19
Introduction about TeraHertz Tomography TeraHertz Tomography : First Results Applications and Perspectives 3D TeraHertz Tomography B. Recur, 3 A. Younus, 1 S. Salort, 2 P. Mounaix, 1 B. Chassagne, 2 P. Desbarats, 3 J-P. Caumes, 2 and E. Abraham 1 1 LOMA, Université de Bordeaux / CNRS 2 ALPhANOV, Centre Technologique Optique et Lasers, Université de Bordeaux 3 LaBRI, Université de Bordeaux / CNRS 351 cours de la Libération 33405 talence Cedex, France Journées Problèmes Inverses - IMS - IMB - LaBRI - Avril 2011 1/19 B. Recur, 3 A. Younus, 1 S. Salort, 2 P. Mounaix, 1 B. Chassagne, 3D TeraHertz Tomography

3D TeraHertz Tomography - LaBRIspi.labri.fr/sites/default/files/TomographieTHz_0.pdfIntroductionaboutTeraHertzTomography TeraHertzTomography: FirstResults ApplicationsandPerspectives

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

  • Introduction about TeraHertz TomographyTeraHertz Tomography : First Results

    Applications and Perspectives

    3D TeraHertz Tomography

    B. Recur,3 A. Younus,1 S. Salort,2 P. Mounaix,1 B. Chassagne,2 P. Desbarats,3

    J-P. Caumes,2 and E. Abraham1

    1LOMA, Université de Bordeaux / CNRS2ALPhANOV, Centre Technologique Optique et Lasers, Université de Bordeaux

    3LaBRI, Université de Bordeaux / CNRS351 cours de la Libération

    33405 talence Cedex, France

    Journées Problèmes Inverses - IMS - IMB - LaBRI - Avril 2011

    1/19 B. Recur,3 A. Younus,1 S. Salort,2 P. Mounaix,1 B. Chassagne,2 P. Desbarats,3 J-P. Caumes,2 and E. Abraham13D TeraHertz Tomography

  • Introduction about TeraHertz TomographyTeraHertz Tomography : First Results

    Applications and Perspectives

    Outline

    Introduction about TeraHertz Tomography

    THz Imagery and properties of THz radiations,

    Reminder about tomographic principles,

    Two acquisition systems.

    TeraHertz Tomography : first results

    Reminder about usual tomographic reconstruction methods,

    Result comparisons (reconstruction method, the projection number, materialcharacteristics),

    Acquisition limitations (CW and TDS).

    Applications and Perspectives

    Inspection of opaque objects (composed of teflon, foam, metal, ...),

    Archeology : imaging of potteries.

    Investigated acquisition optimizations and reconstruction models.

    2/19 B. Recur,3 A. Younus,1 S. Salort,2 P. Mounaix,1 B. Chassagne,2 P. Desbarats,3 J-P. Caumes,2 and E. Abraham13D TeraHertz Tomography

  • Introduction about TeraHertz TomographyTeraHertz Tomography : First Results

    Applications and Perspectives

    THz Imagery : Principles

    Properties

    THz region between microwave (100GHz) and infrared (10THz),

    Wavelength between 30µm and 3mm,

    Contrary to X-Ray THz radiation is non ionizing and low-energy (1 and 40meV ).

    Two Principles

    Passive Imagery : capture of THz natural emission object : security systems,Active Imagery : source focalized on the object + detector measuring variation :

    spectroscopy : to determine the composition of an object,3D Laser scan : to acquire the external surface of the object,

    3/19 B. Recur,3 A. Younus,1 S. Salort,2 P. Mounaix,1 B. Chassagne,2 P. Desbarats,3 J-P. Caumes,2 and E. Abraham13D TeraHertz Tomography

  • Introduction about TeraHertz TomographyTeraHertz Tomography : First Results

    Applications and Perspectives

    THz Imagery : Principles

    Known limitations

    T-Ray propagation can not be correctly described by a geometrical ray line,

    Diffraction or scattering effects blur or deform the acquired signal,

    Complex objects signal analysis are complicated by multiple reflections andrefractions of THz radiations.

    Signal advantages for THz Imagery

    The signal can go through particular matter :

    Transmission process,

    THz Imagery (applications in Archeology),

    Investigations in THz Tomography.

    4/19 B. Recur,3 A. Younus,1 S. Salort,2 P. Mounaix,1 B. Chassagne,2 P. Desbarats,3 J-P. Caumes,2 and E. Abraham13D TeraHertz Tomography

  • Introduction about TeraHertz TomographyTeraHertz Tomography : First Results

    Applications and Perspectives

    Reminder about tomographic principles

    Definition

    Imagery technique to reconstruct the volume of an object from a set of non invasivemeasures acquired from the exterior of the object.

    Modeled in continuous domain by the Radon Transform [Radon 1919]

    Acquisition proccess : to get the projections (direct transform),

    Reconstruction process : inverse Radon transform or Fourier space reconstruction.

    5/19 B. Recur,3 A. Younus,1 S. Salort,2 P. Mounaix,1 B. Chassagne,2 P. Desbarats,3 J-P. Caumes,2 and E. Abraham13D TeraHertz Tomography

  • Introduction about TeraHertz TomographyTeraHertz Tomography : First Results

    Applications and Perspectives

    Reminder about tomographic principles : Acquisition

    (a) (b)

    Figure: (a) Projection line defined by an angle θ and a module ρ. Its value corresponds to theray attenuation going through matter (data modeled by the function f (x, y)) along the blueline. (b) Data given by only one projection does not allow the reconstruction of f .

    Direct Radon Transform

    Rθ(ρ) =∫ ∞−∞

    ∫ ∞−∞

    f (x , y)δ(ρ− x cos θ − y sin θ)dxdy (1)

    6/19 B. Recur,3 A. Younus,1 S. Salort,2 P. Mounaix,1 B. Chassagne,2 P. Desbarats,3 J-P. Caumes,2 and E. Abraham13D TeraHertz Tomography

  • Introduction about TeraHertz TomographyTeraHertz Tomography : First Results

    Applications and Perspectives

    Reminder about tomographic principles : Reconstruction

    (a) (b)

    Figure: (a) Acquisition following several angles. (b) Intersection of data contained on theprojection set allows a better recovering of the original domain f .

    Retroprojection (Inverse Radon Transform)

    f (x , y) =∫ π

    0

    ∫ ∞−∞Rθ(ρ)δ(ρ− x cos θ − y sin θ)dρdθ (2)

    7/19 B. Recur,3 A. Younus,1 S. Salort,2 P. Mounaix,1 B. Chassagne,2 P. Desbarats,3 J-P. Caumes,2 and E. Abraham13D TeraHertz Tomography

  • Introduction about TeraHertz TomographyTeraHertz Tomography : First Results

    Applications and Perspectives

    Two THz acquisition systems : Pulsed THz Acquisition

    Properties

    Pulse source used in spectrocopy,

    Non destructive and contactless imaging,

    Transparent to amorphous materials, plastic, tissues, paper, wood, ...

    Strong interaction with polar molecules (H2O for instance),

    Acquisition system

    8/19 B. Recur,3 A. Younus,1 S. Salort,2 P. Mounaix,1 B. Chassagne,2 P. Desbarats,3 J-P. Caumes,2 and E. Abraham13D TeraHertz Tomography

  • Introduction about TeraHertz TomographyTeraHertz Tomography : First Results

    Applications and Perspectives

    Two THz acquisition systems : Pulsed THz Data analysis

    Acquisition data

    Amplitude, Temporal response (delay), Spectral response.

    Create sinograms from all available data.

    Ampl.

    Delay

    9/19 B. Recur,3 A. Younus,1 S. Salort,2 P. Mounaix,1 B. Chassagne,2 P. Desbarats,3 J-P. Caumes,2 and E. Abraham13D TeraHertz Tomography

  • Introduction about TeraHertz TomographyTeraHertz Tomography : First Results

    Applications and Perspectives

    Continuous Wave THz Tomography : Acquisition

    Acquisition System

    A continuous signal with a wavelength around 1mm is emitted by a diode Gunn.

    The signal is focalized on the objet (translation XZ - rotation Y),

    Signal attenuation is measured by a infrared thermal sensor.

    Differences Between pulsed and CW Acquisitions

    Pulsed Acquisition Continuous WaveAcq.

    Frequency 1 femtosecond (1to 10THz (each80MHz)

    A continuous milli-metre wave (0.1 to0.4THz)

    Type Transmission Transmission and Re-flexion

    Scan Area 100 × 100mm2 100 × 100mm2Resolution(diffractionlimited)

    10µm to 300µm 1 to 3mm

    Measures Temporal (Am-plitude) / Delay(Phase) / Spectral

    Delay

    Acquisition(Nθ = 18,1002)

    between 2 and 3 days 3 hours

    Object Pro-perties

    very low-density andlow-thickness objects

    less sensitive to thedensity and thicknessof acquired objects

    10/19 B. Recur,3 A. Younus,1 S. Salort,2 P. Mounaix,1 B. Chassagne,2 P. Desbarats,3 J-P. Caumes,2 and E. Abraham13D TeraHertz Tomography

  • Introduction about TeraHertz TomographyTeraHertz Tomography : First Results

    Applications and Perspectives

    TeraHertz Tomography : Reconstructions

    State of Art

    Investigated at the origin by Physician Labs (Fergusson [2004]),

    Coupled with Spectroscopy analysis and 3D laser scan (object surface),

    A method becames a standard : BFP,

    A main goal : reduce the acquisition time (i.e. projection number).

    Investigation about others methods

    Comparison analysis of the results obtained from BFP, SART and OSEM :

    Quality loss according to the number of projections (measured by SSIM),

    Precision comparison between the three methods (measured by PSF).

    11/19 B. Recur,3 A. Younus,1 S. Salort,2 P. Mounaix,1 B. Chassagne,2 P. Desbarats,3 J-P. Caumes,2 and E. Abraham13D TeraHertz Tomography

  • Introduction about TeraHertz TomographyTeraHertz Tomography : First Results

    Applications and Perspectives

    TeraHertz Tomography : Reminder about usual methods

    Backprojection of Filtered Projections

    I (i, j) =Nθ−1∑iθ=0

    Nρ2∑

    ρ=−Nρ2

    Wθ(iθ )(ρ)∆(ρ − jcosθ(iθ ) − isinθ(iθ )) (3)

    with :

    θ(iθ ) = iθπNθ

    ,

    Wθ (ρ) =

    Nρ2∑

    ν=−Nρ2

    |ν|

    Nρ2∑

    ρs =−Nρ2

    Rθ (ρs )e−i2πρsν

    ei2πρν (BFP).

    Iterative methods (SART - OSEM)

    Iterative update of each pixel using all or a part of (sub-iterations) the projection setuntil convergence.

    I (i, j)k+1 = I (i, j)k

    Nθ−1∑iθ=0

    Nρ−1∑iρ=0

    pk(θ, ρ, i, j)Rθ (ρ)

    Rkθ

    (ρ)

    Nθ−1∑iθ=0

    Nρ−1∑iρ=0

    pk(θ, ρ, i, j)

    (4)

    12/19 B. Recur,3 A. Younus,1 S. Salort,2 P. Mounaix,1 B. Chassagne,2 P. Desbarats,3 J-P. Caumes,2 and E. Abraham13D TeraHertz Tomography

  • Introduction about TeraHertz TomographyTeraHertz Tomography : First Results

    Applications and Perspectives

    TeraHertz Tomography : Precision (PSF) results

    (a) (b)

    Figure: Sinograms of two metallic bars (12mm diameter)separated by 50mm, with a projection number Nθ = 72. (a)Ideal theoretical acquisition. (b) Acquisition using themillimeter wave tomographic scanner with the 110GHzsource.

    (a) (b) (c) (d)

    Figure: Cross sections of two metallic bars (12mm diameter)separated by 50mm.(a) Ideal theoretical imagereconstruction from 3(a). (b) BFP reconstruction from 3(b).(c) SART reconstruction from 3(b). (d) OSEMreconstruction from 3(b).

    Figure: Intensity profiles along thehorizontal line intercepting the center of bothmetallic bars.

    13/19 B. Recur,3 A. Younus,1 S. Salort,2 P. Mounaix,1 B. Chassagne,2 P. Desbarats,3 J-P. Caumes,2 and E. Abraham13D TeraHertz Tomography

  • Introduction about TeraHertz TomographyTeraHertz Tomography : First Results

    Applications and Perspectives

    TeraHertz Tomography : Quality (SSIM) results

    Nθ = 12 Nθ = 18 Nθ = 24 Nθ = 36 Nθ = 72(a)

    (b)

    (c)

    Figure: Manufactured sample reconstructions using sinograms with12, 18, 24, 36, 72 projections and the BFP (a), SART (b) andOSEM (c) methods.

    (a) (b)

    Figure: (a) Photograph of original object :parallelepiped black foam (41 × 49) mm2 with 2holes, diameter 15mm (1 hole with air and 1hole containing a Teflon cylinder with a 6mmcylindrical air hole inside). (b) Sinogram withNθ = 72 projections (lines) and Nρ = 128samples per projection (columns).

    Figure: Manufactured sample SSIM parameter asa function of the projection number and thereconstruction method.

    14/19 B. Recur,3 A. Younus,1 S. Salort,2 P. Mounaix,1 B. Chassagne,2 P. Desbarats,3 J-P. Caumes,2 and E. Abraham13D TeraHertz Tomography

  • Introduction about TeraHertz TomographyTeraHertz Tomography : First Results

    Applications and Perspectives

    TeraHertz Tomography : Quality results according to material characteristics

    Phantoms reconstructed from CW acquisitions

    Acquisition of phantoms made of Foam or Teflon, with hole or metallic bars,

    18 projections sized around 100× 100.

    Foam (n0 = 1.05)Cyl./Hole Cube/Hole Cube/Metal

    BFP

    SART

    EM

    Contours are well reconstructed (buthypersignal − > refraction losses),

    Inner hole is visible,

    Metallic bar − > hypersignal.

    Teflon (n0 = 1.55)Cube/Hole Cube/Metal Cyl./Metal

    Refractions are more important,

    Inner hole is visible in the cube buthypersignal,

    Matter coherence is lost.

    15/19 B. Recur,3 A. Younus,1 S. Salort,2 P. Mounaix,1 B. Chassagne,2 P. Desbarats,3 J-P. Caumes,2 and E. Abraham13D TeraHertz Tomography

  • Introduction about TeraHertz TomographyTeraHertz Tomography : First Results

    Applications and Perspectives

    Limitations of the Acquisition system

    Acquisition Limitations

    Acquisition limitations depend on physicaland optical properties :

    Absorption (by polar molecules),Refraction Losses.

    TDS Refraction Losses CW Refraction Losses

    Hypersignal and Interfaces

    Hypersignal at interfaces due to the signal losses,

    Hypersignal at contours in reconstructed images,

    Non uniform signal loss near the interfaces.

    16/19 B. Recur,3 A. Younus,1 S. Salort,2 P. Mounaix,1 B. Chassagne,2 P. Desbarats,3 J-P. Caumes,2 and E. Abraham13D TeraHertz Tomography

  • Introduction about TeraHertz TomographyTeraHertz Tomography : First Results

    Applications and Perspectives

    Applications

    3D Internal Inspection ofindustrial materials

    Archeology (volume inspection)

    17/19 B. Recur,3 A. Younus,1 S. Salort,2 P. Mounaix,1 B. Chassagne,2 P. Desbarats,3 J-P. Caumes,2 and E. Abraham13D TeraHertz Tomography

  • Introduction about TeraHertz TomographyTeraHertz Tomography : First Results

    Applications and Perspectives

    Applications : Video samples

    Matriochka

    Figure: Matriochka

    Volume

    Figure: Urne Volume

    OrthoSlice

    Figure: Orthoslice

    Surface

    Figure: Surface

    18/19 B. Recur,3 A. Younus,1 S. Salort,2 P. Mounaix,1 B. Chassagne,2 P. Desbarats,3 J-P. Caumes,2 and E. Abraham13D TeraHertz Tomography

  • Introduction about TeraHertz TomographyTeraHertz Tomography : First Results

    Applications and Perspectives

    Conclusion and Perspective

    Conclusion

    Pulsed or Continuous THz allows 3D-Tomography of opaque objects but :

    Refraction losses makes it difficult in TDS to identify the amplitude and timedelay,

    Non uniform losses around the interfaces.

    Perspectives

    Replace sensor/detector by 2D camera :to increase the acquisition time (but with the risk of ghosts),to get a subset of refracted signal and extract a priori object properties for thereconstruction.

    Improve the spatial resolution (using super-resolution),

    Develop specific reconstruction methods based on a non-linear / discontinuousattenuation to take into account the refraction losses.

    19/19 B. Recur,3 A. Younus,1 S. Salort,2 P. Mounaix,1 B. Chassagne,2 P. Desbarats,3 J-P. Caumes,2 and E. Abraham13D TeraHertz Tomography

    Introduction about TeraHertz TomographyTeraHertz Tomography : First ResultsApplications and Perspectives