2b

5 Integer NO

PUCCH_NumHARQACKBits number of HARQ-ACK bits forPUCCH format 2 in ExtendedCP mode: 1 bit, 2 bits

1 bit Enumeration NO

PUCCH_Delta_shift used to calculate PUCCH cyclicshift Alfa ([1, 3])

2 none Integer NO

PUCCH_SF_Alloc which sub frames contain thePUCCH, valid whenPUCCH_PUSCH is other thanPUSCH ([0, 9])

[2] none Integerarray

NO

PUCCH_NRB2 number of RBs used for 1 none Integer NO

Page 262: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

261

transmisstion PUCCH format2/2a/2b ([0, 99])

PUCCH_n1 resources used fortransmisstion PUCCH format1/1a/1b ([0, 12*100-1])

11 none Integer NO

PUCCH_n2 resources used fortransmission PUCCH format2/2a/2b ([0, 12*PUCCH_NB2-1])

11 none Integer NO

ShowPRACH_Parameters show PRACH parameters forLTE uplink signals: NO, YES

YES none Enumeration NO

PRACH_Enable whether or not to enablePRACH: NO, YES

NO none Enumeration NO

PRACH_Config PRACH configuration index ([0,63])

0 none Integer NO

PRACH_ResourceIndex the PRACH Resource Index. InFDD, it indicates the subframenumber where the preamblestarts; in TDD, it indicates thepreamble mapping in time andfrequency ([0, 9])

[1] none Integerarray

NO

PRACH_PrmbleIndex preamble indexes, used toselect preamble sequencesfrom 64 preambles available inthis cell ([0, 63])

[0] none Integerarray

NO

PRACH_RBOffset PRACH frequency offset, thefirst RB available for PRACH([0, 94])

0 none Integer NO

PRACH_LogicalIndex logical index of root ZCsequence ([0, 837])

0 none Integer NO

PRACH_Ncs cyclic shifts of ZC sequence([0, 15])

0 none Integer NO

PRACH_HS_flag high speed flag: NO, YES NO none Enumeration NO

ShowSRS_Parameters show SRS parameters for LTEuplink signals: NO, YES

YES none Enumeration NO

SRS_Enable sounding reference symbol isenable: NO, YES

NO none Enumeration NO

SRS_BandwidthConfig the cell-specific SRSbandwidth configuration ([0,7])

7 none Integer NO

SRS_SF_Config the cell-specific SRS subframeconfiguration ([0, 14])

0 none Integer NO

SRS_MaxUpPts whether enable thereconfiguration of maximumm_SRS_0 or not ([0, 15]):NO, YES

NO none Enumeration NO

SRS_Bandwidth the UE-specific SRS bandwidth([0, 3])

0 none Integer NO

SRS_HoppingBandwidth the SRS hopping bandwidth([0, 3])

3 none Integer NO

SRS_FreqPosition the SRS frequency domainposition ([0, 23])

0 none Integer NO

SRS_ConfigIndex the UE-specific SRSconfiguration ([0, 1023])

0 none Integer NO

SRS_TransmissionComb transmission comb ([0, 1]) 0 none Integer NO

SRS_CyclicShift used in computing the cyclicshift of SRS ([0, 7])

0 none Integer NO

ShowPowerParameters show power-relatedparameters: NO, YES

YES none Enumeration NO

PUSCH_PwrOffset the power offset in dB forPUSCH ((-inf, +inf))

0 none Float NO

PUSCH_RS_PwrOffset the power offset in dB forPUSCH RS ((-inf, +inf))

0 none Float NO

PUCCH_PwrOffset the power offset in dB forPUCCH ((-inf, +inf))

0 none Float NO

PUCCH_RS_PwrOffset the power offset in dB forPUCCH RS ((-inf, +inf))

0 none Float NO

PRACH_PwrOffset the power offset in dB forPRACH ((-inf, +inf))

0 none Float NO

SRS_PwrOffset the power offset in dB for SRS((-inf, +inf))

0 none Float NO

ShowControlInfoParameters show control informationparameters for LTE uplinksignals: NO, YES

YES none Enumeration NO

RI_NumInfoBits number of RI infomation bits([0,2])

[0] Integerarray

NO

RI_BetaOffsetIndex RI offset values, used incalculating the number ofcoded RI symbols

[0] Integerarray

NO

Page 263: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

262

CQI_NumInfoBits CQI information bits size [0] Integerarray

NO

CQI_BetaOffsetIndex CQI offset values, used incalculating the number ofcoded CQI symbols

[2] Integerarray

NO

HARQACK_NumInfoBits HARQ-ACK information bitssize

[0] Integerarray

NO

HARQACK_BetaOffsetIndex HARQ-ACK offset values, usedin calculating the number ofcoded HARQ-ACK symbols

[0] Integerarray

NO

ShowRxAlgorithmParameters show parameters for LTEuplink receiver algorithm: NO,YES

YES none Enumeration NO

IQ_Offset_Correct whether or not to correct IQoffset: NO, YES

YES none Enumeration NO

PreDownsampling pre-downsampling to 1Xsymbol rate: NO, YES

NO none Enumeration NO

ReceiverDelay receiver delay ( One framedelay is for non-HARQ; Onesubframe delay is for closed-loop HARQ.: One frame delay(10ms), One subframe delay(1ms)

One subframedelay (1ms)

Enumeration NO

Sym_StartPos the start position of thenegative offset value to the CPlength(without oversampling)to get the OFDM symbol forFFT operation

[-3,-3] none Integerarray

NO

ChEstimatorMode mode of interpolationalgorithm in channelestimator: Linear, MMSE

Linear none Enumeration NO

SNR SNR in dB. (used by MMSEchannel estimator in PUSCH)((-inf:inf))

15 none Float NO

Tmax the maximum delay of multi-path channel. (used by MMSEchannel estimator in PUSCH)([0:inf))

0 s Float NO

Fmax the maximum dopplerfrequency. (used by MMSEchannel estimator in PUSCH)([0:inf))

100 Hz Float NO

DemapperType symbol demodulation type:Hard, Soft

Soft none Enumeration NO

DemapperMaxLevel the maximum level for softdemapping output whenDemapperType is Soft or CSI((0:inf))

1 none Float NO

TC_Iteration Turbo decoder iterationnumber ([1:20])

4 none Integer NO

Input Ports

Port Name Description Signal Type Optional

1 Frame Input receiverd uplinksignal

complex NO

Output Ports

Port Name Description SignalType

Optional

2 UE_RawBits Output PUSCH information (raw) bits after channeldecoding

int NO

3 PUSCH_ChannelBits Output channel bits int NO

4 RI_Out Output RI bits (matrix based) after channel deinterleaving(not decoded yet)

int matrix NO

5 HARQACK_Out Output HARQ-ACK bits (matrix based) after channeldeinterleaving (not decoded yet)

int matrix NO

6 CQI_Out Output CQI bits (matrix based) after channeldeinterleaving (not decoded yet)

int matrix NO

7 PUSCH_ModSymbols Output PUSCH modulation symbols in time domain complexmatrix

NO

8 PUSCH_FD Output PUSCH signal in frequency domain complexmatrix

NO

9 PUCCH_Sym Output PUCCH signal in frequency domain complexmatrix

NO

10 FRM_FD Output frame signal in frequency domain complex NO

11 HARQ_Bits Output HARQ ACK/NACK bits int NO

12 TBS Output transport block size for each subframe int NO

Parameters Details

Rx Algorithm Parameters Details:

Page 264: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

263

IQ_Offset_Correct : whether enable IQ offset correction or not. The IQ offsetcorrection is done by LTE_IQ_Offset.PreDownsampling: whether enable pre-downsampling to 1× symbol rate inLTE_UL_DemuxFrame or not. If "NO", the downsampling is performed byLTE_SCFDMA_Demodulator.

When PreDownsampling = YES, the downsampling operation is performed inside this receiver. Notethat there is no internal anti-aliasing filter provided by the receiver. Users need to add external anti-aliasing filter to make sure no aliasing occurs when downsampling.

ReceiverDelay: the delay introduced in the receiver, selected from one-frame delayand one-subframe delay. If the receiver is used in closed-loop HARQ simulation, thisparameter should be set to 'One subframe delay (1ms)'; for other simulation (non-HARQ simulation and EVM measurements), this parameter should be set to 'Oneframe delay (10ms)'. This parameter affects the behavior of the timing and frequencysynchronization. For more information on how the timing and frequencysynchronization performs in both modes, refer to LTE_UL_TimeFreqSync (ltebasever).

When ReceiverDelay='One frame delay (10ms)', one frame delay is introduced in all output ports.More specifically,1. The number of tokens delayed in UE_RawBits port is the number of raw bits (transport blocksizes) in one radio frame.2. The number of tokens delayed in PUSCH_ChannelBits port is the number of channel bits in oneradio frame3. The number of tokens delayed in FRM_FD port is the total number of useful resource elements inone radio frame4. For other ports, the number of tokens delayed is 10 (the number of subframes per one radioframe).When ReceiverDelay='One subframe delay (1ms)',1. No token is delayed in UE_RawBits port.2. No token is delayed in PUSCH_ChannelBits port.3. The number of tokens delayed in FRM_FD port is the total number of useful resource elements inone subframe4. For other ports, the number of tokens delayed is 1 (one subframe delay).

Sym_StartPos: start position (without oversampling) to get the SC-FDMA symbol forFFT operation. Here the "start position" is compared to the first sample of the SC-FDMA symbol body excluding the cyclic prefix. Hence the value is negative indicatingthe start position locates in the CP duration. It consists of two elements which are forthe first SC-FDMA symbol and the others respectively. For more information, refer toLTE_UL_DemuxSlot (ltebasever).ChEstimatorMode: interpolation algorithm used in channel estimator, the type isenum. It can be selected as Linear and MMSE. For more information, please refer toLTE_UL_ChEstimator (ltebasever).SNR: the signal noise ratio (in dB) of PUSCH at the receiver. It is used by MMSEinterpolator for PUSCH channel estimation.Tmax: the maximum delay of multi-path channel, used by MMSE interpolator forPUSCH channel estimation. It is of time unit.Fmax: the maximum doppler frequency, used by MMSE interpolator for PUSCHchannel estimation. It is of frequency unit.

Generally speaking, MMSE channel estimator provides better BER/FER performance than1.Linear channel estimator, but it is more complicated at the same time. It requires morememory and costs more simulation time. If you just want to get a quick result but don’t caremuch about the performance, Linear channel estimator would be a good choice.If ChEstimatorMode is selected as MMSE, SNR should be set as the signal to noise ratio in2.dB, Tmax should be set as the maximum delay of the channel, and Fmax should be set asthe maximum doppler frequency. For example,

In EPA5 channel, SNR should equal the actual SNR, Tmax should equal 0.41μs, andFmax should equal 5Hz.In AWGN channel, SNR should equal the actual SNR, Tmax and Fmax should be set tosmall values, e.g. 1e-8s and 0.01Hz respectively.In connected solution, SNR can be set as a relatively large value e.g. 20dB, while Tmaxand Fmax should be set to small values.

DemapperType: the type of Demapper. It can be selected as Hard and Soft.DemapperMaxLevel: the level of the output soft bits from Demapper are restricted inthe range [-DemapperMaxLevel, DemapperMaxLevel]. It is ignored whenDemapperType = hard.

Usually, DemapperMaxLevel is set to 100.0 for QPSK and 1.0 for 16QAM and 64QAM.

TC_Iteration: the number of iterations for Turbo decoding.

Notes/Equations

This subnetwork constructs 3GPP LTE uplink baseband receiver for both frame1.structure type 1 and frame structure type 2.In this receiver, the data type in most input/output ports are matrix which should be2.column vector (i.e the matrix size should be N × 1,N is the size of vector). Refer toMatrix-based Ports (ltebasever) for more information.Each firing,3.

If ReceiverDelay is selected as one subframe delay,1 subframe data is consumed at port Frame;the number of tokens produced at port RawBits is equal to the transport

Page 265: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

264

block size in this subframe;the number of tokens produced at port PUSCH_ChannelBits is equal to thenumber of PUSCH channel bits in this subframe. For more information,refer to Channel Bits Calculation (ltebasever);1 matrix token is produced at port RI_Out, the size of the matrix is equal tothe number of RI coded bits in this subframe;1 matrix token is produced at port HARQACK_Out, the size of the matrix isequal to the number of HARQ-ACK coded bits in this subframe;1 matrix token is produced at port CQI_Out, the size of the matrix is equalto the number of CQI coded bits in this subframe;1 matrix token is produced at port PUSCH_ModSymbols, the size of thematrix is equal to the number of allocated REs for PUSCH (excluding PUSCHDMRS) in this subframe;1 matrix token is produced at port PUSCH_FD, the size of the matrix isequal to the number of allocated REs for PUSCH (excluding PUSCH DMRS)in this subframe;1 matrix token is produced at port PUCCH_Sym, the size of the matrix isequal to the number of allocated REs for PUCCH (excluding PUCCH DMRS)in this subframe;the number of tokens produced at port FRM_FD is equal to the totalnumber of REs in each subframe;1 token is produced at port HARQ_Bits, indicating whether this subframe iscorrectly detected;1 token is produced at port TBS, indicating the transport block size in thissubframe.

If ReceiverDelay is selected as one subframe delay, the receiver operates on aframe basis.For the default parameters configurations, the number of samples in eachsubframe is 15360, the transport block size in each subframe is 2555, thenumber of channel bits in each subframe is 7200, the number of allocated REsfor PUSCH in each subframe is 3600, the number of total REs in each subframeis 4200. Uplink control information in the form of RI, HARQ-ACK and CQI are nottransmitted. PUCCH is not transmitted.

The LTE_UL_Receiver schematic is shown below:4.

Closed-loop HARQ transmission can be enabled by set HARQ_Enable to YES. For5.more information, refer to Closed-loop HARQ Transmission (ltebasever). Whenclosed-loop HARQ transmission is enabled, the feedback HARQ ACK/NACK bits fromLTE_CRCDecoder are used to control the behavior of LTE_UL_ChannelDecoder(ltebasever) component.First of all, LTE_IQ_Offset (ltebasever) corrects the IQ offset of the received signal as6.long as it is enabled (IQ_Offset_Correct = YES). Timing and frequencysynchronization are performed in LTE_UL_TimeFreqSync utilizing the referencesignals and cyclic prefix of SC-FDMA symbols.Both timing synchronization index and estimated frequency offset from7.LTE_UL_TimeFreqSync (ltebasever) are passed into LTE_UL_DemuxFrame, as well asthe received signal after IQ offset correcting.Then, LTE_UL_DemuxFrame (ltebasever) compensated the frequency offset and8.

Page 266: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

265

outputs the real radio frame making use of the timing synchronization index. Itshould be noted that this model causes one radio frame delay or one subframe delaydepending on the parameter ReceiverDelay.One radio frame (10 ms) consists of 20 slots. LTE_UL_DemuxSlot (ltebasever)9.demultiplexes each slot into seven and six SC-FDMA symbols for normal cyclic prefixand extended cyclic prefix respectively, where the start of each symbol is calculatedfrom Sym_StartPos.Next, LTE_SCFDMA_Demodulator (ltebasever) transforms the time domain signals10.into frequency domain signal by calling FFT procedure (LTE_FFT). The frequencydomain signals are regenerated by removing NULL subcarriers and swapping positivefrequency subcarriers and negative frequency subcarriers inLTE_SCFDMA_Demodulator.The demodulated signals and the local reference signals are input to11.LTE_UL_ChEstimator (ltebasever) to get channel impulse response (CIR) for eachsubcarrier occupied by PUSCH and PUCCH. LTE_UL_ChEstimator works on a slotbasis. LTE_UL_ChEstimator uses the reference signal to get the real CIRs for thoseallocated resource blocks.After getting CIR of each active subcarrier in each SC-FDMA symbol, the frequency12.domain equalizer (one tap) or channel compensator can be used.LTE_UL_DemuxSCFDMASym (ltebasever) demultiplexes SC-FDMA symbols into13.PUSCH, DMRS for PUSCH, PUCCH, DMRS for PUCCH and SRS as they were organizedin the transmitter side.The frequency domain signals of PUSCH are converted into time domain after IDFT14.by LTE_UL_DFT (ltebasever). Then, the time domain symbols are demappedaccording to the MappingType and decoded by LTE_UL_ChannelDecoder (ltebasever)in which descrambling, deinterleaving and demultiplexing of data and controlinformation, rate dematching , turbo decoding, code block de-segmentation and CRCdecoding are performed .The outputs from each output port of this subnetwork are described in the following15.table.Ports name Outputs description

TBS transport block size in each firing

HARQ_Bits HARQ ACK/NACK in each firing

FRM_FD Frequency domain data without oversampling

PUCCH_ModeSymbols Complex-valued modulation symbols of PUCCH

PUSCH_FD Frequency domain PUSCH data without oversampling

PUSCH_ModeSymbols Complex-valued modulation symbols of PUSCH

CQI_Out CQI bits from deinterleaver, CQI bits are not decoded in current implementation.

HARQACK_Out HARQ-ACK bits from deinterleaver, HARQ-ACK bits are not decoded in currentimplementation.

RI_Out rank indication bits from deinterleaver, RI bits are not decoded in currentimplementation.

PUSCH_ChannelBits outputs of LTE_Demapper. These channel bits are for uncoded BER and PERmeasurement. For more information, refer to Channel Bits Calculation(ltebasever).

UE_RawBits decoded bits of PUSCH. These outputs are for coded BER and PER measurement.

See LTE_UL_Src (ltebasever).16.

It should be noted that the demodulation and decoding of PUCCH, detection of SRS and decoding ofuplink control information on PUSCH are not supported in current implementation.

For more information on the System Parameters details please refer to UL System Parameters(ltebasever).For more information on the PUSCH Parameters details please refer to UL PUSCH Parameters(ltebasever).For more information on the PUCCH Parameters details please refer to UL PUCCH Parameters(ltebasever).For more information on the PRACH Parameters details please refer to UL PRACH Parameters(ltebasever).For more information on the SRS Parameters details please refer to UL SRS Parameters(ltebasever).For more information on the Power Parameters details please refer to UL Power Parameters(ltebasever).For more information on the Control Parameters details please refer to UL Control InformationParameters (ltebasever).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.101 v8.6.0 "User Equipment (UE) radio transmission and reception",2.September 2009.TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access3.(UTRA),", V7.0.0, June 2006.

Page 267: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

266

LTE_BCH_Gen PartCategories: C++ Code Generation (ltebasever), Signaling (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_BCH_Gen (ltebasever) generator for 24 BCH information bits

LTE_BCH_Gen (Generator for 24 BCH informationbits)

Description: generator for 24 BCH information bitsDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE BCH Gen Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW5 MHz, BW 10 MHz, BW 15 MHz, BW 20MHz

BW 5 MHz Enumeration NO

FrameNum frame number 0 Integer NO

FrameIncreased frame number increasing or not: NO, YES NO Enumeration NO

PHICH_Duration type of PHICH duration:Normal_Duration, Extended_Duration

Normal_Duration Enumeration NO

PHICH_Ng PHICH Ng value: Ng 1/6, Ng 1/2, Ng 1,Ng 2

Ng 1/6 Enumeration NO

Output Ports

Port Name Description Signal Type Optional

1 BCH BCH bits int NO

Notes/Equations

This model is to generate 24 information bits transmitted on PBCH.1.The 24 bits are the MasterInformationBlock as defined in [1]. The formats are:2.

Bit#0~2: SystemBandwidth ENUMERATED {n6, n15, n25, n50, n75, n100}Bit#3: phich-Duration ENUMERATED {normal, extended},Bit#4~5: phich-Resource ENUMERATED {oneSixth, half, one, two}Bit#6~13: systemFrameNumber: the 8 most significant bits of the SFNBit#14~23: spare

Each firing, 24 tokens are output. Bit#0 is output first, and then Bit#1, Bit#2, ..., at3.last Bit#23.Parameter details:4.

Bandwidth: bandwidth of LTE, the type is enum and it can be selected as BW 1.4MHz, BW 3 MHz, BW 5 MHz, BW 10 MHz, BW 15 MHz and BW 20 MHz.FrameNum: frame number.FrameIncreased: if it is set to YES, the system frame number increases per eachframe, and the index in the first frame is FrameNum. When the FrameIncreasedparameter is set to NO, all the system frame number is fixed to FrameNum.PHICH_Duration: type of PHICH duration which only affects subframescontaining the maximum PDCCH Symbols case. The type is enum and it can beset to Normal Duration and Extended Duration.PHICH_Ng: number of PHICH group. The type is enum and it can be set to 1/6,1/2, 1 and 2.

See LTE_PBCH_CRC (ltebasever).5.

References

3GPP TS 36.311 v8.5.0, "Radio Resource Control (RRC); Protocol specification", Mar1.2009.

Page 268: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

267

LTE_DL_CFI PartCategories: C++ Code Generation (ltebasever), Signaling (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_DL_CFI (ltebasever) Downlink Control FormatIndicator

LTE_DL_CFI (Downlink Control Format Indicator)

Description: Downlink Control Format IndicatorDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE DL CFI Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW5 MHz, BW 10 MHz, BW 15 MHz, BW 20MHz

BW 5 MHz Enumeration NO

PDCCH_SymsPerSF number of OFDM symbols of PDCCH foreach subframe

[2, 2, 2, 2, 2,2, 2, 2, 2, 2]

Integerarray

NO

Output Ports

Port Name Description Signal Type Optional

1 CFI downlink pilotsymbol

integermatrix

NO

Notes/Equations

This model is used to generate the coded control format indicator bits for one1.subframe as defined in 5.3.4 of 36.212.For ith firing, Subframe#(i%10) is processed, where 10 is the number of subframes2.in one radio frame.

Each firing, 1 matrix-based token is generated. If this subframe has a PCFICH,the size of this matrix token is 32; otherwise, the size of these matrix token is 0.The subframe has a PCFICH if the active PDCCH symbols exist in this subframeand which is decided by the parameters FrameMode, TDD_Config andPDCCH_SymsPerSF.For the default parameter configurations, 1 matrix-based token is generated andthe size of this matrix token is 32.

The physical control format indicator channel carries information about the number of3.OFDM symbols used for transmission of PDCCHs in a subframe. The CFI takes valuesCFI = 1, 2 or 3.

For system bandwidths N_RB>10: the span of the DCI in units of OFDMsymbols 1, 2 or 3 is given by the CFI. So the control format indicator takesvalues CFI=1, 2 or 3 (the number of OFDM symbols for PDCCH).For system bandwidths N_RB<10: the span of the DCI in units of OFDMsymbols 2, 3 or 4 is given by CFI+1. So the control format indicator takesvalues CFI=1, 2 or 3 (the number of OFDM symbols for PDCCH - 1).

The control format indicator is coded according to Table 5.3.4-1 of [2].4.Parameter details:5.

For the system parameters FrameMode, TDD_Config and Bandwidth, refer to DLSystem Parameters (ltebasever).For the parameter PDCCH_SymsPerSF, refer to DL Control Channel Parameters(ltebasever).

See LTE_PCFICH_Scrambler (ltebasever).6.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.2.

Page 269: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

268

LTE_DL_DCI_CRC PartCategories: C++ Code Generation (ltebasever), Signaling (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_DL_DCI_CRC (ltebasever) Downlink Control Information CRCEncoder

LTE_DL_DCI_CRC (Downlink Control Information CRCEncoder)

Description: Downlink Control Information CRC EncoderDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE DL DCI CRC Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocationsfor TDD: Config 0, Config 1,Config 2, Config 3, Config 4,Config 5, Config 6

Config 0 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3MHz, BW 5 MHz, BW 10 MHz,BW 15 MHz, BW 20 MHz

BW 5 MHz Enumeration NO

NumTxAnts number of Tx Antennas: Tx1,Tx2, Tx4

Tx1 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal,Extended

Normal Enumeration NO

PDCCH_SymsPerSF number of OFDM symbols ofPDCCH for each subframe

[2, 2, 2, 2, 2,2, 2, 2, 2, 2]

Integerarray

NO

PDCCH_UE_AggreLevel the aggregation levels of UE-specific PDCCH search spacefor every subframe. Theallowable levels are 1, 2, 4 and8.

[1] Integerarray

NO

PDCCH_UE_DCI_Formats the DCI Formats of the PDCCHcandidates for every subframe(-1 means no DCI incorresponding candidate).

[0, -1, -1, -1,-1, -1]

Integerarray

NO

PDCCH_Common_AggreLevel the aggregation levels ofCommon PDCCH search spacefor every subframe. Theallowable levels are 4 and 8.

[4] Integerarray

NO

PDCCH_Common_DCI_Formats the DCI Formats of the PDCCHcandidates for every subframe(-1 means no DCI incorresponding candidate).

[-1, -1, -1, -1]

Integerarray

NO

UE_n_RNTI Radio network temporaryidentifier for UE

[1, 1, 1, 1, 1,1, 1, 1, 1, 1]

Integerarray

NO

UE_TxAntSelection UE transmit antenna selectionis not configured or applicableor UE port0 or UE port1:Non_config, Port0, Port1

Non_config Enumeration NO

PHICH_Ng PHICH Ng value: Ng 1/6, Ng1/2, Ng 1, Ng 2

Ng 1/6 Enumeration NO

DisplayPortRates whether the port rates andother useful information aredisplayed in Simulation Logwindow: NO, YES

NO Enumeration NO

ETM_Support whether to support PHICH m=1 in all transmittedsubframes for TDD E-TMdefined in 36.141 6.1.2.6: NO,YES

NO Enumeration NO

Input Ports

Page 270: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

269

Port Name Description Signal Type Optional

1 DataIn data in integermatrix

NO

Output Ports

Port Name Description Signal Type Optional

2 DataOut data out integermatrix

NO

Parameters Details

System Parameters FrameModeTDD_ConfigBandwidthNumTxAntsCyclicPrefix

PDCCH corresponding parameters PDCCH_SymsPerSFPHICH_NgPDCCH_UE_AggreLevelPDCCH_UE_DCI_FormatsPDCCH_Common_AggreLevelPDCCH_Common_DCI_Formats

Scrambling corresponding parameters UE_n_RNTIUE_TxAntSelection

For the system parameters , refer to DL System Parameters (ltebasever).For control channel parameters, refer to DL Control Channel Parameters (ltebasever).UE_n_RNTI: radio network temporary identifier for UE. In the case where UE transmitantenna selection is not configured or applicable, after attachment, the CRC paritybits are scrambled with the corresponding RNTI x_rnti_0, x_rnti_1, ... . x_rnti_15.This is an Array Parameter (ltebasever). The allowable sizes are 1x1, 10x1, 10xN,where N is the maximun number of PDDCCHs across 10 subframes.UE_TxAntSelection: UE transmit antenna selection is not configured or applicable orUE port0 or UE port1. In the case where UE transmit antenna selection is configuredand applicable, after attachment, the CRC parity bits of PDCCH with DCI format 0 arescrambled with the antenna selection mask x_AS_0, x_AS_1,..., x_AS_15 asindicated in Table 5.3.3.2-1 of [2] and the corresponding RNTI x_rnti_0, x_rnti_1, ..., x_rnti_15.

Notes/Equations

This model is used to add the Cyclic Redundancy Check bits for the DCIs transmitted1.in one subframe.For ith firing, Subframe#(i%10) is processed, where 10 is the number of subframes in2.one radio frame.Each firing,

1 Matrix-based token is consumed at DataIn, the size of the matrix token is the

number of DCI bits in this subframe .1 Matrix-based token is generated at DataOut, the size of the matrix token isthe number of DCI bits with 16-bits CRC in this subframe

.The number of DCIs in one subframe is decided by these system parameters and3.PDCCH corresponding parameters. The length of each DCI Len_DCI(dci) is decided bythe PDCCH_UE_DCI_Formats and PDCCH_Common_DCI_Formats. The detailedinformation for the number of DCIs and the length of each DCI (Len_DCI(dci)) isdisplayed in the Simulation log window in the LTE_DL_DCI_Gen model when theDisplayPortRates parameter in LTE_DL_DCI_Gen is set to YES. For more details, referto DCI bits length (ltebasever).The calculation of the CRC for each DCI is defined by 5.3.3.2 and 5.1.1 of [2].4.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.2.

Page 271: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

270

LTE_DL_DCI_Gen PartCategories: C++ Code Generation (ltebasever), Signaling (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_DL_DCI_Gen (ltebasever) Downlink Control Information Generator

LTE_DL_DCI_Gen (Downlink Control InformationGenerator)

Description: Downlink Control Information GeneratorDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE DL DCI Gen Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocationsfor TDD: Config 0, Config 1,Config 2, Config 3, Config 4,Config 5, Config 6

Config 0 Enumeration NO

SpecialSF_Config special subframe configurationfor TDD: Config 0, Config 1,Config 2, Config 3, Config 4,Config 5, Config 6, Config 7,Config 8

Config 4 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3MHz, BW 5 MHz, BW 10 MHz,BW 15 MHz, BW 20 MHz

BW 5 MHz Enumeration NO

NumTxAnts number of Tx Antennas: Tx1,Tx2, Tx4

Tx1 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal,Extended

Normal Enumeration NO

PDCCH_SymsPerSF number of OFDM symbols ofPDCCH for every subframe

[2, 2, 2, 2,2, 2, 2, 2, 2,2]

Integerarray

NO

PHICH_Ng PHICH Ng value: Ng 1/6, Ng1/2, Ng 1, Ng 2

Ng 1/6 Enumeration NO

SRS_Enable sounding reference symbol isenable: NO, YES

NO Enumeration NO

SRS_SF_Config the cell-specific SRS subframeconfiguration

0 Integer NO

PDCCH_UE_AggreLevel the aggregation levels of UE-specific PDCCH search space forevery subframes.

[1] Integerarray

NO

PDCCH_UE_DCI_Formats the DCI Format of the PDCCHcandidates of every subframe (-1 means no DCI in correspodingcandidate).

[0, -1, -1, -1, -1, -1]

Integerarray

NO

PDCCH_Common_AggreLevel the aggregation levels ofCommon PDCCH search spacefor every subframes.

[4] Integerarray

NO

PDCCH_Common_DCI_Formats the DCI Format of the PDCCHcandidates of every subframe (-1 means no DCI in correspodingcandidate).

[-1, -1, -1, -1]

Integerarray

NO

UE_n_RNTI Radio network temporaryidentifier for UE

[1, 1, 1, 1,1, 1, 1, 1, 1,1]

Integerarray

NO

PUSCH_RB_Hopping whether uplink frequency-hopping is enabled for themapping of VRBs to PRBs forPUSCH: NO, YES

NO Enumeration NO

PUSCH_Hop_bit used to fill the hopping bit orbits in PDCCH DCI Format 0

[0, 0, 0, 0,0, 0, 0, 0, 0,0]

Integerarray

NO

Page 272: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

271

PUSCH_RB_AllocType RB allocation type: StartRB +NumRBs, RB indices (1D), RBindices (2D)

StartRB +NumRBs

Enumeration NO

PUSCH_RB_Alloc the RB allocation for PUSCH, inthe fomats of [start RB, numberof RBs] or[[SF0 start RB, SF0number of RBs]; ...; [SF9 startRB, SF9 number of RBs]]

[0, 25] Integerarray

NO

PUSCH_Config the configuration mode of inputdata for PUSCH.: MCS index,Transport block size, Code rate

Transportblock size

Enumeration NO

PUSCH_Payload the input payload for PUSCH,the meaning of the input isdefined in PUSCH_Config

[0, 0, 0, 0,0, 0, 0, 0, 0,0]

Floatingpoint array

NO

PUSCH_MappingType the modulation orders for thePUSCH in each DCI. (0:QPSK,1:16QAM, 2:64QAM)

[0, 0, 0, 0,0, 0, 0, 0, 0,0]

Integerarray

NO

PUSCH_NewDataIndic New data indicator for each DCI [1, 1, 1, 1,1, 1, 1, 1, 1,1]

Integerarray

NO

PUSCH_TPC_cmd TPC command for scheduledPUSCH for each DCI

[0, 0, 0, 0,0, 0, 0, 0, 0,0]

Integerarray

NO

PUSCH_n_DMRS2 used in computing the cyclicshift for PUSCH DMRS for eachDCI

[0, 0, 0, 0,0, 0, 0, 0, 0,0]

Integerarray

NO

UL_Idx_DAI UL index which only applies toTDD operation

[0, 0, 0, 0,0, 0, 0, 0, 0,0]

Integerarray

NO

PUSCH_CQI CQI request [0, 0, 0, 0,0, 0, 0, 0, 0,0]

Integerarray

NO

PDSCH_RB_MappingType the mapping type of VRBs toPRBs: Localized, Distributed

Localized Enumeration NO

PDSCH_ResAllocType Resource allocation type [0, 0, 0, 0,0, 0, 0, 0, 0,0]

Integerarray

NO

PDSCH_RBG_Subset RBG subset, active whenPDSCH_ResAllocType is 1

[0, 0, 0, 0,0, 0, 0, 0, 0,0]

Integerarray

NO

PDSCH_ResAllocShift indicate a shift of the resourceallocation span within a subset,active whenPDSCH_ResAllocType is 1

[0, 0, 0, 0,0, 0, 0, 0, 0,0]

Integerarray

NO

PDSCH_RB_AllocType RB allocation type: StartRB +NumRBs, RB indices (1D), RBindices (2D)

StartRB +NumRBs

Enumeration NO

PDSCH_RB_Alloc the RB allocation for the UE, inthe formats of [start RB,number of RBs] or [[SF0 startRB, SF0 number of RBs]; . . .;[SF9 start RB, SF9 number ofRBs]]

[0, 25] Integerarray

NO

PDSCH_Config the configuration mode of inputdata for PDSCH.: MCS index,Transport block size, Code rate

Transportblock size

Enumeration NO

PDSCH_Payload the input payload for PDSCH,the meaning of the input isdefined in PDSCH_Config

[0, 0, 0, 0,0, 0, 0, 0, 0,0]

Floatingpoint array

NO

PDSCH_MappingType the modulation orders for thePDSCH in each DCI. (0:QPSK,1:16QAM, 2:64QAM)

[0, 0, 0, 0,0, 0, 0, 0, 0,0]

Integerarray

NO

PDSCH_HARQ_ProcNum HARQ process number for eachDCI

[0, 0, 0, 0,0, 0, 0, 0, 0,0]

Integerarray

NO

PDSCH_NewDataIndic New data indicator for each DCI [1, 1, 1, 1,1, 1, 1, 1 ,1,1]

Integerarray

NO

PDSCH_RV Redundancy version for eachDCI

[0, 0, 0, 0,0, 0, 0, 0, 0,0]

Integerarray

NO

PUCCH_TPC_cmd TPC command for scheduledPUCCH for each DCI

[0, 0, 0, 0,0, 0, 0, 0, 0,0]

Integerarray

NO

DL_Idx DL index which only applies toTDD operation

[0, 0, 0, 0,0, 0, 0, 0, 0,0]

Integerarray

NO

PDSCH_PMI_Confirm PMI confirmation for precoding [0, 0, 0, 0,0, 0, 0, 0, 0,0]

Integerarray

NO

DL_PwrOffset downlink power offset [0, 0, 0, 0,0, 0, 0, 0, 0,

Integerarray

NO

Page 273: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

272

0]

MIMO_Mode MIMO mode: Spatial_Mux,Tx_Div

Spatial_Mux Enumeration NO

CDD_Mode cyclic delay diversity (CDD)mode, valid when MIMO_Modeis Spatial_Mux: Large-Delay,Zero-Delay

Large-Delay Enumeration NO

CdBlk_Index codebook index for precoding,valid when MIMO_Mode isSpatial_Mux

[0, 0, 0, 0,0, 0, 0, 0, 0,0]

Integerarray

NO

DL_TB2CW_Swap Transport block to codewordswap

[0, 0, 0, 0,0, 0, 0, 0, 0,0]

Integerarray

NO

PDSCH_UE_NumOfCWs number of code words for UE [1, 1, 1, 1,1, 1, 1, 1, 1,1]

Integerarray

NO

PDSCH_UE_NumOfLayers number of layers for UE [1, 1, 1, 1,1, 1, 1, 1, 1,1]

Integerarray

NO

DisplayPortRates whether the port rates andother useful information aredisplayed in Simulation Logwindow: NO, YES

NO Enumeration NO

ETM_Support whether to support PHICH m=1 in all transmitted subframesfor TDD E-TM defined in 36.1416.1.2.6: NO, YES

NO Enumeration NO

Output Ports

Port Name Description Signal Type Optional

1 DataOut data out integermatrix

NO

Notes/Equations

This model is used to generate DCI information bits of one subframe following1.5.3.3.1 of 36212-860, 9.1 of 36213-860 and 6.8 of 36211-860.For ith firing, Subframe#(i%10) is processed, where 10 is the number of subframes in2.one radio frame.Each firing, 1 Matrix-based token is generated at DataOut port, the size of the matrixtoken is the number of DCI bits in this subframe

,where, Nbits_1dci(sf, l) is the number of bits of the lth DCI in subframe sf defined in5.3.3.1 of 36212-860 and NumOfActiveDCI_sf is the number of active DCIs of onesubframe which is same as that of the active PDCCHs. They are decided by thePDCCH corresponding parameters and system parameters.When the DisplayPortRates parameter is set to YES, the details about the DCI bitslength will be display in the Simulation Log window. PDCCH corresponding parameters PDCCH_SymsPerSF

PDCCH_UE_AggreLevelPDCCH_UE_DCI_FormatsPDCCH_Common_AggreLevelPDCCH_Common_DCI_FormatsUE_n_RNTI

System Parameters FrameModeTDD_Config

These system parameters decided the active PDCCH symbols of each subframe. ThePDCCH corresponding parameters decided the number of active DCIs and theirformat of each subframe.FrameMode and TDD_Config define the non-uplink subframes and they work withPDCCH_SymsPerSF define the active PDCCH symbols in each subframe. In thesesubframes having actual PDCCH, PDCCH_UE_AggreLevel,PDCCH_Common_AggreLevel indicate the PDCCH aggregation level and the numberof PDCCH candidates. The allowable sizes of these 2 parameters are 1 or 10x1 (eachelement for one subframe). PDCCH_UE_DCI_Formats andPDCCH_Common_DCI_Formats indicate the active PDCCH (or PDCCHs) of thecandidates as well as the corresponding DCI formats. Each active PDCCH containsone DCI. The allowable sizes of these 2 parameters are Mmax or 10xMmax (eachMmax elements for one subframe), where Mmax is 6 for UE-specific and 4 forCommon. For each subframe, if the aggregation level is set to L, the number ofPDCCH candidates is M(L), and so the first M(L) elements of the Mmax elements areactive. -1 means no DCI (PDCCH) in correspoding candidate. Refer to Table 9.1.1-1in 9.1.1 of 36213-860.For example,

Page 274: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

273

PDCCH_UE_AggreLevel=2 PDCCH_UE_DCI_Formats=[2, -1, -1, 0, -1, -1]

PDCCH_Common_AggreLevel=8 PDCCH_Common_DCI_Formats=[-1, -1, -1, -1]

Actual DCIs [DCI format 1A, DCI format 0]They are transmitted in UE-specific search space PDCCHs withAggregation level 2. These 2 PDCCHs are candidate 0 and candidate 3of the 6 candidates

To support the E-UTRA Test Models defined in 36141-850, the allowable sizes of theparameter PDCCH_UE_DCI_Formats is extended to Mmax (all subframes have thesame configuration), where Mmax can be 7, 8, 9 and 10.

In our implementation, for the default parameters setting, NumOfActiveDCI_sf= 1, [DCI format 0], and Nbits_1dci(sf,l) = 25 for all the 10 subframes, and so N

DCIbits = 250. This model has a parameter DisplayRates. If DisplayRates = YES,

the rates for DataOut port as well as the detail information for all 10 subframesare displayed in the Simulation Log when this model is running.

Parameter details:3.System parameters:

FrameMode: frame mode of LTE, the type is enum and it can be selected asFDD and TDD. FDD supports frame structure typ1 and TDD supports framestructure type 2.TDD_Config: uplink-downlink configuration for TDD, the type is enum and itcan be selected as Config 0, Config 1, Config 2, Config 3, Config 4, Config 5and Config 6.Hidden when FrameMode = FDDSpecialSF_Config: special subframe configuration when FrameMode is TDD.PDSCHs can be allocated in DwPTS. Hidden when FrameMode = FDD.Bandwidth: bandwidth of LTE, the type is enum and it can be selected asBW 1.4 MHz, BW 3 MHz, BW 5 MHz, BW 10 MHz, BW 15 MHz and BW 20MHz.NumTxAnts: number of transmitter antennas, the type is enum and it canbe selected as Tx1, Tx2 and Tx4.CyclicPrefix: type of cyclic prefix. It can be set to Normal and Extended.Please note the first six OFDM symbols have the same shorter cyclic prefixand the last OFDM symbol has the longer cyclic prefix in the Normal CyclicPrefix mode.PHICH_Ng: number of PHICH group. The type is enum and it can be set to1/6, 1/2, 1 and 2.SRS_Enable: whether enable sounding reference signal transmission or not.If SRS_Enable = No, following parameters from SRS_BW to SRS_SF_Configwill be ignored.SRS_SF_Config: SRS subframe configuration. Cell specific sounding

reference signal subframes are the subframes satisfying . For TDD, sounding reference signal is transmitted only in configured ULsubframes or UpPTS. The cell specific subframe configuration period TSFC

and the cell specific subframe offset Δ SFC for the transmission of sounding

reference signals are listed in Tables 5.5.3.3-1 and 5.5.3.3-2 of 36211-860,for FDD and TDD, respectively.For the system parameters , refer to DL System Parameters (ltebasever).

PDCCH corresponding parameters:PDCCH_SymsPerSF: number of OFDM symbols of PDCCH for eachsubframe. Its value can be set as 0, 1, 2, 3 and 4. Note that value 4 forsmall bandwidth is supported in this release. For more information, refer toTable 6.7-1 of 36211-860. This is an Array Parameter (ltebasever). Theallowable sizes are 1x1, 10x1. If the number of PDCCH symbols of PDCCHfor one subframe is set to 0, there is no PDCCH (no DCI), PHICH andPCFICH in this subframe. And so those elements of control channelparameters assigned to this subframe are inactive. If the number of OFDMsymbols of PDCCH for all subframes are set to 0, all other parameters areinactive.PDCCH_UE_AggreLevel and PDCCH_Common_AggreLevel: indicate theaggregation level for the UE-specific search space and common searchspace respectively. They are Array Parameter (ltebasever). The allowablesizes of these 2 parameters are 1 or 10x1 (each element for onesubframe). The elements can be set to 1, 2, 4 or 8 forPDCCH_UE_AggreLevel, and 4 or 8 for PDCCH_Common_AggreLevel.PDCCH_UE_DCI_Formats and PDCCH_Common_DCI_Formats: indicate theactive PDCCH of the candidates as well as the corresponding DCI formatsthey containing for UE-specific search space and common search space.Each active PDCCH contains one DCI. They are Array Parameter(ltebasever). The allowable sizes of these 2 parameters are Mmax or10xMmax (each Mmax elements for one subframe), where Mmax is 6 forUE-specific and 4 for Common. For each subframe, if the aggregation levelis set to L, the number of PDCCH candidates is M(L), and so the first M(L)

elements of the Mmax elements are active. To support the E-UTRA TestModels defined in 36141-850, the allowable sizes of the parameter

Page 275: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

274

PDCCH_UE_DCI_Formats is extended to Mmax (all subframes have thesame configuration), where Mmax_e can be 7, 8, 9 and 10.For example, PDCCH_UE_AggreLevel = 4, the number of PDCCH candidatesis M(L) = 2, so, the first 2 elements of are active. -1 means no DCI(PDCCH) in corresponding candidate. Refer to Table 9.1.1-1 in 9.1.1 of36213-860. The DCIs of one subframe are compose ofPDCCH_UE_DCI_Formats and PDCCH_Common_DCI_FormatsThe mapping of the integer value of these 2 parameters to the actual DCIforma as follows:Integervalue

DCI Formats

0 Format 0 support

1 Format 1 support

2 Format 1A support

3 Format 1B supported when NTx is set to 2or 4

4 Format 1C not support

5 Format 1D supported when NTx is set to 2or 4

6 Format 2 supported when NTx is set to 2or 4

7 Format 2A supported when NTx is set to 2or 4

-1 No DCI is transmitted on this PDCCHcandidate

UE_n_RNTI: this parameter is used as the variable nRNTI (defined in 9.1.1

of 36213-860) for all UE-specific PDCCH candidates.DCI Format bits mapping corresponding parameters:

Page 276: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

275

DCI Format 0 PUSCH_RB_HoppingPUSCH_Hop_bitPUSCH_RB_AllocTypePUSCH_RB_AllocPUSCH_ConfigPUSCH_PayloadPUSCH_MappingTypePUSCH_NewDataIndicPUSCH_TPC_cmdPUSCH_n_DMRS2PUSCH_CQI

DCI Format 1 PDSCH_ResAllocTypePDSCH_RB_AllocTypePDSCH_RB_AllocPDSCH_ConfigPDSCH_PayloadPDSCH_MappingTypePDSCH_HARQ_ProcNumPDSCH_NewDataIndicPDSCH_RVPUCCH_TPC_cmd

DCI Format 1A PDSCH_RB_MappingTypePDSCH_RB_AllocTypePDSCH_RB_AllocPDSCH_ConfigPDSCH_PayloadPDSCH_MappingTypePDSCH_HARQ_ProcNumPDSCH_NewDataIndicPDSCH_RVPDSCH_TPC_cmd

DCI Format 1B PDSCH_RB_MappingTypePDSCH_RB_AllocTypePDSCH_RB_AllocPDSCH_ConfigPDSCH_PayloadPDSCH_MappingTypePDSCH_HARQ_ProcNumPDSCH_NewDataIndicPDSCH_RVPUCCH_TPC_cmdPDSCH_PMI_Confirm

DCI Format 1D PDSCH_RB_MappingTypePDSCH_RB_AllocTypePDSCH_RB_AllocPDSCH_ConfigPDSCH_PayloadPDSCH_MappingTypePDSCH_HARQ_ProcNumPDSCH_NewDataIndicPDSCH_RVPUCCH_TPC_cmdPDSCH_PwrOffset

DCI Format 2 PDSCH_ResAllocTypePDSCH_RB_AllocTypePDSCH_RB_AllocPDSCH_ConfigPDSCH_PayloadPDSCH_MappingTypePDSCH_HARQ_ProcNumPDSCH_NewDataIndicPDSCH_RVPUCCH_TPC_cmdMIMO_ModeCDD_ModeCdBlk_IndexDL_TB2CW_SwapPDSCH_UE_NumOfCWsPDSCH_UE_NumOfLayers

DCI Format 2A PDSCH_ResAllocTypePDSCH_RB_AllocTypePDSCH_RB_AllocPDSCH_ConfigPDSCH_PayloadPDSCH_MappingTypePDSCH_HARQ_ProcNumPDSCH_NewDataIndicPDSCH_RVPUCCH_TPC_cmdMIMO_ModeCDD_ModeCdBlk_IndexDL_TB2CW_SwapPDSCH_UE_NumOfCWsPDSCH_UE_NumOfLayers

PUSCH_RB_AllocType and PUSCH_RB_Alloc are same as the parametersRB_AllocType and RB_Alloc of LTE_UL_Src. For more information, refer toResource Block Allocation (ltebasever).

Page 277: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

276

PDSCH_RB_AllocType and PDSCH_RB_Alloc are same as the parametersRB_AllocType and RB_Alloc of LTE_DL_Src. For more information, refer toResource Block Allocation (ltebasever).There are certain restrictions of RB allocation for differently resource allocationtypes as the standard prescribed. But in our implementation, we do not add thisrestriction very well. For resource allocation type 0, ceil(N_RB_DL/P) bitsprovide the resource allocation as defined in 7.1.6.1 of 36.213. P is the resourceblock group (RBGs) size. In our implementation, if one of the P resource blocksis allocated, the bits indicating this RBGs is set to 1 and the last RBG containsN_RB_DL-P* floor(N_RB_DL/P) RB (RBs) if N_DL_RB mod P >0. The RBallocation is decided by PDSCH_RB_AllocType and PDSCH_RB_Alloc. Forresource allocation type 1, as defined in section 7.1.6.2 of 36.213, ceil(log2(P))bits of this field which used as a header specific to this resource allocation typeto indicate the selected resource blocks subset, are set by the parameterPDSCH_RBG_Subset. 1 bit indicating a shift of the resource allocation span isset by the parameter PDSCH_ResAllocShift. And (ceil(N_RB_DL/P) - ceil(log2(P))- 1) bits indicating the resource allocation are decided by PDSCH_RB_AllocTypeand PDSCH_RB_Alloc. P is the resource block group (RBGs) size. In ourimplementation, the bit is set to 1 if the PRB it indicting is allocated to thePDSCH. For resource allocation type 2, only localized VRB is supported and thisfield containing ceil( log2(N_RB_DL*(N_RB_DL+1)/2) ) bits is determined byPDSCH_RB_AllocType and PDSCH_RB_Alloc as defined in section 7.1.6.3 of36.213.If all DCIs transmitted in UE-specific and common search space PDCCH onlyhave format 0, only the DCI Format 0 corresponding parameters are displayedand other DCI Formats corresponding parameters are hidden.DCI format 0 is used for the scheduling of PUSCH. Its information bits aregenerated according to these parameters below DCI_Format0 as defined in5.3.3.1.1 of 36.212.

Flag for format0/format1A differentiation (1 bit) is set to 0.Hopping flag (1 bit) is set to 1 if parameter PUSCH_RB_Hopping = YES,otherwise 0.Resource block assignment and hopping resource allocation is set accordingto PUSCH_RB_AllocType and PUSCH_RB_Alloc. For non-hopping PUSCH,ceil(log2(N_RB_UL*(N_RB_UL+1)/2)) bits are generated according to 8.1of 36.213. For PUSCH hopping, N_UL_hop MSB bits are used to obtain thevalue of n~_PRB(i) as indicated in subclause 8.4 of 36.213,(ceil(log2(N_RB_UL*(N_RB_UL+1)/2)) - N_UL_hop) bits provide theresource allocation of the first slot in the UL subframe.

Modulation and coding scheme and redundancy version (5 bits) are generatedaccording to these 3 parameters PUSCH_Config, PUSCH_Payload andPUSCH_MappingType.

If PUSCH_Config is set to MCS index, the MCS index is given byPUSCH_Payload directly.

If PUSCH_Config is set to Code rate, the transport block size (TBS) index isgiven by A.3.1 of 36.101 and the section 7.1.7 of 36.213. Then, the MCS indexis given by 8.6.1 of 36.213.

If PUSCH_Config is set to transport block size, the algorithm fordetermining the payload size A of a given sub_frame i is as follows; find Athat is as close to PUSCH_Payload(sf) as possible, that is, min|A-PUSCH_Payload(sf)| subject to A is a valid TB size assuming an allocationof NRB resource blocks.If there is more than one A that minimizes the equation above, then thelarger value is chosen per default. The TBS index is given by the section7.1.7.2 of 36.213. Then, the MCS index is given by 8.6.1 of 36.213. These5bits are generated as defined in section 8.1 of 36.213.New data indicator - 1 bitTPC command for scheduled PUSCH - 2 bits as defined in section 5.1.1.1 of36.213Cyclic shift for DM RS - 3 bits as defined in section 5.5.2.1.1 of 36.211UL index - 2 bits as defined in sections 5.1.1.1 and 8 of 36.213 (this fieldonly applies to TDD operation with uplink -downlink configuration 0 and isnot present in FDD)

Downlink Assignment Index (DAI) -2 bits as defined in section 7.3 of 36.213(this field only applies for TDD operation with uplink-downlink configurations 1-6and is not present in FDD)

CQI request - 1 bit as defined in section 7.2.1 of 36.213If the number of information bits in format 0 is less than that of format 1A(including any padding bits appended to format 1A), zeros shall be appended toformat 0 until the payload size equals that of format 1A.

Page 278: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

277

DCI Format 1 PUSCH_RB_HoppingPUSCH_Hop_bitPUSCH_RB_AllocTypePUSCH_RB_AllocPUSCH_ConfigPUSCH_PayloadPUSCH_MappingTypePUSCH_NewDataIndicPUSCH_TPC_cmdPUSCH_n_DMRS2PUSCH_CQI

If all DCIs transmitted in UE-specific and common search space PDCCH onlyhave format 0, only the DCI Format 0 corresponding parameters are displayedand other DCI Formats corresponding parameters are hidden.DCI format 0 is used for the scheduling of PUSCH. Its information bits aregenerated according to these parameters below DCI_Format0 as defined in5.3.3.1.1 of 36.212.

Flag for format0/format1A differentiation (1 bit) is set to 0.Hopping flag (1 bit) is set to 1 if parameter PUSCH_RB_Hopping = YES,otherwise 0.Resource block assignment and hopping resource allocation is set accordingto PUSCH_RB_AllocType and PUSCH_RB_Alloc. For non-hopping PUSCH,ceil(log2(N_RB_UL*(N_RB_UL+1)/2)) bits are generated according to 8.1of 36.213. For PUSCH hopping, N_UL_hop MSB bits are used to obtain thevalue of n~_PRB(i) as indicated in subclause 8.4 of 36.213,(ceil(log2(N_RB_UL*(N_RB_UL+1)/2)) - N_UL_hop) bits provide theresource allocation of the first slot in the UL subframe.

Modulation and coding scheme and redundancy version (5 bits) are generatedaccording to these 3 parameters PUSCH_Config, PUSCH_Payload andPUSCH_MappingType.

If PUSCH_Config is set to MCS index, the MCS index is given byPUSCH_Payload directly.

If PUSCH_Config is set to Code rate, the transport block size (TBS) index isgiven by A.3.1 of 36.101 and the section 7.1.7 of 36.213. Then, the MCS indexis given by 8.6.1 of 36.213.

If PUSCH_Config is set to transport block size, the algorithm fordetermining the payload size A of a given sub_frame i is as follows; find Athat is as close to PUSCH_Payload(sf) as possible, that is, min|A-PUSCH_Payload(sf)| subject to A is a valid TB size assuming an allocationof NRB resource blocks.If there is more than one A that minimizes the equation above, then thelarger value is chosen per default. The TBS index is given by the section7.1.7.2 of 36.213. Then, the MCS index is given by 8.6.1 of 36.213. These5bits are generated as defined in section 8.1 of 36.213.New data indicator - 1 bitTPC command for scheduled PUSCH - 2 bits as defined in section 5.1.1.1 of36.213Cyclic shift for DM RS - 3 bits as defined in section 5.5.2.1.1 of 36.211UL index - 2 bits as defined in sections 5.1.1.1 and 8 of 36.213 (this fieldonly applies to TDD operation with uplink -downlink configuration 0 and isnot present in FDD)

Downlink Assignment Index (DAI) -2 bits as defined in section 7.3 of 36.213(this field only applies for TDD operation with uplink-downlink configurations 1-6and is not present in FDD)

CQI request - 1 bit as defined in section 7.2.1 of 36.213If the number of information bits in format 0 is less than that of format 1A(including any padding bits appended to format 1A), zeros shall be appended toformat 0 until the payload size equals that of format 1A.

See LTE_DL_DCI_CRC (ltebasever).4.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.2.3GPP TS 36.213 v8.8.0, "Physical Layer Procedures", September 2009.3.

Page 279: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

278

LTE_DL_DCI_RateMatch PartCategories: C++ Code Generation (ltebasever), Signaling (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_DL_DCI_RateMatch (ltebasever) Downlink Control Information Rate Matcher

LTE_DL_DCI_RateMatch (Downlink ControlInformation Rate Matcher)

Description: Downlink Control Information Rate MatcherDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE DL DCI RateMatch Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocationsfor TDD: Config 0, Config 1,Config 2, Config 3, Config 4,Config 5, Config 6

Config 0 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3MHz, BW 5 MHz, BW 10 MHz,BW 15 MHz, BW 20 MHz

BW 5 MHz Enumeration NO

NumTxAnts number of Tx Antennas: Tx1,Tx2, Tx4

Tx1 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal,Extended

Normal Enumeration NO

PDCCH_SymsPerSF number of OFDM symbols ofPDCCH for each subframe

[2, 2, 2, 2,2, 2, 2, 2,2, 2]

Integerarray

NO

PDCCH_UE_AggreLevel the aggregation levels of UE-specific PDCCH search space forevery subframe. The allowablelevels are 1, 2, 4 and 8.

[1] Integerarray

NO

PDCCH_UE_DCI_Formats the DCI Formats of the PDCCHcandidates for every subframe (-1 means no DCI incorresponding candidate).

[0, -1, -1, -1, -1, -1]

Integerarray

NO

PDCCH_Common_AggreLevel the aggregation levels ofCommon PDCCH search spacefor every subframe. Theallowable levels are 4 and 8.

[4] Integerarray

NO

PDCCH_Common_DCI_Formats the DCI Formats of the PDCCHcandidates for every subframe (-1 means no DCI incorresponding candidate).

[-1, -1, -1,-1]

Integerarray

NO

UE_n_RNTI Radio network temporaryidentifier for UE

[1, 1, 1, 1,1, 1, 1, 1,1, 1]

Integerarray

NO

PHICH_Ng PHICH Ng value: Ng 1/6, Ng 1/2,Ng 1, Ng 2

Ng 1/6 Enumeration NO

DisplayPortRates whether the port rates and otheruseful information are displayedin Simulation Log window: NO,YES

NO Enumeration NO

ETM_Support whether to support PHICH m=1 in all transmitted subframesfor TDD E-TM defined in 36.1416.1.2.6: NO, YES

NO Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 DataIn input data integermatrix

NO

Output Ports

Page 280: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

279

Port Name Description Signal Type Optional

2 DataOut output data integermatrix

NO

Notes/Equations

This model is used to implement rate match for LTE PDCCHs of one subframe as1.defined in 5.3.3.4 of 36.212.For ith firing, Subframe#(i%10) is processed, where 10 is the number of subframes in2.one radio frame.Each firing,

1 matrix-based token is consumed at DataIn, the size of this matrix token is thenumber of the convolutional coded DCI bits of this subframe

.1 matrix-based token is generated at DataOut, the size of this matrix token isthe number of rate matched DCI bits of this subframe

.N_PDCCHBits(sf, pdcch) is the number of bits of active PDCCH(sf, pdcch) which is3.decided by the given PDCCH format. The PDCCH supports 4 formats as listed in Table6.8.1-1 of 36.211. In our implementation, the PDCCH format is defined byparameters PDCCH_UE_AggreLevel and PDCCH_Common_AggreLevel. Aggregationlevel = 1, 2, 4, 8 correspond to the PDCCH format = 0, 1, 2, 3. The detailedinformation for the number of DCIs and the length of each DCI (Len_DCI(dci)) isdisplayed in the Simulation log window in the LTE_DL_DCI_Gen model when theDisplayPortRates parameter in LTE_DL_DCI_Gen is set to YES. For more details, referto DCI bits length (ltebasever).The DCI rate match is implemented according to 5.1.4.2 of 36.212.4.Parameter details:5.System Parameters FrameMode

TDD_ConfigBandwidthNumTxAntsCyclicPrefix

PDCCH corresponding parameters PHICH_NgPDCCH_SymsPerSFPDCCH_UE_AggreLevelPDCCH_UE_DCI_FormatsPDCCH_Common_AggreLevelPDCCH_Common_DCI_FormatsUE_n_RNTI

For the system parameters, refer to DL System Parameters (ltebasever).For PDCCH corresponding parameters, refer to DL Control Channel Parameters(ltebasever).See LTE_DL_DCI_CRC (ltebasever) and LTE_PDCCH_Mux (ltebasever).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.2.

Page 281: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

280

LTE_DL_HI PartCategories: C++ Code Generation (ltebasever), Signaling (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_DL_HI (ltebasever) HARQ ACK/NACK generator in one radio frame

LTE_DL_HI (HARQ ACK/NACK generator in one radioframe)

Description: HARQ ACK/NACK generator in one radio frameDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE DL HI Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW5 MHz, BW 10 MHz, BW 15 MHz, BW 20MHz

BW 5 MHz Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

PDCCH_SymsPerSF number of OFDM symbols of PDCCH foreach subframe

[2, 2, 2, 2, 2,2, 2, 2, 2, 2]

Integerarray

NO

PHICH_Ng PHICH Ng value: Ng 1/6, Ng 1/2, Ng 1,Ng 2

Ng 1/6 Enumeration NO

HI physical hybrid-ARQ ACK/NAK indicators [1, 0, 1, 0, 1,0, 1, 0, 1, 0]

Integerarray

NO

ETM_Support whether to support PHICH m =1 in alltransmitted subframes for TDD E-TMdefined in 36.141 6.1.2.6: NO, YES

NO Enumeration NO

Output Ports

Port Name Description Signal Type Optional

1 HI_Bits HI bits integermatrix

NO

Notes/Equations

This model is used to generate the HARQ ACK/NACK code bits of one subframe.1.For ith firing, Subframe#(i%10) is processed, where 10 is the number of subframes in2.one radio frame.Each firing: 1 matrix-based token is generated at DataOut, the size of this matrixtoken is the number of HI bits of this subframe 3*(NumPHICHs*N_PHICH_Group(sf)), where NumPHICHs=8 for normal cyclic prefix and NumPHICHs=4 for extendedcyclic prefix is the number of PHICHs of one PHICH group; N_PHICH_Group(sf) is thenumber of PHICH groups in this subframe as defined in Section 6.9 of 36.211. For thematrix-based token at DataOut, the first 3 elements are the encoded HI bits (as5.3.5.1 of 36.212 [2]) for the first orthogonal sequence index in the first PHICHgroup, and the second 3 elements are for the second orthogonal sequence index inthe first PHICH group, and so on (in increasing order of first the orthogonal sequenceindex , then the PHICH group index).These system parameters below are used to decide the N_PHICH_Group(sf) of each3.subframe.System and Control Channel Parameters FrameMode

TDD_ConfigBandwidthCyclicPrefixPDCCH_SymsPerSFPHICH_Ng

HI bits corresponding parameters HI

Page 282: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

281

For the system parameters, refer to DL System Parameters (ltebasever) and DLControl Channel Parameters (ltebasever).HI is used to set the indicators bits for HARQ acknowledgement. This is an ArrayParameter (ltebasever).If the number of OFDM symbols of PDCCH for all subframes are set to 0, all otherparameters are inactive. If the indicators bit for HARQ acknowledgement of onePHICH is set to 1, the coded HI bits are 1, 1 and 1. If it is set to 0, the coded HI bitsare 0, 0 and 0. If it is set to -1, then output 0, 1 and 0.

When ETM_Support=YES for TDD mode, the factor mi is set to 1 for all transmitted subframes as requried

by TDD E-TM defined in 6.1.2.6 of 36.141 (V8.5.0). Otherwise, the factor mi shall be set as per 6.9 of

36.211.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.2.

Page 283: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

282

LTE_PBCH_CRC PartCategories: C++ Code Generation (ltebasever), Signaling (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_PBCH_CRC (ltebasever) PBCH CRC Encoder

LTE_PBCH_CRC (PBCH CRC Encoder)

Description: PBCH CRC EncoderDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE PBCH CRC Part (ltebasever)

Model Parameters

Name Description Default Units Type Runtime Tunable

NumTxAnts number of Tx Antennas: Tx1, Tx2, Tx4 Tx1 Enumeration NO

BCH_BlockSize transport block size for BCH 24 Integer NO

Input Ports

Port Name Description Signal Type Optional

1 DataIn data in int NO

Output Ports

Port Name Description Signal Type Optional

2 DataOut data out int NO

Notes/Equations

This model is used to add Cyclic Redundancy Check to the broadcast channel bits.1.Each firing,2.

A tokens are consumed and A+L tokens are generated. Where A is the size ofthe transport block every transmission time interval (TTI) of 40ms and L is thenumber of parity bits and L=16.For the default parameter configurations, 24 tokens are consumed at DataInport and 40 tokens are generated at DataOut port.

The entire transport block is used to calculate the CRC parity bits. Denote the bits in3.a transport block a_0, a_1, a_2,..., a_A-1, and the parity bits by p_0, p_1, p_2, ...,p_L-1.The parity bits are computed and attached to the BCH transport block according to4.Section 5.1.1 of 36.212 setting L to 16 bits.After the attachment, the CRC bits are scrambled according to the eNode-B transmit5.antenna configuration with the sequence x_ant_0, x_ant_1, ... , x_ant_15 asindicated in Table 5.3.1.1-1 of Section 5.3.1.1 of 36.212 to form the sequence of bitswherec_k = a_k, for k=0, 1, 2, ... , A-1c_k = (_p_k-A + x_ant_k-A) mod 2, for k=A, A+1, ... , A+15.Parameter details:6.

NumTxAnts: number of transmitter antennas, the type is enum and it can beselected as Tx1, Tx2 and Tx4. This parameter used to select the CRC mask forPBCH.BCH_BlockSize: transport block size for BCH.

See LTE_BCH_Gen (ltebasever).7.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.2.

Page 284: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

283

LTE_PBCH_RateMatch PartCategories: C++ Code Generation (ltebasever), Signaling (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_PBCH_RateMatch (ltebasever) PBCH RateMatcher

LTE_PBCH_RateMatch (PBCH Rate Matcher)

Description: PBCH Rate MatcherDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE PBCH RateMatch Part (ltebasever)

Model Parameters

Name Description Default Units Type Runtime Tunable

CyclicPrefix type of cyclic prefix: Normal,Extended

Normal Enumeration NO

BCH_BlockSize Transport block size for BCH 24 Integer NO

Input Ports

Port Name Description Signal Type Optional

1 DataIn Data In int NO

Output Ports

Port Name Description Signal Type Optional

2 DataOut Data Out int NO

Notes/Equations

This model is used to provide the rate matching for the coded information bits.1.Each firing:2.3*(A+16) tokens are consumed and 1920 tokens for normal cyclic prefix and 1728tokens for extended cyclic prefix are generated, where A is the size of the transportblock every transmission time interval (TTI) of 40ms and 1920 or 1728 is the numberof bits transmitted on the physical broadcast channel of 4 radio frames.A tail biting convolutionally coded block is delivered to the rate matching block. This3.block of coded bits is denoted by d_i_0, d_i_1, d_i_2, ..., d_i_D-1, with i=0, 1, 2,and where i is the coded stream index and D is the number of bits in each codedstream. This coded block is rate matched according to subclause 5.1.4.2. of 36.212.After rate matching the bits are denoted by e_0, e_1, ... , e_E-1, where E is the4.number of rate matched bits, equals 1920 for normal cyclic prefix and 1728 forextended cyclic prefix.Parameters Details5.

CyclicPrefix: type of cyclic prefix. It can be set to Normal and Extended. Please notethe last six OFDM symbols have the same shorter cyclic prefix and the first OFDMsymbol has the longer cyclic prefix in the Normal Cyclic Prefix mode.BCH_BlockSize: transport block size for BCH information bits.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.2.

Page 285: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

284

LTE_PBCH_Scrambler PartCategories: C++ Code Generation (ltebasever), Signaling (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_PBCH_Scrambler (ltebasever) PBCHScrambler

LTE_PBCH_Scrambler (PBCH Scrambler)

Description: PBCH ScramblerDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE PBCH Scrambler Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

CellID_Sector the index of cell identity within the physical-layercell-identity group

0 Integer NO

CellID_Group the index of cell identity group 0 Integer NO

Input Ports

Port Name Description Signal Type Optional

1 In scrambler input int NO

Output Ports

Port Name Description Signal Type Optional

2 Out scrambleroutput

int NO

Notes/Equations

This model is used to scramble the block of bits after rate match.1.Each firing, 1920 tokens for normal cyclic prefix and 1728 tokens for extended cyclic2.prefix are consumed and generated.The block of bits b_0, b_1, ..., b_Mbit-1, where Mbit is the number of bits3.transmitted on the physical broadcast channel, equals 1920 for normal cyclic prefixand 1728 for extended cyclic prefix, shall be scrambled with a cell-specific sequenceprior to modulation, resulting in a block of scrambled bits b_s_0, b_s_1, ...,b_s_Mbit-1, according to b_s_i = (b_i + c_i) mod 2, where the scrambling sequencec_i is given by Section 7.2 of 36.211.The scrambling sequence shall be initialized with c_init = N_ID_cell in each radio4.frame fulfilling n_f mod 4 = 0.Parameters Details:5.

CyclicPrefix: type of cyclic prefix. It can be set to Normal and Extended. Pleasenote the last six OFDM symbols have the same shorter cyclic prefix and the firstOFDM symbol has the longer cyclic prefix in the Normal Cyclic Prefix mode.CellID_Sector and CellID_Group are used to initialize the scrambling sequence.CellID_Sector is the index of cell identity within the physical-layer cell-identitygroup. CellID_Group is the index of cell identity group, its value range is[0,167].

See LTE_PBCH_RateMatch (ltebasever).6.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.2.

Page 286: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

285

LTE_PCFICH_Scrambler PartCategories: C++ Code Generation (ltebasever), Signaling (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_PCFICH_Scrambler (ltebasever) PCFICHScrambler

<#comment></#comment><#comment></#comment>

LTE_PCFICH_Scrambler (PCFICH Scrambler)

Description: PCFICH ScramblerDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE PCFICH Scrambler Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW5 MHz, BW 10 MHz, BW 15 MHz, BW 20MHz

BW 5 MHz Enumeration NO

CellID_Sector the index of cell identity within thephysical-layer cell-identity group

0 Integer NO

CellID_Group the index of cell identity group 0 Integer NO

PDCCH_SymsPerSF number of OFDM symbols of PDCCH foreach subframe

[2, 2, 2, 2, 2,2, 2, 2, 2, 2]

Integerarray

NO

Input Ports

Port Name Description Signal Type Optional

1 In Input Matrix-based PCFICH bits for scrambling integermatrix

NO

Output Ports

Port Name Description Signal Type Optional

2 Out Output Matrix-based PCFICH scrambled bits integer matrix NO

3 ModSym Output Matrix-based PCFICH modulation symbols(QPSK)

complex matrix NO

Notes/Equations

This model is used as the CFI coded bits scrambler and QPSK mapper as defined in1.6.7.1 and 6.7.2 of 36.211.For ith firing, Subframe#(i%10) is processed, where 10 is the number of subframes in2.one radio frame.Each firing,1 matrix-based token is consumed at In and generated at Out and ModSym. If thissubframe has a PCFICH, the size of this matrix token at In and Out is 32 and 16 atModSym; otherwise, the size is 0.One subframe has a PCFICH if the active PDCCH symbols exist in this subframe andwhich is decided by the parameters FrameMode, TDD_Config andPDCCH_SymsPerSF.The block of bits b(0), ... , b(31) transmitted in one subframe shall be scrambled with3.a cell-specific sequence prior to modulation, resulting in a block of scrambled bits_b_s(0), ... , b_s(31)_ according to b_s(idx) = (b(idx) + c(idx)) mod 2 where thescrambling sequence c(idx) is given by Section 7.2 of 36.211. The scramblingsequence generator shall be initialized with c_init = (floor(n_s/2)+1)*(2*N_ID_cell +1) * 2^9 +N_ID_cell at the start of each subframe.The block of scrambled bits _b_s(0), ... , b_s(31)_ shall be modulated with QPSKmodulation schemes as described in Section 7.1, resulting in a block of complex-valued modulation symbols d(0), ... , d(15). The modulated symbols are output atport ModSym.

Page 287: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

286

Parameter details:4.FrameMode: frame mode of LTE, the type is enum and it can be selected as FDDand TDD. FDD supports frame structure typ1 and TDD supports frame structuretype 2.TDD_Config: uplink-downlink configuration for TDD, the type is enum and it canbe selected as Config 0, Config 1, Config 2, Config 3, Config 4, Config 5 andConfig 6.Hidden when FrameMode = FDD.Bandwidth: bandwidth of LTE, the type is enum and it can be selected as BW 1.4MHz, BW 3 MHz, BW 5 MHz, BW 10 MHz, BW 15 MHz and BW 20 MHz.CellID_Sector and CellID_Group are used to initialize the scrambling sequence.CellID_Sector: the index of cell identity within the physical-layer cell-identitygroup. CellID_Group: index of cell identity group, its value range is [0,167].PDCCH_SymsPerSF: number of OFDM symbols of PDCCH for each subframe. Itsvalue can be set as 0, 1, 2, 3 and 4. Note that value 4 for small bandwidth issupported in this release. For more information, refer to Table 6.7-1 of 36211-860. This is an Array Parameter (ltebasever). The allowable sizes are 1x1, 10x1.If the number of PDCCH symbols of PDCCH for one subframe is set to 0, there isno PDCCH, PHICH and PCFICH in this subframe.

See LTE_DL_CFI (ltebasever).5.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.2.

Page 288: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

287

LTE_PDCCH_Interleaver PartCategories: C++ Code Generation (ltebasever), Signaling (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_PDCCH_Interleaver (ltebasever) PDCCH Interleaver

LTE_PDCCH_Interleaver (PDCCH Interleaver)

Description: PDCCH InterleaverDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE PDCCH Interleaver Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW5 MHz, BW 10 MHz, BW 15 MHz, BW 20MHz

BW 5 MHz Enumeration NO

NumTxAnts number of Tx Antennas: Tx1, Tx2, Tx4 Tx1 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

CellID_Sector the index of cell identity within thephysical-layer cell-identity group

0 Integer NO

CellID_Group the index of cell identity group 0 Integer NO

PDCCH_SymsPerSF number of OFDM symbols of PDCCH foreach subframe

[2, 2, 2, 2, 2,2, 2, 2, 2, 2]

Integerarray

NO

PHICH_Ng PHICH Ng value: Ng 1/6, Ng 1/2, Ng 1,Ng 2

Ng 1/6 Enumeration NO

ETM_Support whether to support PHICH m =1 in alltransmitted subframes for TDD E-TMdefined in 36.141 6.1.2.6: NO, YES

NO Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 DataIn input data after layer mapping and precoding multiple complex matrix NO

Output Ports

Port Name Description Signal Type Optional

2 DataOut output data after interleaver multiple complex matrix NO

Notes/Equations

This model is used to perform the interleaver for PDCCH of one subframe, as1.described in Section 6.8.5 of [1].The input and output ports are all multiple ports. The bus width connected to them2.should be equal to the NumTxAnts parameter.For ith firing, Subframe#(i%10) is processed, where 10 is the number of subframes inone radio frame.

Each firing, for each antenna port, one Matrix-based token is consumed andgenerated at each input port and output port. The matrix vectors have the samesize. The matrix vector size is _ PDCCH_NumModSymbols_, wherePDCCH_NumModSymbols is the number of modulation symbols for PDCCH inthis subframe.According to [1], PDCCH_NumModSymbols is calculated as follows:

If FrameMode = TDD, and the subframe is allocated to uplink transmission,PDCCH_NumModSymbols is 0 regardless of the setting for this subframe inPDCCH_SymsPerSF parameter.Otherwise, get the total number (N1) of subcarriers (resource elements) inthe PDCCH_SymsPerSF OFDM symbols for PDCCH, and the number ofsubcarriers (resource elements) allocated to RS (N2) according to 6.10 of[1], PCFICH (N3) according to 6.7 of [1] and PHICH (N4) according to 6.9

Page 289: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

288

of [1] respectively. PDCCH_NumModSymbols is equal to (N1-N2-N3-N4).The interleaver is defined by operations on quadruplets of complex-valued symbols.3.The block of input quadruplets, shall be permuted according to the sub-blockinterleaver in Section 5.1.4.2.1 of [2] with the following exceptions:

the input and output to the interleaver is defined by symbol quadruplets insteadof bitsinterleaving is performed on symbol quadruplets instead of bits by substitutingthe terms "bit", "bits" and "bit sequence" in Section 5.1.4.2.1 of [2] by "symbolquadruplet", "symbol quadruplets" and "symbol-quadruplet sequence",respectively<NULL> elements at the output of the interleaver in [2] shall be removed. Notethat the removal of <NULL> elements does not affect any <NIL> elementsinserted in Section 6.8.2.

Parameter details:4.System Parameters FrameMode

TDD_ConfigBandwidthNumTxAntsCyclicPrefixCellID_SectorCellID_Group

PDCCH corresponding parameters PDCCH_SymsPerSFPHICH_Ng

For the system parameters, refer to DL System Parameters (ltebasever).For PDCCH corresponding parameters, refer to DL Control Channel Parameters(ltebasever).See LTE_PDCCH_Scrambler (ltebasever).5.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.2.

Page 290: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

289

LTE_PDCCH_Mux PartCategories: C++ Code Generation (ltebasever), Signaling (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_PDCCH_Mux (ltebasever) PDCCH Multiplexer

LTE_PDCCH_Mux (PDCCH Multiplexer)

Description: PDCCH MultiplexerDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE PDCCH Mux Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocationsfor TDD: Config 0, Config 1,Config 2, Config 3, Config 4,Config 5, Config 6

Config 0 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3MHz, BW 5 MHz, BW 10 MHz,BW 15 MHz, BW 20 MHz

BW 5 MHz Enumeration NO

NumTxAnts number of Tx Antennas: Tx1,Tx2, Tx4

Tx1 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal,Extended

Normal Enumeration NO

PDCCH_SymsPerSF number of OFDM symbols ofPDCCH for each subframe

[2, 2, 2, 2,2, 2, 2, 2,2, 2]

Integerarray

NO

PDCCH_UE_AggreLevel the aggregation levels of UE-specific PDCCH search space forevery subframe. The allowablelevels are 1, 2, 4 and 8.

[1] Integerarray

NO

PDCCH_UE_DCI_Formats the DCI Formats of the PDCCHcandidates for every subframe (-1 means no DCI incorresponding candidate).

[0, -1, -1, -1, -1, -1]

Integerarray

NO

PDCCH_Common_AggreLevel the aggregation levels ofCommon PDCCH search spacefor every subframe. Theallowable levels are 4 and 8.

[4] Integerarray

NO

PDCCH_Common_DCI_Formats the DCI Formats of the PDCCHcandidates for every subframe (-1 means no DCI incorresponding candidate).

[-1, -1, -1,-1]

Integerarray

NO

UE_n_RNTI Radio network temporaryidentifier for UE

[1, 1, 1, 1,1, 1, 1, 1,1, 1]

Integerarray

NO

PHICH_Ng PHICH Ng value: Ng 1/6, Ng 1/2,Ng 1, Ng 2

Ng 1/6 Enumeration NO

DisplayPortRates whether the port rates and otheruseful information are displayedin Simulation Log window: NO,YES

NO Enumeration NO

ETM_Support whether to support PHICH m=1 in all transmitted subframesfor TDD E-TM defined in 36.1416.1.2.6: NO, YES

NO Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 DataIn input data integermatrix

NO

Output Ports

Page 291: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

290

Port Name Description Signal Type Optional

2 DataOut output data integermatrix

NO

Notes/Equations

This model is used to implement PDCCH multiplexing as defined in section 9.1.1 of1.36.213.For ith firing, Subframe#(i%10) is processed, where 10 is the number of subframes in2.one radio frame.Each firing,

1 matrix-based token is consumed at DataIn, the size of this matrix token is thenumber of rate matched DCI bits of this subframe

. Where N_PDCCHBits(sf, pdcch) is thenumber of bits of active PDCCH(sf, pdcch) which is decided by the given PDCCHformat. The PDCCH supports 4 formats as listed in Table 6.8.1-1 of 36.211. Inour implementation, the PDCCH format is defined by parametersPDCCH_UE_AggreLevel and PDCCH_Common_AggreLevel. Aggregation level =1, 2, 4, 8 correspond to the PDCCH format = 0, 1, 2, 3.1 matrix-based token is generated at DataOut, the size of this matrix token is8*N_REG(sf). Where N_REG(sf) is the available resource element groups whichis allocated by PDCCH_SymsPerSF and not assigned to PCFICH or PHICH.

The PDCCH is transmitted on an aggregation of one or several consecutive control3.channel elements (CCEs), where a control channel element corresponds to 9 resourceelement groups. The number of resource-element groups not assigned to PCFICH orPHICH is N_REG. The control region consists of a set of CCEs, numbered from 0 toN_CCE(k)-1, according to Section 6.8.2 in 36.211, where N_CCE(k) is the totalnumber of CCEs in the control region of subframe k. The CCEs corresponding toPDCCH candidate m of the search space S_k_(L) are given byL*{(Y(k)+m)mod(floor(N_CCE(k) / L)}+i,Where Y(k) is defined below, i = 0, ..., L-1 and m = 0, ..., M_(L)-1. M_(L) is thenumber of PDCCH candidates to monitor in the given search space.The aggregation levels defining the search spaces are listed in Table 9.1.1-1 of36.213. The DCI formats that the UE shall monitor depend on the configuredtransmission mode as defined in Section 7.1.For the common search spaces, Y(k) is set to 0 for the two aggregation levels L = 4and L = 8.For the UE-specific search space S_k_(L) at aggregation level , the variable Y(k) isdefined byY(k) = ( A*Y(k-1) ) mod DWhere Y(-1) = n_RNTI(>0) , A = 39827, D = 65537 and k is the subframe numberwithin a radio frame.The RNTI value used for set by parameter UE_n_RNTI.If necessary, <NIL> elements shall be inserted in the block of bits prior to scrambling4.to ensure that the PDCCHs starts at the CCE positions as described in 36.213 and to

ensure that the length of the scrambled block ofbits matches the amount of resource-element groups not assigned to PCFICH orPHICH and that the PDCCH consisting of consecutive CCEs only start on a CCEfulfilling i mod n=0, where i is the CCE number.In our implementation, the <NIL> elements inserted are set to 2.5.Parameter details:6.System Parameters FrameMode

TDD_ConfigBandwidthNumTxAntsCyclicPrefix

PDCCH corresponding parameters PDCCH_SymsPerSFPHICH_NgPDCCH_UE_AggreLevelPDCCH_UE_DCI_FormatsPDCCH_Common_AggreLevelPDCCH_Common_DCI_FormatsUE_n_RNTI

For the system parameters, refer to DL System Parameters (ltebasever).For PDCCH corresponding parameters, refer to DL Control Channel Parameters(ltebasever).See LTE_DL_DCI_RateMatch (ltebasever) and LTE_PDCCH_Scrambler (ltebasever)..7.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.2.3GPP TS 36.213 v8.8.0, "Physical Layer Procedures", September 2009.3.

Page 292: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

291

LTE_PDCCH_Scrambler PartCategories: C++ Code Generation (ltebasever), Signaling (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_PDCCH_Scrambler (ltebasever) PDCCHScrambler

LTE_PDCCH_Scrambler (PDCCH Scrambler)

Description: PDCCH ScramblerDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE PDCCH Scrambler Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW5 MHz, BW 10 MHz, BW 15 MHz, BW 20MHz

BW 5 MHz Enumeration NO

NumTxAnts number of Tx Antennas: Tx1, Tx2, Tx4 Tx1 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

CellID_Sector the index of cell identity within thephysical-layer cell-identity group

0 Integer NO

CellID_Group the index of cell identity group 0 Integer NO

PDCCH_SymsPerSF number of OFDM symbols of PDCCH foreach subframe

[2, 2, 2, 2, 2,2, 2, 2, 2, 2]

Integerarray

NO

PHICH_Ng PHICH Ng value: Ng 1/6, Ng 1/2, Ng 1,Ng 2

Ng 1/6 Enumeration NO

ETM_Support whether to support PHICH m =1 in alltransmitted subframes for TDD E-TMdefined in 36.141 6.1.2.6: NO, YES

NO Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 DataIn Input Matrix-based PDCCH bits for scrambling integermatrix

NO

Output Ports

Port Name Description Signal Type Optional

2 DataOut Output Matrix-based PDCCH scrambled bits integer matrix NO

3 ModSym Output Matrix-based PDCCH modulation symbols(QPSK)

complex matrix NO

Notes/Equations

This model is used to implement PDCCH scrambling as defined in section 6.8.2 of1.36.211.For ith firing, Subframe#(i%10) is processed, where 10 is the number of subframes in2.one radio frame.Each firing, 1 matrix-based token is consumed and generated at DataIn, DataOut andModSym. The size of this matrix token at DataIn and DataOut is 8*N_REG(sf). Thesize of this matrix token at ModSym is 4*N_REG(sf). Where N_REG(sf) is theavailable resource element groups which is allocated by PDCCH_SymsPerSF and notassigned to PCFICH or PHICH.The block of bits b_0(0), ... , b_0(M_0-1), b_1(0), ... , b_1(M_1-1), ... ,3.b_nPDCCH(0), ... , b_nPDCCH(M_nPDCCH-1), are srambled with a cell-specificsequence prior to modulation, and result in bs_0(0), ... , bs_0(M_0-1), bs_1(0), ... ,bs_1(M_1-1), ... , bs_nPDCCH(0), ... , bs_nPDCCH(M_nPDCCH-1) according tobs(idx) = (b(idx) + c(idx)) mod 2. The scrambling sequence c(idx) is given bysection 7.2 of 36.211. Where n is the number of PDCCHs transmitted in thissubframe.

Page 293: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

292

The scrambling sequence generator shall be initialized withc_init=floor(n_s/2)*2^9+N_ID_cell at the start of each subframe.The block of scrambled bits are modulated with QPSK modulation schemes asdescribed in Section 7.1 of 36.211, resulting in a block of complex-valued modulationsymbols d(0), ...,d(M_symb-1).The scrambled bits and the inserted <NIL> bits are output at port DataOut. In ourimplementation, the inserted <NIL> bits, which is set to 2 in the modelLTE_PDCCH_Mux, are output as 2.The complex-valued modulation symbols are output at port ModSym. In ourimplementation, the inserted <NIL> bits, which is set to 2 in the modelLTE_PDCCH_Mux, are mapping to 0.0+0.0*j with each 2 <NIL> bits and output atthis port.Parameter details:4.System Parameters FrameMode

TDD_ConfigBandwidthNumTxAntsCyclicPrefixCellID_SectorCellID_Group

PDCCH corresponding parameters PDCCH_SymsPerSFPHICH_Ng

For the system parameters, refer to DL System Parameters (ltebasever).For PDCCH corresponding parameters, refer to DL Control Channel Parameters(ltebasever).See LTE_PDCCH_Mux (ltebasever).5.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.2.

Page 294: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

293

LTE_UL_PUCCH_Controller PartCategories: C++ Code Generation (ltebasever), Signaling (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_UL_PUCCH_Controller (ltebasever) uplink control information encoder on PUCCH

LTE_UL_PUCCH_Controller (uplink controlinformation encoder on PUCCH)

Description: uplink control information encoder on PUCCHDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE UL PUCCH Controller Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

PUCCH_PUSCH PUCCH and PUSCH selection: PUSCH,PUCCH, both

PUCCH Enumeration NO

PUCCH_Format PUCCH format: Format 1, Format 1a,Format 1b, Shortened 1, Shortened 1a,Shortened 1b, Format 2, Format 2a,Format 2b

Format1

Enumeration NO

PUCCH_NumCQIBits number of CQI bits for PUCCH format2/2a/2b

5 Integer NO

PUCCH_NumHARQACKBits number of HARQ-ACK bits for PUCCHformat 2 in Extended CP mode: 1 bit, 2bits

1 bit Enumeration NO

PUCCH_SF_Alloc which sub frames contain the PUCCH,valid when PUCCH_PUSCH is other thanPUSCH

[2] Integerarray

NO

Output Ports

Port Name Description Signal Type Optional

1 Output Number of PUCCH information bits for eachsubframe

int NO

Notes/Equations

This model outputs the number of PUCCH information bits transmitted in each1.subframe.Each firing, 1 token is produced at port Output. If PUCCH is not transmitted in this2.subframe, a '0' would be output.As can be seen from the subnetwork LTE_UL_Src and LTE_UL_Receiver, the3.generation of PUCCH including channel coding, modulation and block-wise spreadingis implemented as shown in the following figure:

The PUCCH supports multiple formats shown in the Supported PUCCH formatstable below:

Page 295: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

294

PUCCHformat

Modulationscheme

Number of bits persubframe, Mbits

1 N/A N/A

1a BPSK 1

1b QPSK 2

shorten 1 N/A N/A

shorten 1a BPSK 1

shorten 1b QPSK 2

2 QPSK 20

2a QPSK + BPSK 21

2b QPSK + BPSK 22

If PUCCH_Format is Format 1/Shorten 1, the output at port Output wouldbe '1' on each PUCCH subframe;If PUCCH_Format is Format 1a/Shorten 1a, 1 HARQ ACK/NACK bit would betransmitted on each PUCCH subframe;If PUCCH_Format is Format 1b/Shorten 1b, 2 HARQ ACK/NACK bits wouldbe transmitted on each PUCCH subframe;If PUCCH_Format is Format 2,

In Normal CP mode, PUCCH_NumCQIBits CQI bits would betransmitted on each PUCCH subframe;In Extended CP mode, PUCCH_NumCQIBits CQI bits andPUCCH_NumHARQACKBits HARQ ACK/NACK bit(s) would betransmitted on each PUCCH subframe;

If PUCCH_Format is Format 2a, PUCCH_NumCQIBits CQI bits and 1 HARQACK/NACK bit would be transmitted on each PUCCH subframe;If PUCCH_Format is Format 2b, PUCCH_NumCQIBits CQI bits and 2 HARQACK/NACK bits would be transmitted on each PUCCH subframe.

The transmitted CQI bits and HARQ ACK/NACK bits are read from modelPUCCH_Data (a DataPattern model). HARQ ACK/NACK bits are output after CQIbits from this model. Users can replace the DataPattern model with ReadFile orany other model to transmitt the customized bits.

See LTE_UL_PUCCH_Encoder (ltebasever) and LTE_UL_PUCCH (ltebasever).4.

For more information on the System Parameters details please refer to UL System Parameters(ltebasever).For more information on the PUCCH Parameters details please refer to UL PUCCH Parameters(ltebasever).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.2.

Page 296: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

295

LTE_UL_PUCCH_Encoder PartCategories: C++ Code Generation (ltebasever), Signaling (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_UL_PUCCH_Encoder (ltebasever) uplink control information encoder on PUCCH

LTE_UL_PUCCH_Encoder (uplink control informationencoder on PUCCH)

Description: uplink control information encoder on PUCCHDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE UL PUCCH Encoder part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

PUCCH_PUSCH PUCCH and PUSCH selection: PUSCH,PUCCH, both

PUCCH Enumeration NO

PUCCH_Format PUCCH format: Format 1, Format 1a,Format 1b, Shortened 1, Shortened 1a,Shortened 1b, Format 2, Format 2a,Format 2b

Format1

Enumeration NO

PUCCH_NumCQIBits number of CQI bits for PUCCH format2/2a/2b

5 Integer NO

PUCCH_NumHARQACKBits number of HARQ-ACK bits for PUCCHformat 2 in Extended CP mode: 1 bit, 2bits

1 bit Enumeration NO

PUCCH_SF_Alloc which sub frames contain the PUCCH,valid when PUCCH_PUSCH is other thanPUSCH

[2] Integerarray

NO

Input Ports

Port Name Description Signal Type Optional

1 Input Uplink ControlInformation

integermatrix

NO

Output Ports

Port Name Description Signal Type Optional

2 Output PUCCH coded bits integermatrix

NO

Notes/Equations

This model performs channel coding for uplink control information on PUCCH.1.Each firing,2.

1 matrix token is consumed at port Input, the size of the matrix token is equalto the number of PUCCH information bits transmitted on each subframe;1 matrix token is produced at port Output, the size of the matrix token is equalto the number of PUCCH coded bits transmitted on each subframe, which isdetermined by PUCCH_Format.For the default parameter configurations, PUCCH is only transmitted onsubframe 2 with format 1, the size of the input matrix for each subframe are [0,0, 1, 0, 0, 0, 0, 0, 0, 0], the size of the output matrix token for each subframeare [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0].

Data arrives to the coding unit in the form of indicators for measurement indication,3.scheduling request and HARQ acknowledgement. Three forms of channel coding areused, one for the channel quality information (CQI), another for HARQ-ACK(acknowledgement) and scheduling request and another for combination of channelquality information (CQI) and HARQ-ACK.

Page 297: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

296

Channel coding for UCI HARQ-ACKThe HARQ acknowledgement bits are received from higher layers. HARQ-ACKconsists of 1-bit of information, i.e., b0 or 2-bits of information, i.e., b0, b1 with b0

corresponding to ACK/NACK bit for codeword 0 and b1 corresponding to that for

codeword 1. Each positive acknowledgement (ACK) is encoded as a binary '1'and each negative acknowledgement (NACK) is encoded as a binary '0'. TheHARQ-ACK bits are processed according to [1].Channel coding for UCI scheduling requestThe scheduling request indication is received from higher layers and isprocessed according to [1].Channel coding for UCI channel quality informationThe channel quality bits input to the channel coding block are denoted by a0, a1,

a2, a3, ..., aA-1 where A is the number of bits. The number of channel quality

bits depends on the transmission format as indicated in subclause 5.2.3.3.1 [2]for wideband reports and in subclause 5.2.3.3.2 [2] for UE-selected subbandsreports.The channel quality indication is coded using a (20, A) code. The code words ofthe (20, A) code are a linear combination of the 13 basis sequences denotedMi,n and defined in the following table.i Mi,0 Mi,1 Mi,2 Mi,3 Mi,4 Mi,5 Mi,6 Mi,7 Mi,8 Mi,9 Mi,10 Mi,11 Mi,12

0 1 1 0 0 0 0 0 0 0 0 1 1 0

1 1 1 1 0 0 0 0 0 0 1 1 1 0

2 1 0 0 1 0 0 1 0 1 1 1 1 1

3 1 0 1 1 0 0 0 0 1 0 1 1 1

4 1 1 1 1 0 0 0 1 0 0 1 1 1

5 1 1 0 0 1 0 1 1 1 0 1 1 1

6 1 0 1 0 1 0 1 0 1 1 1 1 1

7 1 0 0 1 1 0 0 1 1 0 1 1 1

8 1 1 0 1 1 0 0 1 0 1 1 1 1

9 1 0 1 1 1 0 1 0 0 1 1 1 1

10 1 0 1 0 0 1 1 1 0 1 1 1 1

11 1 1 1 0 0 1 1 0 1 0 1 1 1

12 1 0 0 1 0 1 0 1 1 1 1 1 1

13 1 1 0 1 0 1 0 1 0 1 1 1 1

14 1 0 0 0 1 1 0 1 0 0 1 0 1

15 1 1 0 0 1 1 1 1 0 1 1 0 1

16 1 1 1 0 1 1 1 0 0 1 0 1 1

17 1 0 0 1 1 1 0 0 1 0 0 1 1

18 1 1 0 1 1 1 1 1 0 0 0 0 0

19 1 0 0 0 0 1 1 0 0 0 0 0 0

After encoding the bits are denoted by b0, b1, b2, b3, ..., bB-1 where B = 20 and

with

where i = 0, 1, 2, ..., B − 1.Channel coding for UCI channel quality information and HARQ-ACK

When normal CP is used for uplink transmission, the channel qualityinformation is coded according to subclause 5.2.3.3 [2] with input bitsequence a'0, a'1, a'2, a'3, ..., a'A'-1 and output bit sequence b'0, b'1, b'2, b'3, ..., b'B'-1, where B' = 20. The HARQ acknowledgement bits are denoted by

a''0 in case one HARQ acknowledgement bit or a''0, a''1 in case two HARQ

acknowledgement bits are reported per subframe. Each positiveacknowledgement (ACK) is encoded as a binary '1' and each negativeacknowledgement (NAK) is encoded as a binary '0'.The output of this channel coding block for normal CP is denoted by b0, b1, b2

, b3, ..., bB-1, where

bi = b'i, i = 0, ..., B' − 1

In case one HARQ acknowledgement bit is reported per subframe:bB' = a''0 and B = (B' + 1)

In case two HARQ acknowledgement bits are reported per subframe:b = a'' , b = a'' and B = (B' + 2)

Page 298: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

297

B' 0 B'+1 1

When extended CP is used for uplink transmission, the channel qualityinformation and the HARQ-ACK acknowledgement bits are jointly coded.The HARQ acknowledgement bits are denoted by a''0 in case one HARQ

acknowledgement bit or [a''0, a''1] in case two HARQ acknowledgement bits

are reported per subframe.The channel quality information denoted by a'0, a'1, a'2, a'3, ..., a'A'-1 is

multiplexed with the HARQ acknowledgement bits to yield the sequence a0,

a1, a2, a3, ..., aA-1 as follows

ai = a'i, i = 0, ..., A' − 1

andaA' = a''0 and A = (A' + 1) in case one HARQ-acknowledgement bit is

reported per subframe, oraA' = a''0, aA'+1 = a''1 and A = (A' + 2)

in case two HARQ-acknowledgement bits are reported per subframe.The sequence a0, a1, a2, a3, ..., aA-1 is encoded according to section

5.2.3.3 [2] to yield the output bit sequence b0, b1, b2, b3, ..., bB-1 where B

= 20.Please refer to LTE_UL_PUCCH_Controller (ltebasever) for an example of PUCCH4.generation.See LTE_UL_PUCCH_Controller (ltebasever) and LTE_UL_PUCCH (ltebasever).5.

For more information on the System Parameters details please refer to UL System Parameters(ltebasever).For more information on the PUCCH Parameters details please refer to UL PUCCH Parameters(ltebasever).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.2.

Page 299: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

298

LTE_UL_PUCCH PartCategories: C++ Code Generation (ltebasever), Signaling (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_UL_PUCCH (ltebasever) PUCCH Generator

LTE_UL_PUCCH (PUCCH Generator)

Description: PUCCH GeneratorDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE UL PUCCH Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD: Config0, Config 1, Config 2, Config 3, Config 4,Config 5, Config 6

Config 0 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW 5MHz, BW 10 MHz, BW 15 MHz, BW 20 MHz

BW 5MHz

Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

CellID_Sector the index of cell identity within the physical-layer cell-identity group

0 Integer NO

CellID_Group the index of cell identity group 0 Integer NO

n_RNTI radio network temporary identifier 0 Integer NO

PUCCH_PUSCH PUCCH and PUSCH selection: PUSCH, PUCCH,both

PUCCH Enumeration NO

GroupHop_Enable whether enable group hopping for DMRS onPUCCH and PUSCH or not: NO, YES

NO Enumeration NO

PUCCH_Format PUCCH format: Format 1, Format 1a, Format1b, Shortened 1, Shortened 1a, Shortened 1b,Format 2, Format 2a, Format 2b

Format1

Enumeration NO

PUCCH_Delta_shift used to calculate PUCCH cyclic shift Alfa 2 Integer NO

PUCCH_SF_Alloc which sub frames contain the PUCCH, validwhen PUCCH_PUSCH is other than PUSCH

[2] Integerarray

NO

PUCCH_NRB2 number of RBs used for transmisstion PUCCHformat 2/2a/2b

1 Integer NO

PUCCH_n1 resources used for transmisstion PUCCH format1/1a/1b

11 Integer NO

PUCCH_n2 resources used for transmission PUCCH format2/2a/2b

11 Integer NO

DisplayPortRates whether the port rates and other usefulinformation are displayed in Simulation Logwindow: NO, YES

NO Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 Input PUCCH Infomation integermatrix

NO

Output Ports

Port Name Description Signal Type Optional

2 PUCCH_Sym PUCCH Symbols complex matrix NO

3 PUCCH_RS PUCCH RS complex matrix NO

4 PUCCH_ScrambledBits scrambled bits of PUCCH format 2/2a/2b integer matrix NO

5 PUCCH_ModSyms modulatd symbols of PUCCH complex matrix NO

Notes/Equations

This model is used to generate PUCCH (Physical Uplink Control Channel, carries1.uplink control information) and its demodulation reference signal for each subframe.

Page 300: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

299

Each firing,2.1 matrix token is consumed at port Input, the size of the matrix token is equalto the number PUCCH coded bits in each subframe, which is determined byPUCCH_Format.1 matrix token is produced at port PUCCH_Sym, the size of the matrix token isequal to the number of REs allocated for PUCCH transmission (excluding DMRSfor PUCCH) in each subframe.1 matrix token is produced at port PUCCH_RS, the size of the matrix token isequal to the number of REs allocated for PUCCH DMRS transmission in eachsubframe.1 matrix token is produced at port PUCCH_ScrambledBits, the size of the matrixtoken is 20 if PUCCH format 2/2a/2b is transmitted in this subframe. For otherPUCCH formats, the output is an empty matrix.1 matrix token is produced at port PUCCH_ModSyms, the size of the matrixtoken is the number of modulation symbols (before block-wise spreading) ofPUCCH in each subframe. The modulation schemes corresponding to eachPUCCH format are listed in the following figure.For the default parameter configurations, the size of the input matrix tokens ineach subframe are [0, 0, 1, 0, 0, 0, 0, 0, 0, 0], the size of the output matrixtokens at PUCCH_Sym in each subframe are [0, 0, 96, 0, 0, 0, 0, 0, 0, 0], thesize of the output matrix tokens at PUCCH_RS in each subframe are [0, 0, 72, 0,0, 0, 0, 0, 0, 0], the output matrix tokens at PUCCH_ScrambledBits are empty,the size of the output matrix tokens at PUCCH_ ModSyms in each subframe are[0, 0, 1, 0, 0, 0, 0, 0, 0, 0].

The PUCCH supports multiple formats shown in the Supported PUCCH formats3.table below:PUCCHformat

Modulationscheme

Number of bits persubframe, Mbits

1 N/A N/A

1a BPSK 1

1b QPSK 2

shorten 1 N/A N/A

shorten 1a BPSK 1

shorten 1b QPSK 2

2 QPSK 20

2a QPSK + BPSK 21

2b QPSK + BPSK 22

Formats 2a and 2b are supported for normal cyclic prefix only. For frame structure4.type 2, the PUCCH is not transmitted in the UpPTS field.It should be noted that the mix format is not supported in current implementation.5.No mixed resource block is present, i.e. N(1)

cs is always set to 0.

Please refer to LTE_UL_PUCCH_Controller (ltebasever) for an example of PUCCH6.generation.See LTE_UL_PUCCH_Controller (ltebasever) and LTE_UL_PUCCH_Encoder7.(ltebasever).

For more information on the System Parameters details please refer to UL System Parameters(ltebasever).For more information on the PUCCH Parameters details please refer to UL PUCCH Parameters(ltebasever).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.2.

Page 301: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

300

LTE_UserAllocInfo PartCategories: C++ Code Generation (ltebasever), Signaling (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_UserAllocInfo (ltebasever) Generation of RB-allocation-related information

LTE_UserAllocInfo (Generation of RB-allocation-related information)

Description: Generation of RB-allocation-related informationDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE UserAllocInfo Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

SpecialSF_Config special subframe configuration for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6, Config 7,Config 8

Config 4 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW 5MHz, BW 10 MHz, BW 15 MHz, BW 20 MHz

BW 5 MHz Enumeration NO

NumTxAnts number of Tx Antennas: Tx1, Tx2, Tx4 Tx1 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

RB_AllocType RB allocation type: StartRB + NumRBs, RBindices (1D), RB indices (2D)

StartRB +NumRBs

Enumeration NO

RB_Alloc the RB allocation for the UE, in the formatsof [start RB, number of RBs] or [[SF0 startRB, SF0 number of RBs]; . . .; [SF9 startRB, SF9 number of RBs]]

[0, 25] Integerarray

NO

PDCCH_SymsPerSF number of OFDM symbols of PDCCH foreach subframe

[2, 2, 2, 2,2, 2, 2, 2,2, 2]

Integerarray

NO

Output Ports

Port Name Description Signal Type Optional

1 NumREs the number of Resource Elements (REs) per each subframe int NO

Notes/Equations

This model is used to generate RB allocation-related information for LTE downlink1.PDSCH.In this release, the output information only includes the number of resource elements(REs) per each subframe for PDSCH.Each firing, one token is produced at the 'NumREs' port, indicating the number of2.resouce elements. The output value in the first firing is for Subframe#0, the value inthe second firing is for Subframe#1, and so on.Parameters details:3.

NumTxAnts: number of Tx Antennas: Tx1, Tx2, Tx4.For FrameMode, TDD_Config, SpecialSF_Config, Bandwidth and CyclicPrefix,please refer to DL System Parameters (ltebasever).RB_AllocType and RB_Alloc: RB allocation for UE, the formats of RB_Alloc is[Start RB, number of RBs] or [SF0 start RB, SF0 number of RBs, ...], pleaserefer to DL RB Alloc Parameters (ltebasever).PDCCH_SymsPerSF: please refer to DL Control Channel Parameters(ltebasever).

For more information on how to get the number of resource elements (REs) per each4.subframe for PDSCH, refer to Resource Elements and Channel Bits Calculation(ltebasever).

References

Page 302: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

301

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.

Page 303: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

302

LTE_DL_MIMO_2Ant_Src Part Downlink baseband 2 antennas MIMO signal source

Categories: Source (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model

LTE_DL_MIMO_2Ant_Src (ltebasever)

LTE_DL_MIMO_2Ant_Src

Description: Downlink baseband 2 antennas MIMO signal sourceAssociated Parts: LTE DL MIMO 2Ant Src Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

ShowSystemParameters show system parameters for LTEdownlink signals: NO, YES

YES Enumeration NO

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

SpecialSF_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6, Config 7,Config 8

Config 0 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW5 MHz, BW 10 MHz, BW 15 MHz, BW 20MHz

BW 5 MHz Enumeration NO

OversamplingOption oversampling option: Ratio 1, Ratio 2,Ratio 4, Ratio 8

Ratio 2 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

CellID_Sector the index of cell identity group 0 Integer NO

CellID_Group the index of cell identity within thephysical-layer cell-identity group

0 Integer NO

RB_MappingType the mapping type of VRBs to PRBs:Localized, Distributed

Localized Enumeration NO

SS_PerTxAnt whether synchronization signals (P-SSand S-SS) are transmitted on eachtransmit antenna: NO, YES

NO Enumeration NO

ShowMIMO_Parameters show MIMO-related parameters for allsix Ues: NO, YES

YES Enumeration NO

UEs_MIMO_Mode MIMO Mode for each UE, 1 for TD, 0 forSM

[0,0,0,0,0,0] Integerarray

NO

UEs_CDD_Mode CDD Mode for each UE, 1 for Zero-Delay, 0 for Large-Delay

[0,0,0,0,0,0] Integerarray

NO

UEs_CdBlk_Index codebook index for precoding for eachUE

[0,0,0,0,0,0] Integerarray

NO

UEs_NumOfCWs number of code words for each UE [1,1,1,1,1,1] Integerarray

NO

UEs_NumOfLayers number of layers for each UE [1,1,1,1,1,1] Integerarray

NO

ShowUE1_Parameters show parameters for coded UE1: NO,YES

YES Enumeration NO

UE1_HARQ_Enable Whether HARQ closed-loop transmissionis enable: NO, YES

YES Enumeration NO

Page 304: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

303

UE1_NumHARQ Number of HARQ processes 8 Integer NO

UE1_MaxHARQTrans Maximum number of HARQ transmissionper each HARQ process

4 Integer NO

UE1_CL_Precoding_Enable whether closed-loop MIMO precoding forUE1 is enabled: NO, YES

NO Enumeration NO

UE1_PMI_Granularity closed-loop PMI reporting granularity inunits of resource blocks (RBs) for UE1

25 Integer NO

UE1_PMI_Delay closed-loop PMI reporting delay in unitsof sub-frames (1ms) for UE1

6 Integer NO

UE1_Config the configuration mode of input data forUE 1.: MCS index, Transport block size,Code rate

Transport block size Enumeration NO

UE1_Payload the input payload for UE 1, the meaningof the input is defined in UE1_Config

[2555,2555,2555,2555,2555,2555,2555,2555,2555,2555] Floatingpoint array

NO

UE1_MappingType the modulation orders for UE 1 in eachsubframe, valid when UE1_Payload isnot set to MCS index. (0:QPSK,1:16QAM, 2:64QAM)

[0,0,0,0,0,0,0,0,0,0] Integerarray

NO

UE1_RV_Sequence Redundancy Version Sequence for HARQclosed-loop transmission

[0,1,2,3] Integerarray

NO

UE1_n_RNTI Radio network temporary identifier forUE 1

1 Integer NO

UE1_Category defines UE1 capability, used to get thetotal number of soft channel bits forrate-matching in downlink.: Category 1,Category 2, Category 3, Category 4,Category 5

Category 1 Enumeration NO

RB_AllocType RB allocation type: StartRB + NumRBs,RB indices (1D), RB indices (2D)

StartRB + NumRBs Enumeration NO

UE1_RB_Alloc the RB allocation for UE 1, in theformats of [start RB, number of RBs] or[SF0 start RB, SF0 number of RBs; . . . ;SF9 start RB, SF9 number of RBs]

[0,25] Integerarray

NO

ShowOtherUEs_Parameters show parameters for other uncodedUes: NO, YES

YES Enumeration NO

OtherUEs_MappingType the modulation orders for other UEsexcept UE 1 in all subframes. (0:QPSK,1:16QAM, 2:64QAM)

[0,0,0,0,0] Integerarray

NO

UE2_RB_Alloc the RB allocation for UE 2, in theformats of [start RB, number of RBs] or[SF0 start RB, SF0 number of RBs; . . . ;SF9 start RB, SF9 number of RBs]

[0,0] Integerarray

NO

UE3_RB_Alloc the RB allocation for UE 3, in theformats of [start RB, number of RBs] or[SF0 start RB, SF0 number of RBs; . . . ;SF9 start RB, SF9 number of RBs]

[0,0] Integerarray

NO

UE4_RB_Alloc the RB allocation for UE 4, in theformats of [start RB, number of RBs] or[SF0 start RB, SF0 number of RBs; . . . ;SF9 start RB, SF9 number of RBs]

[0,0] Integerarray

NO

UE5_RB_Alloc the RB allocation for UE 5, in theformats of [start RB, number of RBs] or[SF0 start RB, SF0 number of RBs; . . . ;SF9 start RB, SF9 number of RBs]

[0,0] Integerarray

NO

UE6_RB_Alloc the RB allocation for UE 6, in theformats of [start RB, number of RBs] or[SF0 start RB, SF0 number of RBs; . . . ;SF9 start RB, SF9 number of RBs]

[0,0] Integerarray

NO

ShowControlChannelParameters show parameters for control channels:NO, YES

YES Enumeration NO

PDCCH_SymsPerSF number of OFDM symbols of PDCCH foreach subframe

[2,2,2,2,2,2,2,2,2,2] Integerarray

NO

PDCCH_UE_AggreLevel the aggregation levels of UE-specificPDCCH search space for everysubframe. The allowable levels are 1, 2,4 and 8.

[1] Integerarray

NO

PDCCH_UE_DCI_Formats the DCI Formats of the PDCCHcandidates for every subframe (-1means no DCI in correspondingcandidate).

[0, -1, -1, -1, -1, -1] Integerarray

NO

PDCCH_Common_AggreLevel the aggregation levels of CommonPDCCH search space for everysubframe. The allowable levels are 4and 8.

[4] Integerarray

NO

PDCCH_Common_DCI_Formats the DCI Formats of the PDCCHcandidates for every subframe (-1means no DCI in correspondingcandidate).

[-1, -1, -1, -1] Integerarray

NO

PHICH_Duration type of PHICH duration :Normal_Duration, Extended_Duration

Normal_Duration Enumeration NO

PHICH_Ng type of PHICH duration : Ng 1/6, Ng Ng 1/6 Enumeration NO

Page 305: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

304

1/2, Ng 1, Ng 2

HI physical hybrid-ARQ ACK/NAK indicators [1,-1,-1,-1,-1,-1,-1,-1] Integerarray

NO

ShowPowerParameters show power-related parameters: NO,YES

YES Enumeration NO

RS_EPRE transmit energy per resource element(RE) for transmitted cell specific RS foreach antenna port, in unit ofdBm/15kHz

-25 Float NO

PCFICH_Rb PCFICH-to-RS EPRE ratio in dB insymbols with RS

0 Float NO

PHICH_Ra PHICH-to-RS EPRE ratio in dB insymbols with RS

0 Float NO

PHICH_Rb PHICH-to-RS EPRE ratio in dB insymbols without RS

0 Float NO

PBCH_Ra PBCH-to-RS EPRE ratio in dB in symbolswith RS

0 Float NO

PBCH_Rb PBCH-to-RS EPRE ratio in dB in symbolswithout RS

0 Float NO

PDCCH_Ra PDCCH-to-RS EPRE ratio in dB insymbols with RS

0 Float NO

PDCCH_Rb PDCCH-to-RS EPRE ratio in dB insymbols without RS

0 Float NO

PDSCH_PowerRatio PDSCH Cell Specific Ratio: p_B/p_A = 1,P_B = 0, P_B = 1, P_B = 2, P_B = 3

p_B/p_A = 1 Enumeration NO

UEs_Pa UE specific power parameter for each UE [0,0,0,0,0,0] Floatingpoint array

NO

PSS_Ra PSS-to-RS EPRE ratio in dB in symbolswithout RS

0 Float NO

SSS_Ra SSS-to-RS EPRE ratio in dB in symbolswithout RS

0 Float NO

ShowSpectrumShapingParameters show parameters for transmit spectrumshaping: NO, YES

NO Enumeration NO

SpectrumShapingType spectrum shaping method:TimeWindowing, FIRFilter

TimeWindowing Enumeration NO

WindowType type of time transition windowingbetween two consecutive symbols, validwhenSpectrumShapingType=TimeWindowing:Tukey, Raised cosine

Tukey Enumeration NO

CyclicInterval the overlapped cyclic interval betweentwo adjacent symbols in unit of chips(without oversampling), valid whenSpectrumShapingType=TimeWindowing

6 Integer NO

CI_StartPos the start position of cyclic interval(without oversampling), compared tothe start position of CP (negative meansahead of CP)

-3 Integer NO

FIR_Taps number of FIR filter taps, valid whenSpectrumShapingType=FIRFilter

19 Integer NO

FIR_withInterp whether spectrum-shaping FIR filterwith interpolation operation or not, validwhen SpectrumShapingType=FIRFilter:NO, YES

NO Enumeration NO

FIR_FilterType spectrum-shaping FIR filter type, validwhen SpectrumShapingType=FIRFilter:RRC, Ideal Lowpass, EquiRipple

RRC Enumeration NO

RRC_Alpha roll-off factor for root raised-cosinefilter, valid whenSpectrumShapingType=FIRFilter

0.22 Float NO

DisplayMsg the messages displayed in SimulationLog window: None, Simple, Full

Simple Enumeration NO

Input Ports

Port Name Description SignalType

Optional

0 UE1_PMI UE1 PMI feedbacked from the receiver int matrix YES

1 UE1_Data Input of UE1 information bits for at most 2 codewords multiple int NO

9 UE1_HARQ_Bits UE1 HARQ ACK/NACK bits for at most 2 codewords feedbackedfrom the receiver

multiple int YES

Output Ports

Page 306: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

305

Port Name Description Signal Type Optional

2 Ant1_TD Output of baseband time-domain data for Antenna1 complex NO

3 Ant2_TD Output of baseband time-domain data for Antenna2 complex NO

4 Ant1_FD Output of frequency data without power setting forAntenna1

complex NO

5 Ant2_FD Output of frequency data without power setting forAntenna2

complex NO

6 UE1_ModSymbols UE1 Matrix-based (subframe-based) modulationsymbols for at most 2 codewords

multiple complexmatrix

NO

7 UE1_ChannelBits UE1 Matrix-based (subframe-based) channel bits for atmost 2 codewords

multiple intmatrix

NO

8 SC_Status Output of resource element status for all 2 antennas multiple int NO

Parameter Details

System Parameters DetailsFor System Parameters details which are the same as LTE_DL_Src, please referto DL System Parameters (ltebasever).SS_PerTxAnt: whether the P-SS/S-SS are transmitted on the first antenna portor on all the transmit antenna ports.

MIMO Parameters Details: UEs_MIMO_Mode: MIMO Mode for each UE, 1 for TD (transmit diversity), 0 forSM (spatial multiplexing). The type of intarray and its size should be 6corresponding to six UEs in this source. The value range of each element shouldbe [0,1].UEs_CDD_Mode: CDD Mode for each UE, 1 for Zero-Delay, 0 for Large-Delay.The type of intarray and its size should be 6 corresponding to six UEs in thissource. The value range of each element should be [0,1]. For UE#i, thecorresponding element (UEs_CDD_Mode[i] is valid only when UEs_MIMO_Mode[i] is set to SM (spatial multiplexing).UEs_CdBlk_Index: precoding codebook index for each UE. The type of intarrayand its size should be 6 corresponding to six UEs in this source. The value rangeof each element should be [0,15]. For UE#i, the corresponding element(UEs_CdBlk_Index[i] is valid only when UEs_MIMO_Mode[i] is set to SM (spatialmultiplexing) and UEs_CDD_Mode[i] is set to 1(Zero-Delay) (withUE1_CL_Precoding_Enable = YES, UEs_CdBlk_Index[0] is invalid since theprecoding codebook index for UE 1 is feedbacked from the receiver).UEs_NumCWs: Number of code words for each UE. The type of intarray and itssize should be 6 corresponding to six UEs in this source. The value range of eachelement should be [1,2].UEs_NumOfLayers: Number of layers for each UE. The type of intarray and itssize should be 6 corresponding to six UEs in this source. The value range of eachelement should be [1,2,3,4]. The elements of UE_CDD_Mode, UE_CdBk_Indexand UE_NumOfLayers just will be active only when the corresponding element is0 (spatial multiplexing) in UEs_MIMO_Mode parameter.

UE1 Parameters Details:UE1_CL_Precoding_Enable: whether closed-loop MIMO precoding for UE1 isenabled. According to [1], closed-loop MIMO precoding can be eanbled only incase of Spatial Multiplexing and without CDD.UE1_PMI_Granularity: specify the granularity in units of PRBs that PMIs areproduced when UE1_CL_Precoding_Enable is equal to YES.UE1_PMI_Delay: specify the delay in units of subframes that PMIs are appliedwhen UE1_CL_Precoding_Enable is equal to YES. Note that the firstUE1_PMI_Delay suframes use Precoding Codebook Index 0.For other UE1 Parameters details, pleaase refer to DL UE1 Parameters(ltebasever).

OtherUEs Parameters Details:For OtherUEs Parameters details, please refer to DL OtherUEs Parameters(ltebasever).

Control Channel Parameters Details:For Control Channel Parameters Details, please refer to DL Control ChannelParameters (ltebasever).If user want to use the DCI to demodulate the corresponding PDSCH, please seethese notes:

DCI Format 2 and 2A are supported for 2 antenna downlink source. ForTransmit diversity, Format 2 should be set. For Spatial Multiplexing withzero delay CDD, Format 2 should be set. For Spatial Multiplexing with largedelay CDD, Format 2A should be setOnly DCI encoding for UE 1 is supported. If user want to get DCI encodingfor other UEs, please open the LTE_DL_MIMO_2Ant_Src model and set theLTE_DL_DCI_Gen model's corresponding parameters to those of other UEs'.To set other UEs' corresponding parameters in LTE_DL_DCI_Gen model,please set the PDCCH_UE_DCI_Formats=[6, 7, -1, -1, -1, -1], and then allparameters needed set will display. Then reset thePDCCH_UE_DCI_Formats to you wanted values or a variable

Page 307: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

306

PDCCH_UE_DCI_Formats which value is decided by top level.It is suggested to set UE1_Config=0 (MCS index) to get correct MCSsettings.With default setting, resource allocation type 0 is employed. To changeresource allocation type, push into the source and change thePDSCH_ResAllocType parameter in the LTE_DL_DCI_Gen model.

Power Parameters:For Power Parameters details, please refer to DL Power Parameters (ltebasever).Note that for PSS_Ra, when SS_PerTxAnt = NO, the PSS EPRE on the firstantenna port is (RS_EPRE+PSS_Ra), when the PSS EPRE on rest ports are 0.When SS_PerTxAnt = YES, the PSS EPRE on the each antenna port is(RS_EPRE+PSS_Ra-10log10(P)), where P is the number of antenna ports (P=2in this source).For SSS_Ra, the SSS EPRE allocation for multiple antenna ports is the same asPSS EPRE above.

Spectrum Shaping Parameters Details:For Spectrum Shaping Parameters details please refer to DL Spectrum ShapingParameters (ltebasever).

DisplayMsg: control the messages displayed in Status/Summary window. WhenDisplayMsg = None, no message is shown; When DisplayMsg = Simple, the SystemConfigurations and UE-specific Configurations are output; When DisplayMsg = Full,the System Configurations, UE-specific Configurations and Power are output. Notethat the transmit power for the OFDM symbols allocated to PDCCH is calculated withthe assumption that all resource elements (REs) allocated to PDCCH are occupiedwith QPSK symbols. When some of the resource elements (REs) allocated to PDCCHare empty, the actual transmit power will be lower than the power above.

Notes/Equations

This subnetwork generates 3GPP FDD LTE (FS1) and TDD LTE (FS2) coded downlink1.baseband signal (up to six users (PDSCHs)) with two transmit antenna ports.The LTE_DL_MIMO_2Ant_Src schematic is shown below:2.

In this source, the data type in most input/output ports are matrix which should be3.column vector (i.e the matrix size should be Nx1, N is the size of vector). Refer toMatrix-based Ports (ltebasever) for more information.Generally, one subframe data are produced per each firing. So for ith firing,4.Suframe#i%10 is processed, where 10 is the number of subframes per one radioframe.Each firing,The number of tokens consumed at port UE1_Data is equal to the number oftransport block size for this subframe (firing). When no transport block size isallocated in this subframe (firing) or HARQ retranmssion is performed, no token isconsumed at port UE1_Data. The bus width of this input port should be equal to orgreater than the number of code words for UE 1 (UEs_NumOfCWs[1]). Refer toRelation of Transport Block Sizes (ltebasever) for how to get transport block size foreach subframe.One token is consumed at port HARQ_Bits to get HARQ ACK/NACK bits which isfeedbacked from the receiver when closed-loop HARQ transmission is enabled for UE1. The bus width of this input port should be equal to or greater than the number ofcode words for UE 1 (UEs_NumOfCWs[1]). Refer to LTE HARQ Controller (ltebasever)for how closed-loop HARQ transmission is processed.One Matrix-based token is consumed at port UE1_PMI to get the PMI for UE1 whenclosed-loop MIMO precoding is enable. The size of the matrix isceil(NumRBsForUE1/UE1_PMI_Granularity), where NumRBsForUE1 is the number of

Page 308: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

307

RBs for UE1.One subframe samples with oversampling in time domain are produced at portsAnt1_TD and Ant2_TD for antenna port 0 and 1 respectively.One subframe frequency domain data without oversampling are produced at portAnt1_FD and Ant2_FD for antenna port 0 and 1 respectively.One Matrix-based token is produced at port UE1_ModSymbols in which the complex-valued modulation symbols for UE 1 (PDSCH 1) for this subframe (firing) are output.The bus width of this output port is equal to the number of code words for UE 1(UEs_NumOfCWs[1]).One Matrix-based token is produced at port UE1_ChannelBits in which the channelbits for UE 1 (PDSCH 1) for this subframe (firing) are output. These outputs are thereference bits for uncoded BER and PER measurement. The bus width of this outputport is equal to the number of code words for UE 1 (UEs_NumOfCWs[1]). For moreinformation on how to get the size of modulation symbols and channel bits, refer toChannel Bits Calculation (ltebasever).The output at port SC_Status is the status for each subcarrier (resource element).The first value is the status for the first subcarrier (resource element) in the firstOFDM symbol, and then the second is for the second subcarrier (resource element) inthe first OFDM symbol. When the last subcarrier (resource element) in the first OFDMsymbol is output, then next the first subcarrier (resource element) in the secondOFDM symbol is output, and so on. The 8 LSB bits of each status value represent thechannel type allocated on each subcarrier (resource element). The meaning of the8 LSB bits is shown in the table below:Value ChanneType

0 EMPTY

1 RS

2 PSS

3 SSS

4 PBCH

5 PCFICH

6 PHICH

7 PDCCH

8 PDSCH 1 (UE 1)

9 PDSCH 2 (UE 2)

10 PDSCH 3 (UE 3)

11 PDSCH 4 (UE 4)

12 PDSCH 5 (UE 5)

13 PDSCH 6 (UE 6)

The 24 MSB bits of each status value represent the index for the data allocated oneach subcarrier (resource element). For each channel indicated in the table above,the data indexing is performed subframe by subframe independently. For example,for PDSCH 1 (UE 1), the first modulation symbol within each subframe is indexed as0; the second modulation symbol is indexed as 1, and so on. When there is no dataallocated on the subcarrier, the 24 MSB bits of each status is set to 0xFFFFFF.For UE 1 (PDSCH 1), it can be set to closed-loop HARQ transmission or non-HARQ5.transmission by the UE1_HARQ_Enable parameter. For more information, refer toClosed-loop HARQ Transmission (ltebasever). The transport block data input fromport UE1_Data are sent to LTE_DL_ChannelCoder component, in which the CRCencoder, code block segmentation, Turbo coder, rate matching and scrambler areperformed. When closed-loop HARQ transmission is enabled, the HARQ ACK/NACKbits are read from the HARQ_Bits port to control the behavior ofLTE_DL_ChannelCoder component. Then the output channel bits are modulated inLTE_Mapper component, resulting in complex-valued modulation symbols which,along with other UEs modulation symbols, are sent to LTE_DL_MuxOFDMSymcomponent for mapping to resource elements.In this source, two code words could be input regardless of the actual number of6.code words defined in the UEs_NumOfCWs[1] parameter for UE 1. WhenUEs_NumOfCWs[1] is 1, in this case the channel coder (and LTE_Mapper) for thesecond code word is ignored.Then the output channel bits are modulated in LTE_Mapper component, resulting in7.complex-valued modulation symbols.The modulation symbols from at most two code words are mapped to layers andprecoded in LTE_DL_MIMO_LayMapPrecoder component. When closed-loop MIMOprecoding for UE1 is enable (i.e. UE1_CL_Precoding_Enable=1) in case of SpatialMultiplexing and without CDD, the delayed PMI (Precoding Matrix Index) from thereceiver will send to LTE_DL_MIMO_LayMapPrecoder component to specify thedesired PMI. The precoded symbols, along with other UEs precoded symbols, are sentto LTE_DL_MuxOFDMSym component for mapping to resource elements.For UE 2 to UE 6 (PDSCH 2 to PDSCH 6), complex-valued modulation symbols are8.generated in LTE_DL_Mapper for the two code words with the source bits of PN 9,which are then sent to LTE_DL_MIMO_LayMapPrecoder component for lay mappingand precoding. The modulation schemes (QPSK, 16QAM or 64QAM) are determinedOtherUEs_MappingType parameter.LTE_PSCH component generates P-SS according to Section 6.11.1 [1], which is the9.

Page 309: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

308

Zadoff-Chu root sequence. P-SS occupies central 72 subcarriers. For FDD LTE (framestructure type 1), P-SS should be mapped to the last OFDM symbol in slots 0 and 10.For TDD LTE (frame structure type 2), P-SS should be mapped to the third OFDM10.symbol in subframe 1 and 6. SS_PerTxAnt parameter determines whether the P-SS istransmitted on the first antenna port or on all the transmit antenna ports.LTE_SSCH component generates S-SS according to Section 6.11.2 [1], which is the11.length-31 binary sequence.The S-SS occupies central 72 subcarriers. In a subframe for frame structure type 112.and in half-frame for frame structure type 2, the same antenna port as for the P-SSshall be used for the S-SS.For TDD LTE (frame structure type 1), S-SS should be mapped to the last second13.OFDM symbol in slots 0 and 10. For TDD LTE (frame structure type 2), S-SS shouldbe mapped to the last OFDM symbol in slot 1 and 11. S_PerTxAnt parameterdetermines whether the S-SS is transmitted on the first antenna port or on all thetransmit antenna ports.The information bits for PBCH are generated from LTE_BCH_Gen which are passed to14.the CRC encoder, convolutional encoder, rate matching, and scrambler, QPSKmodulation, layer mapping and precoding for transmit diversity. Then the precodedsymbols are mapped to corresponding resource elements in LTE_DL_MuxOFDMSymcomponent.The information bits for PCFICH are generated in LTE_DL_CFI according to the15.PDCCH_SymsPerSF parameter. Then these bits are sent to LTE_PCFICH_Scramblercomponent for scrambling, and then mapped to QPSK modulation, and for layermapping and precoding for transmit diversity. The precoded symbols are mapped tocorresponding resource elements in LTE_DL_MuxOFDMSym component.The information bits for PDCCH are generated in LTE_DL_DCI_Gen component16.according to DCI configurations, which are delivered to the CRC encoder, turboencoder, rate matching, scrambler, QPSK modulation, PDCCH interleaver, and layermapping and precoding for transmit diversity. Then the precoded symbols aremapped to corresponding resource elements in LTE_DL_MuxOFDMSym component.The information bits for PHICH are read from the HI parameter in LTE_DL_HI17.component, which are sent to LTE_PHICH_Modulator and LTE_PHICH_LayerMapperfor BPSK modulation, orthogonal spreading and resource group alignment. Theoutputs are mapped to corresponding resource elements in LTE_DL_MuxOFDMSymcomponent.PBCH, PHICH, PCFICH and PDCCH shall be transmitted on the both two antenna18.ports.LTE_DL_MuxOFDMSym component is used to multiplex UEs (PDSCHs) data mapping19.signals, P-SS, S-SS, PBCH, PCFICH, PHICH, PDCCH and reference signals (pilots) intoOFDM symbols following the downlink frame structure in frequency domain.UEs data mapping signals are mapped to resource elements according to Section20.6.3.5 [1]. PBCH QPSK signals, PCFICH QPSK signals, PDCCH QPSK siganls, PHICH aremapped to resource elements according to Section 6.6.4 [1], 6.7.4 [1], 6.8.5 [1],6.9.3 [1], respectively. The cell-specific reference signals are generated according toSection 6.10.1 [1] in LTE_DL_Pilots component and are mapped to resource elementsaccording to Section 6.10.1.2 [1].The outputs at LTE_DL_MuxOFDMSym component are split into two frequency21.domain signals for two antenna ports. Each of them is transferred into time-domainsignals by LTE_DL_OFDM_Modulator which implements OFDM modulation following3GPP LTE downlink OFDM parameters.LTE_DL_MuxSlot is used to multiplex seven/six OFDM symbols by inserting cyclic22.prefix into one slot. LTE_SpecShaping is for spectrum shaping function for downlinksource by using FIR filter or symbol windowing function. The Parameters forDownlink Transmission Scheme table is shown below:Transmission BW 1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz

Sub-frame duration 1 msecµ

Sub-carrier spacing 15 kHz

Sampling frequency 1.92 MHz(1/2 x3.84 MHz)

3.84 MHz 7.68 MHz (2x 3.84 MHz)

15.36 MHz(4 x 3.84MHz)

23.04 MHz(6 x 3.84MHz)

30.72 MHz(8 x 3.84MHz)

FFT size 128 256 512 1024 1536 2048

Number of ResourceBlocks †

6 15 25 50 75 100

Number of occupiedsub-carriers †

73 181 301 601 901 1201

Number of OFDMsymbols per sub-frame(Normal/Extended CP)

7/6

CP length(µ/samples)

Normal † (4.69/9) x6,(5.21/10)x 1

(4.69/18)x 6,(5.21/20)x 1

(4.69/36) x6, (5.21/40)x 1

(4.69/72) x6, (5.21/80)x 1

(4.69/108)x 6,(5.21/120)x 1

(4.69/144)x 6,(5.21/160)x 1

Extended (16.67/32) (16.67/64) (16.67/128) (16.67/256) (16.67/384) (16.67/512)

† See 3GPP TR 36.804 v0.5.0 \(2007-05). † Inlcudes DC sub-carrier which contains no data † In one slot, the first OFDM

symbol has long CP length and other 6 OFDM symbols have short CP length when Normal CP.

Page 310: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

309

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.2.3GPP TS 36.104 v8.7.0 "Base Station (BS) radio transmission and reception",3.September 2009.

Page 311: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

310

LTE_DL_MIMO_4Ant_Src Part Downlink baseband 4 antennas MIMO signal source

Categories: Source (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model

LTE_DL_MIMO_4Ant_Src (ltebasever)

LTE_DL_MIMO_4Ant_Src

Description: Downlink baseband 4 antennas MIMO signal sourceAssociated Parts: LTE DL MIMO 4Ant Src Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

ShowSystemParameters show system parameters for LTEdownlink signals: NO, YES

YES Enumeration NO

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

SpecialSF_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6, Config 7,Config 8

Config 0 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW5 MHz, BW 10 MHz, BW 15 MHz, BW 20MHz

BW 5 MHz Enumeration NO

OversamplingOption oversampling option: Ratio 1, Ratio 2,Ratio 4, Ratio 8

Ratio 2 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

CellID_Sector the index of cell identity group 0 Integer NO

CellID_Group the index of cell identity within thephysical-layer cell-identity group

0 Integer NO

RB_MappingType the mapping type of VRBs to PRBs:Localized, Distributed

Localized Enumeration NO

SS_PerTxAnt whether synchronization signals (P-SSand S-SS) are transmitted on eachtransmit antenna: NO, YES

NO Enumeration NO

ShowMIMO_Parameters show MIMO-related parameters for allsix Ues: NO, YES

YES Enumeration NO

UEs_MIMO_Mode MIMO Mode for each UE, 1 for TD, 0 forSM

[0,0,0,0,0,0] Integerarray

NO

UEs_CDD_Mode CDD Mode for each UE, 1 for Zero-Delay, 0 for Large-Delay

[0,0,0,0,0,0] Integerarray

NO

UEs_CdBlk_Index codebook index for precoding for eachUE

[0,0,0,0,0,0] Integerarray

NO

UEs_NumOfCWs number of code words for each UE [2,2,2,2,2,2] Integerarray

NO

Page 312: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

311

UEs_NumOfLayers number of layers for each UE [2,2,2,2,2,2] Integerarray

NO

ShowUE1_Parameters show parameters for coded UE1: NO,YES

YES Enumeration NO

UE1_HARQ_Enable Whether HARQ closed-loop transmissionis enable: NO, YES

YES Enumeration NO

UE1_NumHARQ Number of HARQ processes 8 Integer NO

UE1_MaxHARQTrans Maximum number of HARQ transmissionper each HARQ process

4 Integer NO

UE1_CL_Precoding_Enable whether closed-loop MIMO precoding forUE1 is enabled: NO, YES

NO Enumeration NO

UE1_PMI_Granularity closed-loop PMI reporting granularity inunits of resource blocks (RBs) for UE1

25 Integer NO

UE1_PMI_Delay closed-loop PMI reporting delay in unitsof sub-frames (1ms) for UE1

6 Integer NO

UE1_Config the configuration mode of input data forUE 1.: MCS index, Transport block size,Code rate

Transport block size Enumeration NO

UE1_Payload the input payload for UE 1, the meaningof the input is defined in UE1_Config

[2555,2555,2555,2555,2555,2555,2555,2555,2555,2555] Floatingpoint array

NO

UE1_MappingType the modulation orders for UE 1 in eachsubframe, valid when UE1_Payload isnot set to MCS index. (0:QPSK,1:16QAM, 2:64QAM)

[0,0,0,0,0,0,0,0,0,0] Integerarray

NO

UE1_RV_Sequence Redundancy Version Sequence for HARQclosed-loop transmission

[0, 1, 2, 3] Integerarray

NO

UE1_n_RNTI Radio network temporary identifier forUE 1

1 Integer NO

UE1_Category defines UE1 capability, used to get thetotal number of soft channel bits forrate-matching in downlink.: Category 1,Category 2, Category 3, Category 4,Category 5

Category 1 Enumeration NO

RB_AllocType RB allocation type: StartRB + NumRBs,RB indices (1D), RB indices (2D)

StartRB + NumRBs Enumeration NO

UE1_RB_Alloc the RB allocation for UE 1, in theformats of [start RB, number of RBs] or[SF0 start RB, SF0 number of RBs; . . . ;SF9 start RB, SF9 number of RBs]

[0,25] Integerarray

NO

ShowOtherUEs_Parameters show parameters for other uncodedUes: NO, YES

YES Enumeration NO

OtherUEs_MappingType the modulation orders for other UEsexcept UE 1 in all subframes. (0:QPSK,1:16QAM, 2:64QAM)

[0,0,0,0,0] Integerarray

NO

UE2_RB_Alloc the RB allocation for UE 2, in theformats of [start RB, number of RBs] or[SF0 start RB, SF0 number of RBs; . . . ;SF9 start RB, SF9 number of RBs]

[0,0] Integerarray

NO

UE3_RB_Alloc the RB allocation for UE 3, in theformats of [start RB, number of RBs] or[SF0 start RB, SF0 number of RBs; . . . ;SF9 start RB, SF9 number of RBs]

[0,0] Integerarray

NO

UE4_RB_Alloc the RB allocation for UE 4, in theformats of [start RB, number of RBs] or[SF0 start RB, SF0 number of RBs; . . . ;SF9 start RB, SF9 number of RBs]

[0,0] Integerarray

NO

UE5_RB_Alloc the RB allocation for UE 5, in theformats of [start RB, number of RBs] or[SF0 start RB, SF0 number of RBs; . . . ;SF9 start RB, SF9 number of RBs]

[0,0] Integerarray

NO

UE6_RB_Alloc the RB allocation for UE 6, in theformats of [start RB, number of RBs] or[SF0 start RB, SF0 number of RBs; . . . ;SF9 start RB, SF9 number of RBs]

[0,0] Integerarray

NO

ShowControlChannelParameters show parameters for control channels:NO, YES

YES Enumeration NO

PDCCH_SymsPerSF number of OFDM symbols of PDCCH foreach subframe

[2,2,2,2,2,2,2,2,2,2] Integerarray

NO

PDCCH_UE_AggreLevel the aggregation levels of UE-specificPDCCH search space for everysubframe. The allowable levels are 1, 2,4 and 8.

[1] Integerarray

NO

PDCCH_UE_DCI_Formats the DCI Formats of the PDCCHcandidates for every subframe (-1means no DCI in correspondingcandidate).

[0, -1, -1, -1, -1, -1] Integerarray

NO

PDCCH_Common_AggreLevel the aggregation levels of CommonPDCCH search space for everysubframe. The allowable levels are 4and 8.

[4] Integerarray

NO

PDCCH_Common_DCI_Formats the DCI Formats of the PDCCH [-1, -1, -1, -1] Integer NO

Page 313: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

312

candidates for every subframe (-1means no DCI in correspondingcandidate).

array

PHICH_Duration type of PHICH duration :Normal_Duration, Extended_Duration

Normal_Duration Enumeration NO

PHICH_Ng type of PHICH duration : Ng 1/6, Ng1/2, Ng 1, Ng 2

Ng 1/6 Enumeration NO

HI physical hybrid-ARQ ACK/NAK indicators [1,-1,-1,-1,-1,-1,-1,-1] Integerarray

NO

ShowPowerParameters show power-related parameters: NO,YES

YES Enumeration NO

RS_EPRE transmit energy per resource element(RE) for transmitted cell specific RS foreach antenna port, in unit ofdBm/15kHz

-25 Float NO

PCFICH_Rb PCFICH-to-RS EPRE ratio in dB insymbols with RS

0 Float NO

PHICH_Ra PHICH-to-RS EPRE ratio in dB insymbols with RS

0 Float NO

PHICH_Rb PHICH-to-RS EPRE ratio in dB insymbols without RS

0 Float NO

PBCH_Ra PBCH-to-RS EPRE ratio in dB in symbolswith RS

0 Float NO

PBCH_Rb PBCH-to-RS EPRE ratio in dB in symbolswithout RS

0 Float NO

PDCCH_Ra PDCCH-to-RS EPRE ratio in dB insymbols with RS

0 Float NO

PDCCH_Rb PDCCH-to-RS EPRE ratio in dB insymbols without RS

0 Float NO

PDSCH_PowerRatio PDSCH Cell Specific Ratio: p_B/p_A = 1,P_B = 0, P_B = 1, P_B = 2, P_B = 3

p_B/p_A = 1 Enumeration NO

UEs_Pa UE specific power parameter for each UE [0,0,0,0,0,0] Floatingpoint array

NO

PSS_Ra PSS-to-RS EPRE ratio in dB in symbolswithout RS

0 Float NO

SSS_Ra SSS-to-RS EPRE ratio in dB in symbolswithout RS

0 Float NO

ShowSpectrumShapingParameters show parameters for transmit spectrumshaping: NO, YES

NO Enumeration NO

SpectrumShapingType spectrum shaping method:TimeWindowing, FIRFilter

TimeWindowing Enumeration NO

WindowType type of time transition windowingbetween two consecutive symbols, validwhenSpectrumShapingType=TimeWindowing:Tukey, Raised cosine

Tukey Enumeration NO

CyclicInterval the overlapped cyclic interval betweentwo adjacent symbols in unit of chips(without oversampling), valid whenSpectrumShapingType=TimeWindowing

6 Integer NO

CI_StartPos the start position of cyclic interval(without oversampling), compared tothe start position of CP (negative meansahead of CP)

-3 Integer NO

FIR_Taps number of FIR filter taps, valid whenSpectrumShapingType=FIRFilter

19 Integer NO

FIR_withInterp whether spectrum-shaping FIR filterwith interpolation operation or not, validwhen SpectrumShapingType=FIRFilter:NO, YES

NO Enumeration NO

FIR_FilterType spectrum-shaping FIR filter type, validwhen SpectrumShapingType=FIRFilter:RRC, Ideal Lowpass, EquiRipple

RRC Enumeration NO

RRC_Alpha roll-off factor for root raised-cosinefilter, valid whenSpectrumShapingType=FIRFilter

0.22 Float NO

DisplayMsg the messages displayed in SimulationLog window: None, Simple, Full

Simple Enumeration NO

Input Ports

Port Name Description SignalType

Optional

0 UE1_PMI UE1 PMI feedbacked from the receiver int matrix YES

1 UE1_Data Input of UE1 information bits for at most 2 codewords multiple int NO

13 UE1_HARQ_Bits UE1 HARQ ACK/NACK bits for at most 2 codewords feedbackedfrom the receiver

multiple int YES

Output Ports

Page 314: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

313

Port Name Description Signal Type Optional

2 Ant1_TD Output of baseband time-domain data for Antenna1 complex NO

3 Ant2_TD Output of baseband time-domain data for Antenna2 complex NO

4 Ant3_TD Output of baseband time-domain data for Antenna3 complex NO

5 Ant4_TD Output of baseband time-domain data for Antenna4 complex NO

6 Ant1_FD Output of frequency data without power setting forAntenna1

complex NO

7 Ant2_FD Output of frequency data without power setting forAntenna2

complex NO

8 Ant3_FD Output of frequency data without power setting forAntenna3

complex NO

9 Ant4_FD Output of frequency data without power setting forAntenna4

complex NO

10 UE1_ModSymbols UE1 Matrix-based (subframe-based) modulationsymbols for at most 2 codewords

multiple complexmatrix

NO

11 UE1_ChannelBits UE1 Matrix-based (subframe-based) channel bits for atmost 2 codewords

multiple int NO

12 SC_Status Output of resource element status for all 4 antennas multiple int NO

Parameter Details

System Parameters DetailsFor System Parameters details which are the same as LTE_DL_Src, please referto DL System Parameters (ltebasever).SS_PerTxAnt: whether the P-SS/S-SS are transmitted on the first antenna portor on all the transmit antenna ports.

MIMO Parameters Details:UEs_MIMO_Mode: MIMO Mode for each UE, 1 for TD (transmit diversity), 0 forSM (spatial multiplexing). The type of intarray and its size should be 6corresponding to six UEs in this source. The value range of each element shouldbe [0,1].UEs_CDD_Mode: CDD Mode for each UE, 1 for Zero-Delay, 0 for Large-Delay.The type of intarray and its size should be 6 corresponding to six UEs in thissource. The value range of each element should be [0,1]. For UE#i, thecorresponding element (UEs_CDD_Mode[i] is valid only when UEs_MIMO_Mode[i] is set to SM (spatial multiplexing).UEs_CdBlk_Index: precoding codebook index for each UE. The type of intarrayand its size should be 6 corresponding to six UEs in this source. The value rangeof each element should be [0,15]. For UE#i, the corresponding element(UEs_CdBlk_Index[i] is valid only when UEs_MIMO_Mode[i] is set to SM (spatialmultiplexing) and UEs_CDD_Mode[i] is set to 1(Zero-Delay) (withUE1_CL_Precoding_Enable = YES, UEs_CdBlk_Index[0] is invalid since theprecoding codebook index for UE 1 is feedbacked from the receiver).UEs_NumCWs: Number of code words for each UE. The type of intarray and itssize should be 6 corresponding to six UEs in this source. The value range of eachelement should be [1,2].UEs_NumOfLayers: Number of layers for each UE. The type of intarray and itssize should be 6 corresponding to six UEs in this source. The value range of eachelement should be [1,2,3,4]. The elements of UE_CDD_Mode, UE_CdBk_Indexand UE_NumOfLayers just will be active only when the corresponding element is0 (spatial multiplexing) in UEs_MIMO_Mode parameter.

UE1 Parameters Details:UE1_CL_Precoding_Enable: whether closed-loop MIMO precoding for UE1 isenabled. According to [1], closed-loop MIMO precoding can be eanbled only incase of Spatial Multiplexing and without CDD.UE1_PMI_Granularity: specify the granularity in units of PRBs that PMIs areproduced when UE1_CL_Precoding_Enable is equal to YES.UE1_PMI_Delay: specify the delay in units of subframes that PMIs are appliedwhen UE1_CL_Precoding_Enable is equal to YES. Note that the firstUE1_PMI_Delay suframes use Precoding Codebook Index 0.For other UE1 Parameters details, pleaase refer to DL UE1 Parameters(ltebasever).

OtherUEs Parameters Details:For OtherUEs Parameters details, please refer to DL OtherUEs Parameters(ltebasever).

Control Channel Parameters Details:For Control Channel Parameters Details, please refer to DL Control ChannelParameters (ltebasever).If user want to use the DCI to demodulate the corresponding PDSCH, please seethese notes:

DCI Format 2 and 2A are supported for 4 antenna downlink source. ForTransmit diversity, Format 2 or 2A can be set. For Spatial Multiplexing withzero delay CDD, Format 2 should be set. For Spatial Multiplexing with largedelay CDD, Format 2A should be setOnly DCI encoding for UE 1 is supported. If user want to get DCI encoding

Page 315: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

314

for other UEs, please open the LTE_DL_MIMO_4Ant_Src model and set theLTE_DL_DCI_Gen model's corresponding parameters to those of other UEs'.To set other UEs' corresponding parameters in LTE_DL_DCI_Gen model,please set the PDCCH_UE_DCI_Formats=[6, 7, -1, -1, -1, -1], and then allparameters needed set will display. Then reset thePDCCH_UE_DCI_Formats to you wanted values or a variablePDCCH_UE_DCI_Formats which value is decided by top level.It is suggested to set UE1_Config=0 (MCS index) to get correct MCSsettings.With default setting, resource allocation type 0 is employed. To changeresource allocation type, push into the source and change thePDSCH_ResAllocType parameter in the LTE_DL_DCI_Gen model.

Power Parameters:For Power Parameters details, please refer to DL Power Parameters (ltebasever).Note that for PSS_Ra, when SS_PerTxAnt = NO, the PSS EPRE on the firstantenna port is (RS_EPRE+PSS_Ra), when the PSS EPRE on rest ports are 0.When SS_PerTxAnt = YES, the PSS EPRE on the each antenna port is(RS_EPRE+PSS_Ra-10log10(P)), where P is the number of antenna ports (P=4in this source).For SSS_Ra, the SSS EPRE allocation for multiple antenna ports is the same asPSS EPRE above.

Spectrum Shaping Parameters Details:For Spectrum Shaping Parameters details please refer to DL Spectrum ShapingParameters (ltebasever).

DisplayMsg: control the messages displayed in Status/Summary window. WhenDisplayMsg = None, no message is shown; When DisplayMsg = Simple, the SystemConfigurations and UE-specific Configurations are output; When DisplayMsg = Full,the System Configurations, UE-specific Configurations and Power are output. Notethat the transmit power for the OFDM symbols allocated to PDCCH is calculated withthe assumption that all resource elements (REs) allocated to PDCCH are occupiedwith QPSK symbols. When some of the resource elements (REs) allocated to PDCCHare empty, the actual transmit power will be lower than the power above.

Notes/Equations

This subnetwork generates 3GPP FDD LTE (FS1) and TDD LTE (FS2) coded downlink1.baseband signal (up to six users (PDSCHs)) with four transmit antenna ports.The LTE_DL_MIMO_4Ant_Src schematic is shown below:2.

In this source, the data type in most input/output ports are matrix which should be3.column vector (i.e the matrix size should be Nx1, N is the size of vector). Refer toMatrix-based Ports (ltebasever) for more information.Generally, one subframe data are produced per each firing. So for ith firing,4.Suframe#i%10 is processed, where 10 is the number of subframes per one radioframe.Each firing,The number of tokens consumed at port UE1_Data is equal to the number oftransport block size for this subframe (firing). When no transport block size isallocated in this subframe (firing) or HARQ retranmssion is performed, no token isconsumed at port UE1_Data. The bus width of this input port should be equal to orgreater than the number of code words for UE 1 (UEs_NumOfCWs[1]). Refer to

Page 316: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

315

Relation of Transport Block Sizes (ltebasever) for how to get transport block size foreach subframe.One token is consumed at port HARQ_Bits to get HARQ ACK/NACK bits which isfeedbacked from the receiver when closed-loop HARQ transmission is enabled for UE1. The bus width of this input port should be equal to or greater than the number ofcode words for UE 1 (UEs_NumOfCWs[1]). Refer to LTE HARQ Controller (ltebasever)for how closed-loop HARQ transmission is processed.One Matrix-based token is consumed at port UE1_PMI to get the PMI for UE1 whenclosed-loop MIMO precoding is enable. The size of the matrix isceil(NumRBsForUE1/UE1_PMI_Granularity), where NumRBsForUE1 is the number ofRBs for UE1.One subframe samples with oversampling in time domain are produced at portsAnt1_TD and Ant2_TD for antenna port 0 and 1 respectively.One subframe frequency domain data without oversampling are produced at portAnt1_FD and Ant2_FD for antenna port 0 and 1 respectively.One Matrix-based token is produced at port UE1_ModSymbols in which the complex-valued modulation symbols for UE 1 (PDSCH 1) for this subframe (firing) are output.The bus width of this output port is equal to the number of code words for UE 1(UEs_NumOfCWs[1]).One Matrix-based token is produced at port UE1_ChannelBits in which the channelbits for UE 1 (PDSCH 1) for this subframe (firing) are output. These outputs are thereference bits for uncoded BER and PER measurement. The bus width of this outputport is equal to the number of code words for UE 1 (UEs_NumOfCWs[1]). For moreinformation on how to get the size of modulation symbols and channel bits, refer toChannel Bits Calculation (ltebasever).The output at port SC_Status is the status for each subcarrier (resource element).The first value is the status for the first subcarrier (resource element) in the firstOFDM symbol, and then the second is for the second subcarrier (resource element) inthe first OFDM symbol. When the last subcarrier (resource element) in the first OFDMsymbol is output, then next the first subcarrier (resource element) in the secondOFDM symbol is output, and so on. The 8 LSB bits of each status value represent thechannel type allocated on each subcarrier (resource element). The meaning of the8 LSB bits is shown in the table below:Value ChanneType

0 EMPTY

1 RS

2 PSS

3 SSS

4 PBCH

5 PCFICH

6 PHICH

7 PDCCH

8 PDSCH 1 (UE 1)

9 PDSCH 2 (UE 2)

10 PDSCH 3 (UE 3)

11 PDSCH 4 (UE 4)

12 PDSCH 5 (UE 5)

13 PDSCH 6 (UE 6)

The 24 MSB bits of each status value represent the index for the data allocated oneach subcarrier (resource element). For each channel indicated in the table above,the data indexing is performed subframe by subframe independently. For example,for PDSCH 1 (UE 1), the first modulation symbol within each subframe is indexed as0; the second modulation symbol is indexed as 1, and so on. When there is no dataallocated on the subcarrier, the 24 MSB bits of each status is set to 0xFFFFFF.For UE 1 (PDSCH 1), it can be set to closed-loop HARQ transmission or non-HARQ5.transmission by the UE1_HARQ_Enable parameter. For more information, refer toClosed-loop HARQ Transmission (ltebasever). The transport block data input fromport UE1_Data are sent to LTE_DL_ChannelCoder component, in which the CRCencoder, code block segmentation, Turbo coder, rate matching and scrambler areperformed. When closed-loop HARQ transmission is enabled, the HARQ ACK/NACKbits are read from the HARQ_Bits port to control the behavior ofLTE_DL_ChannelCoder component. Then the output channel bits are modulated inLTE_Mapper component, resulting in complex-valued modulation symbols which,along with other UEs modulation symbols, are sent to LTE_DL_MuxOFDMSymcomponent for mapping to resource elements.In this source, two code words could be input regardless of the actual number of6.code words defined in the UEs_NumOfCWs[1] parameter for UE 1. WhenUEs_NumOfCWs[1] is 1, in this case the channel coder (and LTE_Mapper) for thesecond code word is ignored.Then the output channel bits are modulated in LTE_Mapper component, resulting in7.complex-valued modulation symbols. The modulation symbols from at most two codewords are mapped to layers and precoded in LTE_DL_MIMO_LayMapPrecodercomponent. When closed-loop MIMO precoding for UE1 is enable (i.e.UE1_CL_Precoding_Enable=1) in case of Spatial Multiplexing and without CDD, the

Page 317: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

316

delayed PMI (Precoding Matrix Index) from the receiver will send toLTE_DL_MIMO_LayMapPrecoder component to specify the desired PMI. The precodedsymbols, along with other UEs precoded symbols, are sent to LTE_DL_MuxOFDMSymcomponent for mapping to resource elements.For UE 2 to UE 6 (PDSCH 2 to PDSCH 6), complex-valued modulation symbols are8.generated in LTE_DL_Mapper for the two code words with the source bits of PN 9,which are then sent to LTE_DL_MIMO_LayMapPrecoder component for lay mappingand precoding. The modulation schemes (QPSK, 16QAM or 64QAM) are determinedOtherUEs_MappingType parameter.LTE_PSCH component generates P-SS according to Section 6.11.1 [1], which is the9.Zadoff-Chu root sequence. P-SS occupies central 72 subcarriers. For FDD LTE (framestructure type 1), P-SS should be mapped to the last OFDM symbol in slots 0 and 10.For TDD LTE (frame structure type 2), P-SS should be mapped to the third OFDM10.symbol in subframe 1 and 6. SS_PerTxAnt parameter determines whether the P-SS istransmitted on the first antenna port or on all the transmit antenna ports.LTE_SSCH component generates S-SS according to Section 6.11.2 [1], which is the11.length-31 binary sequence.The S-SS occupies central 72 subcarriers. In a subframe for frame structure type 112.and in half-frame for frame structure type 2, the same antenna port as for the P-SSshall be used for the S-SS.For TDD LTE (frame structure type 1), S-SS should be mapped to the last second13.OFDM symbol in slots 0 and 10. For TDD LTE (frame structure type 2), S-SS shouldbe mapped to the last OFDM symbol in slot 1 and 11. S_PerTxAnt parameterdetermines whether the S-SS is transmitted on the first antenna port or on all thetransmit antenna ports.The information bits for PBCH are generated from LTE_BCH_Gen which are passed to14.the CRC encoder, convolutional encoder, rate matching, and scrambler, QPSKmodulation, layer mapping and precoding for transmit diversity. Then the precodedsymbols are mapped to corresponding resource elements in LTE_DL_MuxOFDMSymcomponent.The information bits for PCFICH are generated in LTE_DL_CFI according to the15.PDCCH_SymsPerSF parameter. Then these bits are sent to LTE_PCFICH_Scramblercomponent for scrambling, and then mapped to QPSK modulation, and for layermapping and precoding for transmit diversity. The precoded symbols are mapped tocorresponding resource elements in LTE_DL_MuxOFDMSym component.The information bits for PDCCH are generated in LTE_DL_DCI_Gen component16.according to DCI configurations, which are delivered to the CRC encoder, turboencoder, rate matching, scrambler, QPSK modulation, PDCCH interleaver, and layermapping and precoding for transmit diversity. Then the precoded symbols aremapped to corresponding resource elements in LTE_DL_MuxOFDMSym component.The information bits for PHICH are read from the HI parameter in LTE_DL_HI17.component, which are sent to LTE_PHICH_Modulator and LTE_PHICH_LayerMapperfor BPSK modulation, orthogonal spreading and resource group alignment. Theoutputs are mapped to corresponding resource elements in LTE_DL_MuxOFDMSymcomponent.PBCH, PHICH, PCFICH and PDCCH shall be transmitted on the both two antenna18.ports.LTE_DL_MuxOFDMSym component is used to multiplex UEs (PDSCHs) data mapping19.signals, P-SS, S-SS, PBCH, PCFICH, PHICH, PDCCH and reference signals (pilots) intoOFDM symbols following the downlink frame structure in frequency domain.UEs data mapping signals are mapped to resource elements according to Section20.6.3.5 [1]. PBCH QPSK signals, PCFICH QPSK signals, PDCCH QPSK siganls, PHICH aremapped to resource elements according to Section 6.6.4 [1], 6.7.4 [1], 6.8.5 [1],6.9.3 [1], respectively. The cell-specific reference signals are generated according toSection 6.10.1 [1] in LTE_DL_Pilots component and are mapped to resource elementsaccording to Section 6.10.1.2 [1].The outputs at LTE_DL_MuxOFDMSym component are split into two frequency21.domain signals for two antenna ports. Each of them is transferred into time-domainsignals by LTE_DL_OFDM_Modulator which implements OFDM modulation following3GPP LTE downlink OFDM parameters.LTE_DL_MuxSlot is used to multiplex seven/six OFDM symbols by inserting cyclic22.prefix into one slot. LTE_SpecShaping is for spectrum shaping function for downlinksource by using FIR filter or symbol windowing function. The Parameters forDownlink Transmission Scheme table is shown below:

Page 318: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

317

Transmission BW 1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz

Sub-frame duration 1 msecµ

Sub-carrier spacing 15 kHz

Sampling frequency 1.92 MHz(1/2 x3.84 MHz)

3.84 MHz 7.68 MHz (2x 3.84 MHz)

15.36 MHz(4 x 3.84MHz)

23.04 MHz(6 x 3.84MHz)

30.72 MHz(8 x 3.84MHz)

FFT size 128 256 512 1024 1536 2048

Number of ResourceBlocks †

6 15 25 50 75 100

Number of occupiedsub-carriers †

73 181 301 601 901 1201

Number of OFDMsymbols per sub-frame(Normal/Extended CP)

7/6

CP length(µ/samples)

Normal † (4.69/9) x6,(5.21/10)x 1

(4.69/18)x 6,(5.21/20)x 1

(4.69/36) x6, (5.21/40)x 1

(4.69/72) x6, (5.21/80)x 1

(4.69/108)x 6,(5.21/120)x 1

(4.69/144)x 6,(5.21/160)x 1

Extended (16.67/32) (16.67/64) (16.67/128) (16.67/256) (16.67/384) (16.67/512)

† See 3GPP TR 36.804 v0.5.0 \(2007-05). † Inlcudes DC sub-carrier which contains no data † In one slot, the first OFDM

symbol has long CP length and other 6 OFDM symbols have short CP length when Normal CP.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.212 v8.8.0, "Multiplexing and Channel Coding", December 2009.2.3GPP TS 36.213 v8.8.0, "Physical Layer Procedures", September 2009.3.3GPP TS 36.104 v8.7.0 "Base Station (BS) radio transmission and reception",4.September 2009.

Page 319: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

318

LTE_DL_Src Part 3GPP LTE downlink signal source

Categories: Source (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model

LTE_DL_Src (ltebasever)

LTE_DL_Src

Description: 3GPP LTE downlink signal sourceAssociated Parts: LTE DL Src Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

ShowSystemParameters show system parameters for LTEdownlink signals: NO, YES

YES Enumeration NO

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

SpecialSF_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6, Config 7,Config 8

Config 4 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW5 MHz, BW 10 MHz, BW 15 MHz, BW 20MHz

BW 5 MHz Enumeration NO

OversamplingOption oversampling option: Ratio 1, Ratio 2,Ratio 4, Ratio 8

Ratio 2 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

CellID_Sector the index of cell identity group 0 Integer NO

CellID_Group the index of cell identity within thephysical-layer cell-identity group

0 Integer NO

RB_MappingType the mapping type of VRBs to PRBs:Localized, Distributed

Localized Enumeration NO

ShowUE1_Parameters show parameters for coded UE1: NO,YES

YES Enumeration NO

UE1_HARQ_Enable Whether HARQ closed-loop transmissionis enable: NO, YES

YES Enumeration NO

UE1_NumHARQ Number of HARQ processes 8 Integer NO

UE1_MaxHARQTrans Maximum number of HARQ transmissionper each HARQ process

4 Integer NO

UE1_Config the configuration mode of input data forUE 1.: MCS index, Transport block size,Code rate

Transport block size Enumeration NO

UE1_Payload the input payload for UE 1, the meaningof the input is defined in UE1_Config

[2555,2555,2555,2555,2555,2555,2555,2555,2555,2555] Floatingpoint array

NO

UE1_MappingType the modulation orders for UE 1 in eachsubframe, valid when UE1_Payload isnot set to MCS index. (0:QPSK,1:16QAM, 2:64QAM)

[0,0,0,0,0,0,0,0,0,0] Integerarray

NO

UE1_RV_Sequence Redundancy Version Sequence for HARQclosed-loop transmission

[0, 1, 2, 3] Integerarray

NO

UE1_n_RNTI Radio network temporary identifier forUE 1

1 Integer NO

UE1_Category defines UE1 capability, used to get thetotal number of soft channel bits for

Category 1 Enumeration NO

Page 320: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

319

rate-matching in downlink.: Category 1,Category 2, Category 3, Category 4,Category 5

RB_AllocType RB allocation type: StartRB + NumRBs,RB indices (1D), RB indices (2D)

StartRB + NumRBs Enumeration NO

UE1_RB_Alloc the RB allocation for UE 1, in theformats of [start RB, number of RBs] or[SF0 start RB, SF0 number of RBs; . . . ;SF9 start RB, SF9 number of RBs]

[0,25] Integerarray

NO

ShowOtherUEs_Parameters show parameters for other uncodedUes: NO, YES

YES Enumeration NO

OtherUEs_MappingType the modulation orders for other UEsexcept UE 1 in all subframes. (0:QPSK,1:16QAM, 2:64QAM)

[0,0,0,0,0] Integerarray

NO

UE2_RB_Alloc the RB allocation for UE 2, in theformats of [start RB, number of RBs] or[SF0 start RB, SF0 number of RBs; . . . ;SF9 start RB, SF9 number of RBs]

[0,0] Integerarray

NO

UE3_RB_Alloc the RB allocation for UE 3, in theformats of [start RB, number of RBs] or[SF0 start RB, SF0 number of RBs; . . . ;SF9 start RB, SF9 number of RBs]

[0,0] Integerarray

NO

UE4_RB_Alloc the RB allocation for UE 4, in theformats of [start RB, number of RBs] or[SF0 start RB, SF0 number of RBs; . . . ;SF9 start RB, SF9 number of RBs]

[0,0] Integerarray

NO

UE5_RB_Alloc the RB allocation for UE 5, in theformats of [start RB, number of RBs] or[SF0 start RB, SF0 number of RBs; . . . ;SF9 start RB, SF9 number of RBs]

[0,0] Integerarray

NO

UE6_RB_Alloc the RB allocation for UE 6, in theformats of [start RB, number of RBs] or[SF0 start RB, SF0 number of RBs; . . . ;SF9 start RB, SF9 number of RBs]

[0,0] Integerarray

NO

ShowControlChannelParameters show parameters for control channels:NO, YES

YES Enumeration NO

PDCCH_SymsPerSF number of OFDM symbols of PDCCH foreach subframe

[2,2,2,2,2,2,2,2,2,2] Integerarray

NO

PDCCH_UE_AggreLevel the aggregation levels of UE-specificPDCCH search space for everysubframe. The allowable levels are 1, 2,4 and 8.

[1] Integerarray

NO

PDCCH_UE_DCI_Formats the DCI Formats of the PDCCHcandidates for every subframe (-1means no DCI in correspondingcandidate).

[0, -1, -1, -1, -1, -1] Integerarray

NO

PDCCH_Common_AggreLevel the aggregation levels of CommonPDCCH search space for everysubframe. The allowable levels are 4and 8.

[4] Integerarray

NO

PDCCH_Common_DCI_Formats the DCI Formats of the PDCCHcandidates for every subframe (-1means no DCI in correspondingcandidate).

[-1, -1, -1, -1] Integerarray

NO

PHICH_Duration type of PHICH duration :Normal_Duration, Extended_Duration

Normal_Duration Enumeration NO

PHICH_Ng type of PHICH duration : Ng 1/6, Ng1/2, Ng 1, Ng 2

Ng 1/6 Enumeration NO

HI physical hybrid-ARQ ACK/NAK indicators [1,-1,-1,-1,-1,-1,-1,-1] Integerarray

NO

ShowPowerParameters show power-related parameters: NO,YES

YES Enumeration NO

RS_EPRE transmit energy per resource element(RE) for transmitted cell specific RS foreach antenna port, in unit ofdBm/15kHz

-25 Float NO

PCFICH_Rb PCFICH-to-RS EPRE ratio in dB insymbols with RS

0 Float NO

PHICH_Ra PHICH-to-RS EPRE ratio in dB insymbols with RS

0 Float NO

PHICH_Rb PHICH-to-RS EPRE ratio in dB insymbols without RS

0 Float NO

PBCH_Ra PBCH-to-RS EPRE ratio in dB in symbolswith RS

0 Float NO

PBCH_Rb PBCH-to-RS EPRE ratio in dB in symbolswithout RS

0 Float NO

PDCCH_Ra PDCCH-to-RS EPRE ratio in dB insymbols with RS

0 Float NO

PDCCH_Rb PDCCH-to-RS EPRE ratio in dB insymbols without RS

0 Float NO

PDSCH_PowerRatio PDSCH Cell Specific Ratio: p_B/p_A = 1, p_B/p_A = 1 Enumeration NO

Page 321: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

320

P_B = 0, P_B = 1, P_B = 2, P_B = 3

UEs_Pa UE specific power parameter for each UE [0,0,0,0,0,0] Floatingpoint array

NO

PSS_Ra PSS-to-RS EPRE ratio in dB in symbolswithout RS

0 Float NO

SSS_Ra SSS-to-RS EPRE ratio in dB in symbolswithout RS

0 Float NO

ShowSpectrumShapingParameters show parameters for transmit spectrumshaping: NO, YES

NO Enumeration NO

SpectrumShapingType spectrum shaping method:TimeWindowing, FIRFilter

TimeWindowing Enumeration NO

WindowType type of time transition windowingbetween two consecutive symbols, validwhenSpectrumShapingType=TimeWindowing:Tukey, Raised cosine

Tukey Enumeration NO

CyclicInterval the overlapped cyclic interval betweentwo adjacent symbols in unit of chips(without oversampling), valid whenSpectrumShapingType=TimeWindowing

6 Integer NO

CI_StartPos the start position of cyclic interval(without oversampling), compared tothe start position of CP (negative meansahead of CP)

-3 Integer NO

FIR_Taps number of FIR filter taps, valid whenSpectrumShapingType=FIRFilter

19 Integer NO

FIR_withInterp whether spectrum-shaping FIR filterwith interpolation operation or not, validwhen SpectrumShapingType=FIRFilter:NO, YES

NO Enumeration NO

FIR_FilterType spectrum-shaping FIR filter type, validwhen SpectrumShapingType=FIRFilter:RRC, Ideal Lowpass, EquiRipple

RRC Enumeration NO

RRC_Alpha roll-off factor for root raised-cosinefilter, valid whenSpectrumShapingType=FIRFilter

0.22 Float NO

DisplayMsg the messages displayed in SimulationLog window: None, Simple, Full

Simple Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 UE1_Data Input of UE1 information bits int NO

7 HARQ_Bits UE1 HARQ ACK/NACK bits feedbacked from the receiver int YES

Output Ports

Port Name Description Signal Type Optional

2 frm_TD Output of baseband time-domain data complex NO

3 frm_FD Output of frequency data without power setting complex NO

4 UE1_ModSymbols UE1 Matrix-based (subframe-based) modulation symbols complex matrix NO

5 UE1_ChannelBits UE1 Matrix-based (subframe-based) channel bits int matrix NO

6 SC_Status Output of resource element status int NO

Parameter Details

System Parameters Details:FrameMode: frame mode of LTE, the type is enum and it can be selected as FDDand TDD. FDD supports frame structure typ1 and TDD supports frame structuretype 2.TDD_Config: uplink-downlink configuration for TDD, the type is enum and it canbe selected as Config 0, Config 1, Config 2, Config 3, Config 4, Config 5 andConfig 6. Tale 4.2.2 in [1] defines these 7 configurations.SpecialSF_Config: special subframe configuration when FrameMode is TDD.PDSCHs can be allocated in DwPTS.Bandwidth: bandwidth of LTE, the type is enum and it can be selected as BW 1.4MHz, BW 3 MHz, BW 5 MHz, BW 10 MHz, BW 15 MHz and BW 20 MHz.OversamplingOption: Over-sampling ratio option. Oversampling ratio 1, ratio 2,ratio 4 and ratio 8 are supported in this downlink source.CyclicPrefix: type of cyclic prefix. It can be set to Normal and Extended. Pleasenote the first six OFDM symbols have the same shorter cyclic prefix and the lastOFDM symbol has the longer cyclic prefix in the Normal Cyclic Prefix mode.CellID_Sector: the index of cell identity within the physical-layer cell-identitygroup . It defines the PSCH sequence. The root indices of P-SCH are M=29,M=34, M=25. CellID_Sector=0 is M=29, 1 is 34 and 2 is 25.CellID_Group: index of cell identity group, its value range is [0,167].RB_MappingType: mapping type from virtual resource blocks to physicalresource blocks as defined in 6.2.3 of [1] which could be localized or distributedtype. In this release, only localized type is supported.

Page 322: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

321

UE1 Parameters Details: UE1_HARQ_Enable: specify whether closed-loop HARQ transmission is enabled.Refer to LTE_HARQ_Controller (ltebasever) for how closed-loop HARQtransmission is simulated in LTE library.UE1_NumHARQ: specify the number of HARQ processes when closed-loop HARQtransmission is enabled. Note when closed-loop HARQ transmission is disabled,it is suggested to set this parameter to the default value (8).UE1_MaxHARQTrans: specify the maximum number of HARQ transmissions,including the first transmission and the following retransmissions. Note whenclosed-loop HARQ transmission is disabled, it is suggested to set this parameterto the default value (4).UE1_Config: specify the meaning of UE1_Payload for UE1 which could be MCSindex, Transport block size or Code rate. For more information, refer to Relationof Transport Block Sizes, Channel Bits and Code Rates (ltebasever).UE1_Payload: the input payload for UE 1, the meaning of the input is defined inUE1_Config. This is an Array Parameter (ltebasever). The allowable sizes are1x1, 2x1, 10x1, 10x2.UE1_MappingType: the modulation scheme for UE1. 0 means QPSK; 1 means16QAM; 2 means 64QAM. This is an Array Parameter (ltebasever). The allowablesizes are 1x1, 2x1, 10x1, 10x2. Note that this parameter is invalid whenUE1_Config = MCS index, in which the modulation scheme is determined byMCS index.UE1_RV_Sequence: redundancy version sequence for UE 1 which is used in ratematching. This array size should be equal to the UE1_MaxHARQTransparameter. When HARQ transmission is disabled for UE 1(UE1_HARQ_Enable=NO), only the first element in UE1_RV_Sequence is chosenfor each rate matching. Each element in this parameter should be in range[0:3].UE1_n_RNTI: radio network temporary identifier for UE 1UE1_Category: defines UE downlink capability, which is used to get the totalnumber of soft channel bits (Nsoft) for rate-matching in downlink, as defined in5.1.4.1.2 of [1]. The relationship of UE1_Category and Nsoft is given in thefollowing table according to 36.306.UE1 Category Total number of soft channel bits (Nsoft)

Category 1 250368

Category 2 1237248

Category 3 1237248

Category 4 1827072

Category 5 3667200

RB_AllocType: RB allocation type which could be StartRB + NumRBs, RB indices(1D), or RB indices (2D). For more information, refer to Resource BlockAllocation (ltebasever).UE1_RB_Alloc: RB allocation for UE1. The type of RB allocation is defined inRB_AllocType. This is an Array Parameter (ltebasever). The allowable sizes are2x1, 10x1 when RB_AllocType=StartRB + NumRBs.

OtherUEs Parameters Details: OtherUEs_MappingType: the modulation schemes for UE2 to UE6. 0 meansQPSK; 1 means 16QAM; 2 means 64QAM. This is an Array Parameter(ltebasever). The allowable sizes are 5x1, 5x2.UE2_RB_Alloc: RB allocation for UE2. The type of RB allocation is defined inRB_AllocType. This is an Array Parameter (ltebasever). The allowable sizes are2x1, 10x2 when RB_AllocType=StartRB + NumRBs.UE3_RB_Alloc: RB allocation for UE3. The type of RB allocation is defined inRB_AllocType. This is an Array Parameter (ltebasever). The allowable sizes are2x1, 10x2 when RB_AllocType=StartRB + NumRBs.UE4_RB_Alloc: RB allocation for UE4. The type of RB allocation is defined inRB_AllocType. This is an Array Parameter (ltebasever). The allowable sizes are2x1, 10x2 when RB_AllocType=StartRB + NumRBs.UE5_RB_Alloc: RB allocation for UE5. The type of RB allocation is defined inRB_AllocType. This is an Array Parameter (ltebasever). The allowable sizes are2x1, 10x2 when RB_AllocType=StartRB + NumRBs.UE6_RB_Alloc: RB allocation for UE6. The type of RB allocation is defined inRB_AllocType. This is an Array Parameter (ltebasever). The allowable sizes are2x1, 10x2 when RB_AllocType=StartRB + NumRBs.

The descriptions in the UEx_RB_Alloc parameters (x is 1~6) is only for the caseRB_AllocType=StartRB _ NumRBs. For other RB_AllocType, the settings in the UEx_RB_Allocparameters (x is 1~6) are described in detail in Resource Block Allocation (ltebasever).

Control Channel Parameters Details: PDCCH_SymsPerSF: number of OFDM symbols of PDCCH for each subframe. Itsvalue can be set as 0, 1, 2, 3 and 4. Note that value 4 for small bandwidth issupported in this release. For more information, refer to Table 6.7-1 of 36211-860. This is an Array Parameter (ltebasever). The allowable sizes are 1x1, 10x1.If the number of PDCCH symbols of PDCCH for one subframe is set to 0, there isno PDCCH (no DCI), PHICH and PCFICH in this subframe. And so those elements

Page 323: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

322

of control channel parameters assigned to this subframe are inactive. If thenumber of OFDM symbols of PDCCH for all subframes are set to 0, all otherparameters are inactive.PDCCH_UE_AggreLevel and PDCCH_Common_AggreLevel: indicate theaggregation level for the UE-specific search space and common search spacerespectively. They are Array Parameter (ltebasever). The allowable sizes ofthese 2 parameters are 1 or 10x1 (each element for one subframe). Theelements can be set to 1, 2, 4 or 8 for PDCCH_UE_AggreLevel, and 4 or 8 forPDCCH_Common_AggreLevel.PDCCH_UE_DCI_Formats and PDCCH_Common_DCI_Formats: indicate theactive PDCCH of the candidates as well as the corresponding DCI formats theycontaining for UE-specific search space and common search space. Each activePDCCH contains one DCI. They are Array Parameter (ltebasever). The allowablesizes of these 2 parameters are Mmax or 10xMmax (each Mmax elements forone subframe), where Mmax is 6 for UE-specific and 4 for Common. For eachsubframe, if the aggregation level is set to L, the number of PDCCH candidatesis M(L), and so the first M(L) elements of the Mmax elements are active. Tosupport the E-UTRA Test Models defined in 36141-850, the allowable sizes ofthe parameter PDCCH_UE_DCI_Formats is extended to Mmax (all subframeshave the same configuration), where Mmax can be 7, 8, 9 and 10.For example, PDCCH_UE_AggreLevel = 4, the number of PDCCH candidates is M(L) = 2, so, the first 2 elements of are active. -1 means no DCI (PDCCH) incorresponding candidate. Refer to Table 9.1.1-1 in 9.1.1 of 36213-860. TheDCIs of one subframe are composed of PDCCH_UE_DCI_Formats andPDCCH_Common_DCI_Formats.For example,PDCCH_UE_AggreLevel=2 PDCCH_UE_DCI_Formats=[2, -1, -1, 0, -1, -1]

PDCCH_Common_AggreLevel=8 PDCCH_Common_DCI_Formats=[-1, -1, -1, -1]

Actual DCIs [DCI format 1A, DCI format 0]They are transmitted in UE-specific search space PDCCHs withAggregation level 2. These 2 PDCCHs are candidate 0 andcandidate 3 of the 6 candidates

Note that in this source, for UE-Specific search space, the UE1_n_RNTIparameter is used for the variable nRNTI (defined in 9.1.1 of [2])for all UE-

specific PDCCH candidates.If user want to use the DCI to demodulate the corresponding PDSCH, please seethese notes:

Only DCI encoding for UE 1 is supported. If user want to get DCI encodingfor other UEs, please open the LTE_DL_Src model and set theLTE_DL_DCI_Gen model's corresponding parameters to those of other UEs'.To set other UEs' corresponding parameters in LTE_DL_DCI_Gen model,please set the PDCCH_UE_DCI_Formats=[1, 2, -1, -1, -1, -1], and then allparameters needed set will display. Then reset thePDCCH_UE_DCI_Formats to you wanted values or a variablePDCCH_UE_DCI_Formats which value is decided by top level.DCI Format 1 and 1A are supported for 1 antenna downlink source.It is suggested to set UE1_Config=0 (MCS index) to get correct MCSsettings.With default setting, resource allocation type 0 is employed. To changeresource allocation type, push into the source and change thePDSCH_ResAllocType parameter in the LTE_DL_DCI_Gen model.

PHICH_Duration: type of PHICH duration which only affects subframescontaining the maximum PDCCH Symbols case. The type is enum and it can beset to Normal Duration and Extended Duration.PHICH_Ng: number of PHICH group. The type is enum and it can be set to 1/6,1/2, 1 and 2.HI: HI (HARQ indicator) transmitted on PHICH for each subframe, selected from0, 1 and -1, where -1 means no HI allocation. The allowable sizes are 1x1,10x1, Nx1, 10xN, where N is number of PHICHs per PHICH group. N could be 8in Normal cyclic prefix and be 4 in Extended cyclic prefix. See Array Parameter(ltebasever).

1. In case of multiple PHICH groups, the HI assignment in each PHICH group is the same inthis source.2. To set different HI assignment in different PHICH group, replace the LTE_DL_HI model inthis source with a WaveForm model in which the desired HI assignment can be set. For moreinformation, refer to LTE_DL_HI (ltebasever).

Power Parameters Details: RS_EPRE: transmit energy per resource element (RE) for transmitted cellspecific RS for each antenna port, in unit of dBm/15kHzPCFICH_Rb: ratio of total PCFICH EPRE transmitted on all antenna ports to RS indB in symbols with RS.PHICH_Ra: ratio of total PHICH EPRE transmitted on all antenna ports to RS indB in symbols without RS. Note that the parameter defines the EPRE per eachPHICH channel, and the EPRE per each PHCIH group is the sum of all PHICHstransmitted on the same PHICH group.

Page 324: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

323

PHICH_Rb: ratio of total PHICH EPRE transmitted on all antenna ports to RS indB in symbols with RS. Note that the parameter defines the EPRE per eachPHICH channel, and the EPRE per each PHCIH group is the sum of all PHICHstransmitted on the same PHICH group.PBCH_Ra: ratio of total PBCH EPRE transmitted on all antenna ports to RS in dBin symbols without RSPBCH_Rb: ratio of total PBCH EPRE transmitted on all antenna ports to RS in dBin symbols with RSPDCCH_Ra: ratio of total PDCCH EPRE transmitted on all antenna ports to RS indB in symbols without RSPDCCH_Rb: ratio of total PDCCH EPRE transmitted on all antenna ports to RS indB in symbols with RSPDSCH_PowerRatio: define the meaning of the UEs_Pa parameter below. WhenPDSCH_PowerRatio = 'p_B/p_A = 1', the value in UEs_Pa for each UE is theratio (in dB) of PDSCH EPRE to cell-specific RS EPRE(denoted by ρA or ρB,

morever ρA=ρB), as defined in Table 5.2-2 of [2]; Otherwise,

PDSCH_PowerRatio is set to select PB which is defined in Table 5.2-1 of [2]. In

this setting, the value in UEs_Pa for each UE is PA (in dB) which is a UE specific

parameter provided by higher layers, as defined in 5.2 of [2]. Based on PB and PA

, the final ρA and ρB can be calculated. In general, PDSCH_PowerRatio =

"p_B/p_A = 1" does not follow the specification, but it is easy to set and easy toget the PDSCH EPRE to cell-specific RS EPRE.UEs_Pa: defines the power ratio (in dB) for each UE which could be ρA/ρB or PA

based on the setting of PDSCH_PowerRatio. This is an Array Parameter(ltebasever). The allowable size is 6x1.UEs_Rb: ratio of total PDSCH EPRE transmitted on all antenna ports to RS in dBin symbols without RS for each UE. This is an Array Parameter (ltebasever). Theallowable size is 6x1.PSS_Rb: ratio of total PSS EPRE transmitted on all antenna ports to RS in dB insymbols without RSSSS_Rb: ratio of total SS EPRE transmitted on all antenna ports to RS in dB insymbols without RS

Spectrum Shaping Parameters Details: SpectrumShapingType: Spectrum-shaping type. It can be set to TimeWindowingand FIRFilter. The symbol windowing function is for spectrum shaping ifTimeWindowing is set. The FIR filter is used for spectrum shaping if FIRFilter isset.WindowType: Type of time transition windowing between two consecutivesymbols, It is active only when SpectrumShapingType =TimeWindowing. Twokind of symbol windowing function(Tuckey window and Raised cosine window)are provided.CyclicInterval: The overlapped cyclic interval between two adjacent OFDMsymbols in unit of chips (without oversampleing).CI_StartPos: the start position of cyclic interval (without oversampling),compared to the start position of CP. This value is negative which means aheadof CP. For more information, refer to[].FIR_Taps: Number of FIR filter taps. It is active only whenSpectrumShapingType = FIRFilter.FIR_withInterp: Spectrum-shaping FIR filter is with interpolation operation ornot? It is active only when SpectrumShapingType = FIRFilter. If YES, FIR filtercompletes interpolation function as well as filter function. If NO, FIR filter justcompletes filter function.FIR_FilterType: spectrum-shaping FIR filter type selected from RRC, IdealLowpass,or EquiRipple, valid when SpectrumShapingType = FIRFilter

When SpectrumShapingType = FIRFilter and FIR_FilterType = EquiRipple, the FIR_withInterpshould be NO, and FIR_Taps is invalid.The EquiRipple FIR taps are defined in the EquiRippleFIR_Taps variable in the 'Equations' pageof this subnetwork. The detailed information for the EquiRipple FIR is shown below which isdependent on the OversamplingOption parameter. Users can modify the EquiRippleFIR_Tapsvariable to set the desired FIR taps.

OversamplingOption Tap order Pass band Stop band

0 (1x) 24 0.66 0.94

1 (2x) 48 0.33 0.47

2 (4x) 96 0.165 0.235

3 (8x) 192 0.0825 0.1175

RRC_Alpha: roll-off factor for root raised-cosine filter.DisplayMsg: control the messages displayed in Status/Summary window. WhenDisplayMsg = None, no message is shown; When DisplayMsg = Simple, the SystemConfigurations and UE-specific Configurations are output; When DisplayMsg = Full,the System Configurations, UE-specific Configurations and Power are output. Notethat the transmit power for the OFDM symbols allocated to PDCCH is calculated with

Page 325: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

324

the assumption that all resource elements (REs) allocated to PDCCH are occupiedwith QPSK symbols. When some of the resource elements (REs) allocated to PDCCHare empty, the actual transmit power will be lower than the power above.

Notes/Equations

This subnetwork generates 3GPP FDD LTE (FS1) and TDD LTE (FS2) coded downlink1.baseband signal (up to six users (PDSCHs)) with one transmit antenna port.The LTE_DL_Src schematic is shown below:2.

In this source, the data type in most input/output ports are matrix which should be3.column vector (i.e the matrix size should be Nx1, N is the size of vector). Refer toMatrix-based Ports (ltebasever) for more information.Generally, one subframe data are produced per each firing. So for ith firing,4.Suframe#i%10 is processed, where 10 is the number of subframes per one radioframe.Each firing,The number of tokens consumed at port UE1_Data is equal to the number oftransport block size for this subframe (firing). When no transport block size isallocated in this subframe (firing) or HARQ retranmssion is performed, no token isconsumed at port UE1_Data. Refer to Relation of Transport Block Sizes (ltebasever)for how to get transport block size for each subframe.One token are consumed at port HARQ_Bits to get HARQ ACK/NACK bits which isfeedbacked from the receiver when closed-loop HARQ transmission is enabled for UE1. Refer to LTE HARQ Controller (ltebasever) for how closed-loop HARQ transmissionis processed.One subframe samples with oversampling in time domain are produced at portfrm_TD.One subframe frequency domain data without oversampling are produced at portfrm_FD.One Matrix-based token is produced at port UE1_ModSymbols in which the complex-valued modulation symbols for UE 1 (PDSCH 1) for this subframe (firing) are output.One Matrix-based token is produced at port UE1_ChannelBits in which the channelbits for UE 1 (PDSCH 1) for this subframe (firing) are output. These outputs are thereference bits for uncoded BER and PER measurement. For more information on howto get the size of modulation symbols and channel bits, refer to Channel BitsCalculation (ltebasever).The output at port SC_Status is the status for each subcarrier (resource element) inthis subframe (firing). The first value is the status for the first subcarrier (resourceelement) in the first OFDM symbol, and then the second is for the second subcarrier(resource element) in the first OFDM symbol. When the last subcarrier (resourceelement) in the first OFDM symbol is output, then next the first subcarrier (resourceelement) in the second OFDM symbol is output, and so on. The 8 LSB bits of eachstatus value represent the channel type allocated on each subcarrier (resourceelement). The meaning of the 8 LSB bits is shown in the table below:

Page 326: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

325

Value ChannelType

0 EMPTY

1 RS

2 PSS

3 SSS

4 PBCH

5 PCFICH

6 PHICH

7 PDCCH

8 PDSCH 1 (UE 1)

9 PDSCH 2 (UE 2)

10 PDSCH 3 (UE 3)

11 PDSCH 4 (UE 4)

12 PDSCH 5 (UE 5)

13 PDSCH 6 (UE 6)

The 24 MSB bits of each status value represent the index for the data allocated oneach subcarrier (resource element). For each channel indicated in the table above,the data indexing is performed subframe by subframe independently. For example,for PDSCH 1 (UE 1), the first modulation symbol within each subframe is indexed as0; the second modulation symbol is indexed as 1, and so on. When there is no dataallocated on the subcarrier, the 24 MSB bits of each status is set to 0xFFFFFF.In this source, only the first UE (PDSCH 1) is encoded, and other UEs (UE 2 to UE 6)5.are uncoded.For UE 1 (PDSCH 1), it can be set to closed-loop HARQ transmission or non-HARQ6.transmission by the UE1_HARQ_Enable parameter. For more information, refer toClosed-loop HARQ Transmission (ltebasever). The transport block data input fromport UE1_Data are sent to LTE_DL_ChannelCoder component, in which the CRCencoder, code block segmentation, Turbo coder, rate matching and scrambler areperformed. When closed-loop HARQ transmission is enabled, the HARQ ACK/NACKbits are read from the HARQ_Bits port to control the behavior ofLTE_DL_ChannelCoder component. Then the output channel bits are modulated inLTE_Mapper component, resulting in complex-valued modulation symbols which,along with other UEs modulation symbols, are sent to LTE_DL_MuxOFDMSymcomponent for mapping to resource elements.For UE 2 to UE 6 (PDSCH 2 to PDSCH 6), PN15 bits are directly sent to the symbol7.modulation to generate complex-valued modulation symbols according to theOtherUEs_MappingType parameter.LTE_PSCH component generates P-SS according to Section 6.11.1 [1], which is the8.Zadoff-Chu root sequence. P-SS occupies central 72 subcarriers. For FDD LTE (framestructure type 1), P-SS should be mapped to the last OFDM symbol in slots 0 and 10.For TDD LTE (frame structure type 2), P-SS should be mapped to the third OFDMsymbol in subfrme 1 and 6.LTE_SSCH component generates S-SS according to Section 6.11.2 [1], which is the9.length-31 binary sequence. The S-SS occupies central 72 subcarriers. In a subframefor frame structure type 1 and in half-frame for frame structure type 2, the sameantenna port as for the P-SS shall be used for the S-SS. For TDD LTE (framestructure type 1), S-SS should be mapped to the last second OFDM symbol in slots 0and 10. For TDD LTE (frame structure type 2), S-SS should be mapped to the lastOFDM symbol in slot 1 and 11.The information bits for PBCH are generated from LTE_BCH_Gen which are passed to10.the CRC encoder, convolutional encoder, rate matching, and scrambler and QPSKmodulation. Then the QPSK symbols are mapped to corresponding resource elementsin LTE_DL_MuxOFDMSym component.The information bits for PCFICH are generated in LTE_DL_CFI according to the11.PDCCH_SymsPerSF parameter. Then these bits are sent to LTE_PCFICH_Scramblercomponent for scrambling, and then mapped to QPSK modulation. The QPSK symbolsare mapped to corresponding resource elements in LTE_DL_MuxOFDMSymcomponent.The information bits for PDCCH are generated in LTE_DL_DCI_Gen component12.according to DCI configurations, which are delivered to the CRC encoder, turboencoder, rate matching, scrambler, QPSK modulation and PDCCH interleaver. Thenthe QPSK symbols are mapped to corresponding resource elements inLTE_DL_MuxOFDMSym component.The information bits for PHICH are read from the HI parameter in LTE_DL_HI13.component, which are sent to LTE_PHICH_Modulator and LTE_PHICH_LayerMapperfor BPSK modulation, orthogonal spreading and resource group alignment. Theoutputs are mapped to corresponding resource elements in LTE_DL_MuxOFDMSymcomponent.LTE_DL_MuxOFDMSym component is used to multiplex UEs (PDSCHs) data mapping14.signals, P-SS, S-SS, PBCH, PCFICH, PHICH, PDCCH and reference signals (pilots) intoOFDM symbols following the downlink frame structure in frequency domain. UEs datamapping signals are mapped to resource elements according to Section 6.3.5 [1].PBCH QPSK signals, PCFICH QPSK signals, PDCCH QPSK siganls, PHICH are mappedto resource elements according to Section 6.6.4 [1], 6.7.4 [1], 6.8.5 [1], 6.9.3 [1],

Page 327: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

326

respectively. The cell-specific reference signals are generated according to Section6.10.1 [1] in LTE_DL_Pilots component and are mapped to resource elementsaccording to Section 6.10.1.2 [1].The frequency domain signals are transferred into time-domain signals by15.LTE_DL_OFDM_Modulator which implements OFDM modulation following 3GPP LTEdownlink OFDM parameters. LTE_DL_MuxSlot is used to multiplex seven/six OFDMsymbols by inserting cyclic prefix into one slot. LTE_SpecShaping is for spectrumshaping function for downlink source by using FIR filter or symbol windowingfunction.The Parameters for Downlink Transmission Scheme table is shown below:16.Transmission BW 1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz

Sub-frame duration 1 msecµ

Sub-carrier spacing 15 kHz

Sampling frequency 1.92 MHz(1/2 x3.84 MHz)

3.84 MHz 7.68 MHz (2x 3.84 MHz)

15.36 MHz(4 x 3.84MHz)

23.04 MHz(6 x 3.84MHz)

30.72 MHz(8 x 3.84MHz)

FFT size 128 256 512 1024 1536 2048

Number of ResourceBlocks †

6 15 25 50 75 100

Number of occupiedsub-carriers †

73 181 301 601 901 1201

Number of OFDMsymbols per sub-frame(Normal/Extended CP)

7/6

CP length(µ/samples)

Normal † (4.69/9) x6,(5.21/10)x 1

(4.69/18)x 6,(5.21/20)x 1

(4.69/36) x6, (5.21/40)x 1

(4.69/72) x6, (5.21/80)x 1

(4.69/108)x 6,(5.21/120)x 1

(4.69/144)x 6,(5.21/160)x 1

Extended (16.67/32) (16.67/64) (16.67/128) (16.67/256) (16.67/384) (16.67/512)

† See 3GPP TR 36.804 v0.5.0 \(2007-05). † Inlcudes DC sub-carrier which contains no data † In one slot, the first OFDM

symbol has long CP length and other 6 OFDM symbols have short CP length when Normal CP.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.213 v8.8.0, "Physical Layer Procedures", September 2009.2.3GPP TS 36.104 v8.7.0 "Base Station (BS) radio transmission and reception",3.September 2009.

Page 328: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

327

LTE_UL_Src Part Uplink baseband signal source

Categories: Source (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model

LTE_UL_Src (ltebasever)

LTE_UL_Src

Description: Uplink baseband signal sourceAssociated Parts: LTE UL Src Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

ShowSystemParameters show system parametersfor LTE uplink signals: NO,YES

YES none Enumeration NO

FrameMode frame mode: FDD, TDD FDD none Enumeration NO

TDD_Config downlink and uplinkallocations for TDD:Config 0, Config 1, Config2, Config 3, Config 4,Config 5, Config 6

Config 0 none Enumeration NO

SpecialSF_Config special subframeconfiguration for TDD:Config 0, Config 1, Config2, Config 3, Config 4,Config 5, Config 6, Config7, Config 8

Config 4 none Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz,BW 3 MHz, BW 5 MHz, BW10 MHz, BW 15 MHz, BW20 MHz

BW 5 MHz none Enumeration NO

OversamplingOption oversampling ratio option:Ratio 1, Ratio 2, Ratio 4,Ratio 8

Ratio 2 none Enumeration NO

CyclicPrefix type of cyclic prefix:Normal, Extended

Normal none Enumeration NO

CellID_Sector the index of cell identitywithin the physical-layercell-identity group ([0, 2])

0 none Integer NO

CellID_Group the index of cell identitygroup ([0, 167])

0 none Integer NO

n_RNTI radio network temporaryidentifier ([0, 65535])

0 none Integer NO

HalfCarrierShift_Enable whether or not to enable1/2 subcarrier shifting:NO, YES

YES none Enumeration NO

FrameNum frame number ([0, inf)) 0 none Integer NO

FrameIncreased frame number increasingor not: NO, YES

NO none Enumeration NO

DL_CyclicPrefix type of cyclic prefix indownlink: Normal,Extended

Normal none Enumeration NO

Printf_RB_SF_Alloc print the RB_SF allocationto file: NO, YES

NO none Enumeration NO

Page 329: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

328

ShowPUSCH_Parameters show PUSCH parametersfor LTE uplink signals: NO,YES

YES none Enumeration NO

PUCCH_PUSCH PUCCH and PUSCHselection: PUSCH, PUCCH,both

PUSCH none Enumeration NO

HARQ_Enable whether enable HARQ ornot: NO, YES

YES Enumeration NO

NumHARQ Number of HARQprocesses

8 Integer NO

MaxHARQTrans Maximum number ofHARQ transmission pereach HARQ process

4 Integer NO

Payload_Config the configuration mode ofinput data of PUSCH.:MCS index, Transportblock size, Code rate

Transport blocksize

none Enumeration NO

Payload the input payload forPUSCH, the meaning ofthe input is defined inPayload_Config

[2555, 2555,2555, 2555,2555, 2555,2555, 2555,2555, 2555]

none Floatingpoint array

NO

Enable64QAM indicates whether 64QAMis allowed in uplink: NO,YES

YES Enumeration NO

MappingType the modulation orders forthe PUSCH in eachsubframe. (0:QPSK,1:16QAM, 2:64QAM)

[0, 0, 0, 0, 0, 0,0, 0, 0, 0]

none Integerarray

NO

RV_Sequence Redundancy Version Index([0, 3])

[0,1,2,3] none Integerarray

NO

DFTSwap_Enable PUSCH DFT swap isenable: NO, YES

NO none Enumeration NO

PUSCH_HoppingEnable whether PUSCHfrequency-hopping isenabled or not: NO, YES

NO none Enumeration NO

PUSCH_HoppingMode PUSCH frequency hoppingmode: interSubFrame,intraAndInterSubFrame

interSubFrame none Enumeration NO

PUSCH_HoppingOffset the offset used for PUSCHfrequency hopping ([0,63])

0 none Integer NO

PUSCH_Hopping_Nsb number of sub-bands forPUSCH frequency hopping([1, 4])

1 none Integer NO

PUSCH_HoppingBits information in PUSCHhopping bits: 0 or 00, 1 or01, 10, 11

0 or 00 none Enumeration NO

PUSCH_TransMode whether control and dataare sent via PUSCH: Dataand Control Multiplexing,Data Only, Control Only

Data andControlMultiplexing

Enumeration NO

RB_AllocType RB allocation type:StartRB + NumRBs, RBindices (1D), RB indices(2D)

StartRB +NumRBs

none Enumeration NO

RB_Alloc the RB allocation forPUSCH, in the fomats of[start RB, number of RBs]or[SF0 start RB, SF0number of RBs; ...; SF9start RB, SF9 number ofRBs]

[0, 25] none Integerarray

NO

GroupHop_Enable whether enable grouphopping for DMRS onPUCCH and PUSCH or not:NO, YES

NO none Enumeration NO

SeqHop_Enable whether enable sequencehopping for DMRS onPUSCH or not: NO, YES

NO none Enumeration NO

PUSCH_Delta_ss used in determining thesequence-shift pattern forPUSCH ([0, 29])

0 none Integer NO

PUSCH_n_DMRS1 used in computing thecyclic shift for PUSCHDMRS

[0] none Integerarray

NO

PUSCH_n_DMRS2 used in computing thecyclic shift for PUSCHDMRS

[0] none Integerarray

NO

ShowPUCCH_Parameters show PUCCH parametersfor LTE uplink signals: NO,YES

YES none Enumeration NO

Page 330: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

329

PUCCH_Format PUCCH format: Format 1,Format 1a, Format 1b,Shortened 1, Shortened1a, Shortened 1b, Format2, Format 2a, Format 2b

Format 1 none Enumeration NO

PUCCH_NumCQIBits number of CQI bits forPUCCH format 2/2a/2b

5 Integer NO

PUCCH_NumHARQACKBits number of HARQ-ACK bitsfor PUCCH format 2 inextended CP mode: 1 bit,2 bits

1 bit Enumeration NO

PUCCH_Delta_shift used to calculate PUCCHcyclic shift Alfa ([1, 3])

2 none Integer NO

PUCCH_SF_Alloc which sub frames containthe PUCCH, valid whenPUCCH_PUSCH is otherthan PUSCH ([0, 9])

[2] none Integerarray

NO

PUCCH_NRB2 number of RBs used fortransmisstion PUCCHformat 2/2a/2b ([0, 99])

1 none Integer NO

PUCCH_n1 resources used fortransmisstion PUCCHformat 1/1a/1b ([0,12*100-1])

11 none Integer NO

PUCCH_n2 resources used fortransmission PUCCHformat 2/2a/2b ([0,12*PUCCH_NB2-1])

11 none Integer NO

ShowPRACH_Parameters show PRACH parametersfor LTE uplink signals: NO,YES

YES none Enumeration NO

PRACH_Enable whether or not to enablePRACH: NO, YES

NO none Enumeration NO

PRACH_Config PRACH configuration index([0, 63])

0 none Integer NO

PRACH_ResourceIndex the PRACH ResourceIndex. In FDD, it indicatesthe subframe numberwhere the preamblestarts; in TDD, it indicatesthe preamble mapping intime and frequency ([0,9])

[1] none Integerarray

NO

PRACH_PrmbleIndex preamble indexes, used toselect preamblesequences from 64preambles available in thiscell ([0, 63])

[0] none Integerarray

NO

PRACH_RBOffset PRACH frequency offset,the first RB available forPRACH ([0, 94])

0 none Integer NO

PRACH_LogicalIndex logical index of root ZCsequence ([0, 837])

0 none Integer NO

PRACH_Ncs cyclic shifts of ZCsequence ([0, 15])

0 none Integer NO

PRACH_HS_flag high speed flag: NO, YES NO none Enumeration NO

ShowSRS_Parameters show SRS parameters forLTE uplink signals: NO,YES

YES none Enumeration NO

SRS_Enable sounding referencesymbol is enable: NO, YES

NO none Enumeration NO

SRS_BandwidthConfig the cell-specific SRSbandwidth configuration([0, 7])

7 none Integer NO

SRS_SF_Config the cell-specific SRSsubframe configuration([0, 14])

0 none Integer NO

SRS_MaxUpPts whether enable thereconfiguration ofmaximum m_SRS_0 ornot ([0, 15]): NO, YES

NO none Enumeration NO

SRS_Bandwidth the UE-specific SRSbandwidth ([0, 3])

0 none Integer NO

SRS_HoppingBandwidth the SRS hoppingbandwidth ([0, 3])

3 none Integer NO

SRS_FreqPosition the SRS frequency domainposition ([0, 23])

0 none Integer NO

SRS_ConfigIndex the UE-specific SRSconfiguration ([0, 1023])

0 none Integer NO

SRS_TransmissionComb transmission comb ([0,1])

0 none Integer NO

Page 331: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

330

SRS_CyclicShift used in computing thecyclic shift of SRS ([0, 7])

0 none Integer NO

ShowPowerParameters show power-relatedparameters: NO, YES

YES none Enumeration NO

PUSCH_PwrOffset the power offset in dB forPUSCH ((-inf, +inf))

0 none Float NO

PUSCH_RS_PwrOffset the power offset in dB forPUSCH RS ((-inf, +inf))

0 none Float NO

PUCCH_PwrOffset the power offset in dB forPUCCH ((-inf, +inf))

0 none Float NO

PUCCH_RS_PwrOffset the power offset in dB forPUCCH RS ((-inf, +inf))

0 none Float NO

PRACH_PwrOffset the power offset in dB forPRACH ((-inf, +inf))

0 none Float NO

SRS_PwrOffset the power offset in dB forSRS ((-inf, +inf))

0 none Float NO

ShowSpectrumShapingParameters show parameters fortransmit spectrumshaping: NO, YES

YES none Enumeration NO

SpectrumShapingType spectrum-shaping type:TimeWindowing, FIRFilter

TimeWindowing none Enumeration NO

WindowType type of time transitionwindowing between twoconsecutive symbols:Tukey, Raised cosine

Tukey none Enumeration NO

CyclicInterval the overlapped cyclicinterval between twoadjacent SC-FDMAsymbols in unit of chips(without oversampleing)([0, 96])

6 none Integer NO

CI_StartPos the start position of cyclicinterval(take the startposition of CP as origin),indicates the number ofsamples(withoutoversampling) of ECPadded before CP ([-96,0])

-3 none Integer NO

FIR_Taps number of FIR filter taps([1, 1000])

19 none Integer NO

FIR_withInterp spectrum-shaping FIRfilter with interpolationoperation: NO, YES

NO none Enumeration NO

FIR_FilterType spectrum-shaping FIRfilter type: RRC, IdealLowpass, EquiRipple

RRC none Enumeration NO

RRC_Alpha roll-off factor for rootraised-cosine filter ([0,1.0])

0.22 none Float NO

ShowControlInfoParameters show control informationparameters for LTE uplinksignals: NO, YES

YES none Enumeration NO

RI_NumInfoBits RI information bits size([0, inf))

[0] none Integerarray

NO

RI_BetaOffsetIndex RI offset values, used incalculating the number ofcoded RI symbols ([0,12])

[0] none Integerarray

NO

CQI_NumInfoBits CQI information bits size([0, inf))

[0] none Integerarray

NO

CQI_BetaOffsetIndex CQI offset values, used incalculating the number ofcoded CQI synbols ([2,15]

[2] none Integerarray

NO

HARQACK_NumInfoBits HARQ-ACK informationbits size ([0, inf))

[0] none Integerarray

NO

HARQACK_BetaOffsetIndex HARQ-ACK offset values,used in calculating thenumber of coded HARQ-ACK symbols ([0,14])

[0] none Integerarray

NO

ACK_NACK_FeedbackMode ACK/NACK feedbackmodes for TDD:ACK/NACK multiplexing,ACK/NACK bundling

ACK/NACKmultiplexing

none Enumeration NO

Nbundled Nbundled for TDDACK/NACK bundling ([1,20])

[1] none Integerarray

NO

Input Ports

Page 332: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

331

Port Name Description Signal Type Optional

1 DataIn Input PUSCH information bits int NO

2 RI_In Input RI information bits int NO

3 HARQACK_In Input HARQ-ACK information bits int NO

4 CQI_In Input CQI information bits int NO

11 HARQ_Bits Input HARQ ACK/NACK feedback from the receiver int YES

Output Ports

Port Name Description Signal Type Optional

5 Frame Output frame signal complex NO

6 FRM_FD Output frame signal in frequency domain complex NO

7 Data_FD Output PUSCH signal in frequency domain complex matrix NO

8 PUSCH_ModSymbols Output PUSCH modulation symbols complex matrix NO

9 PUSCH_ChannelBits Output PUSCH channel bits before modulation int NO

10 SC_Status Output uplink subcarrier (resource element) status int NO

Parameter Details

System Parameters Details:

FrameMode: frame mode of LTE, the type is enum and it can be selected as FDD andTDD, supporting frame structure type 1 and frame structure type 2 respectively.TDD_Config: uplink-downlink configuration for TDD, the type is enum and it can beselected as Config 0, Config 1, Config 2, Config 3, Config 4, Config 5 and Config 6.These configurations are listed in Table 4.2-2 [1].SpecialSF_Config: special subframe configuration when FrameMode is TDD. Theconfigurations of special subframe (lengths of DwPTS/GP/UpPTS) are listed in Table4.2-1 [1].Bandwidth: bandwidth of LTE, the type is enum and it can be selected as BW 1.4MHz, BW 3 MHz, BW 5 MHz, BW 10 MHz, BW 15 MHz and BW 20 MHz.OversamplingOption: Over-sampling ratio option. Oversampling ratio 1, ratio 2, ratio4 and ratio 8 are supported in this uplink source.CyclicPrefix: type of cyclic prefix. It can be selected as Normal and Extended,corresponding to seven and six SC-FDMA symbols per slot, respectively. It should benoted that, in case of the normal cyclic prefix, the cyclic-prefix length for the first SC-FDMA symbol of a slot is somewhat larger, compared to the remaining SC-FDMAsymbols.CellID_Sector: the index of cell identity within the physical-layer cell-identity group,it should be in range [0,2].CellID_Group: the index of cell identity group, it should be in range [0,167].n_RNTI: radio network temporary identifier.HalfCarrierShift_Enable: whether enable half carrier shift or not, the type is query(bool). This parameter should be set to YES according to the LTE specifications.FrameNum: the system frame number of the first transmitted frame.FrameIncreased: controls whether the frame number increased or not duringsimulation. FrameNum and FrameIncreased would affect the frequency hopping ofPUSCH in TDD mode as well as the transmission of PRACH and SRS which may varyfrom frames.DL_CyclicPrefix: cyclic prefix mode of downlink. It determines the length of UpPTS inTDD mode in company with CyclicPrefix and SpecialSF_Config. It mainly affects thetransmission instances of SRS.Printf_RB_SF_Alloc: whether print the RB_SF allocation to file or not, the type isquery (bool).

PUSCH Parameters Details:

PUCCH_PUSCH: PUCCH and PUSCH selection. It can be selected as PUSCH, PUCCHand both, indicating the generated signal from this uplink source containing onlyPUSCH, only PUCCH and both PUSCH and PUCCH, respectively. It should be notedthat when both PUSCH and PUCCH are transmitted, overlap in RB allocation forPUSCH and PUCCH is not allowed.HARQ_Enable: specify whether closed-loop HARQ transmission is enabled. Refer toLTE_HARQ_Controller (ltebasever) for how closed-loop HARQ transmission issimulated in LTE library.NumHARQ: specify the number of HARQ processes when closed-loop HARQtransmission is enabled. Note when closed-loop HARQ transmission is disabled, it issuggested to set this parameter to the default value '8'.MaxHARQTrans: specify the maximum number of HARQ transmissions, including thefirst transmission and the following retransmissions. Note when closed-loop HARQtransmission is disabled, it is suggested to set this parameter to the default value '4'.Payload_Config: specify the meaning of Payload, it can be selected as MCS index,Transport block size or Code rate. For more information, refer to Relation ofTransport Block Sizes, Channel Bits and Code Rates (ltebasever).Payload: the input payload for PUSCH, the meaning of the elements is defined byPayload_Config. It is an Array Parameter (ltebasever). The supported sizes are 1 × 1

Page 333: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

332

and 10 × 1.MappingType: the modulation scheme for PUSCH, where 0 means QPSK; 1 means16QAM; 2 means 64QAM. It is an Array Parameter (ltebasever). The supported sizesare 1 × 1 and 10 × 1. Note that this parameter is invalid when Payload_Config =MCS index, in which the modulation scheme is determined by MCS index.RV_Sequence: redundancy version sequence which is used in rate matching. Thisarray size should be equal to the MaxHARQTrans parameter. When HARQtransmission is disabled (HARQ_Enable=NO), only the first element in RV_Sequenceis used in each rate matching. Each element in this parameter should be in range[0:3].DFTSwap_Enable: whether enable DFT swap for PUSCH and PRACH or not. Thisparameter should be set to NO according to the LTE specifications.PUSCH_HoppingEnable: whether PUSCH frequency-hopping is enabled or not.PUSCH_HoppingMode: PUSCH frequency hopping mode, it can be selected asinterSubFrame and intraAndInterSubFrame.PUSCH_HoppingOffset: the offset used for PUSCH frequency hopping.PUSCH_Hopping_Nsb: number of sub-bands for PUSCH frequency hopping.PUSCH_HoppingBits: information in hopping bits. It can be selected as 0 or 1 whenBandwidth < 10MHz, and can be selected as 00, 01, 10, or 11 when Bandwidth >=10MHz. It determines the hopping type according to Table 8.4.2 [3].

PUSCH_TransMode: whether control and data are sent via PUSCH, it can be selectedas Data and Control Multiplexing, Data Only and Control Only. If it is selected as Dataand Control Multiplexing, control and data are sent via PUSCH based on subclause5.2.2 [2]. Otherwise, only data or control is sent via PUSCH. RB_AllocType: RB allocation type, RB_AllocType = StartRB + NumRBs isrecommended for uplink since the RB allocation for PUSCH is supposed to becontiguous. For more information, refer to Resource Block Allocation (ltebasever).RB_Alloc: RB allocation for PUSCH. The RB allocation type is defined in RB_AllocType.It is an Array Parameter (ltebasever). The supported sizes are 2 × 1, 10 × 1 whenRB_AllocType = StartRB + NumRBs.GroupHop_Enable: Whether enable group hopping for PUSCH and PUCCH or not.SeqHop_Enable: Whether enable sequence hopping for PUSCH and PUCCH or not.PUSCH_Delta_ss: Δ ss {0,1,...,29}, which is configured by higher layers. For PUSCH,

the sequence-shift pattern fssPUSCH(ns) is given by fss

PUSCH(ns) = (fssPUCCH(ns) + Δ ss

) mod 30.PUSCH_n_DMRS1: n(1)

DMRS is a broadcasted value. It is an Array Parameter

(ltebasever). The supported sizes are 1 × 1 and 10 × 1.PUSCH_n_DMRS2: n(2)

DMRS is included in the uplink scheduling assignment, each

element can be selected as 0,2,3,4,6,8,9 and 10. It is an Array Parameter(ltebasever). The supported sizes are 1 × 1 and 10 × 1.

PUCCH Parameters Details:

PUCCH_Format: PUCCH format, it can be selected as Format 1, Format 1a, Format1b, Shortened 1, Shortened 1a, Shortened 1b, Format 2, Format 2a and Format 2b.The modulation schemes for the different PUCCH formats are given by the followingtable.PUCCHformat

Modulationscheme

Number of bits persubframe, Mbits

1 N/A N/A

1a BPSK 1

1b QPSK 2

2 QPSK 2

2a QPSK + BPSK 21

2b QPSK + BPSK 22

PUCCH_NumCQIBits: number of CQI bits transmitted on PUCCH format 2/2a/2b.PUCCH_NumHARQACKBits: number of HARQ-ACK bits transmitted on PUCCH format2 in extended CP mode.PUCCH_Delta_shift: Δ shift

PUCCH {1,2,3}, it is set by higher layers.

Page 334: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

333

PUCCH_SF_Alloc: indicates which subframes contain PUCCH, it would be ignoredwhen PUCCH_PUSCH = PUSCH. It is an an Array Parameter (ltebasever). Thesupported size is N × 1, where N is in range [1,10].PUCCH_NRB2: NRB

(2) denotes the bandwidth in terms of resource blocks that are

reserved exclusively for PUCCH formats 2/2a/2b transmission in each slot.PUCCH_n1: nPUCCH

(1) represents the resources in terms of resources blocks used for

transmission of PUCCH format 1/1a/1b.PUCCH_n2: nPUCCH

(2) represents the resources in terms of resources blocks used for

transmission of PUCCH format 2/2a/2b.For more information on PUCCH and DMRS for PUCCH, please refer toLTE_UL_PUCCH (ltebasever).

PRACH Parameters Details:

PRACH_Enable: whether enable PRACH or not. If PRACH_Enable = NO, followingparameters from PRACH_Config to PRACH_RBOffset will be ignored.PRACH_Config: PRACH configuration. The preamble formats and the subframes inwhich the random access preamble transmission is allowed are determined byPRACH_Config as listed in Table 5.7.1-2 and Table 5.7.1-3 [1] for FDD and TDD,respectively.PRACH_ResourceIndex: if FrameMode = FDD, PRACH_ ResourceIndex indicates thesubframes in which the random access preamble transmission starts. For example, inFDD, suppose PRACH_Config is set to 25, PRACH_ ResourceIndex can be set as asubset of {1, 4, 7}. Suppose PRACH_ ResourceIndex = {1, 4}, two PRACH preamblesequences of format 1 would start to transmitted in subframe 1 and 4 respectively,as each preamble sequence of format 1 would last two subframes, they would betransmitted in subframe 1-2 and 4- 5 respectively. If FrameMode = TDD, PRACH_ResourceIndex indicates the index of preamble mapping pattern in time andfrequency, where mapping pattern refers to a quadruple of the format (fRA, tRA

0, tRA1

, tRA2 ) indicates the location of a specific random resource. The valid mapping

patterns for each PRACH configuration under different UL/DL configuration are listedin Table 5.7.1-4 [1]. For example, in TDD Config 0, suppose PRACH_Config is set to12, the valid preamble mapping patterns are (0,0,0,2), (0,0,1,2), (0,0,0,1) and(0,0,1,1) as listed in Table 5.7.1-4[1]. These four patterns were numbered 0, 1, 2and 3 respectively from top to bottom. If PRACH_ ResourceIndex is set to {0, 1},two PRACH preamble sequences would be transmitted and mapped onto the time andfrequency resources defined by (0,0,0,2) and (0,0,1,2). It should be noted thatPRACH_ ResourceIndex is an Array Parameter (ltebasever), in FDD, PRACH_ResourceIndex should be set as a subset of the subframes in which the randomaccess preamble transmission is allowed, while in TDD, PRACH_ ResourceIndexshould be set as a subset of {0, . . ., Number of valid mapping patterns for thecurrent PRACH configuration and TDD configuration}.PRACH_PrmbleIndex: PRACH preamble index. There are 64 preambles available ineach cell. Transmitted preamble sequences are selected from the preamble sequenceset using the preamble indexes. PRACH_PrmbleIndex is an Array Parameter(ltebasever). It must consist of one element or of the same size as PRACH_ResourceIndex. If it has only one element, preamble sequences of the same indexwould be transmitted, while the number of PRACH transmission in one frame isdetermined by PRACH_ ResourceIndex; otherwise, different preamble sequenceswould be selected from the set according to the indexes. Each element ofPRACH_PrmbleIndex should be in range [0, 63]. The set of 64 preamble sequences ina cell is found by including first, in the order of increasing cyclic shift, all the availablecyclic shifts of a root Zadoff-Chu sequence with the logical indexPRACH_LogicalIndex. Additional preamble sequences, in case 64 preambles cannotbe generated from a single root Zadoff-Chu sequence, are obtained from the rootsequences with the consecutive logical indexes until all the 64 sequences are found.PRACH_RBOffset: PRACH frequency offset, expressed as a physical resource blocknumber and fulfilling 0 ≤ nPRABOffset

RA ≤ NRBUL - 6.

PRACH_LogicalIndex: logical index of root ZC sequence, the type is int and it must bein range of [0,837]. The relation between a logical root sequence index and physicalroot sequence index u is given by Tables 5.7.2-4 and 5.7.2-5[1] for preamble format0-3 and 4, respectively.PRACH_Ncs: index of cyclic shifts of ZC sequence, the type is int and it must be inrange of [0,15]. The value of NCS is listed in Table 5.7.2-2 [1].

Page 335: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

334

NCS configuration NCS value Unrestricted set NCS value Unrestricted set

0 0 15

1 13 18

2 15 22

3 18 26

4 22 32

5 26 38

6 32 46

7 38 55

8 46 68

9 59 82

10 76 100

11 93 128

12 119 158

13 167 202

14 279 237

15 419

PRACH_HS_flag: whether in high speed mode or not. If Yes, NCS value would be

selected from restricted set; otherwise, it would be selected from unrestricted set.The calculation of Cv would also be different.

For more information on the generation of PRACH, please refer to LTE_RACH(ltebasever).

SRS Parameters Details:

SRS_Enable: whether enable sounding reference signal transmission or not. IfSRS_Enable = No, following parameters from SRS_BW to SRS_SF_Config will beignored.SRS_BandwidthConfig: the cell-specific SRS bandwidth configuration (CSRS).

SRS_SF_Config: SRS subframe configuration. Cell specific sounding reference signal

subframes are the subframes satisfying . For TDD, soundingreference signal is transmitted only in configured UL subframes or UpPTS. The cellspecific subframe configuration period TSFC and the cell specific subframe offset Δ SFC

for the transmission of sounding reference signals are listed in Tables 5.5.3.3-1 and5.5.3.3-2 [1], for FDD and TDD, respectively.SRS_MaxUpPts: whether enable the reconfiguration of maximum m~SRS,0~ or not.SRS_Bandwidth: the UE-specific SRS bandwidth (BSRS)..

SRS_HoppingBandwidth: the SRS hopping bandwidth (bhop).

SRS_FreqPosition: the SRS frequency domain position (nRRC).

SRS_ConfigIndex: the UE-specific SRS configuration (ISRS).

SRS_TransmissionComb: transmission comb (kTC).

SRS_CyclicShift: used in computing the cyclic shift of SRS, nSRS = 0, 1, 2, 3, 4, 5, 6,

7.For more information on the generation of SRS, please refer to LTE_UL_CAZAC(ltebasever).

Power parameters Details:

PUSCH_PwrOffset: the power offset in dB for PUSCH.PUSCH_RS_PwrOffset: the power offset in dB for DMRS for PUSCH.PUCCH_PwrOffset: the power offset in dB for PUCCH.PUCCH_RS_PwrOffset: the power offset in dB for DMRS for PUCCH.PRACH_PwrOffset: the power offset in dB for PRACH.SRS_PwrOffset: the power offset in dB for SRS.

Spectrum Shaping Parameters Details:

SpectrumShapingType: Spectrum-shaping type. It can be selected as TimeWindowingand FIRFilter. Tukey window and Raised Cosine window are provided forTimeWindowing, while Square-Root Raised Cosine filter and ideal lowpass filter areprovided for FIRFilter.WindowType: type of the windowing between two consecutive symbols. It can beselected as Tuckey window and Raised cosine window, and it is active only whenSpectrumShapingType = TimeWindowing.CyclicInterval: the overlapped cyclic interval between two adjacent OFDM symbols in

Page 336: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

335

unit of samples (without oversampling), it is active only when SpectrumShapingType= TimeWindowing..CI_StartPos: the start position of cyclic interval (without oversampling), compared tothe start position of CP. This value is negative which means ahead of CP. It is activeonly when SpectrumShapingType = TimeWindowing.FIR_Taps: number of taps of FIR filter. It is active only when SpectrumShapingType= FIRFilter.FIR_withInterp: whether perform interpolation in Spectrum-shaping FIR filter or not.It is active only when SpectrumShapingType = FIRFilter. If YES, FIR filter implementsinterpolation function as well as filter function. If NO, FIR filter implements filterfunction only.FIR_FilterType: type of spectrum-shaping FIR filter. It can be selected as Square-Root Raised Cosine, Ideal Lowpass and EquiRipple. It is active only whenSpectrumShapingType = FIRFilter. When SpectrumShapingType = FIRFilter andFIR_FilterType = EquiRipple, the FIR_withInterp should be set to NO, FIR_Taps isignored.The EquiRipple FIR taps are defined by the EquiRippleFIR_Taps variable in the'Equations' page of this subnetwork. The detailed information for the EquiRipple FIRis shown below which is dependent on the OversamplingOption parameter. Users canmodify the EquiRippleFIR_Taps variable to set the desired FIR taps.OversamplingOption Tap order Pass band Stop band

0 (1×) 24 0.66 0.94

1 (2×) 48 0.33 0.47

2 (4×) 96 0.165 0.235

3 (8×) 192 0.0825 0.1175

RRC_Alpha: roll-off factor of root raised-cosine filter, it is active only whenSpectrumShapingType = FIRFilter.For more information on spectrum shaping, please refer to LTE_SpecShaping(ltebasever).

Control Information Parameters Details:

RI_NumInfoBits: number of information bits of rank indication. It is an ArrayParameter (ltebasever). The supported sizes are 1 × 1 and 10 × 1.RI_BetaOffsetIndex: index of RI beta offset. It is an Array Parameter (ltebasever).The supported sizes are 1 × 1 and 10 × 1.CQI_NumInfoBits: number of information bits of channel quality information. It is anArray Parameter (ltebasever). The supported sizes are 1 × 1 and 10 × 1.CQI_BetaOffsetIndex: index of CQI beta offset. It is an Array Parameter (ltebasever).The supported sizes are 1 × 1 and 10 × 1.HARQACK_NumInfoBits: number of information bits of HARQ-ACK. It is an ArrayParameter (ltebasever). The supported sizes are 1 × 1 and 10 × 1.HARQACK_BetaOffsetIndex: index of HARQ-ACK beta offset. It is an Array Parameter(ltebasever). The supported sizes are 1 × 1 and 10 × 1.ACK_NACK_FeedbackMode: ACK/NACK feedback modes for TDD.Nbundled: Nbundled for TDD ACK/NACK bundling.For more information on channel coding of control information, please refer toLTE_UL_ControlInfoEncoder (ltebasever).

Notes/Equations

This subnetwork generates LTE uplink baseband signal for both frame structure type1.1 and frame structure type 2. LTE uplink transmission is based on SC-FDMA.In this source, the data type in most input/output ports are matrix which should be2.column vector (i.e the matrix size should be N × 1,N is the size of vector). Refer toMatrix-based Ports (ltebasever) for more information.Generally, one subframe data are produced each firing. So for i th firing,3.Suframe#i%10 is processed, where 10 is the number of subframes per one radioframe.Each firing,

The number of tokens consumed at port DataIn is equal to the number oftransport block size for this subframe (firing). When no transport block size isallocated in this subframe (firing) or HARQ retranmssion is performed, no tokenis consumed at this port. Refer to Relation of Transport Block Sizes (ltebasever)for how to get transport block size for each subframe.The number of tokens consumed at port RI_In is equal to the number of RIinformation bits for this subframe (firing). When RI is not transmitted in thissubframe, no token is consumed at this port.The number of tokens consumed at port HARQACK_In is equal to the number ofHARQ-ACK information bits for this subframe (firing). When HARQ-ACK is nottransmitted in this subframe, no token is consumed at this port.The number of tokens consumed at port CQI_In is equal to the number of CQIinformation bits for this subframe (firing). When CQI is not transmitted in thissubframe, no token is consumed at this port.One token is consumed at port HARQ_Bits to get feedback HARQ ACK/NACK bits

Page 337: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

336

from the receiver when closed-loop HARQ transmission is enabled for UE 1.Refer to LTE HARQ Controller for how closed-loop HARQ transmission isprocessed.One subframe samples with oversampling in time domain are produced at portFrame.One subframe frequency domain data without oversampling are produced atport FRM_FD.One matrix token is produced at port Data_FD, the size of matrix is equal to thenumber of REs allocated for PUSCH and PUCCH transmission.One matrix token is produced at port PUSCH_ModSymbols, the size of thematrix is equal to the number of PUSCH modulation symbols in this subframe.The number of tokens produced at PUSCH_ChannelBits is equal to the sum ofthe number of PUSCH channel bits and number of RI and CQI coded bits in thissubframe. These outputs are the reference bits for uncoded BER and PERmeasurement. For more information on how to get the size of modulationsymbols and channel bits, refer to Channel Bits Calculation (ltebasever).The number of tokens produced at port SC_Status is equal to the total numberof REs in each subframe.For the default parameters configurations, the number of tokens consumed atport DataIn is 2555 each firing. RI, HARQ-ACK, CQI are not transmitted viaPUSCH. The number of tokens produced at port Frame and SC_Status are 15360each firing. The number of tokens produced at port FRM_FD is 4200 each firing.The size of matrix token produced at port Data_FD and PUSCH_ModSymbols are3600 each firing. The number of tokens produced at port PUSCH_ChannelBits is7200.

The LTE_UL_Src schematic is shown below:4.

In this subnetwork, closed-loop HARQ transmission can be enabled by set5.HARQ_Enable to YES. For more information, refer to Closed-loop HARQ Transmission(ltebasever).Data and control streams (in the form of CQI/PMI, HARQ-ACK and rank indication)6.are encoded and multiplexed through LTE_UL_ChannelCoder (ltebasever) in whichthe CRC attachment, code block segmentation, channel coding, rate matching,multiplexing of data and control information, channel interleaving and scrambling areperformed. Then the block of scrambled bits are modulated as described in Section7.1 [1], resulting in a block of complex-valued symbols (QPSK, 16QAM, 64QAM areallowed for PUSCH). A size-M DFT is applied to a block of M modulation symbols,where M is the number of subcarriers allocated for PUSCH in one SC-FDMA symboland can be changed on a subframe basis. Demodulation reference signal for PUSCHand sounding reference signal are generated by LTE_UL_CAZAC (ltebasever), whiledemodulation reference signal for PUCCH and uplink control information carried byPUCCH are both output from LTE_UL_PUCCH (ltebasever). Reference signals, PUSCHand PUCCH are multiplexed and mapped onto the allocated time and frequencyresources in LTE_UL_MuxSCFDMASym (ltebasever) considering power offset of eachphysical signal and channel. Then, the uplink SC-FDMA signal in time domain isgenerated from LTE_SCFDMA_Modulator (ltebasever) component in which IFFT isimplemented. Cyclic prefix insertion and half carrier shift are implemented inLTE_UL_MuxSlot (ltebasever). Then the output is multiplexed with physical randomaccess preamble sequences in LTE_UL_MuxFrame (ltebasever). PRACH is generatedin LTE_RACH (ltebasever), if PRACH is not enabled, the output would be '0's. At last,LTE_SpecShaping (ltebasever) is employed to provide the spectrum shaping of theuplink source through FIR filtering or time windowing as configured. EquiRipple FIRFilter is also provided.The basic uplink transmission scheme is a single-carrier frequency division multiple7.access (SC-FDMA as shown below) with cyclic prefix to achieve uplink inter-userorthogonality and to enable straightforward application of low-complexity high-performance frequency-domain equalization at the receiver side. Frequency-domaingeneration of the signal, sometimes known as DFT-spread OFDM, is assumed andillustrated in the following figure. This allows for a relatively high degree ofcommonality with the downlink OFDM scheme and the same parameters; forexample, clock frequency can be reused.

Page 338: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

337

The basic parameters of the LTE uplink transmission scheme have been chosen to be8.aligned, as much as possible, with the corresponding parameters of the OFDM basedLTE downlink. For uplink transmission scheme, the sub-carrier spacing is Δ f = 15kHz. Each radio frame is 10 ms long and consists of 20 slots of length Tslot = 0.5 ms.

The basic transmission parameters are then specified in more detail in theParameters for Downlink Transmission Scheme table below:SpectrumAllocation (MHz)

Samplingfrequency (MHz)

FFTSize

Number ofResourceBlocks

Normal CP length (μ s/samples)

Extended CPlength(μ s /samples)

20 30.72 2048 100 (4.69/144) x 6,(5.21/160) x 1

(16.67/512)

15 23.04 1536 75 (4.69/108) x 6,(5.21/120) x 1

(16.67/384)

10 15.36 1024 50 (4.69/72) x 6,(5.21/80) x 1

(16.67/256)

5 7.68 512 25 (4.69/36) x 6,(5.21/40) x 1

(16.67/128)

3 3.84 256 15 (4.69/18) x 6,(5.21/20) x 1

(16.67/64)

1.4 1.92 128 6 (4.69/9) x 6, (5.21/10)x 1

(16.67/32)

A physical resource block is defined as NsymbUL consecutive SC-FDMA symbols in the9.

time domain and NscRB consecutive subcarriers in the frequency domain, where N

symbUL and Nsc

RB are given by the Resource block parameters below:

Configuration NscRB Nsymb

UL

Normal cyclic prefix 12 7

Extended cyclic prefix 12 6

An uplink physical channel corresponds to a set of resource elements carrying10.information originating from higher layers. The following uplink physical channels aredefined:

Physical Uplink Shared Channel, PUSCHPhysical Uplink Control Channel, PUCCHPhysical Random Access Channel, PRACH

An uplink physical signal is used by the physical layer but does not carry information11.originating from higher layers. Two types of uplink reference signals are supported:

Demodulation reference signal, associated with transmission of PUSCH andPUCCHSounding reference signal, not associated with transmission of PUSCH andPUCCHThe same set of base sequence is used for demodulation and sounding referencesignals.

The outputs from each output port of this subnetwork are described in the following12.table.Ports name Outputs description

FRM_TD Samples with oversampling in time domain

FRM_FD Frequency domain data without oversampling

Data_FD Frequency domain PUSCH data without oversampling

PUSCH_ModeSymbols Complex-valued modulation symbols for PUSCH

PUSCH_ChannelBits Scrambled channel bits for PUSCH from LTE_UL_ChannelCoder. These outputsare the reference bits for uncoded BER and PER measurement. For moreinformation, refer to Channel Bits Calculation (ltebasever).

PUSCH_RawBits Transport block bits for PUSCH. These outputs are the reference bits for codedBER and PER measurement.

SC_Status Status for each subcarrier (resource element). The order of the output is inincreasing order of first the subcarrier index, then the symbol index, startingwith the first subcarrier of the first symbol in each frame, i.e. the first value isthe status for the first subcarrier (resource element) in the first OFDM symbol,and then the second is for the second subcarrier (resource element) in the firstOFDM symbol, and so on. The meaning of the status value is shown in theSC_Status values table.

SC_Status values

Page 339: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

338

Value ChannelType

0 EMPTY

1 PUCCH

2 DMRS for PUCCH

3 PUSCH

4 DMRS for PUSCH

5 SRS

6 PRACH

It should be noted that in the Summary tab of the interface for this model,13.the RB allocation for SRS shown in the graph indicates the cell specific SRSsubframes. As can be seen from the graph, the last symbol of each cell specificSRS subframe are reserved for SRS transmission. Actually in currentimplementation, SRS is transmitted on the intersection of the cell specific andUE specific transmission instances.this tab doesn't take PUSCH frequency hopping into consideration when drawingthe RB allocation graph. It shows the RB allocation for PUSCH without frequencyhopping.this tab doesn't check the possible conflict of RB allocation for differnt physicalchannels and signals. It only displays the RB allocation based on the parametersconfigurations. The conflict check is done in LTE_UL_Src_RangeCheck(ltebasever).the displayed constellation for UE only shows the constellation of PUSCH in thefirst subframe.

See LTE_UL_Receiver (ltebasever).14.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.213 v8.8.0, "Physical Layer Procedures", September 2009.2.3GPP TS 36.101 v8.6.0 "User Equipment (UE) radio transmission and reception",3.September 2009.

Page 340: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

339

LTE_DL_ChEstimator PartCategories: C++ Code Generation (ltebasever), Sync Equalization (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_DL_ChEstimator (ltebasever) Downlink channel estimator and interpolator for FDD andTDD

LTE_DL_ChEstimator

Description: Downlink channel estimator and interpolator for FDD and TDDDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE DL ChEstimator Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD: Config0, Config 1, Config 2, Config 3, Config 4, Config5, Config 6

Config 0 Enumeration NO

SpecialSF_Config special subframe configuration for TDD: Config0, Config 1, Config 2, Config 3, Config 4, Config5, Config 6, Config 7, Config 8

Config 4 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW 5 MHz,BW 10 MHz, BW 15 MHz, BW 20 MHz

BW 5MHz

Enumeration NO

NumTxAnts number of Tx Antennas: Tx1, Tx2, Tx4 Tx1 Enumeration NO

NumRxAnts number of Rx Antennas: Rx1, Rx2, Rx4 Rx1 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

CellID_Sector the index of cell identity within the physical-layer cell-identity group

0 Integer NO

CellID_Group the index of cell identity group 0 Integer NO

ChEstimatorMode mode of interpolation algorithm in channelestimator: Linear, MMSE_2D, For EVM

Linear Enumeration NO

MMSE_RBWinLen number of RBs for each MMSE-2D interpolation 3 Integer NO

SNR SNR in dB. (used by 2D-MMSE channelestimator in PDSCH)

15 Float NO

Tmax the maximum delay of multi-path channel.(used by 2D-MMSE channel estimator inPDSCH)

0.000001 s Float NO

Fmax the maximum doppler frequency. (used by 2D-MMSE channel estimator in PDSCH)

100 Hz Float NO

SubframeIgnored number of subframes (or transport blocks) thatare ignored at the beginning due to systemdelay

0 Integer NO

Input Ports

Port Name Description Signal Type Optional

1 Pilots reference signals complex matrix NO

2 input output signals fromFFT

multiple complex NO

Output Ports

Port Name Description Signal Type Optional

3 Coef channel coefficient in active subcarriers complex NO

4 RcvPower received power real NO

Notes/Equations

This model is used to estimate 3GPP LTE downlink channel response (CR) with the1.pilot symbols assisted for both FDD and TDD schemes. The downlink referencesignals (pilots) are based on [1].Each firing,

Page 341: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

340

2.If ChEstimatorMode is select as 0:Linear or 1:MMSE-2D,

1 matrix token is consumed at port Pilots, the size of the matrix token isequal to the number of RS REs for all antenna ports in each subframe, formore information, please refer to LTE_DL_Pilot (ltebasever).NumberREsPerSubframe tokens are consumed at each port of the multiportinput, NumberREsPerSubframe = NumOfTotalRBs * 12 (subcarriers per RB)* NumberOfSymbolsPerSubframe.NumberREsPerSubframe * NumberTxAnts * NumberRxAnts tokens areproduced at port Coef, where NumberTxAnts and NumberRxAnts are thenumber of Tx and Rx antennas respectively.1 token is produced at port RcvPower, which is the received poweraveraged over all receiver antennas for each subframe. For uplinksubframe, the output value at port RcvPower is fixed to be 1.

If ChEstimatorMode is select as 2:For EVM,10 matrix tokens are consumed at port Pilots, the size of each matrix tokenis equal to the number of RS REs for all antenna ports in each subframe.NumberREsPerFrame tokens are consumed at each port of the multiportinput, NumberREsPerFrame = NumOfTotalRBs * 12 (subcarriers per RB) *NumberOfSymbolsPerFrame.NumberREsPerFrame * NumberTxAnts * NumberRxAnts tokens areproduced at port Coef.1 token is produced at port RcvPower, whose value is fixed to be 1.

For the default parameter configurations, 1 matrix token is consumed at Pilots,the size of the matrix token is 200; 7200 tokens are consumed at input; 7200tokens are produced at Coef.

Linear interpolation and MMSE interpolation are supported in this channel estimator.3.Channel estimation is done on a subframe basis. In addition, channel estimationalgorithm for EVM measurement defined in [2] is also provided.The least-squares CR estimate at a pilot location ( i ) can be obtained as:4.Hi = Yi / Xi, where Yi is the received Pilot symbol and Xi is the transmitted Pilot

symbol on the ith subcarrier.After getting the CRs at pilot locations, an interpolation algorithm is used to obtain all5.CR estimations.

If ChEstimatorMode is set to Linear, linear interpolation in frequency domain isperformed to get CEs in all subcarriers in RS OFDM symbols, then do linearinterpolation in time domain is performed to get CEs in all other OFDM symbols.If ChEstimatorMode is set to MMSE_2D, two-dimensional MMSE interpolation isperformed on a subframe basis in time domain and MMSE_RBWinLen RBs infrequency domain. For more information, please refer to [3].If ChEstimatorMode is set to For EVM, time averaging at each RS subcarrier isperformed; the time-averaging length is 10 subframes. This process creates anaverage amplitude and phase for each reference signal subcarrier (i.e. everythird subcarrier with the exception of the reference subcarrier spacing across theDC subcarrier). Then, the moving average in the frequency domain of the time-averaged RS subcarriers is performed, i.e. every third subcarrier. The movingaverage window size is 19. For reference subcarriers at or near the edge of thechannel the window size is reduced accordingly as depicted in the followingfigure. At last, linear interpolation is performed from the averaged results tocompute channel estimation for each subcarrier.

If ChEstimatorMode is MMSE_2D, SNR should be set as the signal to noise ratio in6.dB, Tmax should be set as the maximum delay spread of the channel, Fmax shouldbe set as the maximum dopper frequency, while these parameters are ignored whenChEstimatorMode is Linear. In AWGN channel, Tmax and Fmax can be set as a smallvalue, e.g. Tmax = 1e-8s, Fmax = 0.01Hz.It should be noted that if SubframeIgnored is not 0, the first SubframeIgored7.subframes read from input are ignored. The first matrix token read from Pilots wouldbe used in the SubframeIgnored-th subframe. The Coef output for the firstSubframeIgored subframes would be all '1's.See LTE_UL_ChEstimator (ltebasever).8.

For more information on system parameters, please refer to DL System Parameters (ltebasever)For more information on Rx Algorithm Parameters, please refer to DL Rx Algorithm Parameters(ltebasever).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.104 v8.7.0 "Base Station (BS) radio transmission and reception",2.September 2009.P. Hoeher, S. Kaiser, and P. Robertson. "Two-Dimensional Pilot-Symbol-Aided3.Channel Estimation by Wiener Filtering". Proc. IEEE ICASSP '97, Munich, Germany,pp. 1845-1848, Apr. 1997.

Page 342: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

341

LTE_DL_MIMO_FrameSync PartCategories: C++ Code Generation (ltebasever), Sync Equalization (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_DL_MIMO_FrameSync (ltebasever) Downlink time and frequency synchronizer in time domain

LTE_DL_MIMO_FrameSync (Time and frequencysynchronizer in time domain)

Description: Downlink time and frequency synchronizer in time domainDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE DL MIMO FrameSync Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

SyncScale synchronization scale: PerFrame,PerSubframe

PerFrame Enumeration NO

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW5 MHz, BW 10 MHz, BW 15 MHz, BW 20MHz

BW 5 MHz Enumeration NO

NumRxAnts number of Rx Antennas: Rx1, Rx2, Rx4 Rx1 Enumeration NO

OversamplingOption Ratio 1, Ratio 2, Ratio 4, Ratio 8: Ratio 1,Ratio 2, Ratio 4, Ratio 8

Ratio 2 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

IdleInterval idle interval between two consecutiveradio frames

0 Float NO

SyncType synchronization type indicating using PSScross-correlation between two receivedPSSs or auto-correlation betweenreceived PSS and local generated PSS:Cross-Correlation, Auto-Correlation

Auto-Correlation

Enumeration NO

SearchType start a new timing and frequencesynchronization search for every frame ornot: Search every frame, Search+Track

Search+Track Enumeration NO

SearchRange timing and frequence synchronizationsearching range for the first frame

3e-3 s Float NO

TrackRange timing and frequence synchronizationtracking range for the frames except thefirst frame, valid when SearchType is setto Search+Track

0.1e-3 s Float NO

FreqSync : non, <100Hz, <15kHz, <45kHz <15kHz Enumeration NO

AutoDetec_CellID whether or not to auto detect the CellIDs:NO, YES

NO Enumeration NO

CellID_Sector the index of cell identity within thephysical-layer cell-identity group

0 Integer NO

CellID_Group the index of cell identity group 0 Integer NO

Input Ports

Port Name Description Signal Type Optional

1 input received basebandsignal

multiple complex NO

Output Ports

Page 343: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

342

Port Name Description Signal Type Optional

2 CellIDs int NO

3 TimeDete time offset detection multiple int NO

4 FODete frequency offset detection multiple real float NO

5 SSCH_Sym SSCH OFDM symbol output multiple complex NO

6 Corr_Max the max corr value ofPSCH

multiple real float NO

Notes/Equations

This model is used to achieve downlink radio frame/subframe synchronization and1.estimate frequency offset less than 15 KHz for both FDD and TDD modes. This modelworks both in the MIMO mode and in SISO mode (buswidth is 1). The bus width ofthe input and output pins should be compliance with the parameter NumRxAnts.Each firing,2.

if the parameter SyncScale is "PerFrame", NumberSamplesPerFrame tokens areconsumed at the input port. If SyncScale is "PerSubframe",NumberSamplesPerSubframe tokens are consumed at the input port.NumberSamplesPerFrame = SamplingFreq * 2OversamplingOption * 0.01s,NumberSamplesPerSubframe = SamplingFreq * 2OversamplingOption * 0.001s,wherein SamplingFreq is sampling frequency, which is denoted as Fs and

determined by Bandwidth as follows:Bandwidth Fs NumOfRBs

1.4 MHz 1.92 MHz 6

3.0 MHz 3.84 MHz 15

5.0 MHz 7.68 MHz 25

10.0 MHz 15.36MHz

50

15.0 MHz 23.04MHz

75

20.0 MHz 30.72MHz 100

2 tokens are produced in the CellIDs port, which are the CellID_Group andCellID_Sector set by the corresponding parameters.1 token is produced in the TimeDete port, which is the delay detected by thismodel.1 token is produced in the FODete port, which is the frequency offset detectedby this model.If the parameter SyncScale is "PerFrame", 2*TotalSubcarriers tokens areproduced in the SSCH_Sym port, which are the two S-SCH OFDM symbols afterFFT. If the parameter SyncScale is "PerSubframe", TotalSubcarriers tokens areproduced in the SSCH_Sym port, which is the S-SCH OFDM symbol after FFT. Ifthere is no S-SCH in the input subframe, all zeros will be produced by this port.TotalSubcarriers = 12*NumOfRBs. The NumOfRBs is determined by theBandwidth.21 tokens are produced in the Corr_Max port, which is the correlation values(auto-correlation or cross-correlation) around the max one.

The synchronization scale could be select from "PerFrame" and "PerSubframe".3."PerFrame" means this model will get synchonization aided by one frame data while"PerSubframe" means getting synchonization aided by one subframe data. Theparameters "SyncType", "SearchType", "SearchRange", "TrackRange" are disabledwhen "PerSubframe" mode. Because the "PerSubframe" mode can achievesychonization within one subframe length, it supports the HARQ process. The"PerFrame" mode should not be used if HARQ is introduced.The auto detection for CellID_Group and CellID_Sector is not supported yet. So4.please set the "AutoDetec_CellID" to NO and set the right CellID values by theparameter "CellID_Group" and "CellID_Sector".The process for "PerFrame" synchonization is listed as below:5.

Firstly, the input signal is passed through a FIR filter to remove the signal out ofP-SCH bandwidth. Then, half radio frame (5 ms timing) is identified using the P-SCH. Using the P-SCH can only identify the 5 ms timing because there are 2 P-SCH symbols in one radio frame. The radio frame timing should be found by theS-SCH in cell search step 2 (in LTE_DL_MIMO_FreqSync component).The timing synchronization supports two correlation methods defined in theSyncType parameter:SyncType = Cross-Correlation: In this mode, the timing synchronization isachieved by performing cross-correlation between two received P-SCHSyncType = Auto-Correlation: In this mode, the timing synchronization isachieved by performing auto-correlation between local P-SCH and received P-SCH.The timing synchronization processes support two modes determined by theSearchType parameterWhen SearchType = Search every frame: In this mode, the timingsynchronization is done radio frame by radio frame. The searching range isdetermined by SearchRange parameter, starting from the beginning of the inputsignal. To get timing synchronization successfully, make sure that at least one

Page 344: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

343

complete P-SCH exists in the range [0, SearchRange] of each radio frame.When SearchType = Search+Track: In this mode, the timing synchronizationis divided into two steps: Initial searching and Tracking searching. The initialsearching is performed on the first radio frame, the same as when SearchType= Search every frame. Then beginning with the second frame, trackingsearching is employed. Tracking searching will search the range [Index-TrackRange/2, Index+TrackRange/2] to get the timing synchronization index,where Index is the timing synchronization index gotten in the previous radioframe. Usually, TrackRange is less than SearchRange for reducing computingcomplexityThe frequency offset less than one subcarrier spacing (15 KHz) is also estimatedin this model by using the repetition characters of P-SCH and Cyclic Prefix (CP)in OFDM symbols. More specifically, the offset less than 100Hz is achieved byestimating the offset between two P-SCHs; the offset, greater than 100Hz butless than 15KHz is achieved by estimating the offset in CP of OFDM symbols.The estimation range is determined by the FreqSync parameter. When FreqSync= non, the output frequency offset is 0; when FreqSync = <100Hz, <15KHz, or<35KHz, the output frequency offset from this model will be less than 100Hz,15KHz, 15KHz respectively.

The process for "PerSubframe" synchonization is listed as below:6.Firstly, the input signal is passed through a FIR filter to remove the signal out ofP-SCH bandwidth. The max delay of the input signal should not exceed onesubframe length(1 ms) in FDD mode and one slot length(0.5 ms) in TDD mode.The timing synchronization is achieved by the auto-correlation between local P-SCH and received P-SCH. The searching range is 1 ms.The frequency offset less than one subcarrier spacing (15 KHz) is estimated inthis model by using Cyclic Prefix (CP) in OFDM symbols.

For more information on system parameters, please refer to DL System Parameters (ltebasever).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.

Page 345: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

344

LTE_DL_MIMO_FreqSync PartCategories: C++ Code Generation (ltebasever), Sync Equalization (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_DL_MIMO_FreqSync (ltebasever) Timing and freqency estimation in freqencydomain

LTE_DL_MIMO_FreqSync (Timing and freqencyestimation in freqency domain)

Description: Timing and freqency estimation in freqency domainDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE DL MIMO FreqSync Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

SyncScale synchronization scale: PerFrame,PerSubframe

PerFrame Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW 5MHz, BW 10 MHz, BW 15 MHz, BW 20MHz

BW 5 MHz Enumeration NO

NumRxAnts number of Rx Antennas: Rx1, Rx2, Rx4 Rx1 Enumeration NO

OversamplingOption Ratio 1, Ratio 2, Ratio 4, Ratio 8: Ratio 1,Ratio 2, Ratio 4, Ratio 8

Ratio 2 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

Sync_Mode synchronization for every port or onesynchronization for all ports: SyncPerPort,AverageSync

SyncPerPort Enumeration NO

FreqSync frequency estimation range select: non,<100Hz, <15kHz, <45kHz

<15kHz Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 CellIDs Cell ID int NO

2 TD_ByFrameSync Timing index detected by FrameSync multiple int NO

3 FD_ByFrameSync Frequency offset detected by FrameSync multiple real float NO

4 input Input S-SCH signal data multiple complex NO

Output Ports

Port Name Description Signal Type Optional

5 TimeDete Final timing index multiple int NO

6 FODete Final frequencyoffset

multiple real float NO

Notes/Equations

This model is used to achieve integer subcarrier-spacing (15KHz) frequency offsets1.and adjust the time offset estimated by the model LTE_DL_MIMO_FrameSync(ltebasever) for both FDD and TDD modes. This model works both in the MIMO modeand in SISO mode (buswidth is 1). The bus width of the input and output pins shouldbe compliance with the parameter NumRxAnts.Each firing,2.

If the parameter SyncScale is "PerFrame", 2*TotalSubcarriers tokens areconsumed in the input port, which are the received two S-SCH OFDM symbolafter FFT for each receiver antenna. If the parameter SyncScale is"PerSubframe", TotalSubcarriers tokens are consumed in the input port, which isone S-SCH OFDM symbol after FFT for each receiver antenna. TotalSubcarriers= 12*NumOfRBs. The NumOfRBs is determined by the Bandwidth as below:

Page 346: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

345

Bandwidth NumOfRBs

1.4 MHz 6

3.0 MHz 15

5.0 MHz 25

10.0 MHz 50

15.0 MHz 75

20.0 MHz 100

2 tokens are consumed in the CellIDs port, which are the CellID_Group andCellID_Sector.1 token is consumed in the TD_ByFrameSync port, which is the timingsynchronization indices for each receiver antenna estimated inLTE_DL_MIMO_FrameSync (ltebasever).1 token is consumed in the FD_ByFrameSync port, which is the frequencyoffsets for each receiver antenna estimated in LTE_DL_MIMO_FrameSync(ltebasever).1 token is produced in the TimeDete port, which is the final timingsynchronization indices for each receiver antenna.1 token is produced in the FODete port, which is the final frequency offsets foreach receiver antenna.

The synchronization scale could be select from "PerFrame" and "PerSubframe".3."PerFrame" means this model will get synchonization aided by one frame data while"PerSubframe" means getting synchonization aided by one subframe data. Becausethe "PerSubframe" mode can achieve sychonization within one subframe length, itsupports the HARQ process. The "PerFrame" mode should not be used if HARQ isintroduced.In this model, the auto-correlation between local S-SCH and received S-SCH is4.performed for each receiver antenna to get the integer subcarrier-spacing frequencyoffsets when FreqSync = <35KHz. Otherwise no integer subcarrier-spacing frequencyoffsets are estimated.When SyncMode = AverageSync, the timing indices and frequency offsets on all the5.receiver antennas are combined with MRC method based on the receiver S-SCH togenerate a composite timing index and frequency offset. This mode is useful when P-SCH and S-SCH are only received on one of the receiver antennas.When SyncMode = SyncPerPort, the timing indices and frequency offset for each6.receiver antenna are sent out independently. This mode may have betterperformance if P-SCH and S-SCH are received on all the receiver antennas.

For more information on system parameters, please refer to DL System Parameters (ltebasever).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.

Page 347: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

346

LTE_DL_TimeFreqSync Part Frequency and time synchronization for DL

Categories: Sync Equalization (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model

LTE_DL_TimeFreqSync (ltebasever)

LTE_DL_TimeFreqSync (Frequency and timesynchronization for DL)

Description: Frequency and time synchronization for DLAssociated Parts: LTE DL TimeFreqSync Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW5 MHz, BW 10 MHz, BW 15 MHz, BW 20MHz

BW 5 MHz Enumeration NO

NumRxAnts number of Rx Antennas: Rx1, Rx2, Rx4 Rx1 Enumeration NO

OversamplingOption oversampling option: Ratio 1, Ratio 2,Ratio 4, Ratio 8

Ratio 2 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

AutoDetec_CellID whether or not to auto detect theCellIDs: NO, YES

NO Enumeration NO

CellID_Sector the index of cell identity group 0 Integer NO

CellID_Group the index of cell identity within thephysical-layer cell-identity group

0 Integer NO

IdleInterval idle interval between two consecutiveradio frames

0 s Float NO

ReceiverDelay receiver delay ( One frame delay is fornon-HARQ; One subframe delay is forclosed-loop HARQ.: One frame delay(10ms), One subframe delay (1ms)

One subframedelay (1ms)

Enumeration NO

SyncType synchronization type indicating usingPSS cross-correlation between tworeceived PSSs or auto-correlationbetween received PSS and localgenerated PSS: Cross-Correlation, Auto-Correlation

Auto-Correlation

Enumeration NO

SearchType start a new timing and frequencesynchronization search for every frameor not: Search every frame,Search+Track

Search+Track Enumeration NO

SearchRange timing and frequence synchronizationsearching range for the first frame

0.003 s Float NO

TrackRange timing and frequence synchronizationtracking range for the frames except thefirst frame, valid when SearchType isset to Search+Track

0 s Float NO

Sync_Mode synchronization for every port or onesynchronization for all ports:SyncPerPort, AverageSync

SyncPerPort Enumeration NO

FreqSync frequency estimation range select: non,less than 100Hz, less than 15kHz, lessthan 45kHz

less than15kHz

Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 input Input of received IQ data multiple complex NO

Output Ports

Page 348: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

347

Port Name Description Signal Type Optional

2 TODete Estimated timing indices in all rx antennas multiple int NO

3 FODete Estimated frequency offsets in all rx antennas multiple real NO

Notes/Equations

This subnetwork is used to achieve downlink radio frame synchronization and1.estimate frequency offset for both FDD and TDD mode.The LTE_DL_TimeFreqSync schematic is shown below:2.

The input and output are multiple ports whose bus width should be consistent with3.the NumRxAnts parameter.

Each firing,1 token is produced in the TODete port, which is the final timingsynchronization indices for each receiver antenna.1 token is produced in the FODete port, which is the final frequency offsetsfor each receiver antenna.if the parameter ReceiverDelay is "One frame delay",NumberSamplesPerFrame tokens are consumed at the input port. IfReceiverDelay is "One sub-frame delay", NumberSamplesPerSubframetokens are consumed at the input port.NumberSamplesPerFrame = SamplingFreq * 2OversamplingOption * 0.01s,NumberSamplesPerSubframe = SamplingFreq * 2OversamplingOption *0.001s, wherein SamplingFreq is sampling frequency, which is denoted as Fs

and determined by Bandwidth as follows:Bandwidth Fs NumOfRBs

1.4 MHz 1.92 MHz 6

3.0 MHz 3.84 MHz 15

5.0 MHz 7.68 MHz 25

10.0 MHz 15.36MHz

50

15.0 MHz 23.04MHz

75

20.0 MHz 30.72MHz 100

For the default parameter configurations, 15360 tokens are consumed at inputport and 1 token is generated at each output port each firing.

This subnetwork includes two models: LTE_DL_MIMO_FrameSync (ltebasever) for4.frame synchronization and estimation of frequency offset less than 15 KHz;LTE_DL_MIMO_FreqSync (ltebasever) for estimation of integer subcarrier-spacing(15KHz) frequency offset.The synchronization scale is determined by the parameter "ReceiverDelay", could be5.select from "One Frame Delay" and "One Subframe Delay". "One Frame Delay"means this model will get synchonization aided by one frame data while "OneSubframe Delay" means getting synchonization aided by one subframe data. Becausethe "One Subframe Delay" mode can achieve sychonization within one subframelength, it supports the HARQ process. The "One Frame Delay" mode should not beused if HARQ is introduced.The auto detection for CellID_Group and CellID_Sector is not supported yet. So6.please set the "AutoDetec_CellID" to NO and set the right CellID values by theparameter "CellID_Group" and "CellID_Sector".The process for "One Frame Delay" synchonization is described as below:7.

The input signal is sent to LTE_DL_MIMO_FrameSync, where the raw half-frame(5ms) synchronization and frequency offset less than 15 KHz are achieved. Theoutputs are the raw timing index, frequency offset and the time-domain S-SSwaveform.The S-SS waveform is transformed from time domain to frquency domain, whichare then sent to LTE_DL_MIMO_FreqSync for estimation of integer subcarrier-spacing (15KHz) frequency offset, along with raw timing index and frequencyoffset less than 15 KHz. In LTE_DL_MIMO_FreqSync, the final frame (10ms)synchronization is also achieved by comparing the received two S-SSs with localS-SSs.

The process for "One Subframe Delay" synchonization is described as below:8.The parameters "SyncType", "SearchType", "SearchRange", "TrackRange" aredisabled when "One Subframe Delay" mode.The input signal is sent to LTE_DL_MIMO_FrameSync,The max delay of the input

Page 349: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

348

signal should not exceed one subframe length(1 ms) in FDD mode and one slotlength(0.5 ms) in TDD mode.The timing synchronization is achieved by the auto-correlation between local P-SCH and received P-SCH. The searching range is 1 ms.The frequency offset less than one subcarrier spacing (15 KHz) is estimated inthis model by using Cyclic Prefix (CP) in OFDM symbols.The S-SS waveform is transformed from time domain to frquency domain, whichare then sent to LTE_DL_MIMO_FreqSync for estimation of integer subcarrier-spacing (15KHz) frequency offset, along with raw timing index and frequencyoffset less than 15 KHz.

SyncMode: timing and frequency synchronization mode for multiple receiver antenna9.ports. When SyncMode = AverageSync, the timing indices and frequency offsets onall the receiver antennas are combined with MRC method to generate a compositetiming index and frequency offset which are then sent to LTE_DL_DemuxFrame. Thismode is useful when P-SCH and S-SCH are only received on one of the receiverantennas. When SyncMode = SyncPerPort, the timing indices and frequency offset foreach receiver antenna are sent to LTE_DL_DemuxFrame independently. This mode(SyncMode = SyncPerPort) may have better performance if P-SCH and S-SCH arereceived on all the receiver antennas.SyncType: when SyncType is Cross-Correlation, the timing synchronization is10.achieved by performing cross-correlation between two received P-SCH; whenSyncType = Auto-Correlation, the timing synchronization is achieved by performingauto-correlation between local P-SCH and received P-SCH. In "One Subframe Delay"mode, auto-correlation is used and this parameter is disabled.SearchType: the search type for the timing synchronization. When SearchType =11.Search every frame, the complete search is performed for each frame, whose searchrange is defined in SearchRange; When SearchType = Search+Track, the first frameperforms the complete search whose search range is defined in SearchRange, therest frames perform the tracking search whose search range is defined inTrackRange. In "One Subframe Delay" mode, it will search every subframe and thereis no tracking process, so the parameter is disabled in the "One Subframe Delay"mode.SearchRange: search range for all frames when SearchType = Search every frame,12.and for the first frame when SearchType = Search+Track. This parameter is disabledin "One Subframe Delay" mode.TrackRange: tracking range for the rest frames when SearchType = Search+Track.13.This parameter is disabled in "One Subframe Delay" mode.FreqSync: frequency synchronization range, chosen from non, <100Hz, <15kHz,14.<45kHz.

For more information on system parameters, please refer to DL System Parameters (ltebasever).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.104 v8.7.0 "Base Station (BS) radio transmission and reception",2.September 2009.TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access3.(UTRA),", V7.1.0, September 2006.

Page 350: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

349

LTE_IQ_Offset PartCategories: C++ Code Generation (ltebasever), Sync Equalization (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_IQ_Offset (ltebasever) Uplink IQ offset compensation

LTE_IQ_Offset (Uplink IQ offset compensation)

Description: Uplink IQ offset compensationDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE IQ Offset Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW 5MHz, BW 10 MHz, BW 15 MHz, BW 20 MHz

BW 5MHz

Enumeration NO

OversamplingOption Ratio 1, Ratio 2, Ratio 4, Ratio 8: Ratio 1,Ratio 2, Ratio 4, Ratio 8

Ratio 2 Enumeration NO

IQ_Offset_Correct whether or not to correct IQ offset: NO, YES YES Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 DataIn signal input complex NO

Output Ports

Port Name Description Signal Type Optional

2 DataOut sigal output complex NO

Notes/Equations

This model performs LTE Uplink IQ offset compensation.1.Each firing,2.

NumberSamplesPerSubframe tokens are consumed at port DataIn;NumberSamplesPerSubframe tokens are produced at port DataOut;where NumberSamplesPerSubframe is the number of samples in each subframe,NumberSamplesPerSubframe = SamplingFreq * 2OversamplingOption * 0.001s.SamplingFreq is sampling frequency, which is denoted as Fs and determined by

Bandwidth as follows:Bandwidth Fs

1.4 MHz 1.92 MHz

3.0 MHz 3.84 MHz

5.0 MHz 7.68 MHz

10.0 MHz 15.36MHz

15.0 MHz 23.04MHz

20.0 MHz 30.72MHz

For more information on the parameters, please refer to UL System Parameters (ltebasever).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.104 v8.7.0 "Base Station (BS) radio transmission and reception",2.September 2009.

Page 351: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

350

LTE_UL_ChEqualizer PartCategories: C++ Code Generation (ltebasever), Sync Equalization (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_UL_ChEqualizer (ltebasever) Channel equalizer for PUSCH with receiverdiversity

LTE_UL_ChEqualizer

Description: Channel equalizer for PUSCH with receiver diversityDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE UL ChEqualizer Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

NumRxAnts number of Rx Antennas: Rx1, Rx2, Rx4 Rx1 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW 5MHz, BW 10 MHz, BW 15 MHz, BW 20 MHz

BW 5MHz

Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

NullingThreshold threshold to null subcarriers in frequencedomain, in range [0:inf)

0.1 Float NO

DisplayPortRates whether the information for nulling subcarriersis displayed: NO, YES

NO Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 H channel freq responses for received signals for each receiver antenna multiplecomplex

NO

2 RxSig received signals for each receiver antenna multiplecomplex

NO

Output Ports

Port Name Description Signal Type Optional

3 EqualizedSig combined equalizedsignals

complex NO

Notes/Equations

This model performs channel equalizer for LTE PUSCH with receiver diversity. The1.composite equalized data on each resource element (subcarrier) is output byemploying maximal ratio combining (MRC) method.Each firing, the number of REs (resource elements) Nsubframe in one subframe is2.

consumed in each input port; and the same number of REs (Nsubframe) in one

subframe is produced in the EqualizedSig output port, where Nsubframe = NRB*12*N

Sym*2, NRB is the maximum number of resource blocks determined by the Bandwidth

parameter shown belowBandwidth NRB

1.4 MHz 6

3 MHz 15

5 MHz 25

10 MHz 50

15 MHz 75

20 MHz 100

NSym is the number of OFDM symbols per slot, which is equal to 7 in normal CP mode

and equal to 6 in extended CP mode.The H and RxSig are multi-ports, whose bus width should be equal to the NumRxAnts3.parameter.The processes inside this model are described as follows.4.

For ith receiver antenna, the mean power (MeanPwr(i)) on one subframe is

Page 352: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

351

calculated based on the input channel responses (H) in frequency domain.Given NullingThreshold, the received data (from RxSig input port) are set to 0on the subcarriers in which the power is less than MeanPwr(i)* NullingThreshold,where i is the index of the receiver antenna. Through this way, we can removethe effect of subcarriers with low SNR conditions assuming the noise on allsubcarriers are the same.The final composite equlized data on each subcarrier is gotten. For subcarrier k,the composite equlized data is

Where H(i,k) is the channel response on the kth subcarrier for ith receiverantenna.

If DisplayPortRates is set to YES, the following messages are displayed.5.The estimated power on each receiver antennaThe threshold for nulling subcarriers set by usersThe total number of nulled subcarriers on each receiver antenna in each firing(subframe).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.

Page 353: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

352

LTE_UL_ChEstimator PartCategories: C++ Code Generation (ltebasever), Sync Equalization (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_UL_ChEstimator (ltebasever) Uplink Channel Estimator and Interpolator

LTE_UL_ChEstimator (Uplink Channel Estimator andInterpolator)

Description: Uplink Channel Estimator and InterpolatorDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE UL ChEstimator Part (ltebasever)

Model Parameters

Page 354: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

353

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations forTDD: Config 0, Config 1, Config 2,Config 3, Config 4, Config 5, Config 6

Config 0 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz,BW 5 MHz, BW 10 MHz, BW 15 MHz,BW 20 MHz

BW 5 MHz Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

CellID_Sector the index of cell identity within thephysical-layer cell-identity group

0 Integer NO

CellID_Group the index of cell identity group 0 Integer NO

FrameNum frame number 0 Integer NO

FrameIncreased frame number increasing or not: NO,YES

NO Enumeration NO

RB_AllocType RB allocation type: StartRB +NumRBs, RB indices (1D), RB indices(2D)

StartRB +NumRBs

Enumeration NO

RB_Alloc the RB allocation for the UE, in theformats of [start RB, number of RBs]or [[SF0 start RB, SF0 number ofRBs]; . . .; [SF9 start RB, SF9 numberof RBs]]

[0, 25] Integerarray

NO

PUCCH_PUSCH PUCCH and PUSCH selection: PUSCH,PUCCH, both

PUSCH Enumeration NO

PUSCH_HoppingEnable whether PUSCH frequency-hopping isenabled or not: NO, YES

NO Enumeration NO

PUSCH_HoppingMode PUSCH frequency hopping mode:interSubFrame,intraAndInterSubFrame

interSubFrame Enumeration NO

PUSCH_HoppingOffset the offset used for PUSCH frequencyhopping

0 Integer NO

PUSCH_Hopping_Nsb number of sub-bands for PUSCHfrequency hopping

1 Integer NO

PUSCH_HoppingBits information in hopping bits: 0 or 00, 1or 01, 10, 11

0 or 00 Enumeration NO

PUCCH_Format PUCCH format: Format 1, Format 1a,Format 1b, Shortened 1, Shortened1a, Shortened 1b, Format 2, Format2a, Format 2b

Format 1 Enumeration NO

PUCCH_Delta_shift used to calculate PUCCH cyclic shiftAlfa

2 Integer NO

PUCCH_SF_Alloc which sub frames contain the PUCCH,valid when PUCCH_PUSCH is otherthan PUSCH

[2] Integerarray

NO

PUCCH_NRB2 number of RBs used for transmisstionPUCCH format 2/2a/2b

1 Integer NO

PUCCH_n1 resources used for transmisstionPUCCH format 1/1a/1b

11 Integer NO

PUCCH_n2 resources used for transmissionPUCCH format 2/2a/2b

11 Integer NO

ChEstimatorMode mode of interpolation algorithm inchannel estimator: Linear, MMSE

Linear Enumeration NO

SNR SNR in dB. (used by MMSE channelestimator in PUSCH)

15 Float NO

Tmax the maximum delay of multi-pathchannel. (used by MMSE channelestimator in PUSCH)

0.000001 s Float NO

Fmax the maximum doppler frequency.(used by MMSE channel estimator inPUSCH)

100 Hz Float NO

SubframeIgnored number of subframes (or transportblocks) that are ignored at thebeginning due to system delay

0 Integer NO

DisplayPortRates whether the port rates and otheruseful information are displayed inSimulation Log window: NO, YES

NO Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 input output signals from FFT complex NO

2 RS_PUSCH PUSCH Reference signals complex matrix NO

3 RS_PUCCH PUCCH Reference signals complex matrix NO

Output Ports

Page 355: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

354

Port Name Description Signal Type Optional

4 Coef channel coefficient in active subcarriers complex NO

Notes/Equations

This model is used to estimate 3GPP LTE uplink channel response (CR) with the1.reference signals assisted for both FDD and TDD schemes. This model only estimatesCRs in the time and frequency resources occupied by PUSCH and PUCCH. In theother locations, this model outputs '1's.Each firing, this model estimates uplink channel response for one subframe.2.

NumberREsPerSubframe tokens are consumed at port input,NumberREsPerSubframe = NumOfTotalRBs * 12 (subcarriers per RB) *NumberOfSymbolsPerSubframe.1 matrix token is consumed at port RS_PUSCH, the size of the matrix token isequal to the number of PUSCH DMRS REs in each subframe.1 matrix token is consumed at port RS_PUCCH, the size of the matrix token isequal to the number of PUCCH DMRS REs in each subframe.NumberREsPerSubframe tokens are produced at port Coef.For the default parameter configurations, 7200 tokens are consumed at input; 1matrix token is consumed at RS_PUSCH, the size of the matrix token is 600; thematrix token read from RS_PUCCH is empty; 7200 tokens are produced at Coef.

Linear interpolation and MMSE interpolation are supported in this channel estimator.3.Channel estimation is done on a slot basis.For PUSCH channel estimation,4.

At first, the least-squares CR estimate at a pilot location ( i ) is obtained as:1.Hi = Yi / Xi

where Yi is the received Pilot symbol and Xi is the transmitted Pilot symbol on

the ith subcarrier.After getting the CRs at pilot locations,2.

If ChEstimatorMode is Linear, the CRs got at pilot locations are repeated toget all CR estimations, hence, the CRs at the same frequency location of allsymbols in a slot is the same;If ChEstimatorMode is MMSE, MMSE interpolation is performed on thesubcarriers occupied by PUSCH DMRS, then the CRs at pilot locations arerepeated in the whole slot. For more information on the algorithm, pleaserefer to [3].

For PUCCH, only linear interpolation is provided. At first, the least-squares CRs in5.PUCCH pilots' locations are obtained, then linear interpolation is employed to get theCRs in all PUCCH symbol loations.If ChEstimatorMode is MMSE, SNR should be set as the signal to noise ratio in dB,6.Tmax should be set as the maximum delay of the channel, while these parametersare ignored when ChEstimatorMode is Linear.It should be noted that if SubframeIgnored is not 0, the first SubframeIgored7.subframes read from input are ignored. The first matrix token read from RS_PUSCHand RS_PUCCH would be used in the SubframeIgnored-th subframe. The Coef outputfor the first SubframeIgored subframes would be all '1's.See LTE_DL_ChEstimator (ltebasever).8.

For more information on system parameters, please refer to UL System Parameters (ltebasever).For more information on PUSCH Parameters, please refer to UL PUSCH Parameters (ltebasever).For more information on PUCCH Parameters, please refer to UL PUCCH Parameters (ltebasever).For more information on Rx Algorithm Parameters, please refer to UL Rx Algorithm Parameters.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.P. Hoeher, S. Kaiser, and P. Robertson. "Two-Dimensional Pilot-Symbol-Aided2.Channel Estimation by Wiener Filtering". Proc. IEEE ICASSP '97, Munich, Germany,pp. 1845-1848, Apr. 1997.

Page 356: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

355

LTE_UL_FrameSync PartCategories: C++ Code Generation (ltebasever), Sync Equalization (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_UL_FrameSync (ltebasever) Uplink time and frequency synchronizer in time domain

LTE_UL_FrameSync (Uplink time and frequencysynchronizer in time domain)

Description: Uplink time and frequency synchronizer in time domainDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE UL FrameSync Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

SyncScale synchronization scale: PerFrame,PerSubframe

PerFrame Enumeration NO

UseDesiredValues whether or not to use the desired timedelay and frequency offset: NO, YES

YES Enumeration NO

DesiredDelay the index of delayed symbol 0 Integer NO

DesiredFreq the desired frequency offset 0 Float NO

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW5 MHz, BW 10 MHz, BW 15 MHz, BW 20MHz

BW 5 MHz Enumeration NO

OversamplingOption Ratio 1, Ratio 2, Ratio 4, Ratio 8: Ratio 1,Ratio 2, Ratio 4, Ratio 8

Ratio 2 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

IdleInterval idle interval between two consecutiveradio frames

0 Float NO

RB_AllocType RB allocation type: StartRB + NumRBs,RB indices (1D), RB indices (2D)

StartRB +NumRBs

Enumeration NO

RB_Alloc the RB allocation for the UE, in theformats of [start RB, number of RBs] or[[SF0 start RB, SF0 number of RBs]; . . .;[SF9 start RB, SF9 number of RBs]]

[0, 25] Integerarray

NO

HalfCarrierShift_Enable whether or not to enable 1/2 subcarriershifting: NO, YES

YES Enumeration NO

PUCCH_PUSCH PUCCH and PUSCH selection: PUSCH,PUCCH, both

PUSCH Enumeration NO

PUCCH_SF_Alloc which sub frames contain the PUCCH,valid when PUCCH_PUSCH is other thanPUSCH

[2] Integerarray

NO

Input Ports

Port Name Signal Type Optional

1 input complex NO

Output Ports

Port Name Signal Type Optional

2 TimeDete int NO

3 FODete real float NO

4 PUSCHRS complex NO

Notes/Equations

This model is used to achieve uplink symbol timing synchronization and estimate1.frequency offset less than 15 KHz for both FDD and TDD modes.Each firing,2.

Page 357: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

356

if the parameter SyncScale is "PerFrame", NumberSamplesPerFrame tokens areconsumed at the input port. If SyncScale is "PerSubframe",NumberSamplesPerSubframe tokens are consumed at the input port.NumberSamplesPerFrame = SamplingFreq * 2OversamplingOption * 0.01s,NumberSamplesPerSubframe = SamplingFreq * 2OversamplingOption * 0.001s,wherein SamplingFreq is sampling frequency, which is denoted as Fs and

determined by Bandwidth as follows:Bandwidth Fs DFTSize

1.4 MHz 1.92 MHz 128

3.0 MHz 3.84 MHz 256

5.0 MHz 7.68 MHz 512

10.0 MHz 15.36MHz

1024

15.0 MHz 23.04MHz

1536

20.0 MHz 30.72MHz 2048

1 token is produced in the TimeDete port, which is the delay detected by thismodel.1 token is produced in the FODete port, which is the frequency offset detectedby this model.FFTSize tokens are produced in the PUSCHRS port, which is the PUSCH RSOFDM symbol. FFTSize = DFTSize * 2OversamplingOption. DFTSize is determinedby the Bandwidth.If the parameter SyncScale is "PerFrame", 2*TotalSubcarriers tokens areproduced in the SSCH_Sym port, which are the two S-SCH OFDM symbols afterFFT. If the parameter SyncScale is "PerSubframe", TotalSubcarriers tokens areproduced in the SSCH_Sym port, which is the S-SCH OFDM symbol after FFT. Ifthere is no S-SCH in the input subframe, all zeros will be produced by this port.TotalSubcarriers = 12*NumOfRBs. The NumOfRBs is determined by theBandwidth.21 tokens are produced in the Corr_Max port, which is the correlation values(auto-correlation or cross-correlation) around the max one.

If the parameter "UseDesiredValues" is set to YES, the model will do nothing but3.output the timing and fequency offset values which are set though the parameters"DesiredDelay" and "DesiredFreq". This is used to verify receiver performance in fixedor ideal timing and frequency offset cases.The synchronization scale could be select from "PerFrame" and "PerSubframe".4."PerFrame" means this model will get synchonization aided by one frame data while"PerSubframe" means getting synchonization aided by one subframe data. Becausethe "PerSubframe" mode can achieve sychonization within one subframe length, itsupports the HARQ process. The "PerFrame" mode should not be used if HARQ isintroduced.Timing synchronization and frequency estimation are done by the cyclic prefix(CP).5.The outputs at ports TimedDete and FODeta are the timing index and frequency6.offset respectively.The outputs at port PUSCHRs are the time-domain waveform of RS for PUSCH. Note7.that the RS waveform for PUSCH is only available when PUSCH exists(PUCCH_PUSCH = PUSCH or both), otherwise zeros are output.

For more information on system parameters, please refer to UL System Parameters (ltebasever).For more information on PUSCH Parameters, please refer to UL PUSCH Parameters (ltebasever).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access2.(UTRA),", V7.1.0, September 2006.

Page 358: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

357

LTE_UL_FreqSync PartCategories: C++ Code Generation (ltebasever), Sync Equalization (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_UL_FreqSync (ltebasever) Timing and freqency estimation in freqency domain, using the PUSCH RS

LTE_UL_FreqSync (Timing and freqency estimation infreqency domain)

Description: Timing and freqency estimation in freqency domain, using the PUSCH RSDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE UL FreqSync Part (ltebasever)

Model Parameters

Page 359: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

358

Name Description Default Units Type RuntimeTunable

SyncScale synchronization scale: PerFrame,PerSubframe

PerFrame Enumeration NO

UseDesiredValues whether or not to use the desired timedelay and frequency offset: NO, YES

YES Enumeration NO

DesiredDelay the index of delayed symbol 0 Integer NO

DesiredFreq the desired frequency offset 0 Float NO

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations forTDD: Config 0, Config 1, Config 2,Config 3, Config 4, Config 5, Config 6

Config 0 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz,BW 5 MHz, BW 10 MHz, BW 15 MHz,BW 20 MHz

BW 5 MHz Enumeration NO

OversamplingOption Ratio 1, Ratio 2, Ratio 4, Ratio 8:Ratio 1, Ratio 2, Ratio 4, Ratio 8

Ratio 2 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

CellID_Sector the index of cell identity within thephysical-layer cell-identity group

0 Integer NO

CellID_Group the index of cell identity group 0 Integer NO

FrameNum frame number 0 Integer NO

FrameIncreased frame number increasing or not: NO,YES

NO Enumeration NO

RB_AllocType RB allocation type: StartRB +NumRBs, RB indices (1D), RB indices(2D)

StartRB +NumRBs

Enumeration NO

RB_Alloc the RB allocation for the UE, in theformats of [start RB, number of RBs]or [[SF0 start RB, SF0 number ofRBs]; . . .; [SF9 start RB, SF9 numberof RBs]]

[0,25] Integerarray

NO

PUCCH_PUSCH PUCCH and PUSCH selection: PUSCH,PUCCH, both

PUSCH Enumeration NO

PUSCH_HoppingEnable whether PUSCH frequency-hopping isenabled or not: NO, YES

NO Enumeration NO

PUSCH_HoppingMode PUSCH frequency hopping mode:interSubFrame,intraAndInterSubFrame

interSubFrame Enumeration NO

PUSCH_HoppingOffset the offset used for PUSCH frequencyhopping

0 Integer NO

PUSCH_Hopping_Nsb number of sub-bands for PUSCHfrequency hopping

1 Integer NO

PUSCH_HoppingBits information in hopping bits: 0 or 00, 1or 01, 10, 11

0 or 00 Enumeration NO

IntFreqEstimation estimation the large frequency offset(multiple of 15kHz) or not: NO, YES

NO Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 TD_ByFrameSync time offset detection by the FrameSync model int NO

2 FD_ByFrameSync frequency offset detection by the FrameSync model real float NO

3 input SSCH signals from FFT complex NO

4 PUSCHRS PUSCH RS signals generated by the receiver complex matrix NO

Output Ports

Port Name Description Signal Type Optional

5 TimeDete time offset detection int NO

6 FODete frequency offsetdetection

real float NO

Notes/Equations

This model is used to achieve integer subcarrier-spacing (15KHz) frequency offsets1.and adjust the time offset estimated by the model LTE_UL_FrameSync (ltebasever)for both FDD and TDD modes, given the local and received frequency-domain RS forPUSCH.Each firing,2.

TotalSubcarriers tokens are consumed in the input port, which is the PUSCH RSOFDM symbol after FFT. TotalSubcarriers = 12*NumOfRBs. The NumOfRBs isdetermined by the Bandwidth.

Page 360: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

359

Bandwidth NumOfRBs

1.4 MHz 6

3.0 MHz 15

5.0 MHz 25

10.0 MHz 50

15.0 MHz 75

20.0 MHz 100

if the parameter SyncScale is "PerFrame", 10 matrix tokens are consumed atthe PUSCHRS port. If SyncScale is "PerSubframe", 1 matrix token is consumedat the PUSCHRS port. The size of the matrix token is equal to the number ofDMRS symbols in each subframe, which is determined by FrameMode,TDD_Config (in TDD mode), RBAlloc_Type and RB_Alloc.1 token is consumed in the TD_ByFrameSync port, which is the timingsynchronization index LTE_UL_FrameSync.1 token is consumed in the FD_ByFrameSync port, which is the frequency offsetin LTE_UL_FrameSync.1 token is produced in the TimeDete port, which is the final timingsynchronization index.1 token is produced in the FODete port, which is the final frequency offset.

If the parameter "UseDesiredValues" is set to YES, the model will do nothing but3.output the timing and fequency offset values which are set though the parameters"DesiredDelay" and "DesiredFreq". This is used to verify receiver performance in fixedor ideal timing and frequency offset cases.Note that this model is valid only when the parameter PUCCH_PUSCH = PUSCH or4.both. And in TDD mode, the first two subframe is not for LTE uplink, so thesynchonization will start from the third subframe. The timing and frequency offset forthe first two subframes are all zeros.In "PerFrame" mode, the integer subcarrier-spacing (15KHz) frequency offset is5.estimated by performing cross-correlation between received RS for PUSCH and localRS for PUSCH. The timing index is adjusted according to the phase offset of receivedPUSCH RS symbols in frequency domain.In "PerSubframe" mode, the model will do nothing but output the input timing and6.frequency offset. That means TimeDete = TD_ByFrameSync, FODete =FD_ByFrameSync.

For more information on system parameters, please refer to UL System Parameters (ltebasever).For more information on PUSCH Parameters, please refer to UL PUSCH Parameters (ltebasever).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access2.(UTRA),", V7.1.0, September 2006.

Page 361: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

360

LTE_UL_TimeFreqSync Part Frequency and time synchronization for Uplink

Categories: Sync Equalization (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model

LTE_UL_TimeFreqSync (ltebasever)

LTE_UL_TimeFreqSync (Frequency and timesynchronization for Uplink)

Description: Frequency and time synchronization for UplinkAssociated Parts: LTE UL TimeFreqSync Part (ltebasever)

Model Parameters

Page 362: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

361

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD none Enumeration NO

TDD_Config downlink and uplink allocations forTDD: Config 0, Config 1, Config 2,Config 3, Config 4, Config 5, Config 6

Config 0 none Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz,BW 5 MHz, BW 10 MHz, BW 15 MHz,BW 20 MHz

BW 5 MHz none Enumeration NO

OversamplingOption oversampling ratio option: Ratio 1,Ratio 2, Ratio 4, Ratio 8

Ratio 2 none Enumeration NO

CyclicPrefix type of cyclic prefix: Normal,Extended

Normal none Enumeration NO

CellID_Sector the index of cell identity within thephysical-layer cell-identity group ([0,2])

0 none Integer NO

CellID_Group the index of cell identity group ([0,167])

0 none Integer NO

HalfCarrierShift_Enable whether or not to enable 1/2subcarrier shifting: NO, YES

YES none Enumeration NO

FrameNum frame number 0 Integer NO

FrameIncreased frame number increasing or not: NO,YES

NO Enumeration NO

IdleInterval idle interval between two consecutiveradio frames ([0, 1.0e-3])

0 s Float NO

PUCCH_PUSCH PUCCH and PUSCH selection: PUSCH,PUCCH, both

PUSCH none Enumeration NO

PUSCH_HoppingEnable whether PUSCH frequency-hopping isenabled or not: NO, YES

NO none Enumeration NO

PUSCH_HoppingMode PUSCH frequency hopping mode:interSubFrame,intraAndInterSubFrame

interSubFrame none Enumeration NO

PUSCH_HoppingOffset the offset used for PUSCH frequencyhopping ([0, 63])

0 none Integer NO

PUSCH_Hopping_Nsb number of sub-bands for PUSCHfrequency hopping ([1, 4])

1 none Integer NO

PUSCH_HoppingBits information in PUSCH hopping bits: 0or 00, 1 or 01, 10, 11

0 or 00 none Enumeration NO

RB_AllocType RB allocation type: StartRB +NumRBs, RB indices (1D), RB indices(2D)

StartRB +NumRBs

none Enumeration NO

RB_Alloc the RB allocation for PUSCH, in thefomats of [start RB, number of RBs]or[SF0 start RB, SF0 number of RBs;...; SF9 start RB, SF9 number of RBs]

[0, 25] none Integerarray

NO

PUCCH_SF_Alloc which sub frames contain the PUCCH,valid when PUCCH_PUSCH is otherthan PUSCH ([0, 9])

[2] none Integerarray

NO

SyncScale synchronization scale: PerFrame,PerSubframe

PerSubframe Enumeration NO

UseDesiredValues whether or not to use the desired timedelay and frequency offset: NO, YES

YES Enumeration NO

DesiredDelay the index of delayed symbol 0 Integer NO

DesiredFreq the desired frequency offset 0 Float NO

Input Ports

Port Name Description Signal Type Optional

1 RS_PUSCH Input DMRS forPUSCH

complex matrix NO

2 signal Input uplink signal complex NO

Output Ports

Port Name Description Signal Type Optional

3 TD Output the time delay int NO

4 FD Output the frequencyoffset

real NO

Notes/Equations

This subnetwork is used to achieve uplink symbol timing synchronization and1.estimate frequency offset.The LTE_UL_TimeFreqSync schematic is shown below:2.

Page 363: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

362

Timing synchronization and frequency estimation are done by the cyclic prefix(CP).3.LTE uplink transmissions are organized into radio frames. Each 10 ms radio frameconsists of 20 slots of length 0.5 ms, numbered from 0 to 19. A sub-frame is definedas two consecutive slots (see the Generic Frame Structure below, and Reference 2).

In current implementation, because the reference signals(RS) among slots are4.different, it is difficult to do the timing and frequency estimation by the RS. we usethe CP of each OFDM symbol, The timing synchronization is based on the repetitionstructure of CP within one OFDM symbol.This subnetwork includes two models: LTE_UL_FrameSync (ltebasever) for OFDM5.symbol synchronization and estimation of frequency offset less than 15 KHz;LTE_UL_FreqSync (ltebasever) for estimation of integer subcarrier-spacing (15KHz)frequency offset.If the parameter "UseDesiredValues" is set to YES, the model will do nothing but6.output the timing and fequency offset values which are set though the parameters"DesiredDelay" and "DesiredFreq". This is used to verify receiver performance in fixedor ideal timing and frequency offset cases.Note that this model is valid only when the parameter PUCCH_PUSCH = PUSCH or7.both. And in TDD mode, the first two subframe is not for LTE uplink, so thesynchonization will start from the third subframe. The timing and frequency offset forthe first two subframes are all zeros.The process for timing and frequency synchronization is described as follows:8.

The input signal is sent to LTE_UL_FrameSync, where the OFDM symbolsynchronization and frequency offset less than 15 KHz are achieved by the cyclicprefix(CP). The outputs are the timing index, frequency offset and the time-domain waveform of RS for PUSCH. Note that the RS waveform for PUSCH isonly available when PUSCH exists (PUCCH_PUSCH = PUSCH or both), otherwisezeros are output.The RS waveform for PUSCH is transformed from time domain to frquencydomain, which are then sent to LTE_UL_FreqSync for estimation of integersubcarrier-spacing (15KHz) frequency offset by performing cross-correlationbetween received RS for PUSCH and local RS for PUSCH, along with timing indexand frequency offset less than 15 KHz.

For more information on system parameters, please refer to UL System Parameters (ltebasever).For more information on PUSCH Parameters, please refer to UL PUSCH Parameters (ltebasever).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access2.(UTRA),", V7.1.0, September 2006.

Page 364: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

363

LTE_DL_Pilot PartCategories: C++ Code Generation (ltebasever), Sync Signal (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_DL_Pilot (ltebasever) Downlink pilotgenerator

LTE_DL_Pilot (Downlink pilot generator)

Description: Downlink pilot generatorDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE DL Pilot Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW 5 MHz,BW 10 MHz, BW 15 MHz, BW 20 MHz

BW 5MHz

Enumeration NO

NumTxAnts number of Tx Antennas: Tx1, Tx2, Tx4 Tx1 Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

CellID_Sector the index of cell identity within the physical-layer cell-identity group

0 Integer NO

CellID_Group the index of cell identity group 0 Integer NO

DisplayPortRates whether the port rates and other usefulinformation are displayed in Simulation Logwindow: NO, YES

NO Enumeration NO

Output Ports

Port Name Description Signal Type Optional

1 Pilots downlink pilotsymbol

complex matrix NO

Notes/Equations

This model is used to generate 3GPP LTE downlink cell-specific Reference Signals1.(RS). The downlink reference signals (pilots) are based on Reference [2].Each firing, one Matrix-based token is produced at the Pilots port. For ith firing, all2.active RSs on all transmit antenna ports in Subframe#(i%10) are output on theMatrix-based token. The maxtix vector size is equal to the number of active RSs overall transmit antenna ports. For antenna port p, the number of active RSs in onesubframe is NumRBs*NumRSs(p), where NumRBs is the number of resource blocks,determined by the Bandwidth parameter, asBandwidth NumRBs

1.4 MHz 6

3 MHz 15

5 MHz 25

10 MHz 50

15 MHz 75

20 MHz 100

NumRSs(p) is the number of RSs for one resource block in one subframe, related toantenna port p, as

Antenna port p NumRSs(p)

0 8

1 8

2 4

3 4

The output RS ordering at the Pilots port is described as follows. The first output arefor the RSs in the first OFDM symbol of the first slot for the first antenna port inincreasing oder of resource block index, then are the RSs for other antenna port inincreasing oder, then are the RSs for the other OFDM symbols of the first slot inincreasing oder, then are the RSs for the second slot.

Page 365: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

364

The reference-signal sequence is defined by3.

, where ns is the slot number

within a radio frame and l is the OFDM symbol number within the slot.For the definition of pseudo-random sequence c(i), please refer to the LTE_Scrambler4.Model document. The pseudo-random sequence generator shall be initialised with

at the start of each OFDM symbol where isthe OFDM symbol number with a subframe.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.TR 25.814 "Physical layer aspects for evolved Universal Terrestrial Radio Access2.(UTRA),", V7.0.0, June 2006.

Page 366: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

365

LTE_PSCH PartCategories: C++ Code Generation (ltebasever), Sync Signal (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_PSCH (ltebasever) P-SCHgenerator

LTE_PSCH (P-SCH Generator)

Description: P-SCH generatorDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE PSCH Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

CellID_Sector the index of cell identity within the physical-layer cell-identity group

0 Integer NO

Output Ports

Port Name Description Signal Type Optional

1 PSCH P-SCH sequence complex NO

Notes/Equations

This model is used to generate 3GPP LTE P-SCH signal in frequency domain.1.Each firing, 72 tokens are generated at the output port.2.The mapping of the sequence to resource elements depends on the frame structure.3.The antenna port used for transmission of the primary synchronization signal is notspecified.For frame structure type 1, the primary synchronization signal is transmitted in the4.last OFDM symbols of slots 0 and 10 and the sequence d(n) shall be mapped to theresource elements according to

Resource elements (k,l) in slots 0 and 10 where

are reserved and not used for transmission of the primary synchronization signal.For frame structure type 2, the primary synchronization signal is transmitted in the5.third OFDM symbol in subframes 1 and 6.P-SCH sequence is generated from a frequency-domain Zadoff-Chu sequence6.according to

where the Zadoff-Chu root sequence index u is given by:

The cell identity within the physical-layer cell-identity group is set by parameter7.CellID_Sector.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.

Page 367: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

366

LTE_RACH_Demodulator PartCategories: C++ Code Generation (ltebasever), Sync Signal (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_RACH_Demodulator (ltebasever) RACH preamble sequencegenerator

LTE_RACH_Demodulator

Description: RACH preamble sequence generatorDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE RACH Demodulator Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

NumRxAnts number of Rx Antennas: Rx1, Rx2, Rx4 Rx1 Enumeration NO

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3, Config4, Config 5, Config 6

Config 0 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW 5MHz, BW 10 MHz, BW 15 MHz, BW 20 MHz

BW 5MHz

Enumeration NO

OversamplingOption Ratio 1, Ratio 2, Ratio 4, Ratio 8: Ratio 1,Ratio 2, Ratio 4, Ratio 8

Ratio 2 Enumeration NO

FrameNum frame number 0 Integer NO

FrameIncreased frame number increasing or not: NO, YES NO Enumeration NO

PRACH_Enable whether or not to enable PRACH: NO, YES YES Enumeration NO

PRACH_AutoDetection whether PRACH auto-detection is applied:NO, YES

YES Enumeration NO

PRACH_Config PRACH configuration index 0 Integer NO

PRACH_ResourceIndex the PRACH Resource Index. In FDD, itindicates the subframe number where thepreamble starts; in TDD, it indicates thepreamble mapping in time and frequency

[1] Integerarray

NO

PRACH_PrmbleIndex preamble indexes, used to select preamblesequences from 64 preambles available inthis cell

[0] Integerarray

NO

PRACH_RBOffset PRACH frequency offset, the first RBavailable for PRACH

0 Integer NO

PRACH_LogicalIndex logical index of root ZC sequence 0 Integer NO

PRACH_Ncs cyclic shifts of ZC sequence 0 Integer NO

PRACH_HS_flag high speed flag: NO, YES NO Enumeration NO

DFTSwap_Enable PUSCH DFT swap is enable: NO, YES NO Enumeration NO

PreFilter whether a filter is applied on the receivedsignal to get pure PRACH signal: NO, YES

YES Enumeration NO

DownSamplingRatio down sampling ratio applied on inputreceived signal

6 Integer NO

DownSamplingPhase down sampling phase that is chosen forPRACH demodulation, range [-1:DownSamplingRatio-1].DownSamplingPhase=-1 means the phasewith maximum power is selectedautomatically.

0 Integer NO

SearchRange search range for PRACH detection, in range(0:10ms)

0.001 Float NO

Threshold threshold to determine the existence ofPRACH based on correlation peak power forauto-detection, in range (0:1)

0.1 Float NO

Input Ports

Page 368: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

367

Port Name Description Signal Type Optional

1 PRACH_TxSig PRACH signal transmitted in UE complex float YES

2 PRACH_PrmbleIdx PRACH preamble index on each valid subframe (used fordetection probability measurement)

int YES

3 PRACH_PrmbleTiming PRACH preamble ideal timing on each valid subframe(used for detection probability measurement)

real float YES

4 PRACH_TimingDelta PRACH preamble maximum timing tolerance on eachvalid subframe (used for detection probabilitymeasurement)

real float YES

5 PRACH_RxSig PRACH signal received in BS multiplecomplex float

NO

Output Ports

Port Name Description SignalType

Optional

6 TimingOffset Estimated timing offset real float NO

7 FreqOffset Estimated frequence offset real float NO

8 EstimatedPrmble Estimated preamble index on each valid subframe for auto-detection

int NO

9 DetectionProbability Detection probability for auto-detection real float NO

Parameter Details

NumRxAnts: the number of receiver antennas. The bandwidth of the PRACH_RxSigmulti-port should be equal to this parameter.FrameMode: frame mode of LTE, the type is enum and it can be selected as FDD andTDD, supporting frame structure type 1 and frame structure type 2 respectively.TDD_Config: uplink-downlink configuration for TDD, the type is enum and it can beselected as Config 0, Config 1, Config 2, Config 3, Config 4, Config 5 and Config 6.These configurations are listed in Table 4.2-2 [1].Bandwidth: bandwidth of LTE, the type is enum and it can be selected as BW 1.4MHz, BW 3 MHz, BW 5 MHz, BW 10 MHz, BW 15 MHz and BW 20 MHz.OversamplingOption: Over-sampling ratio option. Oversampling ratio 1, ratio 2, ratio4 and ratio 8 are supported.FrameNum: the system frame number of the first transmitted frame.FrameIncreased: controls whether the frame number increased or not duringsimulation. FrameNum and FrameIncreased would affect the frequency hopping ofPUSCH in TDD mode as well as the transmission of PRACH and SRS which may varyfrom frames.PRACH_Enable: reserved for future implementation. It should be set to YES currently.PRACH_AutoDetection: whether PRACH auto detection is enabled or not.PreFilter: whether a filter is employed on the input signal before the PRACHdetection. The purpose of this filter is to remove all signals out of PRACH spectrum,so that only the spectrum with which PRACH is allocated is left. Note that for TDDmode (i.e. FrameMode = TDD), PreFilter should be set to NO only.DownSamplingRatio: the down-sampling ratio that is applied on the input signalbefore the PRACH detection. Setting DownSamplingRatio to a high value will decreasethe simulation time, but decrease detection performance.DownSamplingPhase: specify which phase is chosen when down-sampling. WhenDownSamplingPhase=-1, the phase with maximum power is automatically selected todo PRACH detection.SearchRange: specify the correlation range. To detect valid PRACH preamblessuccessfully, this parameter should be set to ensure that radio frame start is locatedin the time slot [0: SerachRange].

For other parameters regarding PRACH, refer to UL PRACH Parameters (ltebasever).

Notes/Equations

This model is used to detect PRACH signal. Two modes are supported, auto detection1.and manual detection.Each firing,2.

When PRACH_AutoDetection = NO, SamplsPerFrame tokens are consumed atthe PRACH_TxSig port, where SamplsPerFrame is the number of samples perradio frame, SamplsPerFrame = SampleRate * 2OversamplingOption , whereSamplingFreq is the sample rate determined by the Bandwidth parameter, asshown belowBandwidth SampleRate

1.4 MHz 1.92e6

3 MHz 3.84e6

5 MHz 7.68e6

10 MHz 15.36e6

15 MHz 23.04e6

20 MHz 30.72e6

Note that this port should be connected when PRACH_AutoDetection = NO.PRACH_RxSig is a multi-port whose bandwidth should be equal to the

Page 369: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

368

NumRxAnts parameter. Each firing, SamplsPerFrame tokens are consumed atthe each port in PRACH_TxSig.The number of tokens consumed at the PRACH_PrmbleIdx port is equal to thenumber of subframes that are allocated to transmit PRACH (determined by thePRACH_Config parameter, refer to UL PRACH Parameters (ltebasever)). This portis only valid when PRACH_AutoDetection = YES.One token is consumed at the PRACH_PrmbleTiming port. This port is only validwhen PRACH_AutoDetection = YES.One token is consumed at the PRACH_TimingDelta port. This port is only validwhen PRACH_AutoDetection = YES.One token is produced at the TimingOffset port.One token is produced at FreqOffset port.The number of tokens produce at EstimatedPrmble port is equal to the numberof subframes that are allocated to transmit PRACH (determined by thePRACH_Config parameter, refer to UL PRACH Parameters (ltebasever)). This portis only valid when PRACH_AutoDetection = YES.One token is produce at DetectionProbability port. This port is only valid whenPRACH_AutoDetection = YES.

A radio frame delay is introduced in this model, so that all output ports have one3.frame delay (i.e. the (i+1)th N output tokens are the results of ith radio frame, whereN is the number of tokens produced each firing (radio frame).Two operation modes are supported in this model, auto detection and manual4.detection

Auto detection (PRACH_AutoDetection = YES)In this mode, the PRACH detection probability is calculated according to8.4.2 of [2]. Also the PRACH timing index and frequency offset areestimated.when Auto-detection is enabled, the following parameters are not usedwhich are used to specify which PRACH preamble sequence is transmittedon each allowable subframe.PRACH_ResourceIndex

PRACH_PrmbleIndex

In this mode, the PRACH preambles transmitted on allocated subframes aredetected automatically from all 64 possible preambles. First these 64preambles are generated inside this model, then in all subframes that areallowed to transmit PRACH determined by the PRACH_Config parameter,correlations with all 64 possible preambles are performed to determine thepreamble index. If the maximum correlation peak ratio is less thatThreshold, then no preamble transmission is assumed.To get PRACH detection probability, the information is read from thefollowing input ports

PRACH_PrmbleIdx: to get the PRACH preamble index transmitted oneach subframe. For each firing, the number of tokens consumed isequal to the number of subframes that are allocated to transmitPRACH (determined by the PRACH_Config parameter).PRACH_PrmbleTiming: to get timing information (in unit of second) forreceived PRACH signal. For each firing (frame), one token isconsumed.PRACH_TimingDelta: to get the maximum allowable timing estimationerror when determining PRACH detection probability. For each firing(frame), one token is consumed. When the estimated PRACH indexmatches PRACH_PrmbleIdx and abs(PRACHTimingestimated-PRACH_PrmbleTiming) < PRACH_TimingDelta, it is assumed that thePRACH detection is successful for this subframe. Otherwise, PRACHdetection fails.TimingOffset: to output the estimated composite PRACH preambletiming in unit of second. For each firing (frame), one token isproduced.FreqOffset: to output the estimated composite PRACH preamblefrequency offset. For each firing (frame), one token is produced.EstimatedPrmble: to output the estimated PRACH preamble indextransmitted on each subframe. For each firing, the number of tokensconsumed is equal to the number of subframes that are allocated totransmit PRACH (determined by the PRACH_Config parameter).DetectionProbability: to output the composite PRACH detectionprobability averaged on all previous radio frames. For each firing(frame), one token is produced.

Not that in this mode, the PRACH_TxSig port is useless.Manual detection (PRACH_AutoDetection = NO)

In this mode, the PRACH timing index and frequency offset are estimated.If Auto-detection is disabled, the following parameters are not used whichare used to generate PRACH preamble sequence transmitted on eachsubframe

Page 370: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

369

PRACH_LogicalIndex

PRACH_Ncs

PRACH_HS_flag

DFTSwap_Enable

Threshold

In this mode, the transmitted PRACH preamble sequence is read from thePRACH_TxSig port. Then correlation with received PRACH signal from thePRACH_RxSig port is performed to determine the PRACH timing index andfrequency offset.Not that in this mode, the PRACH_PrmbleIdx, PRACH_PrmbleTiming,PRACH_TimingDelta, , EstimatedPrmble and DetectionProbability ports areuseless, and the estimated PRACH timing index and frequency offset areoutput at the TimingOffset and FreqOffset ports respectively.

For more information on the usage of this model, refer to the 3GPP_LTE_PRACH_Detection exampleworkspace.

Restriction on LTE_RACH_Demodulator1. Auto detection is only applied for FDD mode.2. Filtering intput signal before PRACH detection (i.e. PreFilter = YES) is only applied for FDD mode.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.104 v8.7.0 "Base Station (BS) radio transmission and reception",2.September 2009.

Page 371: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

370

LTE_RACH_HalfCarrierShift PartCategories: C++ Code Generation (ltebasever), Sync Signal (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_RACH_HalfCarrierShift (ltebasever) PRACH Half carriershift

LTE_RACH_HalfCarrierShift (PRACH Half carrier shift)

Description: PRACH Half carrier shiftDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE RACH HalfCarrierShift Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

HalfCarrierShift_Enable whether or not to enable 1/2 subcarriershifting: NO, YES

YES Enumeration NO

FFTSize fft size 6144 Integer NO

K factor K accounts for the difference insubcarrier spacing

12 Integer NO

NumPrmble number of preamble samples 6144 Integer NO

NumCP number of cyclic prefix samples 792 Integer NO

Input Ports

Port Name Description Signal Type Optional

1 SeqIn input sequence complex NO

Output Ports

Port Name Description Signal Type Optional

2 SeqOut output sequence complex NO

Notes/Equations

This model implements the half carrier shift for random access signal.1.Each firing, NumCP + NumPrmble tokens are consumed at port SeqIn, and NumCP +2.NumPrmble tokens are produced at port SeqOut. For the default parameterconfigurations, 6936 tokens are consumed at port SeqIn and 6936 tokens areproduced at port SeqOut.Parameter Details3.

HalfCarrierShift_Enable: whether or not to enable 1/2 subcarrier shifting.FFTSize: fft sizeK: accounts for the difference in subcarrier spacing between the random accesspreamble and uplink data transmission.NumPrmble: number of samples of the preamble sequence.NumCP: number of samples of the cyclic prefix.

The time-continuous random access signal s(t) is defined by4.

, where 0 ≤ t < TSEQ _ TCP, β

PRACH is an amplitude scaling factor and k0 = nPRBRANsc

RB - NRBULNsc

RB / 2. The

factor K = Δf / ΔfRA accounts for the difference in subcarrier spacing between the

random access preamble and uplink data transmission.The variable ΔfRA, the subcarrier spacing for the random access preamble, and the5.

variable φ, a fixed offset determining the frequency-domain location of the randomaccess preamble within the physical resource blocks, are both given by Table 5.7.3-1[1].The item 1/2 in the above equation is not taken into consideration in those models6.ahead of LTE_RACH_HalfCarrierShift in the subnetwork LTE_RACH. In order toconform to the equation above, this model is employed to perform the half carriershift.See LTE_RACH (ltebasever), LTE_RACH_PrmGen (ltebasever) and7.

Page 372: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

371

LTE_RACH_SubcMapping (ltebasever).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.

Page 373: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

372

LTE_RACH Part Uplink non-synchronized Random Access CHannel generator

Categories: Sync Signal (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model

LTE_RACH (ltebasever)

LTE_RACH (Uplink non-synchronized Random AccessChannel generator)

Description: Uplink non-synchronized Random Access CHannel generatorAssociated Parts: LTE RACH Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD none Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 none Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW 5MHz, BW 10 MHz, BW 15 MHz, BW 20 MHz

BW 5MHz

none Enumeration NO

OversamplingOption oversampling ratio option: Ratio 1, Ratio 2,Ratio 4, Ratio 8

Ratio 2 none Enumeration NO

FrameNum frame number ([0, inf)) 0 none Integer NO

FrameIncreased frame number increasing or not: NO, YES NO none Enumeration NO

DFTSwap_Enable PUSCH DFT swap is enable: NO, YES NO none Enumeration NO

PRACH_Enable whether or not to enable PRACH: NO, YES YES none Enumeration NO

PRACH_Config PRACH configuration index ([0, 63]) 0 none Integer NO

PRACH_ResourceIndex the PRACH Resource Index. In FDD, itindicates the subframe number where thepreamble starts; in TDD, it indicates thepreamble mapping in time and frequency([0, 9])

[1] none Integerarray

NO

PRACH_PrmbleIndex preamble indexes, used to select preamblesequences from 64 preambles available inthis cell ([0, 63])

[0] none Integerarray

NO

PRACH_RBOffset PRACH frequency offset, the first RBavailable for PRACH ([0, 94])

0 none Integer NO

PRACH_LogicalIndex logical index of root ZC sequence ([0, 837]) 0 none Integer NO

PRACH_Ncs cyclic shifts of ZC sequence ([0, 15]) 0 none Integer NO

PRACH_HS_flag high speed flag: NO, YES NO none Enumeration NO

Output Ports

Port Name Description Signal Type Optional

1 RACH Output non-synchronized RACH signal complex NO

Notes/Equations

This subnetwork generates LTE PRACH signal.1.The LTE_RACH schematic is shown below:2.

Each firing,3.For preamble format 0 ~ 3, this subnetwork generates LTE PRACH signal for onePRACH resource. The number of tokens produced is the number of samples ofeach PRACH preamble, which is equal to SamplingFreq * 2OversamplingOption *PreambleLength.

Page 374: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

373

For preamble format 4, this subnetwork generates LTE PRACH signal for eachspecial subframe (may include several PRACH resources). The number of tokensproduced is the number of samples in each special subframe, which is equal toSamplingFreq * 2OversamplingOption *4832Ts, where Ts = 1 / (15000 × 2048)

seconds.If PRACH is not transmitted in this subframe, the output would be all '0's.For the default parameter configurations, PRACH preamble format is format 0,the number of tokens produced each firing is 15360.

The main purpose of the random access procedure is to obtain uplink time4.synchronization and to obtain access to the network. The physical layer randomaccess burst, illustrated in the following figure, consists of a cyclic prefix of length TCP

, and a sequence part of length TSEQ.

The parameter values are listed in the Random access preamble format below:5.

The parameter values are listed in the Random access preamble parameters 6.table below and depend on the frame structure and the random access configuration.Preamble format TCP TSEQ

0 3168·TS 24576·TS

1 21024·TS 24576·TS

2 6240·TS 2·24576·TS

3 21024·TS 2·24576·TS

4 448·TS 4096·TS

The preamble formats and the subframes in which the random access preamble7.transmission is allowed for a given configuration in frame structure type 1 and framestructure type 2 are listed in Table 5.7.1-2 [1] and Table 5.7.1-3 [1] respectively.The mapping to physical resources for the different random access opportunitiesneeded for a centern PRACH density value (DRA are listed in Table 5.7.1-4 [1].

The random access preambles are generated from Zadoff-Chu sequences with zero8.correlation zone, generated from one or several root Zadoff-Chu sequences.The time-continuous random access signal s(t) is defined by9.

, where 0 ≤ t < TSEQ _ TCP, β

PRACH is an amplitude scaling factor and k0 = nPRBRANsc

RB - NRBULNsc

RB / 2. The

factor K = Δf / ΔfRA accounts for the difference in subcarrier spacing between the

random access preamble and uplink data transmission. The variable ΔfRA, the

subcarrier spacing for the random access preamble, and the variable φ, a fixed offsetdetermining the frequency-domain location of the random access preamble within thephysical resource blocks, are both given by Table 5.7.3-1 [1].The Random access baseband parameters are listed in the table below:10.Preamble format ΔfRA φ

0 - 3 1250Hz 7

4 7500Hz 2

As can be seen from the schematic, LTE_RACH_PrmGen generates preamble11.sequence from Zadoff-Chu sequences with zero correlation zone. The preamblesequence is then FFT transformed and mapped onto the allocated frequencyresources. DFT swap would be performed during subcarrier mapping if enabled.After subcarrier mapping, IFFT is performed and CP is inserted. Half carrier shift is12.implemented as defined in 5.7.3[1], where "half carrier" refers to the item 1/2 in theequation. For preamble format is 1, 2 or 3, preamble is repeated. At last,normalization is employed.It should be noted that the parameter DFTSwap_Enable should be set to NO13.according to the LTE specifications.See LTE_RACH_PrmGen (ltebasever), LTE_RACH_SubcMapping (ltebasever),14.LTE_RACH_HalfCarrierShift (ltebasever) and LTE_UL_MuxFrame (ltebasever).

For more information, please refer to UL System Parameters (ltebasever) and UL PRACH Parameters(ltebasever).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.D.C. Chu, "Polyphase Codes With Good Periodic Correlation Properties", IEEE2.Transaction on Information Theory, pp. 531-532, July 1972.

Page 375: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

374

LTE_RACH_PrmGen PartCategories: C++ Code Generation (ltebasever), Sync Signal (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_RACH_PrmGen (ltebasever) RACH preamble sequencegenerator

LTE_RACH_PrmGen (RACH preamble sequencegenerator)

Description: RACH preamble sequence generatorDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE RACH PrmGen Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3, Config4, Config 5, Config 6

Config 0 Enumeration NO

PRACH_Enable whether or not to enable PRACH: NO, YES YES Enumeration NO

PRACH_Config PRACH configuration index 0 Integer NO

PRACH_ResourceIndex the PRACH Resource Index. In FDD, itindicates the subframe number where thepreamble starts; in TDD, it indicates thepreamble mapping in time and frequency

[1] Integerarray

NO

PRACH_PrmbleIndex preamble indexes, used to select preamblesequences from 64 preambles available inthis cell

[0] Integerarray

NO

PRACH_LogicalIndex logical index of root ZC sequence 0 Integer NO

PRACH_Ncs cyclic shifts of ZC sequence 0 Integer NO

PRACH_HS_flag high speed flag: NO, YES NO Enumeration NO

DisplayPortRates whether the port rates and other usefulinformation are displayed in Simulation Logwindow: NO, YES

NO Enumeration NO

Output Ports

Port Name Description Signal Type Optional

1 ZC ZC sequence complex matrix NO

Notes/Equations

This model generates the physical layer random access preamble sequence based on1.[1].Each firing, this model generates RACH preambles for one subframe. 1 matrix token2.is produced. The size of the matrix token is equal to the length of each preamblesequence which is determined by the preamble format configured by FrameMode andPRACH_Config, please refer to Random access preamble parameters (ltebasever). IfPRACH is not transmitted in this subframe, an empty matrix token is output. For thedefault parameter configurations, the preamble format is format 0, hence the lengthof the Zadoff-Chu sequence is 839.The random access preambles are generated from Zadoff-Chu sequences with zero3.correlation zone, generated from one or several root Zadoff-Chu sequences. Thenetwork configures the set of preamble sequences the UE is allowed to use. The uth

root Zadoff-Chu sequence is defined by

, where the length NZC of the Zadoff-Chu sequence is

given by Table 5.7.2-1 [1].From the uth root Zadoff-Chu sequence, random access preambles with zero4.correlation zones of length NCS - 1 are defined by cyclic shifts Cv according to

xu,v(n) = xu(n + Cv) mod NZC, where the cyclic shift is given by

Page 376: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

375

The variable du is the cyclic shift corresponding to a Doppler shift of magnitude 1 / T5.

SEQ and is given by

The parameters for restricted sets of cyclic shifts depend on du. For NCS ≤ du < NZC6.

/3, the parameters are given by

For NZC/3 ≤ du ≤ (NZC - NCS) / 2, the parameters are given by7.

For all other values of du, there are no cyclic shifts in the restricted set.8.

For example, suppose the parameters are configured as follows:9.FrameMode=FDDPRACH_Enable=YESPRACH_Config=9PRACH_ResourceIndex={1,4}PRACH_PrmbleIndex={9}PRACH_LogicalIndex=25PRACH_Ncs=1PRACH_HS_flag=NOSince PRACH_Config is 9, the preamble format is 0 according to Table 5.7.1-1.2[1] and the length of the preamble sequence is 839 according to Table 5.7.2-1[1].Two preamble sequences would be transmitted in subframe 1 and 4, each of the2.same indexes 9.The logical index PRACH_LogicalIndex is 25, hence the physical root sequence3.index u is 783 according to Table 5.7.2-4 [1].As PRACH_HS_flag is NO and PRACH_Ncs is 1, the cyclic shifts NCS is 134.

according to Table 5.7.2-2[1].The number of preambles can be generated from the 783th root Zadoff-Chu5.sequence is floor(NZC / NCS) = 64. As the PRACH_PrmbleIndex is 9, then v = 9,

and cyclic shift is given by Cv = vNCS = 9*13.

See LTE_RACH (ltebasever), LTE_RACH_SubcMapping (ltebasever) and10.LTE_RACH_HalfCarrierShift (ltebasever).

For more information, please refer to UL System Parameters (ltebasever) and UL PRACH Parameters(ltebasever).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.D.C. Chu, "Polyphase Codes With Good Periodic Correlation Properties", IEEE2.Transaction on Information Theory, pp. 531-532, July 1972.

Page 377: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

376

LTE_RACH_SubcMapping PartCategories: C++ Code Generation (ltebasever), Sync Signal (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_RACH_SubcMapping (ltebasever) RACH subcarriermapping

LTE_RACH_SubcMapping (RACH subcarrier mapping)

Description: RACH subcarrier mappingDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE RACH SubcMapping Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW 5MHz, BW 10 MHz, BW 15 MHz, BW 20 MHz

BW 5MHz

Enumeration NO

OversamplingOption Ratio 1, Ratio 2, Ratio 4, Ratio 8: Ratio 1,Ratio 2, Ratio 4, Ratio 8

Ratio 2 Enumeration NO

FrameNum frame number 0 Integer NO

FrameIncreased frame number increasing or not: NO, YES NO Enumeration NO

DFTSwap_Enable PUSCH DFT swap is enable: NO, YES NO Enumeration NO

PRACH_Enable whether or not to enable PRACH: NO, YES YES Enumeration NO

PRACH_Config PRACH configuration index 0 Integer NO

PRACH_ResourceIndex the PRACH Resource Index. In FDD, itindicates the subframe number where thepreamble starts; in TDD, it indicates thepreamble mapping in time and frequency

[1] Integerarray

NO

PRACH_RBOffset PRACH frequency offset, the first RBavailable for PRACH

0 Integer NO

DisplayPortRates whether the port rates and other usefulinformation are displayed in Simulation Logwindow: NO, YES

NO Enumeration NO

Input Ports

Port Name Description Signal Type Optional

1 ZC ZC sequence complex matrix NO

Output Ports

Port Name Description Signal Type Optional

2 MappingOut sequence after subcarriermapping

complex NO

Notes/Equations

This model implements the sub-carrier mapping for random access preamble1.sequence after DFT. The random access preamble sequence is mapped on to theallocated frequency resources.Each firing,2.

1 matrix token is consumed at port ZC, the size of the matrix token is equal tothe length of the Zadoff-Chu sequence, 839 for preamble format 0 ~ 3 and 139for preamble 4. If PRACH is not transmitted in this subframe, the input is anempty matrix token.DFTSize tokens are produced at port MappingOut, where DFTSize =BaseDFTSize * OversamplingRate = SamplingFreq / Δ fRA * 2OversamplingOption.

SamplingFreq is denoted as Fs and determined by Bandwidth as follows:

Page 378: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

377

Bandwidth Fs

1.4 MHz 1.92 MHz

3.0 MHz 3.84 MHz

5.0 MHz 7.68 MHz

10.0 MHz 15.36MHz

15.0 MHz 23.04MHz

20.0 MHz 30.72MHz

For the default parameter configurations, DFTSize = 12288.For frame structure type 1 with preamble format 0-3, there is at most one random3.access resource per subframe. The first physical resource block nPRB

RA allocated to

the PRACH opportunity considered for preamble format 0, 1, 2 and 3 is defined as n

PRBRA = nPRBoffset

RA, where the parameter prach-FrequencyOffset nPRBoffsetRA is

expressed as a physical resource block number configured by higher layers andfulfilling 0 ≤ nPRABOffset

RA ≤ NRBUL - 6.

For frame structure type 2 with preamble format 0-4, there might be multiple4.random access resources in an UL subframe (or UpPTS for preamble format 4)depending on the UL/DL configuration [see table 4.2-2 [1]]. Table 5.7.1-3[1] listsPRACH configurations allowed for frame structure type 2 where the configurationindex corresponds to a certain combination of preamble format, PRACH density value,DRA, and version index, rRA.

The random access opportunities for each PRACH configuration shall be allocated in5.time first and then in frequency if and only if time multiplexing is not sufficient tohold all opportunities of a PRACH configuration needed for a certain density value DRA

without overlap in time. For preamble format 0-3, the frequency multiplexing shall bedone according to

, where NRBUL is the number of uplink

resource blocks, nPRBRA is the first physical resource block allocated to the PRACH

opportunity considered and where the parameter prach-FrequencyOffset nPRBoffsetRA

is the first physical resource block available for PRACH expressed as a physicalresource block number configured by higher layers and fulfilling 0 ≤ nPRABOffset

RA ≤ N

RBUL - 6..

For preamble format 4, the frequency multiplexing shall be done according to6.

, where nf is the system frame

number and where NF is the number of DL to UL switch points within the radio frame.

Each random access preamble occupies a bandwidth corresponding to 6 consecutive7.resource blocks for both frame structures.It should be noted that the parameter DFTSwap_Enable should be set to NO8.according to the LTE specifications.See LTE_RACH (ltebasever), LTE_RACH_PrmGen (ltebasever) and9.LTE_RACH_HalfCarrierShift (ltebasever).

For more information, please refer to UL System Parameters (ltebasever) and UL PRACH Parameters(ltebasever).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.

Page 379: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

378

LTE_SSCH PartCategories: C++ Code Generation (ltebasever), Sync Signal (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_SSCH (ltebasever) LTE downlink SSCH(M) Sequencegenerator

LTE_SSCH (S-SCH Generator)

Description: LTE downlink SSCH(M) Sequence generatorDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE SSCH Part (ltebasever)

Model Parameters

Name Description Default Units Type RuntimeTunable

CellID_Sector the index of cell identity within the physical-layer cell-identity group

0 Integer NO

CellID_Group the index of cell identity group 0 Integer NO

Output Ports

Port Name Description Signal Type Optional

1 Out Output real float NO

Parameter Details

CellID_Sector: the index of cell identity within the physical-layer cell-identity groupCellID_Group: index of cell identity group, its value range is [0,167].

Notes/Equations

This model is used to generate 3GPP LTE S-SCH signal in frequency domain.1.Each firing, 72 tokens are generated at the output port.2.Sequence generation3.The sequence d(0), ..., d(61) used for the second synchronization signal is aninterleaved concatenation of two length-31 binary sequences. The concatenatedsequence is scrambled with a scrambling sequence given by the primarysynchronization signal.The combination of two length-31 sequences defining the secondary synchronization4.signal differs between subframe 0 and subframe 5 according to

, where 0 ≤ n ≤ 30.The indices and m0, m1 are derived from the physical-layer cell-identity group NID

(1)5.

according to

,where the output of the above expression is listed in the Mapping betweenphysical-layer cell-identity group NID

(1) and the indices m0 and m1 table

below:

Page 380: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

379

NID(1) m0 m1 NID

(1) m0 m1 NID(1) m0 m1 NID

(1) m0 m1 NID(1) m0 m1

0 0 1 34 4 6 68 9 12 102 15 19 136 22 27

1 1 2 35 5 7 69 10 13 103 16 20 137 23 28

2 2 3 36 6 8 70 11 14 104 17 21 138 24 29

3 3 4 37 7 9 71 12 15 105 18 22 139 25 30

4 4 5 38 8 10 72 13 16 106 19 23 140 0 6

5 5 6 39 9 11 73 14 17 107 20 24 141 1 7

6 6 7 40 10 12 74 15 18 108 21 25 142 2 8

7 7 8 41 11 13 75 16 19 109 22 26 143 3 9

8 8 9 42 12 14 76 17 20 110 23 27 144 4 10

9 9 10 43 13 15 77 18 21 111 24 28 145 5 11

10 10 11 44 14 16 78 19 22 112 25 29 146 6 12

11 11 12 45 15 17 79 20 23 113 26 30 147 7 13

12 12 13 46 16 18 80 21 24 114 0 5 148 8 14

13 13 14 47 17 19 81 22 25 115 1 6 149 9 15

14 14 15 48 18 20 82 23 26 116 2 7 150 10 16

15 15 16 49 19 21 83 24 27 117 3 8 151 11 17

16 16 17 50 20 22 84 25 28 118 4 9 152 12 18

17 17 18 51 21 23 85 26 29 119 5 10 153 13 19

18 18 19 52 22 24 86 27 30 120 6 11 154 14 20

19 19 20 53 23 25 87 0 4 121 7 12 155 15 21

20 20 21 54 24 26 88 1 5 122 8 13 156 16 22

21 21 22 55 25 27 89 2 6 123 9 14 157 17 23

22 22 23 56 26 28 90 3 7 124 10 15 158 18 24

23 23 24 57 27 29 91 4 8 125 11 16 159 19 25

24 24 25 58 28 30 92 5 9 126 12 17 160 20 26

25 25 26 59 0 3 93 6 10 127 13 18 161 21 27

26 26 27 60 1 4 94 7 11 128 14 19 162 22 28

27 27 28 61 2 5 95 8 12 129 15 20 163 23 29

28 28 29 62 3 6 96 9 13 130 16 21 164 24 30

29 29 30 63 4 7 97 10 14 131 17 22 165 0 7

30 0 2 64 5 8 98 11 15 132 18 23 166 1 8

31 1 3 65 6 9 99 12 16 133 19 24 167 2 9

32 2 4 66 7 10 100 13 17 134 20 25

33 3 5 67 8 11 101 14 18 135 21 26

The two sequences and are defined as two different cyclic shifts of the m-6.sequence according to

,Where , 0 ≤ i ≤ 30, is defined by

with initial conditions x(0) = 1, x(1) = 0, x(2) = 0, x(3) = 0, x(4) = 1.The two scrambling sequences c0(n) and c1(n) depend on the primary7.

synchronization signal and are defined by two different cyclic shifts of the m-sequence according to

where NID(2) is the physical-layer identity within the physical-layer cell identity group

NID(1) and , 0 ≤ i ≤ 30, is defined by

with initial conditions x(0) = 1, x(1) = 0, x(2) = 0, x(3) = 0, x(4) = 1.

The scrambling sequence and are defined by a cyclic shift of the m-8.sequence according to

where m0 and m1 are obtained from the table above and , 0 ≤ i ≤ 30, is

defined by with initial conditions x(0) = 1, x(1) = 0, x

(2) = 0, x(3) = 0, x(4) = 1.

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.

Page 381: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

380

LTE_UL_CAZAC PartCategories: C++ Code Generation (ltebasever), Sync Signal (ltebasever)

The models associated with this part are listed below. To view detailed information on amodel (description, parameters, equations, notes, etc.), please click the appropriate link.

Model Description

LTE_UL_CAZAC (ltebasever) Uplink CAZAC sequence generator

LTE_UL_CAZAC (Uplink CAZAC sequence generator)

Description: Uplink CAZAC sequence generatorDomain: UntimedC++ Code Generation Support: YESAssociated Parts: LTE UL CAZAC Part (ltebasever)

Model Parameters

Page 382: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

381

Name Description Default Units Type RuntimeTunable

FrameMode frame mode: FDD, TDD FDD Enumeration NO

TDD_Config downlink and uplink allocations for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6

Config 0 Enumeration NO

SpecialSF_Config special subframe configuration for TDD:Config 0, Config 1, Config 2, Config 3,Config 4, Config 5, Config 6, Config 7,Config 8

Config 4 Enumeration NO

Bandwidth bandwidth: BW 1.4 MHz, BW 3 MHz, BW 5MHz, BW 10 MHz, BW 15 MHz, BW 20 MHz

BW 5 MHz Enumeration NO

CyclicPrefix type of cyclic prefix: Normal, Extended Normal Enumeration NO

CellID_Sector the index of cell identity within thephysical-layer cell-identity group

0 Integer NO

CellID_Group the index of cell identity group 0 Integer NO

FrameNum frame number 0 Integer NO

FrameIncreased frame number increasing or not: NO, YES NO Enumeration NO

RB_AllocType RB allocation type: StartRB + NumRBs, RBindices (1D), RB indices (2D)

StartRB +NumRBs

Enumeration NO

RB_Alloc the RB allocation for the UE, in the formatsof [start RB, number of RBs] or [[SF0 startRB, SF0 number of RBs]; . . .; [SF9 startRB, SF9 number of RBs]]

[0, 25] Integerarray

NO

DL_CyclicPrefix type of cyclic prefix in downlink: Normal,Extended

Normal Enumeration NO

PUCCH_PUSCH PUCCH and PUSCH selection: PUSCH,PUCCH, both

PUSCH Enumeration NO

GroupHop_Enable whether enable group hopping for DMRSon PUCCH and PUSCH or not: NO, YES

NO Enumeration NO

SeqHop_Enable whether enable sequence hopping forDMRS on PUSCH or not: NO, YES

NO Enumeration NO

PUSCH_Delta_ss used in determining the sequence-shiftpattern for PUSCH

0 Integer NO

PUSCH_n_DMRS1 used in computing the cyclic shift forPUSCH DMRS

[0] Integerarray

NO

PUSCH_n_DMRS2 used in computing the cyclic shift forPUSCH DMRS

[0] Integerarray

NO

PRACH_Enable whether or not to enable PRACH: NO, YES YES Enumeration NO

PRACH_Config PRACH configuration index 0 Integer NO

PRACH_ResourceIndex the PRACH Resource Index. In FDD, itindicates the subframe number where thepreamble starts; in TDD, it indicates thepreamble mapping in time and frequency

[1] Integerarray

NO

SRS_Enable sounding reference symbol is enable: NO,YES

NO Enumeration NO

SRS_BandwidthConfig the cell-specific SRS bandwidthconfiguration

7 Integer NO

SRS_SF_Config the cell-specific SRS subframeconfiguration

0 Integer NO

SRS_MaxUpPts whether enable the reconfiguration ofmaximum m_SRS_0 or not: NO, YES

NO Enumeration NO

SRS_Bandwidth the UE-specific SRS bandwidth 0 Integer NO

SRS_ConfigIndex the UE-specific SRS configuration 0 Integer NO

SRS_CyclicShift used in computing the cyclic shift of SRS 0 Integer NO

DisplayPortRates whether the port rates and other usefulinformation are displayed in SimulationLog window: NO, YES

NO Enumeration NO

Output Ports

Port Name Description Signal Type Optional

1 RS_PUSCH reference signal for PUSCH complex matrix NO

2 RS_S sounding reference signal complex matrix NO

Notes/Equations

This model is used to generate demodulation reference signal associated with1.transmission of PUSCH and sounding reference signal.Each firing, this model generates DMRS for PUSCH and SRS of one subframe.2.

1 matrix token is produced at port RS_PUSCH. The size of the matrix token isequal to the number of DMRS symbols in each subframe, which is determined byFrameMode, TDD_Config (in TDD mode), RBAlloc_Type and RB_Alloc, for moredetails, please refer to Resource Block Allocation (ltebasever). If PUSCH is nottransmitted in this subframe, an empty matrix token would be output.1 matrix token is produced at port RS_S. The size of the matrix token is equal tothe number of SRS symbols in each subframe, which is determined byFrameMode, TDD_Config, SpecialSF_Config, Bandwidth, CyclicPrefix,

Page 383: 3GPP LTE Baseband Verification Library · 2014. 7. 24. · SystemVue - 3GPP LTE Baseband Verification Library 2 © Agilent Technologies, Inc. 2000-2010 395 Page Mill Road, Palo Alto,

SystemVue - 3GPP LTE Baseband Verification Library

382

DL_CyclicPrefix, SRS_Enable, SRS_BandwidthConfig, SRS_SF_Config,SRS_MaxUpPts (in TDD mode), SRS_Bandwidth, SRS_ConfigIndex,PRACH_Enable, PRACH_Config and PRACH_ResourceIndex. For more details,please refer to [1] and [2]. If SRS is not transmitted in this subframe, an emptymatrix token would be output.For the default parameter configurations, the number of DMRS symbols in eachsubframe is 600; SRS is not transmitted.

If DisplayPortRates is YES, the messages displayed in the simulation log includes the3.number of DMRS symbols and SRS symbols produced in each firing, the sequence-group number u, base sequence number v and cyclic shifts n_cs for PUSCH DMRS,the length, k_SRS and subframe index of each SRS transmission instance, and thesequence-group number u, base sequence number v for SRS.PUSCH_n_DMRS1 and PUSCH_n_DMRS2 are array parameters with each element4.indicating the nDMRS

(1) and nDMRS(2) values in the corresponding subframe.

PRACH_Enable, PRACH_Config and PRACH_ResourceIndex are used in the5.reconfiguration of mSRS,0 in SRS generation in TDD mode. mSRS,0 shall be

reconfigured to mSRS,0max = max cC{mSRS,0

c} ≤ (NRBUL - 6 NRA) if this

reconfiguration is enabled by the cell specific parameter SRS_MaxUpPts, otherwise ifthe reconfiguration is disabled mSRS,0

max = mSRS,0, where c is a SRS BW

configuration and CSRS is the set of SRS BW configurations from the Tables 5.5.3.2-1

to 5.5.3.2-4 [1] for each uplink bandwidth NRBUL, NRA is the number of format 4

PRACH in the addressed UpPTS and derived from Table 5.7.1-4 [1]. NRA is calculated

from the PRACH parameters PRACH_Config and PRACH_ResourceIndex whenPRACH_Enable is YES, otherwise NRA equals 0.

For more information on system parameters, please refer to UL System Parameters (ltebasever).For more information on PUSCH Parameters, please refer to UL PUSCH Parameters (ltebasever).For more information on SRS Parameters, please refer to UL SRS Parameters (ltebasever).

References

3GPP TS 36.211 v8.9.0, "Physical Channels and Modulation", December 2009.1.3GPP TS 36.213 v8.8.0, "Physical Layer Procedures", September 2009.2.