166
KAERVTR-1366/99 KR9900237 Operation and Maintenance Techniques of Cranes and Hoist in IMEF 31-02

31-02 · 2004. 12. 24. · KAERVTR-1366/99 KR9900237 Operation and Maintenance Techniques of Cranes and Hoist in IMEF 31-02

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • KAERVTR-1366/99

    KR9900237

    Operation and Maintenance

    Techniques of Cranes and Hoist

    in IMEF

    3 1 - 0 2

  • 1999Vi 7

    -§•

    -8-

    - 1 -

  • i .

    m.

    SL

    II. £^-3 ^H 51^ j } g l lc}. A)A^£ 3.

    717151 ^«1#

    30/5^ ^^-3.511^1 A-la]^ ^ o f l ^151

  • SUMMARY

    I . Project Title

    Operation and Maintenance Techniques of Cranes in IMEF.

    II. Objective and Importance of the Project

    Crane and hoist of 11 sets are installed in the Irradiated Material

    Examination Facility (IMEF). IMEF is divided into two parts such as hot

    cell area and service area. 30/5-ton overhead crane is installed in

    service area for transfer of irradiated material transportation cask

    and other several kinds of heavy equipments.

    Design, fabrication, installation and function test of crane and hoist

    have been performed to comply with the requirements of nuclear

    facilities.

    Major constituent parts are as follows ;

    - Girder

    - Guide rail

    - Trolley

    - Hoist

    - Driving system

    III. Scope and Contents of the Project

    This report describes maintenance techniques, repair procedure and daily

    and special checking list, which will ensure safety in routine operation

    and even in abnormality.

    Descriptions are mainly made for the items as follows :

    - Design and Fabrication,

    - Installation and Test operation, and

    - Operation and maintenance techniques.

    _ O _

  • CONTENTS

    Summary 3

    Chapter 1. Introdction 10

    1. An outline of Facility

    2. Crane Equipments 11

    7\. Incell Crane

    "l-h 30/5-ton Electric Overhead Crane

    'C}. 3-ton Electric Overhead Crane

    5K 2-ton Electric Monorail Hoist

    n\. 30-ton Fixed Hoist

    Hj-. 3-ton Electric Suspension Crane

    Chapter 2. Overview of Technology Development Status 12

    Section 1. Design Requirements

    1. General

    2. Crane Design Requiremenrs

    7\. Over Head Crane

    I-}. Electric Monorail Hoist 14

    r}. Electric Fixed Hoist

    3. Interface Requirements 15

    4. Material Requirement

    7\. Material Requirements

    e}. Structural Components 16

    5. Related System Operation Conditions

    7\. Electric Overhead Crane installed in Hot Cell

    i-}. Electric Overhead Crane installed outside of

    Hot Cel 1 18

    cf. Electric Monorail Hoist

    e>. Electric Fixed Hoist 19

    a]-. Electric Suspension Crane

    - 4 -

  • 6. Drivers Requirements

    7. Name Plate Requirements 20

    7. Seismic Requirements 21

    8. Electrical Requirements

    Section 2. Design Calculation 22

    Chapter 3. Research Development Performance Contents & Result 54

    Section 1. Fabrication

    1. General

    2. welding

    3. Surface Preparation and Painting

    Section 2. Shipping, Handling and Storage 55

    1. Preparation for Shipment

    2. Delivery and Storage

    Section 3. Inspection and Test 56

    1. General

    2. Material Tests

    3. Shop Test

    4. Non-destructive Examination

    5. Acceptance Test 57

    Section 4. General Layout 58

    Section 5. Seismic Calculation 71

    Chapter 4. Research Development Goal Achievement & Contribution

    Proposal 93

    Section 1. Test Procedure for Over head Crane

    Section 2. Pre. Assembly Test Procedure for Over Head Crane 101

    Section 3. Test Procedure for Electrical Hoist 104

    Section 4. Test Report of Electrical Hoist 109

    Section 5. Runway Cableveyot of Hot Cell Crane 112

    Chapter 5. Application Plan of Research Development 119

    Section 1. Shop Test & Test Report

    - 5 -

  • 1. Load Test Report for 30/5-ton Over-Head Crane

    2. No Load Test Report for 30/5-ton Over-Head Crane 125

    *fl 6 ^ Bibliography 136

    Attachment 1. Bando Electric Hoist Operation Manual • 137

    - 6 -

  • 2

    Summry 3

    ^1 1 ^ ^ € • 10

    2.

    u}. 30/5^5- Electric

    r-}. 3 ^ Electric

    e>. 2 ^ Electric Monorail :£

    H}. 3 ^ Electric Suspension

    2 ^ ^-ufl5] 7)^- 7flaj^% 12

    1̂ 1 ^

    2.

    7}.

    i-}. Electric Monorail 5L. 7l7fl ̂ -s# ^-^^.4i 16

    5. #?l ^ 3

    7}.

    U . ^-iMl ^^3.511 oj 18

    c]-. Electric Monorail S.O]^iS.

    eK Electric 3L^Slo|^ 19

    n}. Electric Suspension

    - 7 -

  • 6.

    7. Name Plate &^-£.£ 20

    7. Lfl^^^] JSL^-^2 21

    afl 2 ^ 'STll 7 ^ 22

    3 # g ^ f l t J ^r*3 i-fl-§- S? « 54

    *fl 1 ^

    2.

    3.

    2 ^ ^t, %& 51 x i ^ 551.

    2.

    3 ^ A } ^ 5J ^Af 56

    2.

    3.

    4. Hi 431

    5. ' S * ^ ^ #*} 57

    ^ 1 4 ^ General Layout 58

    afl 5 ^ tf l^L^^ ^I^A-1 71

    4 ^

  • 1. 30/5S-

    2. 30/5^ ̂ ^-3.5)1 o] «.̂ .e|-Al̂ [ 125

    136

    ] 137

    - 9 -

  • *\\ 1 a M

    ]A ^ Oj=

    30/5^

    . [1-7]

    T I T \_i

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    71 71 «1 3L

    EF-E-7600-M-K001

    EF-E-7600-M-K002

    EF-E-7600-M-K003

    EF-E-7600-M-K004

    EF-E-7600-M-K005

    EF-E-7600-M-K006

    EF-E-7600-M-K007

    EF-E-7600-M-K008

    EF-E-7600-M-K009

    EF-E-7600-M-KOOlO

    EF-E-7600-M-KOOll

    71 7} ig

    1 ton Crane for Ml to M4

    1 ton Crane for M5A to

    M5B

    1 ton crane for M6

    30/5-ton Crane for

    Service Area3-ton Crane for

    Operating Area I3-ton Crane for

    Operating Area II3-ton Crane for

    Operating Area III3-ton Crane for Work

    Shop2-ton Hoist for

    Mechanical Room30-ton Fixed Hoist for

    Cask Rec. Yard3-ton Suspension Crane

    for Isolation Room

    l

    l

    l

    l

    l

    l

    l

    l

    l

    l

    l

    EF-E-1410-DT

    -H101

    (SDE) g 7)B}

    - 10 -

  • 2.

    7}. In Cell

    M1-M4, M5a~ M5b, M6a~M6c

    £ inter cell door#

    hard

    M". 30/5^ Electric ^ ^ S

    u l , Intervention

    cf. 3 ^ Electric

    44

    e}. 2 ^ Electr ic Monorail

    IMEF ^ i l - 3%o\] Aj

    n\. 3 0 ^ Fixed 3Ll^S

    «l#Al

    }. 3-E- Electric Suspension 3.ef|!(lrfl)

    M6a M6a

    - 11 -

  • all 2

    1

    2) fi

    3) S ^ 7] XI

    4) JE.€- ^ ^ S ^ 3 4 U 3 (̂17> >§-o| *H -IM^H6)1

    5)

    6)

    2.

    7f.

    (1) 9-S-i- ̂ XI1) JS.S 9-2:§ nj ^l-^r ^71^61 cleaning, brushing, painting

    2) ̂ -̂ -i-̂ l 4-g-£|^ steely ASTM A36

    (2) Bridge girder and end trucks

    1) 3.el]o]^r data sheets] ^ i ^ - ^ tfl.3. double SEfe single girder

    |: *}*![, bridge girder^ M f ^ ^ olTfvf !«] ̂ ^ g

    2) Bridget hoist trolley-g- &.ir

    raiiofl-b 4 4 ^ bridged -g-̂ ofl trolley^]

    wheel stopper-^" ^J'^}'*!'0^ ̂ ^1^\.

    3) ^ S ^ girder^] ^Xlfe ^tfl over load^H ^ 1-25

    - 12 -

  • 4) End carriage^ AA$\ wheel bearing^] ^ e ) ^

    (3) Trolley frame

    1) Trolley^ general layout^ T-}E}V5 3^*1! over JE^ under

    running type]

  • 2)

    housing^- ^ . ^ bathS] ^S.7} 90JE-&

    3) 7]^Jo|d]o> «}n|, ^ ^ g 3 ] ^ # 7?Tfl

    7 } ^ * ! ^>3i^el^l forged steel

    K Electric Monorail Hoist

    (1) ^-S.^

    Tracks-

    (2) Trolley frame

    Trolley^ well-rolled s tee IS. 4 4 ^ 1 ' H ^ * H , hoist

    bearing, JMr!f, 7)E}

    (3) Gearing

    (4) Monorail Track

    1) Monorail beams-=r ^ ^ track system^}- suspension system,

    fitting^- ?J S ^ € support ^^; aitfl*>#

    2) Track ^£afl carrier^ ^«H^-& ^ l * f e stopper^- ^*l^^i.

    (5) Trolley stop

    Trolley stopper-g- ' y ^ ] ^ ^.

    (6) Drums ^ sheaves, lifting hook block assembly, hoisting

    ropes, bearing ^ &

    f. Electric Fixed Hoist

    (1) Gearing, drums ^ sheaves, lifting hook block assembly

    hoisting ropes, bearing ^ ^ #7]

    €[. Suspension Crane

    - 14 -

  • (1) Crane runways

    1) Crane runwaysfe

    3) Runway tracker

    space!- H^ot

    4) Stopper^ t racks

    5l ?tfelHl

    span# cover

    3.

    (2) Track support

    1) Crane runways^

    2) ^

    (3) Trolley frame, drums ^ sheaves, lifting hook block assembly,

    hoisting rope, gearing, rail end stops ^ bumpers, shaft 5!

    axles, bearing, couplling, guarding -%••£: electric overhead

    intercell crane1)

    2)

    mm height^

    4. Material requirements

    ^ power ^ control line ZLZ]JL

    ^l*}7l ^ * } ^ 280 mm width x 260

    7}.

    1) Girder, end trucks ^ trolley ̂ ^ r

    - 15 -

  • ASTM A36

    2) Walkway, railing JEEfe c > ^ U] -7-S-i-xfl.g. -^S. ASTM

    1) Alloy cast steel ̂ -& ASTM A148]?14

    2) f > ^ # ̂ *flS. ̂ ASTM

    3) ^ ^ # ^ £ ASTM A235o]7i

    4) Plate -g^r ASTM A36^]7lu}

    5) 3.%^ ^S. ^ & ASTM A325, A490

    6) Hook -^^g. rolled JEfe forged >^^

    7) Wil^ej ^ ^ : 4 # ^ 1 %*\3. ^7} ^°M # S f e roller

    ^ ^ ^ H 1 0 ] ^ ^ * } ^ , AFBMA ^ 2 f ^

    8) 7 H ^ f # ^ « g ^ 5 l ^ ^ 1 # A S AGMA

    9) Trolley wheel ^ ^SJ- ̂ B l € S ^ 5J ̂ ^ 1 1 " ̂ € forged

    steel o]o^o]: «>c]-.

    5. ^ |

    7\.

    (1) Hoist and trolley control

    1) Electric hoistfe JL^rgr^Al ^-3.o\] %Z]±r * } # ^ 150

    t]^ short stroke^ magnetic disc motor brake#

    2) Electric trolley^ trolley SE>ofl ^ e ] ^ full load

    125 % S ^^lfe short stroked] magnetic disc motor brake#

    (2) Conductors

    1) Runway conductors^- ^^S^fTj] S ^ ^ conductor * ] ^

    2) Runway conductors^ 3

    (3) H.

    - 16 -

  • 2) Ji^Ha. A ] ^ I ^ #7l^.°S *HfSIfe 150

    holding 51 ^

    3) Trolley travel H.eH-3. 4 ^ ! ^ r *)-§-*}# 51

    $1 10 % **$)\J\6\}A\ trolley# i

    4)

    (4)

    1) 3.ell1|O> *ft^ ^• ' i ^ i^ 6 ! ! movable type ^ .S 'M^l*}^0]1

    - Bridget)

    - Hoistif trolley5] ^*5 systemlfe magnetic 3 -S

    - Magnetic -g-S-f-ei 4 ^ ^ ^ - local control boxofl $X^ push

    button^

    2) M5a~M5b

    - M1-M4

    3) M6 5!

    - M1-M4

    (6) e]n)E ^

    over hoisting^ ^ 1 ^ ^ £lfe limit switch

    - 17 -

  • bridge^ ^ «J trolley^

    . SHIM*(1) Hoist and trolley control

    (2) «.i

    5.

    (3) ^

    (4) Control points

    l̂ g: pendant push button switch^]

    - Hoist, bridged ^*|, trolley^) ^ * 5 # -?1*H magnetic

    controller^- 4-§-^ ^.

    - Magnetic controller ^1^.^-c: pendant push button^] -S]*!-^

    (5) e]BIS ^

    - 3Lo|>iS^ over hoisting^ ^l^lHr $X^a: limit switch

    l ^ bridge^ ^ ^ Rj trolley^

    7) fl*HElectric monorail

    - Trolley^

    7}o]7}

    - Monorail

    pendant push button controller

    - 18 -

  • - Push button controller^- magnetic

    festoon

    button^]

    - Power t

    Electric 3.^

    - Hoists

    - Push button -g-H-i-ej^ magnetic button7l ^ * M local

    push button E}»jo|o]o]: ^}t\.

    ^l^lfe electric suspension

    ^ S . i l trolley ^-Hl-

    (2) Brake

    (3) Wiring

    (4) Limit switches

    5.7}. (6)2^

    (5) Control points

    - Push button type£} 47fl̂ l local control box#

    isolation room ^ 5 ^ ^^«^] ^ * ] ^ %.

    - Push button^ ^ ^ ^ j - type^-S. button^

    fl| local control

    intetlock system©]

    6.

    (1) Buyers 440V, 3^, 60Hz AC power 7>

    control power^ seller^ 5^*H ̂ ^ f e 4 4 ^

    Sll-b control trans formerl-

    (2) Electric motor^ appendix 4HE-02, 03^1

    - 19 -

  • (3) Crane bridged HeW^--§- S^fe 4 4 3 wheel

    interlock system^-

    (4) Drive unit£] fi§

    gear coupling*]

    (5)

    (6) fiBjs.^ B-^-g-5] ^-̂ «l 2]- W

    (11) ^7]a|ti ^U] 5| JHHHi£ IEEE, NEMA ZLe]3. ANSI

    7. Name Plate

    5 ^ metric

    (1)

    tag

    - 20 -

  • - Span

    - Speed, hoist, trolley, bridge

    (2) 3>1^S. ^ 3.^ jL

    tag

    -

  • 2 ^ Design Calculation

    R E SERVICE AREA 3O/5T0N O.H CRANE

    ITEM NO. : EF-760O-M-K004

    tfAj Prepared JS-i-ieviewed --£-•>! Approved

    - 22 -

  • TABLE OF CONTENTS

    I . OESTCJN SPECIFICATION

    PACK

    1. DESIGN SPECIFICATION — 1

    2.' LOAD COMBINATION 2

    3. ALLOWABLE STRESS 3

    4. FACTORS 3

    5. LOAD TABLE 4

    31 . STRUCTURAL PART CALCULATION

    1. DETERMINE TROLLEY WHEEL LOAD 5

    2. LIVE LOAD MOMENT (LLM) 6

    3. IMPACT LOAD MOMENT (Mdi) 6

    4. GIRDER SECTIONAL PROPERTIES 7

    5. GIRDER PROPORTION • 8

    S. DIAPHRAGM THICKNESS : 8

    7. TOTAL DEAD LOAD MOMENT (DLM) 9

    8. MOMENT FOR INERTIA FORCES FROM DRIVES (IFDM) 9

    9. SEISMIC LOAD MOMENT FOR LATERAL DIRECTION (SFM) 10

    10. MOMENT FOR SKEWING (SKM) 10

    11. SUMMATION OF MOMENT 11

    12. SUMMATION OF BENDING STRESS 12

    13. MAX. ALLOWABLE DEFECTION 13

    14. BRIDGE WHEEL LOAD 15

    15. RAIL CLAMP BOLT CALCULATION 10

    Iff . MECHANICAL PART CALCULATION

    1. DESIGN DATA 19

    2. WIRE ROPE 19

    3. MOTOR 21

    4. CALCULATION OF WHEEL 23

    5. CALCULATION OF HOOK 24

    - 23 -

  • DESIGN SPECIF1CAITON

    1. DESIGN SPECIFICATION

    • CAPACITY

    • SPAN

    • SERVICE & CLASS

    • QUALITY CLASS

    • SPREAD (TROLLEY WIDTH)

    • TROLLEY WEIGHT

    • TROLLEY WHEEL

  • 2 . LOAD COMBINATION (PER CM.A.A TABLE NO. 3 . 3 . 2 . 4 )

    1) CASE 1 : CRANE IN REGULAR USE UNDER PRINCIPAL LOADING (STRESS LEVEL 1)

    DL ( D L F B ) + TL ( D L F T ) + LL (1 + 11LF) + IFD

    2) CASE 2 : CRANE IN REGULAR USE UNDER PRINCIPAL AND ADDITIONAL

    LOADING (STRESS LEVEL 2)

    DL (DLFB) * TL (DLFT) + LL (1 + HLF) + IFD + WLO + SK

    3) CASE 3 : EXTRAORDINARY LOADS (STRESS LEVEL 3)

    DL + TL + SF

    WHERE ;

    DL : DEAD LOAD

    DLF : DEAD LOAD FACTOR

    TL : TROLLEY LOAD

    LL : LIFTED LOAD

    HLF : HOIST LOAD FACTOR

    IFD • INERTIA FORCES FROM DRIVES

    WLO : OPERATING WIND LOAD

    SF : SEISMIC FORCE

    SK : FORCE DUE TO SKEWING

    THIS OVERHEAD CRANE SHALL BE INSTALLED ON INDOOR. THEREFORE, THE OPERATING

    WIND LOAD (WLO) FORCE SHALL BE TAKEN NO THROUGH FROM LOAD CASE I.

    AND THE SEISMIC FORCE (SF) ACCORDING TO THE REQUIREMENTS OF 1988 VERSION

    OF UNIFORM BUILDING CODE (UBC) SECTION 2312 SHALL DE TAKEN THROUGH FROM

    LOAD CASE I.

    - 25 -

  • 3 . ALLOWABLE STRESS (PER CM.A.A TABIJ- 3 . 3 . 3 . 4 )

    1) STRESS LEVEL 1.

    a a - 0 . 6 cry = 0 . 6 x 2400 KG/CM2 = 1440 KG/CM2

    r a = 0 . 3 5 cry = 0 .35 x 2400 KG/CM2 = 840 KG/CM2

    2) STRESS LEVEL 2 .

    era = 0 . 6 6 cry = 0 .66 x 2400 KG/CM2 = 1584 KG/CM2

    r a = 0 . 3 7 5 a y = 0.375 x 2400 KG/CM2 = 900 KG/CM2

    3) STRESS LEVEL 3 .

    aa. = 0.75 ay = 0.75 x 2400 KG/CM2 = 1800 KG/CM2

    ra = 0.43 cry = 0.43 x 2400 KG/CM2 = 1032 KG/CM2

    WHERE ;

    : ALLOWABLE COMPRESSION STRESS

    : ALLOWABLE SHEAR STRESS

    : YIELD STRESS

    4. FACTORS

    1) DEAD LOAD FACTOR (DLF) PER CMAA 70 REVISED 1988 FROM TABLE 3.3.2.1.1.4.1-1

    UP TO

    OVER

    TRAVEL

    200.

    200.

    FPM

    FPM

    SPEED

    (60.96 M/KIN)

    DEAD LOAD

    1.1

    1.2

    FACTOR

    2) HOIST LOAD FACTOR (IILF) PER CMAA 70 REVISED 1988

    1ILF = 0 . 1 5 ^ (0.005 x HOIST SPEED)(FT/MIN)

    2.8= 0.005 x FT/MIN = 0.0459

    0.3048

    .'. USE 15% FOR HOIST LOAD FACTOR.

    3 ) INERTIA FORCES FROM DRIVES (1FD)

    PER CMAA 1 9 7 5 AND CRANE HAND BOOK (WHITING)

    - LATERAL LOAD DUE TO ACCESERATION OR DECELERATION IS CONSIDERED

    AS 2 . 5 % OF THE LIVE LOAD AND THE CRANE BRIDGE, EXCLUSIVE OF END TRUCKSAND END T I E S , FOR CLASS "A" CRANES.

    - 26 -

  • 5 . LOAD TABLE

    • GIRDER ONE SIDE *

    • DEAD LOAD (ONE GIRDER + MIS.) : DL

    • TROLLEY LOAD (4850/2) : TL

    • LII-TED 1DAD (3000 + 3OO)/2 : LL

    L — HOOK LOAD

    • DEAD LOAD FACTOR : DLF

    • HOIST LOAD FACTOR (15%) : 1+1ILF

    • INERTIA FORCES FROM DRIVES : IFD

    • FORCES DUE TO SKEWING : SK

    • SEISMIC LOAD : SF

    5.1 • 2 .7 = 7.8 TON

    2.325 TON

    15.15 TON

    1.1 (CMAA 3 . 3 . 2 . 1 . 1 . 4 . 1 )

    1.15 (CMAA 3 . 3 . 2 . 4 )

    0.56 TONG (REFER TO PAGE 9)

    0.62 TON (REFER TO PAGE 10)

    1.57 TON (REFER TO PAGE 10)

    - 27 -

  • IE. £->'i~R.ucr.n..jRyvi- I^ART C A L C U L A T I O N

    1 . DETERMINE TROLLEY WHEEL LOAD

    / " 2190 (W.B)

    > = 793

    •fi=1Q90

    RAMAIN

    12.4 TON H 0 0 K tPI

    1090

    P2=2 56 TON

    7.58 TON

    • rQ-19.98 TON

    • TROLLEY LOAD = 4.65 TON

    • LIFTED LOAD = 30.3 TON

    * FOR ONE SIDE OF TROLLEY (DLF =1.1, HLF =1.15)

    30.3• LIFTED LOAD = x (IILF) = 15.15 x 1.15 = 17.42 TON (Pi)

    2

    4.G5• TROLLEY LOAD = x (DLF) = 2.325 x 1.1 = 2.56 TON (P2)

    2

    • LIVE LOAD = 17.42 + 2.5S = 19.98 TON (Q)

    * REACTION

    (Pi x ^ i ) + ( P 2 x €z) (17.42 x 793) + (2.56 x 1090)RB =

    -6 2190

    = 7.58 KG

    RA = Pi + P2 - RB = 17.42 + 2.56 - 7.58 = 12.4 TON

    (MAX. TROLLEY WHEEL LOAD = TRA)

    - 28 -

  • 2. LIVE LOAD MOMENT TO G- l GIRDER (LLM)

    Ll=6734.5

    SPAN L = 14 3OO

    d=83i . . . 1359

    RAj tRB7580 KG

    415.5.415.- 6734.5

    B

    7150 7150

    "d» = DISTANCE OF RESULTANT "Q~ FROM NEAREST WHEEL

    RES x W.B 7 . 5 8 x 2190d = —

    Q 19.98= 830.84 = 831 MM

    * LIVE LOAD MOMENT (LLM)

    (RA + RB) L I 2 19.98 x 673.45 2LLM = —

    1430= 6336.8 TON.CM

    3 . IMPACT LOAD MOMENT TO G-l GIRDER (ONLY HOIST LOAD FACTOR MOMENT CAL')

    • IMPACT LOAD (F)

    F = 15 .15 x 0 .15 = 2.2725 TON

    PER C.M.A.A (PARA 3 . 3 . 2 . 1 . 1 . 4 . 2 ) USE 15% OF RATED CAPACITY

    * IMPACT LOAD MOMENT (Mdi)

    Mdi =2.2725 x 673.45 Z

    1430= 720.74 TON.CM

    - 29 -

  • 4. GIRDER SECTIONAL PROPERTIES

    ID

    r-

    0 4

    r—

    it

    271

    295

    34

    271 _

    600

    7

    %

    295

    590 y-

    00

    TOP PLATE : 12T x 590

    WEB PLATE : 8T x 1176

    BOTTON PLATE : 12T x 590

    HORIZONTAL STIFFENER : L50 x' 50 x 6t

    * MOMENT OF INERTIA (VERTICAL DIRECTION)

    Ixx = 716483 CM4

    * SECTION MODULUS "Zxx"

    Zxx = 11941 CM3

    * MOMENT OF INERTIA (LATERAL DIRECTION)

    Iyy = 179272 CM"

    * SECTION MODULUS "Zyy"

    Zyy = 6077 CM3

    - 30 -

  • 5 . GIRDER PROPORTION ( C M . A . A PARA 3 . 3 . 3 . 1 )

    PROPORTION

    MAX.

    ALLOWABLE

    L/b

    26.78

    65

    b/c

    4 4 . 5

    60

    WHERE ;

    L = SPAN : 14300 MM

    b = DISTANCE BETWEEN

    WEB PLATE : 5 3 4 MM

    c = THICKNESS OF TOP PLATE : 12 MM

    h = D1PTH OF WEB : 1176 MM

    t = THICKNESS OF WEB : 8 MM

    6 . DIAPHRAGM THICKNESS ( C M . A . A PARA 3 . 3 . 3 . 1 . 5 . 5 )

    h/b

    2.2

    DOES NOr DEFINE ON

    SPECIFICATION

    3 0 k gKS S 8106-77Ol S E 1101 - 74

    WHERE

    RB

    P

    T

    td

    (1856 KG/CM2) (RB + 2T) t d

    = WIDTH OF RAIL BASE = 1 0 7 . 9 5 MM

    = TROLLY WHEEL LOAD : 10 .835 TON

    = TOP PLATE THICKNESS : 12 MM

    = DIAPHRAGM THICKNESS (MM)

    (USE MIN. 6MM)

    < 30KG RAIL >

    .-. td =1O.835TON x 1000

    (10.795 + 2 .4) x 1856

    = 0 .442 CM = 4 .42 MM < 6 MM O.K

    - 31 -

  • 7 . TOTAL DEAL) LOAD MOMENT (GIRDER ONE SIDE)

    • GIRDER : 5 . 1 TON

    • TIM VERSING POWER, PLATFORM : 1.5 TON

    + MISCELUNEOUS : 1.2 TON (PANEL, BRACKET ETC.)

    TOTAL DEAD LOAD = 7 . 8 TON (UNIFORM LOAD)

    * DEAD LOAD MOMENT (DUD

    WLMOMENT DUE TO GIRDER VT = x DLF ( 1 . 1 )

    WHERE " L " I S SPAN

    7.8 x 1430DLM = x 1.1 = 1533.68 TON.CM

    MOMENT FOR INERTIA FORCES FROM DRIVES : (IFD)

    FOR CUSS " A " CRANE USE 2.5%

    10.2

    IFD = 2.5% x (2 .325 + 15.15 + ) = 0.56 TON2

    0 .56 x 673 .45 2

    IFDM = = 177.61 TON-CM1430 •

    - 32 -

  • 9. SEISMIC LOAD MOMENT TOR LATEIMl. DIRECTION

    (PHI 1908 VERSION OF UBC, SECTION 2312)

    • SEISMIC LOAD (SO

    Sf = ZICpWp = 0.15 x 1.25 x 0.75 x 11.14 = 1.57 TON

    * SEISMIC LOAD MOMENT (SFm)

    1.57 x 673.452

    • SFm = = 497.94 TON-CM1430

    - CODE

    - Z

    T

    - CP

    - WP

    1988 VERSION OF UNIFORM BUILDING CODE (UEC) SECTION 2312

    SEISMIC ZONE FACTOR AS SET FORTH IN TABLE NO. 23- I .

    Z = 0.15 (ZONE 2A)

    OCCUPANCY IMPORTANCE FACTOR AS SET FORTH IN TABLE NO. 23-L

    I = 1.25

    NUMERICAL COEFFICIENT IN TABLE NO. 23-P

    CP = 0.75

    COMPONENT WEIGHT EXCLUDE LIFTED LOAD.

    WP = (DEAD LOAD + TROLLEY LOAD) x DLF

    = (7.8 + 2.325) x 1.1 = 11.14 TON

    10. MOMENT FOR SKEWING FORCES : (SK)

    SPAN 1430

    RATIO = = 3.11WHEEL BASE 460

    .-. SKEWING FACTOR : Ssk = 0.05 (CMAA : 3.3.2.1.2.2)

    • SKEWING FORCES (SK)

    SK = Ssk x TRA = 0.05 x 12.4 = 0.62 TON

    (MAX. TROLLEY WHEEL LOAD : TRA = 12.4 TON)

    * SKEWING MOMENT (SKm)

    0.62 x 673.452

    SKM = = 196.64 TON-CM1430

    - 33 -

  • 11. SUMMATION OF MOMENT (ONLY GIRDER ONE SIDE)

    CASE 1.

    DEAD LOAD MOMENT (DLM)

    LIVE LOAD MOMENT (LLM)

    IMPACT LOAD MOMENT (nidi)

    INERTIA FORCE FROMDRIVE LOAD MOMENT (IFDM)

    TOTAL El

    VERTICAL MOMENT

    1533.68

    6336.8

    720.74

    4i = 8591.22 TON-CM

    LATERAL MOMENT

    177.61

    CASE 2.

    DEAD LOAD MOMENT (DLM)

    LIVE LOAD MOMENT (LLM)

    IMPACT LOAD MOMENT (mdi)

    INERTIA FORCE FROMDRIVE LOAD MOMENT (IFDM)

    VERTICAL MOMENT

    1533.68

    6336.8

    720.74

    SKEWING FORCE MOMENT (SKM)

    177.61 TON-CM

    LATERAL MOMENT

    177.61

    196.64

    TOTAL SM2 = 8591.22 TON-CM

    CASE 3

    DEAD LOAD MOMENT (DLM)

    LIVE LOAD MOMENT (LLM)

    SEISMIC LOAD MOMENT (SFM)

    VERTICAL MOMENT

    1533.68

    6336.8

    374.25 TON-CM

    LATERAL MOMENT

    497.94

    TOTAL SM3 = 7870.48 TON-CM 497.94 TON-CM

    - 34 -

  • 12 . SUMMATION OF BENDING STRESS (ONLY GIRDER ONE SIDE)

    CASE 1.

    (DEAD LOAD MOM. * LIVE WAD MOM. + IMPACT LOAD MOM.) IFO MUM.

    SECTION MODULUS OF "Zxx" Zyy

    12-1) TENSION OR COMPRESSION STRESS ( f b i )

    8591.22TON-CM 177.61TON-CMfb, = + = 0 .720 TON/CM2 + 0.029 TUN/CM7

    11941 CM3 6077 CM3

    = 720KG/CM2 + 29KG/CM2 = 749 KG/CM2 < 1440 KG/CM2 0. K

    CASE 2.

    (DEAD LOAD MOM. + LIVE LOAD MOM. + IMPACT LOAD MOM.) (IFD MOM. + SKM MUM.)fbz =

    SECTION MODULUS OF "Zxx" Zyy

    12-2) COMBINED STRESS (fb 2 )

    8591.22 TON-CM 374 .25 TON-CMfb2 = + 0.720T0N/CM

    2 " 0.0S2TON/CM2

    11941 CM3 6077 CM3

    = 720KG/CM2 + 62KG/CM2 = 732 KG/CM2 < 1584 KG/CM7- O.K

    CASE 3 .

    (DEAD LOAD MOM. + LIVE LOAD MOM.) SEISMIC MOM.f b 3 = +

    SECTION MODULUS OF "Zxx" Zyy

    12-3) COMBINED STRESS (fb 3 )

    7870.48 TON-CM 497 .94 TON-CMfb 3 = + = O.659TON/CM

    2 + 0.082TON/CM2

    11941 CM3 6077 CM3

    = 659KG/CM2 + 82KG/CM2 = 741 KG/CM2 < 1800 KG/CM2 O.K

    - 35 -

  • 1 3 . MAX. ALLOWABLE DEFLECTION : AMAX. (TECH* SPEC 4 . 5 . 2 . l . b )

    SPAN 1430AMAX. = = = 1.79 CM = 17 .9 MM

    800 800

    1 3 - 1 . DEAD LOAD DEFLECTION ( D L A )

    * FIND EQUIVALENT UNIFORM DEAD LOAD " W "

    S.W.L3

    THEN, DEAD LOAD DEFLECTION =384 El

    5 . W . L 3 5 x 8580 x 1 4 3 0 3

    " D L A " = =3 8 4 El 3 8 4 x 2 . 1 x 10 6 x 71S483

    = 0 . 2 1 7 CM

    WLLET DEAD LOAD MOMENT, M =

    8M 8x1533.68W = = = 8.58 TON

    L 1430

    M = DEAD LOAD MOMENT

    = 1533 .68 TON-CM

    L = SPAN 1430 CM

    I x = MOMENT OF INERTIA (VERTICAL DIRECTION)

    = 716483 CM4

    - 36 -

  • 1 3 - 2 . LIVE LOAD DEFLECTION ( I X A )

    FIND EQUIVALENT CUNCENTRATED LIVE LOAD " P "

    PL 3

    THEN, LIVE LOAD DEFLECTION =

    48EI

    17730 x 1430 3

    A 70

    43 x 2.1 x 10* x 716483 — = = = = =

    PLLET LIVE LOAD MOMENT " M " =

    4

    WERE, P = EQV. LIVE LOAD & L IS SPAN IN CM

    6336.8 x 4p = 1 7 . 7 3 TON ( E Q V . LIVE LOAD)

    1430

    13-3 . TOTAL DEFLECTION

    "DLA" + "LLA" = 0.217 + 0 .72

    = 0.937 CM < 1.79 CM (ALLOWABLE) OK

    - 37 -

  • 14. BRIDGE WHEEL LOAD

    1150

    1397

    13150

    T S RAIL1G50

    T"H. i

    2190

    G1 GIRDER

    12 400 KG ^ 7 5 8 0. Mil

    G-2 GIRDER

    L..

    SPAM 14 300

    B

    SPAM 14 300

    2190

    RA-.124OOKG RB-7580

    13150

    < LEFT SIDE >

    - 38 -

  • STATIC LIVE LOAD ON GIRDER CORNER : LL

    19.98 x 13150LL = = 18.37 TON/CORNER

    14300

    STATIC DEAD LOAD ON GIRDER CORNER : DL

    CRANE TOTAL WEIGHT WITHOUT TROLLEY WEIGHTDL = x 1.1

    422.21 - 4 .65

    = x l . l = 4 .85 TON/CORNER

    4

    LOAD OF ONE SIDE OF GIRDER

    = LL + DL = 18.37 • 4 . 8 5 = 23.22 TON

    BRIDGE WHEEL LOAD OF LEFT SIDE OF GIRDER (A)

    = 23.22 TOM/WHEEL

    (MAX. WHEEL STATIC WHEEL LOAD = 23.22 TON/WHEEL)

    SPAN 14 300

    < RIGHT SIDE >

    - 39 -

  • 19.98 x 12650» LR = = 17.67 TON/CORNER

    14300

    ° DL = 4.85 TON/CORNER

    o LOAD OF ONE SIDE OF GIRDER

    = LR + DL = 17.67 + 4 .85 = 22.52 TON

    .". BRIDGE WHEEL LOAD OF RIGHT SIDE OF GIRDER (B)

    = 22 .5 TON/WHEEL

    - 40 -

  • 15. KAIL CLAMP fJULT CAI.CUUTION

    STUD POL/Rr TRAVELLING RAU.-|-

    (Kh

    TOTAL WT:22.21 TON

    TRAVELLING RAIL ' ! ? [

    -rM4?1-S: ^-"J RAlLo-ll CLAM1 HULT

    W.8 4 60O

    L y TOP QF T.LRAIL

    ''VHf.F.1 LOAD DATA • PmJ»

    P H = P I ^ SF .

    FV : MAX. WHEEL LOAD = 23.22 TUN(MAX. WHEEL LOAD PAGE 1G)

    Pt :

    Sf

    ?.0Z)

    6-̂ l 10%)

    = 4.

    = 2.32?. TON

    ^l^]oflS|«V 4 - - ^ ^ = 1.57 1UN(SEISMIC LOAD PAGE 10)

    ( P H )

    PH = P t + Sf = 2 . 3 2 2 + 1 . 5 7 = 3.892 TON

    *

    2)

    CRANE

    lO^o

    27ila]

    BOLT

    V

    WHEEL CENTER ^d

    BOLT - S - J L

    s] ?A^4

    PH

    2A

    3.892

    SL 7f

    7^]AV

    7]e) 46OOMM 4 '

    1 BOLT ^ ? 4

    V

    *\°\] H20 CLAMP B0LT7]-

    --& 20%°] 2M

  • Ill . MECHANICAL I'AliT CALCULATION

    1. DESIGN DATA

    o CAPACITY

    » LIFT

    • SPAN

    o SPEED

    • MAIN HOIST

    • TROLLEY DRIVE

    • BRIDGE DRIVE

    o WEIGHT

    • HOIST BOTTOM BLOCK

    • TROLLEY

    • CRANE TOTAL Wt

    o WHEEL DIA & QUANTITY

    • TROLLEY

    • BRIDGE

    2. WIRE ROPE

    1) MAIN HOIST

    * REQUIRED BREAKING

    LM x S• TLJ —• 1M —

    N

    WHERE,

    : MAIN 30 TON. AUX.

    : MAIN 16.2 MR., AUX.

    : 14.3 MR.

    : 0.28-2.8 M/MIN, AUX.

    : 7 M/MIN

    : 10 M/MIN

    : MAIN 0.3 TON, AUX.

    : 4.65 TON

    : 22.21 TON

    : DIA. 250 x 4EA

    : DIA. 630 x 4EA

    STRENGTH OF WIRE ROPE :

    LM : WORKING LOAD :

    N : NO. OF PARTS OF

    WIRE ROPE DIA. :

    S : MIN. REQUIRED

    SAFETY FACTOR :

    : 5

    : 17

    : 0

    : 0

    TM

    30.3

    6

    ^22.;

    5

    TON

    .3 MR

    .56-5.6 M/MIN

    .05 TON

    TON

    - 42 -

  • 30.3TON x 5

    • TM = = 25.25 TON

    6

    USE, ?.2.4 MM (6 x F i 2 5 ) IWRC B-f- ZZL°d.

    MIN. BREAKING STRENGTH : 3 3 . 7 TON

    SAFETY FACTOR OF WIRE ROPE

    • s -

    _

    2) AUX. HOIST

    • TM =

    • TM =

    33.7TON x 6

    30 .3 TON

    6 67 > 5

    LM x S

    N

    WHERE, LM :

    N :

    S :

    5.O5TON x 5

    WORKING LOAD :

    NO. OF PARTS OF

    WIRE ROPE DIA. :

    MIN. REQUIRED

    SAFErY FACTOR :

    = 1 2 . 6 2 5 TON

    5 . 0 5 TON'

    2

    16 MM ( 6 x F i 2 S ) IWRC Bf- Z

    MIN. BREAKING STRENGTH : 1 7 . 2 TON

    SAFETY FACTOR OF WIRE ROPE

    17.2TON x 2

    S =5.05 TON

    = 6.81 > 5 . . O.K

    - 43 -

  • 3. MOTOR

    1) MAIN HOIST

    Lii x VKW =

    6.12 x E

    WHERE, LH = WORKING LOAD : 30.3 TON

    V = HOIST SPEED : 2.8 H/MIN

    E = MECHANICAL EFFICIENCY

    WHERE, E = Eg" x Esm

    Eg = GEARING EFFICIENCY

    n = NO. OF GEAR REDUCTION

    Es = REEVING EFFICIENCY

    m = 0 . 9 7 3 x 0 . 9 9 7 = 0.851

    30.3T0N.X 2.8 M/M1NKW = : : = 16.31 KW

    6.120 x 0.851

    USE 17KW x 8P

    2) AUX. HOIST

    LH x V• KW = :

    6.12 x E

    WHERE, LH = WORKING LOAD : 5.05 TON

    V = HOIST SPEED : 5 .6 M/MIN

    E = MECHANICAL EFFICIENCY : 0 .85

    5.O5TON x 5.6 M/MIN

    KW = = 5.44 KW6.12 x 0.85

    USE 5.5KW x 6P

    - 44 -

  • 3) TROLLEY DRIVE

    W x V

    KW - x f1 x E

    6 . 1 2

    WHERE ;

    W = RATED LOAD + TROLLEY W.T : 3 4 . 9 5 TON

    V = TROLLEY SPEED : 7 M/HIN

    P = MOTOR FACTOR : 2 . 5

    F = FRICTION FACTOR : 0 . 0 0 6 8

    (FROM CMAA TABLE 5 . 2 . 9 . 1 . 2 . 1 - D BASE ON 250

  • 4 . CALCULATION OF WHEEL

    1) TROLLEY WHEEL LOAD :

    • MAX. TROLLEY WHEEL LOAD : P = 12 .4 TON

    (STRUCTURE PART CALCULATION PACE 5)

    • WHEEL DIA (USE 3OKG/M RAIL)

    • BY CMAA-ACCORDING TO CMAA TABLE 4 . 1 1 . 3 Cb\SS "A"

    P(LB) = 1600 x DUN) x W(IN)

    P(LB)DUN) =

    D(CM) =

    1600 x W(IN)

    P(KG)

    112.5 x (b-2r)

    12400

    WHERE ;

    W : EFFECTIVE WIDTH OF RAIL ( b - 2 r )

    30 kg

    112.5 x (6 .033 - 2 x 0.8)

    = 24.86 CM = 248.6 MM

    USE 250 DIA WHEEL

    2) BRIDGE WHEEL

    . • MAX. BRIDGE WHEEL LOAD : Pmax = 23.22 TON/WHEEL

    (STRUCTURE PART CALCULATION PAGE 16)

    WHEEL DIA (USE 37KG/M RAIL)

    BY CMAA METHOD

    P U G )D(CM) =

    112.5 x (b-2r)

    23200

    112.5 x (6.27 - 2 x 0.8)

    = 40.28 CM = 402.8 MM

    USE 630 DIA WHEEL

    37

    C

    C

    c

    k g Ml "I

    ( -

    ^~ Tto *l

    C O

    «?

    en

    1.59"13'

    KS BJ I S E

    — 62.71—-

    !W ^

    .5

    8 1 0 6 -1101 •

    •(•

    T:}'i3.J9_-r'-.

    •-122.24

    8374

    - 46 -

  • ( 3O ) TON HOOKO.I

    oi ; _ n oil ° |OUi p X||*j = SF5O~ 55 'Q = M § 5 | g 30000 kg

    h 1 -- U . 5 CM

    b2 - 3 . 4 CM

    1)h b l + 2b2

    e l = * = (CM)3 b l + b2

    1 6 . 5 11 .5 +2 * 3 . 4_ „ •% — b • I D

    3 1 1 . 5 + 3 . 4

    e 2 = h - e l = 1 6 . 5 - 6 . 7 6 = 9 . 7 4 (CM)

    2}

    3)

    4)

    Cl- Oi W1— 1 —1

    A =

    I

    ZII

    b lh *ii -r- —

    = 16.5 *

    IT 3

    36

    16.5"

    36

    = 2514

    I

    e l

    + b2- ( PM**" 9 ̂— \ O i l C. I

    2

    1 1 . 5 + 3 . 4

    2

    ( b l + b 2 ) " 2 + 2

    b l + b2

    3 ( 1 1 . 5 + 3 . 4

    11 .5

    2514_ _ IT)— " — 0 ( 0

    6.76

    2514= 258

    123

    *bl*b2

    ) " 2 + 2 * l l .

    t 3.4

    „-,

    CM" 3

    (CM"4)

    5 * 3 . 4

    e2 9.74

    M = Q * ( + e l ) = (KG-CM)2

    16= 30000 x ( + 6 . 7 6 ) = 442800

    2

    SEE DWG NO. B04-5O8

    - 47 -

  • 6)M Q

    ZI A

    4 4 2800 30000

    372 123

    = 1434 KG/CM"2 i 1600 KG/CK"2

    H I - IV O||

    SEE DWGN0.BO4-508

    3)

    M q -4 42800 30000

    ZII A 258 123

    =-1473 KG/CK"2 < 1600 KG/CH"2

    r- b l - 1 1 . 5 cm r ' = 1 0 . 2 cmb2 = 4 . 7 erah = 14.4 cm

    — a = 16 era

    1)

    2)

    h b l + 2b2e l = _ _ _ * ••= (CM)

    3 b l + b2

    14.4 1 1 . 5 + 2 * 4 . 7= * = 6.2

    3 1 1 . 5 + 4 . 7

    e2 = h - e l = (CM)

    = 14.4 - 6.2 = 8 .2

    b l + b2= h * = (CMr2)

    2 (

    11 .9 + 4 .7 i= 14.4 * . — — = U6. .5

    2,

    h"3 (b l + b 2 ) " 2 + 2bl * b2I * = (CM"4)

    36 b l + b2

    1 4 . 4 ^ 3 . ( 11 .5 + 4 . 7 T 2 + 2 * 11.5 * 4 .7

    36 1 1 . 5 + 4 . 7

    = 1808

    - 48 -

  • I 1898Z H I = = = 306.1 (CM'3)

    e l 6.2

    I 1898Z IV = = = 232 (CM"3)

    e2 8.2

    H = — * tan 60 " * r 1 = (KG/CM)2

    30000= * tan 60° * 10.2 = 265004

    2

    6)

    M 265004^ C7 e t = t O b = + = = 866 KG/CM'2 < 1600 KG/CM~2

    ZII I 306.1

    M 265004^ a ec = -C7b= = =-1143 KG/CM"2 < 1600 KG/CM"2

    ZIV 232

    0 | E S O.K

    - 49 -

  • (5)TON HOOKS-I

    Oil

    [= SF50- 55 bl = 5..JCM= M § o ( g 5000 kg b2 = 2.2CM= T 3 ° ^ ^ | 2 9 CM h = 8 .4CM

    h bl + 2b2e l = * = (CM)

    3 bl + b2

    8 . 4 5 . 4 + 2 * 2 . 2=3.61

    3 5 .4 + 2 . 2

    e2 = h - e l = 8.4 - 3 . 6 1 = 4 . 7 9 (CM)

    2) E S l ^ t b l t b2

    A = h * = (CM* ')2

    5.4 + 2 . 2= 8 .4 * = 3 1 . 9 2

    2

    > 3) 2! h"3I - *

    36 b l + b2= (CM~4)

    8.4*3 ( 5 . 4 + 2 . 2 ) ^ 2 + 2 * 5 . 4 * 2 . 2

    36 5 .4 + 2 . 2

    4)

    = 176.6

    I 176.6ZI = = = 48.92 CM~3

    . e1 3.61

    176.6ZII = = 36.87 CM"3

    4.79

    5) S| PI a «! e aM = Q * ( — + e l ) = (KG/CM)

    29

    = 5000 x ( - - - + 3.61) = 405502

    - 50 -

  • 6) I - II 2| ^ O et = to b + O I

    3 J 2J

    I =

    — T

    M

    ZI

    = 986

    ^ G ec = -O b + O t

    = -943

    IV 0|| °iOi A-J r~ blb2h

    - a

    KG/CM"

    M

    £11

    KG/CM"

    = 5.4= 2.2= 8.4= 9

    Q

    —A

    2 <

    Q

    —A

    2 <

    CMCMCMCM

    40550

    48.92

    1200 KG/CM"

    -40550

    36.87

    1200 KG/CM*

    r' = 5.86

    5000

    31.92

    2

    5000

    31.92

    2

    CM

    2)

    h b l f 2 b ~ 2 .e l = — * = (CM)

    3 b l + b2

    8 .4 5 .4 + 2 * 2 . 2= * = 3 . 6 1

    3 5 .4 + 2 . 2

    e2 = h - e l = (CM)

    = 8 .4 - 3 . 6 1 = 4 . 7 9

    i

    b l + b2A = h * = (CM"2)

    2

    5.4* + 2 . 2- 8 .4 * = 3 1 . 9 2

    2

    "3 (b l + b2)~2 + 2bl * b2* _ (CM"4)

    36 b l + b2

    . 4 " 3 . ( 5 . 4 + 2 . 2 ) ~ 2 + 2 * 5 . 4 * 2 . 2+

    3 6 5 . 4 + 2 . 2

    - 51 -

  • 4)

    I 176.6Z I I I = = = 48.92 (CM"3)

    e l 3.61

    I 176.6Z IV = = = 36.87 (CM~3)

    e2 4.79

    5) s S^E

    QM - -— * tan 60 °* r1 = (KG/CM)

    2

    5000= * t a n 60 * * 5.86 = 25375

    2

    6) a g^ (seem si?.* a s ^ s nys

    M 25375e t = +O b = + : = = 519 KG/CM"2 < 1200 KG/CM" 2

    Z I I I 48.92

    M 25375ec = -C7 b= = =-688 KG/CM'2 < 1200 KG/CM"2

    ZIV 36.87

    0 | H £ O.K

    - 52 -

  • REVISIONS

    HOOK Tsrso! ~ SF55

    NO | DESCRIPTIOK'S | UTl

    PROJECT

    TITLE

    CO10

    REMARKS

    DATI

    1991. 10. 01

    SCAL£

    LOAD BLOCK HOOK N/S

    DRAWN DESIGNED I CHECKED

    %

    fo)BANDOV h y UACH1NERY CO..LTD.

    APPROVZD I Rtr DRAV/INC

    BO< - 5 0 8

  • Ml

    1) Material handling #H]#ofl

    2)

    3)

    fe 3 H 5| standard

    field

    2.

    1)

    2)

    3)

    marking^

    -^^ appendix AM-Ol (general

    welding requirements)^

    51fin

    51

    submerged arc f l u x e d AWS S H

    3.

    4)

    5) Slagfe S.^

    6)

    7) - g - ^ ^ ^^)

  • cleaning 4 ^ ^ : Structural Steel Painting

    Council (SSPC)-SP "Commercial Blast Cleaning)^ 7]^-^] tcf

    2) Dry Film Thickness

    - £ £ dry 1-tSj T ^ f c ^ ^ 4 scM ^M" 5 . SSPC-PAl:Shop,field iJ -fi-^lJt^1 SflSPU HZ]3. SSPC-PA2: nfzL*]*%•# dry sflolE

    3) *f|*!*3

    717)1^

    ^ 1 S'S ^ ^

    3-§•*>*] ?tfet:}.

    4) Seller^ Appendix 4HP-02

  • 51

    2)

    4 ^ # 51

    2)

    3) %7\ 51

    2.

    3.

    Certified mill sheet JiL3.A-)|| ASME a f e ASTM 46cMl

    7l

  • 5.

    . 4

    4

    2)

    3)

    4)

    5)

    6)

    7) 4

    711

    8) ZL

    125

    ^ 4 ^ 4

    - 57 -

  • 4 ^ General Layout

    GENERAL LAYOUT

    FIGNO. EQUIPMENT NO. EQUIPMENT NAME

    1. EF-7600-M-K001 1.0 Ton Electric Overhead Crane for Ml to M4

    Cell

    2. EF-7600-M-K002 1.0 Ton Electric Overhead Crane for M5 Cell

    3. EF-7600-M-K003 1.0 Ton Electric Overhead Crane for M6 Cell

    4. EFT7600-M-K004 30/5 Ton Electric Overhead Crane for Hot Cell

    Service Area

    5. EF-7600-M-K005 3.0 Ton Electric Overhead Crane I for Ml to M4

    Hot Cell Operating Area

    6. EF-7600-M-K006 3.0 Ton Electric Overhead Crane II for M6 Hot

    Cell Operating-Area

    7. EF-7600-M-K007 3.0 Ton Electric Overhead Crane III for M5a to

    M5b Hot Cell Operating Area

    8. EF-7600-M-K008 3.0 Ton Electric Overhead Crane for Workshop

    9. EF-7600-M-K009 2.0 Ton.Electric' Monorail Hoist for Mechnical

    Room

    10.EF-7600-M-K010 30 Ton Electric Fixed Hoist for Cask Receiving

    Yard

    11.EF-7600-M-K011 3.0 Ton Electric Suspension Crane for

    Isolation Room

    - 58 -

  • FiG.r.i.owN ELECTRIC OVERHEAD CRANE FOR MI TO NI CELL

    FOUIP. NO. : EF-7600 -H-KOOI

    SCALE : 1/50

    oooc

    320SPAN = ?

  • FIC. 2: I.OTON ELECTRIC OVERHEAD CRANE EOR m * TO M5I) CELL

    EQUIP. HO. : EF -7600 -N-K002

    SCALE : / . / " 5 0

    ooV

    oo

    o

    oo

    --$=

    700, -, SPAN= .1800 7000)

    iE

    .AQJL.

    / TOf/

    r.ooX

    -200.0.

    s'AA

    EL.82l000_

    _ JAIL,

    GATE

    Opening si?'*

    I 8 0 "slccl i.-l

    EL. 77,300 DKTAIL AA.

    .60Q,__9Q0 _,

    •8QQ

    H40Q

    ; lupollOOK COVERAGE LENGTH

    114 CELL

    \ \

    HOOK COVERAGE AREA

    M5-B CELL

    \t

    900 . 500

    8QGL

    CEL

    18

    - 60 -

  • FIG. 3 : 1.0 TON ELECTRIC OVERHEAD CRANE FOR N6CEI.I

    EQUIP. NO. : EF-76OO-H- K003

    SCALE : 1/50

    -20.0-

    f-15CELL

    .400 900

    117'\CELl

    A2Q.Q.

    /ion ..2Q00 ._±LQ.Q...

    M6CI LL

    1

    125600_

    22300

    HOOK CO\Vt\RAGE AREA

    900

    co

    ?8

    ZKI

    '81

    C)o

    - 61 -

  • FIG. -1: 30/5 TON ELECTRIC OVERHEAD TRAVELLING FOR SERVICE AREA

    EQUIP. NO.: EF-7600-M-KOO'I

    SCALE \ I/IOO

    ZQO.

    EL 92,017

    o

    c

    J5.4DGL

    SPfiM-1^300

    \30/5 TON\\

    ooo

    1Q.0 l.20i

    -ZQQ

    82,200

    • EL. 77.300( isr FLOOR)

    EL. 72.300( BASEMENT)

    EL.67,300

    (POOL BOTTOM!

    0/2)

    - 62 -

  • 1

    I

    1

    1

    — 1

    11

    j1

    !

    iii

    •'I1

    iI

    • i

    ii

    j — i —

    i t

    \ 1i i

    L, L_

    2050

    ^ ^

    2850

    5

    . - _ . _

    t o

    - — —

    oF RA

    IL/

    oo

    oo

    J

    ffS-A

    »

    i r

    J L• •

    11800

    i\

    i

    Ii

    1

    2150

    i

    2;

    • - j

    O l

    li

    \

    i

    M5-B !_ . J

    15400

    1

    . J

    \M7

    1550

    oo oo

    o.o

    ooo

    (2/2)

    - 63 -

  • FIG. 5 : 3.0 TON ELECTRIC OVERHEAD CRANE I FOk Ml TO M4 HOT CELL OPERATING AREA

    EQUIP. NO. : EF-7600-N-K005

    SCALE :

    - 64 -

  • FIG. 6: 3.01OH ELECTRIC OVERHEAD CRANEl FOR M$ I DT CELL OPERATING AREA

    EQUIP. NO.: EF-7600 -M-K006

    SCALE : 1/100

    EL 8 5,700

    EL. 8 2.200

    M 6

    6300

    SPAH =525C

    500

    n. i

    6O3

    t90f

    en

    80Q

    OF RAIL

    M6

    21100

    -2M.QSL.

    25 tOO

    \ \

    HOOK COVERAGE AREA

    HOP 1300? H

    - 65 -

  • FIG.T.3.0T0N ELECTRIC OVERHEAD CRANE II FOR M5a TO M5I) IDT CELL OPERATING AREA

    EQUIP. NO. : EF-7600-M - K007

    SCALE : I^'IOO

    I

    7300

    SPAN-6P5O

    90C

    JL

    50C

    1

    EL. 82.000

    EL. 77.300

    too

    ®\

    MOO

    28000

    15400

    24900

    N5-A H5-B (17

    \ \

    HOOK CO '£ IAGE AREA

    6300

    1400 2Q.0-

    3—,C

    3-

    - 66 -

  • F/6.8: 3.0T0N ELECTRIC OVERHEAD CRANE FOR WORKSHOP

    EQUIP. NO. : EF-7600-M -K008

    SCALE : 1/50 , t/100

    ©7300

    5G.Q

    ]

    EL. 81,800

    _9QQ_ sen\

    EL. 7 7,300

    IOK COVERAGE ARfA

    - 67 -

  • FIG.

  • FIG.10: 30 TON ELECTRIC FIXED HOIST FOR CASK RECEIVING YARD

    EQUIP. NO. : EF- 760O-M-KOI0

    SCALE • 1/100

    30 TON FIXED HOIST

    - 69 -

  • FiG.ii : 3.0TON SUSPENSION CRANE FOR ISOLATION ROOM.'

    EQUIP NO. : EF -7600 - M - KOI I i

    SCALE : 3 0 / l , 5 0 / l j : .

    RUN WAY

    I-BEAM

    800

    700 SPAN *• 2 0 0 0 700

    700

    500 2700 iI

    700

    i 700

    HOOK COVERAGE'

    • i

    300

    oj —

    - F L ^8650 •:

    i

    ! I

    - i.' • K

    7 700

    •I

    I . i

    J 800

    ••; i> I

    I

    1 8

    ! s; o

    T 8: Oi O

    s

    - 70 -

  • HOIST AND CRANE

    1991. 5.

    7]

    - 71 -

  • 4.

    5.

    *

    3.

  • o

    "^ "d^r-i IMEF Building MfcHl -y*| 31 Hoist !< Craned

    * H **1 a J 7 H r *HH*J"CK °1 •:?-2i-&-& Seismic Category. WON (SIR) Equipments.^,

    CMAA No. 70 or 74 s\ AISC ofl a]7J*|-H Hoist & Crane S} -?\2- -^-^-fMI cfl*>o=J *I=il

    Craned

    Code

    OBE (/2 SSE) ^ SSE

    Bridge, Saddle (End Truck). Hoist ^ -^-cj| Ĵ-*]ofl cfl*H

    ?1*M

    2. ^ji Code ui Standard

    7f-,

    cf,

    nr.

    Technical Specification for Crane and Hoist.

    (Doc. No. EF-E-1410-DT-H101)

    CKAA No. 70 Specification for Electrical Overhead Travelling Crane

    CMAA No. 74 Specification for Top Running 8< Under Running Sigle Girder

    Electric Overhead Travelling cranes

    AISC American Institute of Steel Construction

    ANSI B30.11-Honorail Electric Wire Rope HOists

    HMI-100 Specification For Electric Wire Rope Hoists

    SOFINEL Documents

    KU/GI - 82.7264 : Siraplif led Method For Seismic Calculation

    KU/GI - 82.7273 : Seismic Date

    KU/GI - 83.7141 : Miscellaneous Handling Equipment Runway Checking

    - 73 -

  • 3. #To

    -cr CMAA No. 70 AND/OR 74 ^ K N r 7l-£.£_S.

    Drawing

    4,

    "2" *J-al «}^- Code •*} Standardo|| a}-*:^.

    ^ A J - * ^ , OBE * ^ ( 5 4 SSE), SSE *}^ *$ °]^-s] 2S

    *H°fl *&&& *}&.

  • SOFHTELAPPENDIX ! ::AGE l / 4

    N KU/GI - 8 2 . 7 2 6 4 REV 3

    A P P E N D I X

    S I M P L I F I E D METHOD FOR S E I S M I C CALCULATION

    - 75 -

  • 1. DEFINITION

    A floor response spectrum i s the maximum response(accelerat ion) of a one degree of freedom osc i l l a t o r (of agiven frequency and damping) on tha t floor when the plant issubmitted to the ear thquake.

    At a frequency g r e a t e r than 33 Hz, a'one degree of freedomo s c i l l a t o r behaves as a body which i s r ig id ly bonded to theconcrete s t r u c t u r e . Thus the asymptotic values of thespectra are the maximum acce le ra t ions of the concreteitself.

    As the frequency decreases, there is an amplificationfollowed by a. disamplification of the mechanical structurein relation to the concrete structure.

    2. USE

    The steel structure which is submitted to the floor responsespectrum is a multidegree of freedom oscillator. Therefore amodal analysis is necessary to derive accelerations andforces in the steel structure. The modal analysis is complexand requires :

    - determination of Eigen frequencies,

    - determination of Eigen vectors,

    u- reading of ampli'cation factors on the spectrum for each

    mode,- recombination of modes.

    However a simplified and conservative approach can beadopted :

    1°) Determination of the f i r s t preponderant Eigenfrequencies (or at least frequency-ranges) = two orthree are generally enough.

    2° ) Reading of the spectrum and determination ofamplification factors for those frequencies (orfrequency-ranges) at the steel damping (4 and 7 %).

    Many cases may occur :

  • KU / GI - 8 :: . 7 2 6 4 REV. B

    a) A

    iieauencv rsnae

    frequency

    Then the spectrum is conservatively enveloped by thestraight line A for frequencies greater than f̂

    cX g = max (A, B, C, D, E, F)

    The forces in the steel structure are enveloped bythe following loading case assuming constantacceleration oi g :

    j//7*~r-7 77/ / /

    It should be noted that in this particular case, iand f-j (and any higher Eigen frequencies) need notbe evaluated.

    D

    b) There is a peak between f-, and f-j (or f7_and f-̂

    . _ . _ A

    If f-[_, f2r £3 a r e accurately known, then

    ^, Freauencv

    . oC 9 = m a x (A, B, C, D, E, F) line A.

    If ±2 and f2 are unknown, then

    o/ g = peak of the spectrum line Z\'

    - 77 -

  • APPENDIX I PAGE,; / '4

    N' KU/G1 - 32.7264 REVB

    It should be noted that line J\ ' is a conservativevalue which dispenses from determining any otherfrequency.

    It is furthermore recommended that ĉ g should be noless than the asymptotic value of the floor responsespectrum.

    2 The.same procedure applies for the vertical responsefrom the vertical floor response spectrum,

    a

    <

    03OCM

    5aOu

    a

    0

    a

    o

    LU

    zu_OCO

    UJ

    a:03

    - 78 -

  • PROJECT DESIGNATION SHEET

    BPE UP DATED WITH TRAVELLING BEAMS

    17.2.84 BPE FIRST ISSUE RA

    Rev. Date Status Modifications- Observations Approved by

    FRAMATOME - KOREA ELECTRIC CO.

    KOREA NUCLEAR UNITS No 9 AND 10JOB No.

    KEPCO No. DOCUMENT No. UNIT

    Application

    KU

    Classification codes Subdivisions

    9 4 7 E 3

    Document title

    MISCELLANEOUS HANDLING EQUIPMENT

    RUNWAY CHECKING

    Document type TECHNICAL NOTE Class

    Issued by :

    Tour FIAT Cadsx 16 32 084 Paris la Difensa

    SFL K U / G I . 8 3 . 7 1 4 7 NESymbol Internal identif ication number

    This document is the property of SDFINElIt must not be used, reproduced, transmitted or disclosed without the prior written permission of- S0FIHE1,

    - 79 -

  • APPENDIX E PAGE 1 / 1 |

    N" KU/GI - 8 2 . 7 2 7 3 R E V C

    LU

    u_O

    : |coj

    LU:

    coi

    A P P E N D I X

    SEISMIC DATA

    Two kinds of earthquakes are taken into account forcalculation :

    - the Safe Shutdown Earthquake (SSE)- the half SSE (1/2 SSE)

    ccThe corresponding accelerations to be considered for thedesign of the miscellaneous handling equipment are the

    co followingOf

    - Hor i zon ta l acce le ra t ion = 1,2 g (SSE) or 0,6 g (1/2 SSE),

    o - V e r t i c a l acce le ra t ion = 0,4 g (SSE) or 0,2 g (1/2 SSE).a

    .O For c a l c u l a t i o n c r i t e r i a , see the c a l c u l a t i o n note KU/GI -63.7147 NE. Miscellaneous handling equipment. Runwaychecking. Design c r i t e r i a .

    ° C I The c o n t r a c t o r shall submit t o FRA.MEX. the correspondingc a l c u l a t i o n no te s .

    - 80 -

  • UJ

    ZUJ

    LA

    DE

    F9

    20

    8-.

    P

    AR

    ISU

    PO

    LE"S

    C

    O1.

    PL

    AC

    E

    DE

    £

    )—<

    "XDOI—

    _ IUJ

    Of-

    I

    m

    UJ

    SF

    L8

    -

    b

    B

    OF

    1.

    1.

    1.

    2.

    2.

    2.

    2.

    3.

    3.

    3.

    3.

    3.

    4.

    4.

    4.

    4.

    4.

    in-AGE 1 / 12

    N. KU/GI - 83.7147 R e v B

    CONTENTS

    .OBJECT AND DEFINITION

    1.

    2.

    Ob j e c t

    Definition

    DESIGN RULES

    1. Design rules

    2. Grade of steel

    3. Definition of load cases

    RUNWAY CHECKING FOR MONORAILS

    1.

    2.

    3.

    4.

    Checking procedures

    Checking of beam without seismic action

    Checking of beam under seismic action

    Checking of flange of beam

    RUNWAY CHECKING FOR TRAVELLING BEAMS

    1.

    2.

    3.

    4.

    Checking procedures

    Checking of beam without seismic action

    Checking of beam under.seismic action

    Checking of.flange of beam

    - 81 -

  • a

    Ou

    LUQ

    UJO

    GC

    Do

    UJ

    O

    j

    UJ'

    CD;

    1 . OBJECT AND DEFINITION

    1.1. Object

    This specification aims at setting forth the design criteria•and specific rules for the runway beams of the miscellaneoushandling equipment to be used in KNU 9/10 Nuclear PowerBlocX, scope C and G.

    It is presented in terms of French design practice but maybe modified to allow alternative design in terms of Koreandesign practice should the need arise.

    ° 1.2. Definition

    Secondary steelwork : this term covers the runway beams, andthe supports of the runway beams.

    - 82 -

  • PAGE 3 /

    N. K U / G I - 8 3 . 7 1 4 7 REVB

    2 . DESIGN RULES

    z

    Q

    <

    5

    CDO

    OaDoo

    LUQ

    UJ

    U

    2.1. Design rules

    The following general rules shall be applied unless extendedor modified by the present specification :

    - CM 66 (ref. 1) Regies de calcul des constructions enacier. (Code for the calculation of steel structure).

    The following particular documents shall be applied andshall take precedence over the general rules (ref. 1) :

    - SOFINEL documents :

    In addition to the present specification :

    . KU/GI - 82.7264 rev. B Secondary steelwork designcriteria and specific rules (ref. 2),

    . KU/GI - 82.7273 rev. C Miscellaneous handling equipment.Equipment specification. Scope C (ref. 3),

    . KU/GI - 83.7091 rev. B Miscellaneous handling equipment.Equipment specification. Scope G (ref. 4).

    2.2. Grade of steel

    The grade of structural steel shall be E 24.2 qualityin accordance with the AFNOR definition (yield stress :(fe = 24 kg/mra2)

    O

    UJ

    O

    2.3. Definition of load cases

    The loads shall be in accordance with ref. 2 :(in the center of the span)

    Lo or Lo

    DoLo

    Lo1

    PvPhf

    A

    i-

    •» IUUUI U

    I Iself weight of the runway beam = q x_concentrated load : equipment loaded, is taken intoaccount as a concentrated loadconcentrated load : equipment unloaded, is taken intoaccount as a concentrated loadload combination under seismic action (vertical)load combination under seismic action (horizontal)deflection of the runway beam

    - 83 -

  • PAGE d

    N. KU/GI - 83.7147 REV'B

    The load cases shall be in accordance with rule CM 66,ref. 1.

    Load combination A (checking of stress on members)

    4 3 .1 Y = dynamic poefficient_ Do + _ W Lo 0> = 1.15, class A3, Groupe II, FKM)

    UJ O ~> * 't/1Z

    Load combination B (checking of stress on members under 1/2o SSD

    4 17_ Do + (Lo1. + seismic loads]3 1 2 . '

  • SOriOcLPAGE 5 /

    N. KU/GI - 83 .7147 REV. B

    3 . RUNWAY CHECKING' FOR MONORAILS

    3.1. Checking procedures

    For the fixed runway beams and removable runway beams ofhandling equipment scope C and G (see ref. 3 and 4), it isnecessary to verify the yield stress obtained for structural

    2 steel. Two cases are considered :UJ

    - checking of the beam without seismic action with equipmentloaded (Lo) :

    jjj Verification of stress and deflection :

    . load combination A for stress (j f .£, (Je = 24 kg/mm203

    o f 1. load combination D for deflection _ /

    750

    O9- - checking of the beam under seismic action with equipment

    unloaded (Lo') :

    Verification of stress :

    Q . load combination B Q 1o X ' 3 3 •

    . load combination C1, 10

    O 3.2. Checking of beam without seismic action

    (In accordance with CM 66 reference 1).UJ

    3.2.1. For load combination A

    Max. Bending moment2

    3 D qj^ flM max. = _ U Lo " + = (9 Lo + 4Do)

    8 ' 6 24

    m

    UJ

    a.CO

    to

    - 85 -

  • PAGE 6 /

    N- KU/GI - 8 3 . 7 1 4 7

    oCN

    en

    m

    u.10

    . Stress

    r̂ M max .Of = < 24 kg/nun2 = Q e

    V

    UJ where — = Section Modulus of beam2 VUJ

    UJ

    Q3.2.2. For load combination D

    incc

    Oa

    o • Stress

    M max .UJo

    Max . b e n d i n g moment

    M max. = . .+ . = _ ( 2 < P L O + Do)

    .4 8 8

    UJ

    ° V

    Deflection

    2 4 3Cf 0 5q £ Do £

    f = I _ _ or +h 384 El 48 El

    f 1UJ

    750u_Oto

    3.3. Checking of beam under seismic action

    (in accordance with CM 66 ref. 1).

    The accelerations corresponding to SSE or 1/2 SSE to beconsidered for the design of the miscellaneous equipment arethe following (see references 3 or 4, Appendix C) .

    - 86 -

  • SiUJIL_UJQ

    _ J

    10

    cc

    Q .

    0 3

    CNai

    UJ

    o

    o

    UJ

    aUJ

    o

    PL

    A

    <

    cc

    1—

    1

    oC/)

    ')

    ca

    UJ

    tr

    0 3

    iu.to

    SoFin

    1 / 2

    1 / 2

    S S E

    S S E

    Bean

    si

    SSE Ver t ica l acce le ra t ion :

    SSE Horizontal acce le ra t ion

    Ver t i ca l acce le ra t ion : 0,4

    Horizontal acce le ra t ion : 1,

    i i s checked with monorail inno load charging.

    3. 3.

    P v =

    1. Load combination B (under

    4 17= _ Do + (Lo + 1/2 SSEV)

    3 12

    w i t h 1 / 2 S S E V = 0 , 2 . (Do + Lo')

    P h =17 17

    = x 1/2 SSE, = x 0 , 6 x12 12

    w i t h 1 / 2 S S E h = 0 , 6 (Do + L o )

    Mv =

    Mh =

    24 q(L 17 L o ' l 17

    ( ) + ( ) + x3 8 12 4 12

    I(97 Do + 204 Lo)

    4 8 0

    17 q l Lo'J?. v n,fi f + )

    12 8 4

    PAfP 1 /rMuC / /

    N." K U / G I - 8 3 . 7 1 4 7 R E V B

    0, 2 g

    : 0, 6 g

    g

    2 g

    the center of the span with

    1/2 SSE)

    (Do + Lo')

    2 .q I L o ' l

    0 , 2 x ( + )8 4

    111(Do + 2Lo)

    1 6 0

    Mv _ Mh= Oh = I ' y = l / 2 Iy given by the p r o f i l e

    Ix I ' yV ' V

    /r~ Ue= ()v + Oh <

    1,33

    - 87 -

  • UJ

    u_Oto

    (.*

    oo

    to,

    3 . 3 .

    Pv =

    Ph =

    =

    Mv =

    Mh =

    2

    .3.4.

    EL

    2. Load combination C (Under

    Do + Lo + SSEV, with SSEV

    SSEh

    i , 2 . (Do +

    q£ Lo'l+ +

    8 4

    7 •? .. {8

    Mv f~~ ( j h :

    IxV

    =

  • UJLO2UJ

    UJQ

    CO

    cr

    0.

    r00O

    en

    UJ

    OQ.

    OCJ

    UJ

    aUJ

    CJ

    a.—'

    i—

    a.

    aoh-_JLLJ

    )FIN

    uCO

    en

    UJK

    CD

    tu_(/I

    B

    OrJOELPAG £ 9 /

    N. KU/GI - 83.7147 REVB

    4. RUNWAY CHECKING FOR TRAVELLING BEAMS

    4.1. Checking procedures

    (ditto monorail)

    4.2. Checking of beam without seismic action

    (In accordance with CM 66. Ref. 1).

    4.2.1. For load combination A

    . Bending moment

    a) Self weight action

    Uniformly distributed load, the moment is Mo, calculatedaccording to the real situation of the beam.

    b) Travelling beam action

    With concentrated loads to, the maxi bending moment, Ml,depends on the ratio e/ ̂ of the rollers spacing to the spanof the beam.

    It can be determined by using influence curves or by a stepby step calculation with several roller positions.

    The maxi factored bending moment is :

    M max = 4/3 x Mo + 3/2 x Ml

    • Stress

    r- M max , t—

  • PAGE i o /

    N . KU/GI - 83 .7147 REV. B

    UJto

    UJ

    Q

    inQ:

    OCNOl

    oo.OO

    UJO

    o<

    o

    UJ

    u_O

    -/I.

    UJ

  • z

    O

    a.

    O

    en

    OaDOo

    UJ

    o

    o

    UJ

    zli_Oen

    03

    >UJ

    B

    Concentrated loads

    M'HI = 0>6 x L'° x M1

    Lo

    Factored bending moments

    M'v max = Mo (i + g x °'2

    M ' = ( M o x O , 6 + M l xo ma x

    , stresses

  • NS

    E

    ULJU_

    LA D

    EP

    AR

    IS

    CO

    92

    0

    III

    A C

    OU

    PO

    LI

    UJQ

    .AC

    E

    i

    a

    :IA

    T.

    TO

    UR f

    NE

    LS

    OF

    I

    UJ

    a:ao'

    ^OFsflcL

    B

    , stresses

  • 4 S-

    i PAGE 1 / 1 1 1

    I . . I IBDS - I P - 6 0 7 n

    • % •

    m^ HOIST-M 2

    - * 2 : < = > .

    I 2. -g-

    92. 6. 10.

    0I . i . i . .

    2 - 1 71] °4 ^ t - ^ ^ l

    2 - 2 ^ ° J 5.«J

    2 - 3 KS & J I S Hi ANSI B 3 0 . l l

    2 - 4 ? m ^ » ^ q

    3. ± *% 7d 4

    3 - 1 °J °| =S *3

    2)

    3) 7)

    •4), - ^

    -fr *|**i;I-. (MAKER MILL SHEET ^ °] )

    *j ̂ *3 «>.c> . (MAKER MILL SHEET ^ ?] £ - °! **$•*]

    3 - 2

    2) l^)-. (MAKER MILL SHEET

    l ; ; ; i

    - 93 -

  • BDSi

    j

    BDS -i

    IP -

    si 4

    607

    1I

    i

    i

    i1

    r| PAGE 2i

    14 : 92. 6.

    ! j£ : 0

    /H 111

    10. |i1

    — ^

    3) y\ ?i] *j 4 *J - t *5 *J c|- . (MAKER MI LL SHEET % °J £ -fe fj *j °< *} -

    ) 7 r q 1̂1 -1- ^ ^] 2. o] a4 -f nj ^ «l »> 2 , 5 DJ, 5. J

    5)

    (1) B | *i ^

    3) 7]E} ^ ° J § - ^ : l i * > 3 4 - t *3*Jtl-.

    5. *d -7- 2- -t 7J 4

    5 - 1 *] 4 ^ 4

    , ^1^^711 }̂ CAMBERi] 4=8 , ^^--S] ^l-^-^^l. BOLT

    _ J

    - 94 -

  • BDS

    .?\ A $•*!%•>•}•+-

    =3 -4L .

    i 1I P A G E 3 / l l |i . I

    : 92. 6. 10. I

    BDS - IP - 607| i i i |

    HOLE

    5 - 2

    KSB 0236

    , CAMBER, «1 » 3 J ,

    c|- . )

    5 - 3 . a ] v\ 2] ^ 4

    1) GIRDER ^ o | - i - - l - ^ - ^ - e AWS D14.1 CODE ^| «] 4 if ^ 4 1*1"-H

    2)

    ^(IMEF-HC-I02)o)l tcl-ej- SPOT5. RADIOGRAPHIC TESTING-fr

    RADIOGRAPHIC TESTING^ GIRDER^ Dxv°l -3-

    6.

    i

    6 - 1

    6 - 2

    (mm)f-1 12 o] o\

    II 12 5:2} 25 o\o\

    (ram) |_ ^ t

    1.5 |

    I2.5 Ii i

    -1-S] f i • ? - *

    6 - 3 -fe- CAMBER, 7(

    ' ->- > - r

    6 - 4 ^•*333-*] ^ RAIL CLAMP i

    3 * 3 5 . , *1-*BOSS 4 % - t ^

    -(HOISTS 2.2}?! )•! ^=8

    RAIL CLAMP $ Jl3??*l-fe- ̂ l ^ *

    7.

    7 -

    i ; |

    - 95 -

  • BDS

    lv s. 4 A^-AA s] 4 I

    +-BDS - IP - 607 |

    4

    \±E.AA n ^ ? ! 7d41^H I ^

    i 1I P A G E 4 / l l |

    - T - - -"- HI ?H=S ° J 4 : 92. 6. 10. I

    - + -

    ? -M

    7 - 2

    =3 n JL 2} *' * ^ * -f =3 s|

    1 °J I afl -y 3} EARTH 4 1 # ^ 5 MO o\

    ± 10%

    ± 10%

    ± 10%

    ± 10%i

    | GIRDER 5-]i , , .

    CJ, GIRDERS)

    7 - 3

    SJ

    7 - 4 JjL

    2)

    =a-5 ^ =9

    ^ P A I N T I N G PROCEDURE (IMEF-HC-I03)6ll

    - 96 -

  • BDS

    Ml

    BDS - IP - 607• + -

    5.«1±S^ S.HH°J 3-

    I PAGE 5 / 1 1 |i i

    I A^ °l*} •• 92 . 6. 10. |_ i . i

    I 71 'S t! i : 0 |

    BANDO

    - e P A C K I N G ^

    10.

    ay E> x f e | l > c > . (Q.A MANUAL{| 2] ?]

    11 .

    1 1 - 1 DEFLECTION >

  • BDS | PAGE 6 / l l[

    I (: 92 . 6 . 10 .

    BDS - IP - 607 ±^-q ^ efl °] 3-4

    5)

    6)

    '"7)

    8)

    * - i A iE-fe 7)- -I- o\ °i -f ttl) o]

    ^ . ^-"J- C.A.B5]

    DEFLECTION^ f -tf o] *V 7]- a. ^ o) *J cj- .

    1 1 - 2 HOOK APPROACH

    HOIST?}- °o> SIDE 2] RAIL STOPPER OR LIMIT SWITCH $]*]*$ "S $-& ttfi

    H00K5) CENTERS] ^ * - t £) 3tl-*jcvj}£] 7-) E] -f CHECK 5h -fe- 5 *1 D1 , HOOKB]

    1 1 - 3 ' - *§ WHEEL BASE

    WHEELS) ^

    1 1 - 4 4-*^

    CHECK

    1 1 - 5 •& ?

    •1) ^

    S * B R A I L

    ^*l RAIL

    CHECK *} ± 5 *>| D^ WHEELS RAIUl - f

    -f CHECK 1>C)-.

    ± - 5 . CHECK S } - D 1 ,

    2)

    3)

    •&?•!•

    =8-3*

    - 98 -

  • BDS | PAGE 7 / l l |, , ; j |

    I t5.7]?b^ysi]A} | % • * } £ . $ : I A*&o±*\ •• 92 . 6. 10. |i . i I I

    BDS - IP - 607 | S. »1 ± E. AA 2 . ell ?! ̂ tM

    1 ^•f-tfej-f ^ ? ! 4 2 ̂ *o" STOPPERS]

    STOPPERS] $\*\7\ =a ̂ lv 7)- -f 2foi«fcl-.

    1 1 - 6 ?7] ^7)1 /-l*j

    2)

    3)

    4)

    13. H

    1 3 - 1

    -2:5 ^^^Efl-t-l:

    5) 3M-§. ^

    6) =2-2^51 «H^ £-b ai-a-gr ? f ? * M 3E-« S|

  • I IBDS | PAGE 8 / 1 1 1

    . ," i I

    I 11 s.y) n ̂ AA n ̂ \ I 7tl 4 it € I^^°J4 : 92. 6. io.|I I I I

    BDS - IP - 607 | 5.6l±S.-q êl|°J ^ 4 H 4 A| [ J p ^ I : 0 |

    13 - 10 TEST REPORT FORMAT FOR TRAVELLING (FUNCTION) 1-f

    13 - 11 TEST SHEET OF HOIST FORMAT 1-?-

    13 - 12 TEST REPORT FORMAT FOR CRANE DIMENSION 1-?-

    - 100 -

  • HOISTSI PAGE 9 / 1 1 1

    HOI

    1. GIRDER ± eJ 7j 4

    1 - 1 S P A N

    1 - 2 GITDER CAMBER

    1 - 3 cl| TV X\

    1 -' 4 WHEEL BASE

    1-5 4 € ^?°1 43

    1 - 7 x)--g- BOSS -f 4 •

    1 - 8 A|is. BUMPER ^U!

    -fe KS B 5209^1 ^ ^ ^ *]• q s3 ^ .g.

    i • . . I

    - 101 -

  • BDS I PAGE 1 0 / 1 1 :

    GIRDER •}-

    - 4 %' •%• I o-l - 2 -

  • BDS I PAGE 1 1 / 1 1 !

    • • * ! • '

    p •

    A

    WHEEL BASE± 2 . 0 com

    1.0

    BASE

    * ! • • & • crjj WHEEL BASE£j n)| •£

    =3 -t

    R-J R-

    SPAN x ( ~ — — )5 0 0 0

    2J 4- 1̂ ^ 3Y N *t -f —

    ^ ' * ' %.*> !»• ^ °J oil ci|'GIRDER CAMBER ^ ^ Si ofl

    SADDLER ^ •=•

  • r ~iI PAGE 1 / 5 |

    H4 Til -?- A4 £1 4

    • + -4 °J 4 : 92. 6. 10.

    -HBDS - IP - 606 -I- t!

    1.

    -S-

    2.

    * ] •

    2 - 1 7i| q> 4 o> ^

    o _ o -*. o] c tr̂

    " ^ o i_ —•— v_

    2 - 3 K.S ^J J I S

    2 - 4 ?1 E[ 3V aj ^3.

    1) -? i 3 4

    3) %

  • r iBDS z^ rfa . I PAGE 2 / 5 |

    I >» 5.-A n 5-Al s\ •>•} I 3 4 ' S. § |7f l^°J*l- : 92. 6. 10. |i I i . i

    BDS - IP - 606 | *'-f 2.°] ±E 7J4 1 4 ^ | I ' g ? ! ! : 0 |i i . . . . . i . . I

    (9)

    (11)

    (13)

    (15)

    si *3 (10)

    (12)

    (14)

    4.

    4 - 1

    4 - 2

    2) -& 3.25]

    £ 40 °C °Jt

    t £ 1. ]

    r

    [_•_,—.—_

    1 ? TI71

    1 _ _ _

    ^3 * } * i ]

    r

    r TT

    !

    "I"7]M

    A •§E -^B 4F •§

    A i?E ^B ^F #

    T"

    1

    r

    --ir 1

    5 ?!^ ol

    ^J o?

    — _50657085

    _)

    658090

    115

    deg

    55707590

    _;658090

    115

    i|

    i1

    —1

    ——

    JL

    *•] *

  • : 92- 6.I l

    BDS - IP - 606 |I I

    TI

    2) >g

    3) 4r

    O

    O

    4 - 4 iL

    1) £

    O]

    2 ) *«

    ± 10 %

    ± 10 %

    A | * J )

    0 . 5 n ] E i o ] ^ n)--g- 7)] jjfl 7)-§

    % 6] o\

    3) s

    4 - 5 -

    -1-D1 ^JTr-f

    2) -& 3.5.121 l 50MMO1-U 7J o\

    4 - 6 *1 =2 °J ^1 *j A] ̂ .

    1) f i ^1*J •£ =8 9 ^»>4=-ofl-H =S74°F*»1 -5-

    2) *12

  • BDS I PAGE '1 / 5 |

    . A A -?- A-i s\ 4 i, i

    : 92. 6. 10.. I

    } BDS - IP - 606L

    v . w6120. P

    7} ^ 4. a] 71 £-§• ( % )

    =8 3 «!• f- ( Kg )

    N = * 100

    V :

    N :

    W :

    P :

    A t!i i

    KW

    °J a4 -f 7} 2]

    2) -S- 3.721

    4 - 8

    1) 125%

    =9

    2. ]

    °J

    CYCLE

    Si

    , , I ,

    500

    | 1

    1 2

    1 3

    1 5

    | 7.5

    1 10

    15

    | 20

    30

    Kg

    TON

    TON

    TON

    TON

    TON

    TON

    TON

    TON

    TONJ

    40

    45 |

    50 1

    50 |

    50 |

    50 |

    50 |

    50 |

    50 |

    50 Ii

    H]

    - 107 -

  • - 108 -

  • TEST SHEET OF HOISTCustomer: $y«i#S? Machine No. :

    Type ffi ffit Weight

    Rating

    HoistingCapacity

    t

    ssLift

    m

    £ tSRacing

    m in

    HoistingMotor

    •& ± m atHoistingAmp

    A

    HoistingSpeed

    m/min

    TraversingMotor

    kw

    TraversingAmp

    A

    MMTraversingSpeed

    m/min

    Phase V'olt.npo

    V

    mmFrcqiien• c . v

    Hz

    Characteristic Test M Tested at Hz)

    ft ffiLoad

    %

    ffi-" h f»5 Hoisting.1: U P

    7D HitCurrent

    A

    A )}Power

    KW

    m mSpeedM/min

    r- D O W N

    W 5SKCurrent

    A

    i* &'SpeedM/m in

    "1 31 $Slipmm

    I r n v c* i" s i n

    m vs.Current

    A

    A •))Po w c r

    KWSpeedM/min

    IS A- #J ¥ Total Efficiency %

    Inspection Item

    »J m as i$ s

    Gear Box

    Push Button

    Limit Switch

    Magnetic Brake

    Magnetic Switch

    ft itif& fill K i l

    u-x^T-mm

    Outside View

    Feed Oiling Unit

    U-X Line Voltage

    125% Load Test

    V

    Minimum Operating Voltage at 100% Load Good

    i^l^ Temperature Rise Test ±IM|it tl Temperature Rise In V.

    it. Nntc : (I!) $Un.& Hcsislancc

    HoistingMotor Coil (R)

    •c

    MagneticBrake Coil (R)-

    m m mOenr Box

    TC

    'U M Insulation & Dielectric Test

    MISffit.il Insulation Resistance (by J ^ ° V Megger) Mil HSIiWiSs Pressure Test(60Hz lmin.) Good

    • Note: JtflB-Si t*ttl^la(|ff.fe Magnet Braked mMR&°] "iSf^J ̂ °J.In the above current & Power of characteristic Test, they Contained Consumption of Magnetic Brake.

    Date Tested by Approved by

    - 109 -

  • : 13 - \-

    CUSTOMER : DATE

    SPEC INSPECTED BY

    ITEM OF MEASUREMENT POINT OF MEASUREMENT VALUE OFMEASUREMENT

    l.SPAN

    Within 10m10—20m

    20~30m

    More tlian30m

    i 2. 5mm

    + 3. 0mm

    i 3. 5 mm

    4 . 0 mm

    2.CAMBERWithin ±50% of Span 800

    SPAN

    DRIVING:

    FOLLOWING:

    3. DIAGONAL DIFFERENCE

    Within ~20m

    More than20m

    ±2.0m

    ± 3 . 0mm

    4.SADDLE WHEEL BASE± 2 . 0 mm.Right&Left wheel basedifference ± 1.0mm

    5. 4-point Level Differenceof wheel Contact Surface

    Spanx {±-57000")

    6. Rail Gauge of Traversing

    Gauge X(± 1 . 5 •5.000

    R-

    3-points(A. B. C)to be contactedvertical differenceof l-point(D)

    Rl =R2 -R3 =

    7.Right & Left HorizontalDifference ofT. S Rail SurfaceGauge X-JTQQO-

    H 8. T. SRail Straightness

    S.Wlie&l-Px ŝs -Gap

    Machined Condition

    ± 1.0mm

    S =wheel diameter =

    -E

    10. Stopper of T. S wheelwithini 5 mm

    ^ A—A'= Within 2 mm

    A =A'=A-A'«=

    ESI

    A'

    11. STOPPER OF ENDCARRIAGE

    B — B ' = within 3 mm

    FOLLOWING:B -B'=B-B =

    DRIVING:B -B'=

    ("}i*)*l3-t- 19)2-2 ( g ) BANDO MACHINERY CO., LTD.

    - 110 -

  • .X- 1 3 - 1 :

    CUSTOMER: DATE

    SPEC INSPECTED BY:

    ITEM OFMEASUREMENT POINT OF MEASUREMENT

    VALUE OFMEASUREMENT

    1 . Span

    Within 10m

    10m- 20m

    20m -30m ± 3.5mm

    ±2.5ir

    ±3.0mra

    2 . Camber

    Within ± 50% of Span1

    800

    SPAN

    FOLLOWING:

    DRIVINC :

    Vs™ mm

    3 . Diagonal difference

    Within 20m

    More than20m ±3.Omm

    ±2.0mm

    4 . Saddle Wheel Base

    Within ±2.0mm

    Right&t Left Wheel basedifference

    Within ± 1.0mm

    B -

    A-B-

    W'

    5 . 4 - Point Level

    Difference of wheel

    Contact Surface

    SpanX ( + 15, 000

    CD CD

    CD CDCD CD

    6. Traversing Stopper

    Wi

  • A 5Runway Cableveyor

    TKP-TYPE

    TKF-TYPE

    FTP-TYPE

    - 112 -

  • \TYPE

    CABLEVEYORNO.

    BENDINORADIUS

    (mm)

    CHAIN PITCH(mm)

    FREi SPAN[m)

    MOVCH6

    STROKE

    WITHOUTSUPPORTROLLERWITH ONESUPPORTROLLERWITH TWOSUPPORTBOLLER

    CABLE/HOSE OUT DIAImmJ

    CABLE/HOSE WEIGHT

    t ^ - ' ' • •

    MOVING SPEED(m/m!n)

    TWIN CHAIN WEIGHT(kaf/m)

    USING TEMPERRATURECC)

    OMU'KTINO CONDITION

    PAITMATERIAL

    CHAIN

    SUPPORTER

    END LINK

    TK

    TKO7O

    75

    90

    125

    145

    70

    3.5

    6.7

    10.1

    13.4

    27

    50

    TK095

    125

    145

    200

    250

    300

    95

    4.5 •

    8.7

    13.0

    17.4

    46

    60

    TK130

    200

    250

    300

    400

    130

    6.0

    11.6

    17.4

    23.2

    60

    70

    60

    •- 1 0 - -150

    TK180

    250

    300

    400

    500

    600

    700

    180

    8.0

    15.7

    23.5

    31.4

    80

    80

    21

    H

    H2S0

    350

    450

    600

    750

    250

    11.5

    22

    33

    44

    110

    100

    60

    40

    -10

    150

    INSIDE

    STEEL

    ALUMINIUM

    STEEL

    STEEL

    ALUMINIUM

    STEEL

    TKS

    TKS070

    75

    90

    125

    145

    70

    3.5

    6.7

    10.1

    134

    27

    10

    TKS095

    125

    145

    200

    250

    300

    95

    4.5

    8.7

    13.0

    17.4

    42

    10

    60

    6 8

    0-50

    TKP0320

    2

    37

    32

    0.9

    1.7

    15

    1.2

    TKP

    TKP0450

    IB

    50

    95

    125

    150

    2B

    50

    95

    125

    150

    45

    1.0

    1.9

    22

    2

    TKP0625

    2B

    75

    90

    125

    200

    62.5

    2.25

    4.4

    31

    5

    90

    (0.4) (0.8) (1.1)

    0-50

    (1.9)

    TKF

    TKFOSS

    60

    100

    150

    20

    1.5

    2.7

    22

    12

    (1 .4)

    TKF085

    100

    200

    250

    20

    2.0

    3.7

    35

    21.5

    TKF115

    140

    225

    300

    25

    2.5

    4.7

    48

    30

    TKF175

    185

    250

    350

    30

    2.75

    5.2

    60

    40

    (2) (3) (5)

    0 — 50

    ACIDITY/AKAU(X)

    STEEL

    A L U M I N U M/PLASTIC

    STEEL

    PLASTIC

    STEEL STEEL

    -V 678 5048.

  • Oval ( ABI.IiVfYOK (TK Type)

    Univers.il lypc

    I he TK Type CABLE VEYOR is composed of a

    steel chain with aluminum stays to give high

    strength and durability for diverse applications.

    The holes of the stays are order made to fit

    the cables or hoses properly.

    Ihe TK Type is very versatile and can fit most

    industrial machines.

    length of travel: 24 m and under

    Speed of travel: 60 m/min. or under

    Diameter of the cables or hoses: 80 mm and

    under

    A stainless steel chain can be manufactured

    for use in highly corrosi*^ ei*Hronments.

    I i , H I T ( A!'>1! Vl.YOK

    (TKS Type)

    ()nc-!mi< h \l Itii limi'iil

    The TKS Type chain section is the same as

    the TK Type, however, the supporter has a

    different construction. The frame is structured

    in a special way which makes it easier to set

    or remove your cables or hoses {the bars at

    the stays are removable). The plastic dividers

    of the stays are adjustable to the diameter of

    your cables or hoses.

    The TKS Type is suitable for machine tools

    that use only a few light weight hoses or

    cables.

    Moving stroke: 17 m or underMoving speed: 60 m/min. or underToj^ft-eight of the cables and hoses: 1 o kgf/morJ^Jaerr

    Outer diameter of the cables and hoses:

    42 mm or under

    Temperature range: 0 ~ 5 0 ° C

    Avoid use in acidic of alkaline conditions.

    ta*A\.Supporter (inner side)

    ' Supporter {outer side)

    1

    1End Stay 1 ^

    / (outer side) L

    1 / Divider /

    / /^Moving End BracKet

    Release Bar/(inner side)

    /chain__

    % -

    i-«C^__ fixed End Bracket

    - 114 -

  • GUaiLAllON Of NUMHfrR OP CHAIN 1 INKS

    70

    f is rounded off to the nearest larger number.f' = Number of chain linksS: Moving stroke (mm)R: Standard chain bending radius (decided by chain si?e)

    K' =

    Freespan without support roller

    Freespan with one support roller

    Freespan with two support rollers

    F0=-g- + K

    r i—~ -t~ ix

    F,=4 + K'

    The values of fo. ft. fi must not exceed the maximum freespanfrom the capability graph on p. 24. If it does, a larger chain sizemust be chosen or more support rollers added, but only up to af>ij!^*um of two.

    DECIDING ON I I I ! : SUPPORTER

    Dimension AThe size of the supporter may be chosen from the table belowwith reference to d (maximum cable/hose diameter).

    DimensionB ' = S D + S C + M i n . 20

    B S B '

    8': Calculated maximum supporter widthB: .Standard supporter width as chosen from the table below.Supporter hole sue D may be decided by this equation.

    D S d X 1.1D should be an even number from

    Number of supporters (n) would then be as follows: —

    When

    When

    chain

    chain

    link

    link

    number

    number

    (O

    (O

    Is

    is

    even

    £'2

    odd.

    2

    number

    number

    of supporters

    of supporters

    Is,

    is.

    S9

    dbte/bo$e MaximumOuto CHamrta

    * ! 8

    *27

    Dtmtnskxi A

    35

    45

    60

    O

    O

    SO

    OO

    tooOO

    125

    O

    O

    Dimension

    150

    oo

    B

    200

    O

    o

    250

    O

    o

    300

    -

    o

    350

    -

    o

    - Total chainflength = Number of links x 70 - j - 95 *.s

    • t - l H !

    ( ' / ) inner dimensions forsplit supporter type

    Chain guide

    For odd for evennumber of links number of links

    (B+M.5) No clip is used withB-^« i or» piece Supporters/ =

    fixed bracket

    ||SC|| CHS! S-S|

    Mwing bracket

    678-5048. 671-9572. 675-81895-1 °l?,'S

    - 115 -

  • TK09

    I A K I U A I I O N ( M N U M I 5 ! ! ; < < : - • r . . w

    95

    f is rounded of! to Ihe neatest larger number.

    f = Number of chain links

    S: Moving stroke (mm)

    R: Standard chain bending radius (decided by chain we)

    9

    Frccspan

    Freespan

    Freespan

    5,'-(f + *R)2

    without support roller

    with one support roller

    with two support rollers

    F - -

    * - !

    F i = f

    + K'

    + K'

    + K'

    The values of fo. Fi. F2 must not exceed the maximum freespan

    from the capability graph on p. 24. If it does, a larger chain si/e

    must be chosen or more support rollers added, but only up to a

    maximum of two.

    DIMI.N.SIONS YQR SIANDAKI) NUFTURilU

    The

    with

    size of the

    reference

    supporter may

    to d (maximum

    IV =XD+S(

    B2IS '

    be chosen

    cable/hose

    : + M i n . 3 C

    from the table

    diameter).

    below

    B': Calculated maximum supporter width

    B: Standard supporter width as chosen from the table below

    Supporter hole sire D may be decided by this equation:

    I ) - B < I X 1 . 1D should be an even number from

    Number of supporters (n) would then be as follows:—

    When chain link number (V) is even, number of supporters is.

    - I'

    „ __When chain link number ({') is odd. number of supporters is.

    I'- 1

    Cable/hose MaximumOuter Diameter

    * 3 I

    Dimension A

    50

    65

    80

    O

    -

    100

    oo

    123

    O

    O

    150

    O

    o

    Dimension

    200

    OO

    250

    O

    O

    0

    300

    O

    o

    350

    OO

    -100

    O

    O

    450

    -

    o

    500

    -

    o

    Tola! chain'length =: Number of links x 95 -r >^ -

  • NUMBER• OF LINKSxH) 95

    A-A CROSS SECTION

    ° )I 70 I 70__ MOVING

    BRACKET

    B+«0B+25

    Chain Guide

    FIXED BRACKEr

    WFor even

    nurrber of finks_. L

    For odd nunrbofof links

    ' ' B.8 •

    17n45 n

    t Ftt—

    •!:fHB+19.!

    4 —MS

    1

    CABIE/HOSE d M A X V - . .

    FRAME DIMENSION B •»

    oivioeRMIN. NO

    MAX. NO

    •1«M

    0

    5

    t

    5>

    ! • " • ' • • •

    • 200

    2

    13

    MDVING BRACKET

    45 15

    TOTAL NUMBERA- :. CHAIN LENGTH = OF LINKSX95 125 A-A CROSS SECTION

    95 1 95 j MOVINGBflACKET

    CABIE/HOSE i MAX

    FRAME DIMENSION B

    DIVIDERMIN. NO

    MAX. NO

    100

    0

    A

    150

    1

    B

    200

    7

    n

    FIXED BRACKET MOVING BRACKET

    678-5048. 671-9572. 675-8189

    - 117 -

  • CAPABILITY GRAPH (TK.TKS, TKP. TKF . H TYPE)

    36

    ., Wtrh no (^forl lng roller /

    With or* HTf

  • 5 9-

    1l. 30/5S.

    TEST B.EPORT

    PROJECT NAME. 3

    HOISTING

    I LOCATION | OI 1I TEST RErORT NO |

    J 1

    SITE

    PART NAME

    1. HOISTING (NO LOAD)

    MOTION

    1 1 1I SPEC f ACTUAL II j 1 RESULT

    / 1 /

    I UP

    IIi! DOWN

    ] SPEED (M/MIN)I t

    I CURRENT (A)

    I VOLTAGE (V)j jI SPEED (M/MIN) II CURRENT (A)j I1 VOLTAGE (V)

    I

    STOP WATCH |I . _ _ j

    I CURRENT METElj

    I VOLT METER |j 1I STOP WATCH |

    \ CURRENT' HETEOJj 1

    I VOLT METER- |

    2 . HOISTING (F.OAD)

    MOTIONI SPEC" I ACTUAL |I — + 1 RESULT

    j, j i__j j r

    I SPEED (M/MIN) ]>.,/> /£>.>

  • BS - FT - 01

    T K S T REPORT19

    ( PART NAME | HOISTING (3 />-£> I CURRENT METEH

    Y + + h-— -\ 1I VOLTAGE (V) \ wo /iHo .\i&>- /4** 1 'Groc-b I V 0 L T M E T E R I. JL -

    oO LIMIT SWITCH?]-

    TEST BY -,)

    •§-^

    APPROVED BY

    B A N D O M A C H I N K R y C O - ' , L T D

    - 120 -

  • BS - FT - 02

    TEST9 ?3

    i PROJECT NAME | Q^^p _ Z M ^ T ? tK°o£> \ CURRENT METER

    t* ltd* '/&*•.) 6rt*>0 I VOLT METER JVOLTAGE (V)

    3 . o r.RAiur-'l-

  • BS - FT - 03

    T E S T RETORT//

    PROJECT NAM I? | I ' N A T I O N I O

    . 1

    SITEQtotfP- XHS-fT CKCdCl) I U O I I W N I u HIHM'\>>*>o> 511s i

    PAUT NAME j TRAVELLING (JOO.fi. Hi.7 ) TEST UKTORT NO |

    1. TRAVELLING (NO LOAD)

    MOTIONSPEC | ACTUAL |

    1 -^ RESULT

    | SPEED (M/MIN) |

    RIGHT I CURRENT (A) |I I

    i VOLTAGE (V) II I i

    I SPEED (M/MIN) |i . j _ .

    LEFT I CURRENT (A)| .. . _|.1 VOLTAGE (V)I

    |

    STOP WATCH |I .

    | CURRENT HETElj

    | VOLT METER |j || STOP WATCH |

    -4- -4| CURRENT METEff

    - + -I| VOLT METER |i i

    2 . TRAVELLING (LOAD)

    i

    MOTION

    KlfillT

    f—

    I S P E C | ACTUAL I |1 ( 1 RESULT 1 :I Uo-I / k)t>. > I AJo. I I AJO, a | I |

    I SPEED (M/MIN) | / o / /o U s / 9 i | £rcn>& I STOP WATCH II _ _ j _ _ LZl L _ Z i _ _ j - _ L _ j

    | CURRENT' (A) \hf / I fir-c^xi I CURRENT METEIjL _^ L_ L^11_/-_Z_J-_I___ L_I -| | | |_ -jI VOLTAGE; (V) | ^ / W o | ^ a / ^ \ 6r*W I VOLT METER |

    LEFT

    I S P E E D ( M / M I N ) l / o / z o L i / o i l # c 2 t 6 I S T 0 P WATCM II j / [.Zi_j___-j__ ( [

    I CURRENT (A) | ^ / /J-J. \ $..

  • BS - FT - 09 | PAGR /. _ i j

    I r "~

    SIIRRT NO. 7. I j .

    CRANK NAHK

    PART NAME GIRURR DBFLKCTIOM GRAPH

    I LOCATION | O SHOP_[

    ! TKST REPORT NO I

    StTE

    ! I 1 .

    ?A

    30

    :m2A2220

    f'_,... . |

    SI•> A NT

    n?.

    4: LKGRKI).

    TIJST HY

    ir.i

    NO LOADR : UliCK I,TNI5

    ! DOI OPPOSITE. s:i nil

    i ! •. . . : '• •

    1005.' XOA0 'H : RED LINK

    AfPlfOVKIl IJV

    LOADG : GlffiBN LINE

    BAN.DO M.ACHINI1.RY LTD -

    - 123 -

  • BS - FT - 08

    TM'.&T m.s.F'O.RM1

    CRAMK HAMK

    | PAGE /i

    S H E E T H O . 1 / 2

    SITE

    PART MAHIJ j GIRDER DEFLECTION j TEST REPORT MO j '

    DO

    D11

    02 '

    SPAMtS)

    1 .

    0 % -LOAD

    | CHECK POINT,{ |_ r _,_

    I I).I | DOI _ . [ .

    SIDE I / „

    orro. S

    | DlflVK SI HE100 % MA!) I —

    0 X LOAD

    . ,

    £

    OITO. smic

    |. I DI?.TVI? S I D EJ - - I 2 0 * LOAD II I ori'o. SIHKh . _ +I | H 1 U V K S J I ) RI {> i : TOAD I 1- -| • | OPPO. SJDK

    ~LO j —T •£ I _/Jy

    / | • I' / •_££ i__*?„_L_< *_

    REMARKS

    ^ .

    Gt

    I

    *—/ * ^ t

    |

    I|

    I

    I

    IHIIIiTEST I!Y «2 _4- n ny

    •". JyANDO , MA.CIJ.I. Nlvl/Y ( X> - , .LM.'O.

    - 124 -

  • 2.

    BS - FT - 01

    TEST REPORT

    I PROJECT NAME | £ W W / C , . J : M ? F C KOOQ.J • LOCATION |. 1

    O SITE

    ( PART NAME1

    HOISTING TEST REPORT NO

    1. HOISTING (NO LOAD)

    | . •• [ S P E C | ACTUAL | .I MOTION | 1 .: [ RESULT

    [ I I I I ' _ j

    [ | SPEED (M/MIN) p - t P /O.S | z.f /o. a 9 | fy^€> I STOP WATCH |j [ : j j f_\ ; j ; ; I

    UP | CURRENT (A) \B9-£/9-O I >$ / 3. ? I /v , o f i I CURRENT METElfi j • « • . _ • = _ _ \-~ I - I

    | VOLTAGE (V) \6£ /S>.C I &- i CURRENT'METErfI j j |-__r__r__i j| VOLTAGE (V) \uOo /U \ ilU-t /tl I v o r 'T METER |i t I : L _ £ _ _ _ _ _ J I

    2. HOISTING (LOAD)

    I SPEC' I ACTUAL I I IMOTION i ( 1 RESULT | yt^7\7] \

    I / I / I , I Il i \-—/— 1 i

    I SPEED (M/MIN) I / I / y I STOP HATCH || j ^+-

    UP | CURRENT (A) | / | / X [ | CURRENT METEfI ; j I /_ I

    I l'{)I.TA(.'K,(V) I / I X / .. I • | VOLT MICTKR

    •f

    h 1 • -\ \/- —\ 1- ^SPEED (M/MIN) I / A / I I STOP WATCH J(. + •_-/-+ - + --+ -j

    DOWN I CURRENT (A) | // I / I I CURRENT METElI I / I n _j i (I VOLTAGE (V) I // I / . I • I VOLT METER \1 . 1 * ___) •_ j 1 1

    3 . O DRAKE?]- ft]*JSl

    O LIMIT SWITCH? j-

    TEST BY APPROVED BY

    - 125 -

  • BS - FT - 0 1

    TEST REPORT

    1 9

    PROJECT NAME | LOCATION | O__j : I

    -HSITE I

    I PART NAME | HOISTING TEST REPORT NO

    1. HOISTING (NO LOAD)

    | SPEC I ACTUAL |MOTION 1 f— ( RESULT

    \WG*1 AJti \M/CrH /_*_ I I I

    | SPEED (M/MIN) \c{, /O'H \J".$ / e>,fl I

  • BS - FT - 02

    T E S T " REPORTin -' -ft •

    I PROJECT NAME

    I PART NAME

    - IMS"K | LOCATION | O £. + —+TRAVERSING t»C>,l£>.) | TEST REPORT NO [

    I i I

    SITE

    1 . TRAVERSING (NO LOAD)

    i 1 i 1 1 1| SPEC | ACTUAL | | I

    MOTION | • 1 1 RESULT I y\^-7\y\ j\/0&.f /JJO. ±\U& 1/ fi)u>$\ I |

    | SPEED ( M / M I N ) 1 / ? / / ; | 6.f / 6.J I ^ c r a O I S T 0 P W A T C " I

    | 1- — — — ——f 1 - - — - - - 1FORWARD I CURRENT ( A ) | A . £ fa.£ \s.f / J > , / I fr&f) I CURRENT METEtj

    | VOLTAGE (V) \u I V 0 L T METER |

    |_ 1 -| \- {-- (- -j

    I SPEED (M/MIN) I ? /

  • BS - FT - 03

    I TT5ST nJSJ^DUT~Tr'—~—~r~;—--.--- — •I " T * WfS^ 6 •••••. / / .

    J PROJECT NAME | , . . . TWP-ZT CZOOU.) \ LOCATION" | O SilOP\^5> SITE+ ^ Lt*^/ClLi'lHlt'_.i^i__Zl_ l j ,

    1-TART NAME | TRAVEL1.I NO (/JO.l£ : O I TEST REPORT NO |

    1. TRAVELLING (NO LOAD)

    I j SPKC | ACTUAL | jI MOTION 1 1 H RESULT | \ |I \jOo.l f /JU±\J06. I I JOO. i\ | |

    | | SPEED (M/MTN) | / o / / o I £

  • BS - FT - 04

    —SlIEEHNQ..... 1 / 2CHECK SHEET

    PROJECT NAME LOCATION I O SFIOlN^U SITE

    TART NAME | VISUAL CHECK SHEET_i

    CHECK ITEM ' CHECK CONTENTS

    CHECK SHEET NO|r !

    [ CHECK RESULTREIMRKS

    GOOD BAD

    GREASEDEVICE

    Grease N ipp le Check

    Grease Filling Clieck

    BOLTFIXING

    Check Tor Connection Par t or GirderSaddle Q. £ O K

    j Coupling Check (T/L)I ;

    | Hand Rail Fixing Bolt Check

    _ J

    N/A

    j{JjoaGhUE-40-54 KG-K

    A

    | Stopper & Saddle Stopper Touch Check1 .

    STOPPER | Stopper Fixing CheckI

    I I.imLI, Switch Unu:kcl; Fixing Check

    • O

    f-

    h-!r-

    Specification Check

    WIRE | Twist CheckI .| Wire End Clamp Fixing Check

    O

    o

    oCRAKE | Magnetic Drake Adjustment Check |

    . j . . . . i

    | Check for Appearance of Piping Parts |I (Distortion, Damage)

    PI PI NG| Connector Fixing Check

    Touch Chock, When Walking

    O

    i

    | Terminal Block Check(Bolt Fixing,etc)i I . j I

    | Joint Check (Press Terminal & Cable) |I I

    [ Color Cap & Number Ring Using Check |

    0

    6 HI

    HI

    •HWIRING

    O

    o

    oI Cable Check (Capacity, Core,| Appearance, Arrangement, Kind) O

    BANDO MACHINERY C O . , LTD.

    -M29 -

  • BS - FT - 05

    CIIECK s3 rite E:-.r-Tf^-—-SHEET-NO.—2—/—2—- j

    • 6 -

    PK0.IECT NAME LOCATION . - | O SHOI'XN^S SITE |

    TART NAME

    CHECK ITEM

    VISUAL CHECK SHEET I CHECK SHEET NO |1 , U.

    CHECK CONTENTS

    | . _ -f- j_

    SAFETY

    I CHECK RESULT |I 1 1 REMARKS1 GOOD 1 BAD I

    Check for Wheel CoverO_

    OI Touch Check, When T/L&T/S Operating || . i

    | Warning Lamp Operating Check {SIR6W") I c

    Check for i.hc other Items of Safety

    I- +1

    . j.

    I |

    (

    HI

    H

    TEST BY j \ J-L BY

    BANDO MACHINERY CO- , LTD .

    -' 130 -

  • BS - FT - 06

    -SHEET-NO.—1--/—1 - I

    PROJECT NAME

    T E S T K E P O R T ;

    | LOCATIO'N | O S ! I O P \ ^ 3 SITE-4I

    -4PART NAME MEGGER TEST | TEST REPORT NO |

    -I L

    1. ELECTRIC EQUIPMENT MEGGER TEST

    TEST POSITIONi r"I NO || I

    | 1 | POKER COLLECTOR — INPUT N . F . Bi i

    I 2i

    I -TH—I ih —I 5i

    I r>

    RATED VALUE

    5MQ UP

    VALUE RESULTIi

    1 7I—I 8,l

    INPUT N . F . B — CONTROL PANEL I 5MQ UP

    1IOTSTING CONTROL PANEL — MOISTING MOTOR I HMO UP

    "+•

    \|

    —{

    HOISTING CONTROL PANEL — HOISTING BRAKE I

    T/S CONTROL PANEL — T/S MOTOR I

    T/S CONTROL PANEL — T/S BRAKE I

    u l

    T/L CONTROL PANEL -- T/L MOTOR | 5MQ UP I , I| -].jT6Oi!Zl4-.

    T/L CONTROL PANEL — T/L BRAKE [

    * 2. TROLLEY MEGGER TEST ( BUS - BAR )

    i r

    i NO I

    h I1

    TEST POSITION

    R PHASE —- EARTH

    -1

    S PHASE

    T PHASE

    R PHASE

    EARTH

    EARTH

    S PHASE

    | RATED*VALUE j VALUE |

    .+ + +| 5MO" UPi •

    | 5HO UPX : . I\ *

    RESULT I|

    .r)MQ UP

    5MQ' UP

    HA

    MEASUREMENT : 500V MEGGER TESTER USE

    TEST BY APPROVED BY

    JBANDO MACHINERY C O . , LTD.

    - 131 -

  • BS - FT - 07

    CRANK NAMK

    | PACK / I

    — r .

    f—^ C K00a) LOCATION"

    SHIJKT NO. .t / 1.

    19 ?3 6 . / /

    -I-O SIIO1:7 SJTK

    PART NAMIJ SAFETY DKV.TCK CHI5CK CHECK SIIRIJT NO

    HO. CUllCK ITEM| CIIKCK 1U7.SUJ,T ji i

    J GOOD :| DAD |IU5MARKS

    I

    Mechruiicnl Type,Ovc>rDevice

    I N/A 0% Lood Set t ing j

    | K.locl.r.ic Type \ O \I — — I |I' ElecLrcmjc Typo | N/A I

    Current. EcU.intf |I

    HO* l.ond Sc• 4 - -I-

    SeLLinj; of theRnl.nd S

    An t.i c o l l i s i o n | Phol.o Sensor Typo J N/A In.-ui.-i-. l _ _ I I-

    | Micro Wcivo Type | N/A |i . , i i

    Out;r .Speed Delect.or Device. Opcral-ion |

    - r

    N/A

    5i.

    .S'i("«n Onoral. jou

    Wtirnind Lamp OpernUnn

    Stopper D'ubricat i.on

    j ^ |I J.

    | Q .|

    7 | llrind Rai l l- 'abrieul.ion| . .

    0 | Walk Way t 'abr i i-.nt. ionI -,i

    D | CotipJ f.njj Cover of RuLaLidn| Ktilir vcnt.i on

    _i

    I o. . 1 .

    ](] I S'iif 'el.y D e v i c e oJ ' l l n o kt

    U I Nnmcs Vl;\la of ReU-: