32
Forms of Energy

3a. Forms of Energy - ITESM. Forms of Energy.pdf · the total energy of a system, can be containedor storedin a system and thus can be viewed as the staticforms of energy. •The

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 3a. Forms of Energy - ITESM. Forms of Energy.pdf · the total energy of a system, can be containedor storedin a system and thus can be viewed as the staticforms of energy. •The

Forms of Energy

Page 2: 3a. Forms of Energy - ITESM. Forms of Energy.pdf · the total energy of a system, can be containedor storedin a system and thus can be viewed as the staticforms of energy. •The

Content

• Forms of Energy• Kinetic, potential and internal energy, and enthalpy 

• Heat• Work

Page 3: 3a. Forms of Energy - ITESM. Forms of Energy.pdf · the total energy of a system, can be containedor storedin a system and thus can be viewed as the staticforms of energy. •The

Notations

, , , →

, , , → /

, , , → /

Q, q, heatW, w, workE, e, energyU, u, internal energyP, pressureV, v, volumeT, temperaturet, timeH, h, enthalpyS, s, entropy, velocity

z, highm, massF, forces, distanceKE, kinetic energyPE, potential energy

Page 4: 3a. Forms of Energy - ITESM. Forms of Energy.pdf · the total energy of a system, can be containedor storedin a system and thus can be viewed as the staticforms of energy. •The

Forms of Energy

• Energy can exist in numerous forms such as thermal, mechanical, kinetic, potential, electric, magnetic, chemical, and nuclear, and their sum constitutes the total energy E of a system.

• The total energy of a system on a unit mass basis is denoted by e and is expressed as

(kJ/kg)

Page 5: 3a. Forms of Energy - ITESM. Forms of Energy.pdf · the total energy of a system, can be containedor storedin a system and thus can be viewed as the staticforms of energy. •The

Forms of Energy

• In thermodynamic analysis, it is often helpful to consider the various forms of energy that make up the total energy of a system in two groups: macroscopic and microscopic.

• The macroscopic forms of energy are those a system possesses as a whole with respect to some outside reference frame, such as kineticand potential energies.

• The microscopic forms of energy are those related to the molecular structure of a system and the degree of the molecular activity, and they are independent of outside reference frames. The sum of all the microscopic forms of energy is called the internal energy of a system and is denoted by U.

Page 6: 3a. Forms of Energy - ITESM. Forms of Energy.pdf · the total energy of a system, can be containedor storedin a system and thus can be viewed as the staticforms of energy. •The

Forms of Energy

• The energy that a system possesses as a result of its motion relative to some reference frame is called kinetic energy (KE). When all parts of a system move with the same velocity, the kinetic energy is expressed as

(kJ)

• The energy that a system possesses as a result of its elevation in a gravitational field is called potential energy (PE) and is expressed as

(kJ)

Page 7: 3a. Forms of Energy - ITESM. Forms of Energy.pdf · the total energy of a system, can be containedor storedin a system and thus can be viewed as the staticforms of energy. •The

Forms of Energy

• Internal energy (U) is defined earlier as the sum of all the microscopic forms of energy of a system. It is related to the molecular structure and the degree of molecular activity and can be viewed as the sum of the kinetic and potential energies of the molecules.• The portion of the internal energy of a system associated with the kinetic energies of the molecules is called the sensible energy.

• The internal energy associated with the phase of a system is called the latent energy.

• The internal energy associated with the atomic bonds in a molecule is called chemical energy.

• The tremendous amount of energy associated with the strong bonds within the nucleus of the atom itself is called nuclear energy.

Page 8: 3a. Forms of Energy - ITESM. Forms of Energy.pdf · the total energy of a system, can be containedor storedin a system and thus can be viewed as the staticforms of energy. •The

Forms of Energy

• The forms of energy already discussed, which constitute the total energy of a system, can be contained or stored in a system and thus can be viewed as the static forms of energy.

• The forms of energy not stored in a system can be viewed as the dynamic forms of energy or as energy interactions.

• The dynamic forms of energy are recognized at the system boundary as they cross it, and they represent the energy gained or lost by a system during a process.

• The only two forms of energy interactions associated with a closed system are heat transfer and work.

Page 9: 3a. Forms of Energy - ITESM. Forms of Energy.pdf · the total energy of a system, can be containedor storedin a system and thus can be viewed as the staticforms of energy. •The

Heat

• Heat (Q) is defined as the form of energy that is transferred between two systems (or a system and its surroundings) by virtue of a temperature difference.

• That is, an energy interaction is heat only if it takes place because of a temperature difference.

• Then it follows that there cannot be any heat transfer between two systems that are at the same temperature.

• A process during which there is no heat transfer is called an adiabatic process

Page 10: 3a. Forms of Energy - ITESM. Forms of Energy.pdf · the total energy of a system, can be containedor storedin a system and thus can be viewed as the staticforms of energy. •The

Heat

• Heat is transferred by three mechanisms: conduction, convection, and radiation.

• Conduction is the transfer of energy from the more energetic particles of a substance to the adjacent less energetic ones as a result of interaction between particles.

• Convection is the transfer of energy between a solid surface and the adjacent fluid that is in motion, and it involves the combined effects of conduction and fluid motion.

• Radiation is the transfer of energy due to the emission of electromagnetic waves (or photons).

Page 11: 3a. Forms of Energy - ITESM. Forms of Energy.pdf · the total energy of a system, can be containedor storedin a system and thus can be viewed as the staticforms of energy. •The

Work

• Work, like heat, is an energy interaction between a system and its surroundings.

• As mentioned earlier, energy can cross the boundary of a closed system in the form of heat or work.

• Therefore, if the energy crossing the boundary of a closed system is not heat, it must be work.

• Work (W) is the energy transfer associated with a force acting through a distance.

Page 12: 3a. Forms of Energy - ITESM. Forms of Energy.pdf · the total energy of a system, can be containedor storedin a system and thus can be viewed as the staticforms of energy. •The

Heat and Work

• Heat and work are directional quantities, and thus the complete description of a heat or work interaction requires the specification of both the magnitude and direction.

• One way of doing that is to adopt a sign convention.

• The generally accepted formal sign convention for heat and work interactions is as follows: heat transfer to a system and work done by a system are positive; heat transfer from a system and work done on a system are negative.

Page 13: 3a. Forms of Energy - ITESM. Forms of Energy.pdf · the total energy of a system, can be containedor storedin a system and thus can be viewed as the staticforms of energy. •The

Heat and Work Transfer

• Heat and work are energy transfer mechanisms between a system and its surroundings, and there are many similarities between them:1. Both are recognized at the boundaries of a system as 

they cross the boundaries. That is, both heat and work are boundary phenomena.

2. Systems possess energy, but not heat or work.3. Both are associated with a process, not a state. Unlike 

properties, heat or work has no meaning at a state.4. Both are path functions (i.e., their magnitudes depend 

on the path followed during a process as well as the end states).

Page 14: 3a. Forms of Energy - ITESM. Forms of Energy.pdf · the total energy of a system, can be containedor storedin a system and thus can be viewed as the staticforms of energy. •The

Mechanical Forms Of Work

• There are several different ways of doing work, each in some way related to a force acting through a distance.

• In elementary mechanics, the work done by a constant force F on a body displaced a distance s in the direction of the force is given by

(kJ)• If the force F is not constant, the work done is obtained by adding (i.e., integrating) the differential amounts of work,

(kJ)• There are two requirements for a work interaction between a system and its surroundings to exist:(1) there must be a force acting on the boundary, and(2) the boundary must move.

Page 15: 3a. Forms of Energy - ITESM. Forms of Energy.pdf · the total energy of a system, can be containedor storedin a system and thus can be viewed as the staticforms of energy. •The

Mechanical Forms Of Work

• Some common forms of mechanical work are:1. Moving boundary work2. Shaft work3. Spring work4. Work done on elastic solid bars5. Work associated with the stretching of a liquid film6. Work done to rise a body or gravitational work (potential energy)7. Work done to accelerate a body or acceleration work (kinetic energy)

Page 16: 3a. Forms of Energy - ITESM. Forms of Energy.pdf · the total energy of a system, can be containedor storedin a system and thus can be viewed as the staticforms of energy. •The

Shaft Work• Energy transmission with a rotating shaft is very common in engineering practice.• Often the torque T applied to the shaft is constant, which means that the force F applied 

is also constant.• For a specified constant torque, the work done during n revolutions is determined as 

follows: A force F acting through a moment arm r generates a torque T of →

• This force acts through a distance s, which is related to the radius r by2

• Then the shaft work is determined from2 2 (kJ)

• The power transmitted through the shaft is the shaft work done per unit time, which can be expressed as

2where  is the number of revolutions per unit time.

Page 17: 3a. Forms of Energy - ITESM. Forms of Energy.pdf · the total energy of a system, can be containedor storedin a system and thus can be viewed as the staticforms of energy. •The

Spring Work

• It is common knowledge that when a force is applied on a spring, the length of the spring changes.

• When the length of the spring changes by a differential amount dxunder the influence of a force F, the work done is

• To determine the total spring work, we need to know a functional relationship between F and x. For linear elastic springs, the displacement x is proportional to the force applied. That is,

(kN)where k is the spring constant and has the unit kN/m. The displacement x is measured from the undisturbed position of the spring (that is, x = 0 when F = 0).

• Substituting Equations and integrating yield(kJ)

where x1 and x2 are the initial and the final displacements of the spring, respectively, measured from the undisturbed position of the spring.

Page 18: 3a. Forms of Energy - ITESM. Forms of Energy.pdf · the total energy of a system, can be containedor storedin a system and thus can be viewed as the staticforms of energy. •The

Work Done on Elastic Solid Bars

• Solids are often modeled as linear springs because under the action of a force they contract or elongate, and when the force is lifted, they return to their original lengths, like a spring.

• This is true as long as the force is in the elastic range, that is, not large enough to cause permanent (plastic) deformations.

• Therefore, the equations given for a linear spring can also be used for elastic solid bars.

• Alternately, we can determine the work associated with the expansion or contraction of an elastic solid bar by replacing pressure P by its counterpart in solids, normal stress n = F/A, in the work expression:

(kJ)where A is the cross‐sectional area of the bar. Note that the normal stresshas pressure units.

Page 19: 3a. Forms of Energy - ITESM. Forms of Energy.pdf · the total energy of a system, can be containedor storedin a system and thus can be viewed as the staticforms of energy. •The

Work Associated with the Stretching of a Liquid Film

• Consider a liquid film such as soap film suspended on a wire frame.• We know from experience that it will take some force to stretch this film by the movable portion of the wire frame.

• This force is used to overcome the microscopic forces between molecules at the liquid–air interfaces.

• These microscopic forces are perpendicular to any line in the surface, and the force generated by these forces per unit length is called the surface tension s, whose unit is N/m.

• Therefore, the work associated with the stretching of a film is also called surface tension work. It is determined from

(kJ)where dA = 2b dx is the change in the surface area of the film. The factor 2 is due to the fact that the film has two surfaces in contact with air. The force acting on the movable wire as a result of surface tension effects is F = 2bswhere s is the surface tension force per unit length.

Page 20: 3a. Forms of Energy - ITESM. Forms of Energy.pdf · the total energy of a system, can be containedor storedin a system and thus can be viewed as the staticforms of energy. •The

Gravitational Work (potential energy)

• The work done by or against a gravitational field force is defined as gravitational work.

• In a gravitational field the force acting on a body is

where m is the body mass and g is the acceleration of gravity which is assumed constant.

• Thus, the required work to raise a body from level z1 to level z2 is

where z2 ‐ z1 is the vertical distance traveled. Wg is given in Joules.

• This expression is known as the change in potential energy of the system.

Page 21: 3a. Forms of Energy - ITESM. Forms of Energy.pdf · the total energy of a system, can be containedor storedin a system and thus can be viewed as the staticforms of energy. •The

Acceleration Work (kinetic energy)

• The work associated with a change in the speed of a system is called acceleration work.

• The work of this type required to accelerate a body of mass m from a speed  to  final velocity is determined by the definition of acceleration of Newton's second law.

• The work done to accelerate a body is independent of the path taken and is equivalent to the change in kinetic energy of the body.

Page 22: 3a. Forms of Energy - ITESM. Forms of Energy.pdf · the total energy of a system, can be containedor storedin a system and thus can be viewed as the staticforms of energy. •The

Non‐Mechanical Forms of Work

• Some work modes encountered in practice are not mechanical in nature.• However, these non‐mechanical work modes can be treated in a similar manner by identifying a generalized force F acting in the direction of a generalized displacement x.

• Then the work associated with the differential displacement under the influence of this force is determined from W = F dx.

• Some examples of nonmechanical work modes are:• Electrical work, where the generalized force is the voltage (the electrical potential) and the generalized displacement is the electrical charge;

• Magnetic work, where the generalized force is the magnetic field strength and the generalized displacement is the total magnetic dipole moment; and,

• Electrical polarization work, where the generalized force is the electric field strength and the generalized displacement is the polarization of the medium (the sum of the electric dipole rotation moments of the molecules).

Page 23: 3a. Forms of Energy - ITESM. Forms of Energy.pdf · the total energy of a system, can be containedor storedin a system and thus can be viewed as the staticforms of energy. •The

Electrical Work• Electrons crossing the system boundary do electrical work on the system.• In an electric field, electrons in a wire move under the effect of electromotive forces, doing work.

• When N coulombs of electrical charge move through a potential difference V, the electrical work done is

• which can also be expressed in the rate form as(W)

where We is the electrical power and I is the number of electrical charges flowing per unit time, that is, the current, and R is the resistance.

• In general, both V and I vary with time, and the electrical work done during a time interval t is expressed as

(kJ)

• When both V and I remain constant during the time interval t, it reduces to∆

Page 24: 3a. Forms of Energy - ITESM. Forms of Energy.pdf · the total energy of a system, can be containedor storedin a system and thus can be viewed as the staticforms of energy. •The

Examples (textbook)

EXAMPLE 2–3 Burning of a Candle in an Insulated RoomA candle is burning in a well‐insulated room. Taking the room (the air plus the candle) as the system, determine (a) if there is any heat transfer during this burning process and (b) if there is any change in the internal energy of the system.

a) Q = ? No heat transfer Q = 0, because is well‐insulated

b) U = ? The chemical energy of the burning is converted to sensible energy but all inside de room, so U = 0

Page 25: 3a. Forms of Energy - ITESM. Forms of Energy.pdf · the total energy of a system, can be containedor storedin a system and thus can be viewed as the staticforms of energy. •The

Examples (textbook)

EXAMPLE 2–4 Heating of a Potato in an OvenA potato initially at room temperature (25°C) is being baked in an oven that is maintained at 200°C, as shown in Figure. Is there any heat transfer during this baking process?

We don’t know because the system is not defined

Page 26: 3a. Forms of Energy - ITESM. Forms of Energy.pdf · the total energy of a system, can be containedor storedin a system and thus can be viewed as the staticforms of energy. •The

Examples (textbook)

EXAMPLE 2–5 Heating of an Oven by Work TransferA well‐insulated electric oven is being heated through its heating element. If the entire oven, including the heating element, is taken to be the system, determine whether this is a heat or work interaction.

There is not heat (Q = 0) because the system is well‐insulated

There is work, electric work, because the electrons through the wires are crossing the boundary

Page 27: 3a. Forms of Energy - ITESM. Forms of Energy.pdf · the total energy of a system, can be containedor storedin a system and thus can be viewed as the staticforms of energy. •The

Examples (textbook)

EXAMPLE 2–6 Heating of an Oven by Heat TransferAnswer the question in the last Example if the system is taken as only the air in the oven without the heating element.

Now, there is only heat crossing the boundary, from the heat element to the interior of the oven.

Page 28: 3a. Forms of Energy - ITESM. Forms of Energy.pdf · the total energy of a system, can be containedor storedin a system and thus can be viewed as the staticforms of energy. •The

Examples (textbook)

EXAMPLE 2–7 Power Transmission by the Shaft of a CarDetermine the power transmitted through the shaft of a car when the torque applied is 200 N∙m and the shaft rotates at a rate of 4000 revolutions per minute (rpm).

2Data:    = 200 Nm,   = 4000 rpm,  = ? 

2 40001min

1min60s 200Nm

1kJ1000Nm

. 83.8 kW1.3596hp1 kW 113.94 hp

Page 29: 3a. Forms of Energy - ITESM. Forms of Energy.pdf · the total energy of a system, can be containedor storedin a system and thus can be viewed as the staticforms of energy. •The

Examples (textbook)

EXAMPLE 2–8 Power Needs of a Car to Climb a HillConsider a 1200‐kg car cruising steadily on a level road at 90 km/h. Now the car starts climbing a hill that is sloped 30° from the horizontal. If the velocity of the car is to remain constant during climbing, determine the additional power that must be delivered by the engine.Data:    = 1200 kg,  = 90 km/h, angle ( ) = 30°,  = ? 

∆∆

sin

1200kg 9.81m/s2 90km/h1m/s

3.6km/h sin 30°1kJ/kg

1000m2/s2

Page 30: 3a. Forms of Energy - ITESM. Forms of Energy.pdf · the total energy of a system, can be containedor storedin a system and thus can be viewed as the staticforms of energy. •The

Examples (textbook)

EXAMPLE 2–9 Power Needs of a Car to AccelerateDetermine the power required to accelerate a 900‐kg car shown in Figure from rest to a velocity of 80 km/h in 20 s on a level road.Data:    = 900 kg,  = 80 km/h,  = 20 s,  = ? 

12

1∆

12 900kg

80,000m3600s 0

1kJ/kg1000m2/s2

120s

222kJ20s

.

Page 31: 3a. Forms of Energy - ITESM. Forms of Energy.pdf · the total energy of a system, can be containedor storedin a system and thus can be viewed as the staticforms of energy. •The

Homework 3a

Problems from the textbook (Thermodynamics, Yunus, 8th ed.):• Choose 5 conceptual problems and answer them (those who you consider to provide better understanding to the subject seen in this section)• Chapter 2, problems: 1‐7, 17‐23, 26

• Choose 5 problems and answer them (those who you consider to provide better understanding to the subject seen in this section)• Chapter 2, problems: 8‐16, 24, 25, 27‐36

Page 32: 3a. Forms of Energy - ITESM. Forms of Energy.pdf · the total energy of a system, can be containedor storedin a system and thus can be viewed as the staticforms of energy. •The

Forms of Energy