11
Ch. 30 - 166 The World of Energy 30.13. ConocoPhillips Optimized Cascade Chapter 30 LNG Technology - Processes

30M - ConocoPhillips Optimized Cascade

Embed Size (px)

Citation preview

Ch. 30 - 166

The World of Energy

30.13. ConocoPhillips Optimized Cascade

Chapter 30 LNG Technology - Processes

Ch. 30 - 167

TreatedGas LNG

Propane

Ethane

Methane

Phillips Optimised Cascade Process

Ch. 30 - 168

Phillips Optimized Cascade LNG Process

Ch. 30 - 169

The Optimized CascadeSM LNG Process

Ch. 30 - 170

GasConditioning

100%

PropaneCycle100%

EthyleneCycle100%

MethaneCycle100%

Storage &Loading100%

Turbine/Compressor

50%

Turbine/Compressor

50%

Turbine/Compressor

50%

Turbine/Compressor

50%

Turbine/Compressor

50%

Turbine/Compressor

50%

Boil off Gas

Power Generation

Overall Plant Production Efficiency >95%

Operating Range (% of design)

Full Plant 80 105%

One Turbine Offline 60 80%

Three Turbines Offline**At least one turbine on each cycle must be operating

30 60%

Plant Idle 0 30%

COP Optimized Cascade LNG Process

Two-Trains-in-One Approach Maximum plant availability with operating flexibility

Ch. 30 - 171

PropaneRefrig. System

EthyleneRefrig. System

MethaneCompressor

VaporRecovery

LNG Storageand LoadingLIQUEFACTION

MarineFacilities

CondensateStabilization

CondensateStorage

Fuel GasDistribution

Plant Fuel

ShipVapors

LNG

to ShipNitrogenRejection

NitrogenCondensate

To Acid Gas Incinerator /

Trucks

Acid Gas Incineration

Feed

Gas

GasConditioning

Block Flow Diagram

Darwin LNG Project

Ch. 30 - 172

The Darwin LNG Process

Ch. 30 - 173

Values are representative

Turbine ShaftPower(kW) Efficiency

FuelConsumption

(Indexed)ScheduledDowntime

Frame 5D Dual 32,580 29.4% 100 2.6%

LM2500+ Dual 31,364 41.1% 72 1.6%

LM6000 Dual 44,740 42.6% 69 1.6%

Frame 7E Single 86,225 33.0% 89 4.4%

Frame 9E Single 130,100 34.6% 85 4.6%

The Optimized CascadeSM LNG Process

Representative Turbine Performance

Ch. 30 - 174

The Optimized CascadeSM LNG Process

Frame 7 Power

Frame 7 Heat

Rate

LM6000 Power

LM6000 Heat

Rate

50

60

70

80

90

100

110

120

0 10 20 30 40 50 60

Inlet Air Temperature (C)

Power and Heat Rate Index

(ISO=100)

Aeroderivatives are more sensitive to ambient conditions

Turbine Performance

Ch. 30 - 175

The Optimized CascadeSM LNG Process

Turbine(No. x Model)

Number of TurbinesBy Service

(Propane/Ethylene/Methane)

NominalTrain Size(MTPA)

6 x LM2500+ 2 / 2 / 2 3.5

8 x LM2500+G4 3 / 3 / 2 5

6 x LM6000 DLE 2 / 2 / 2 5

9 x LM6000 DLE 3 / 3 / 3 7.5

Aeroderivative Plant Configurations

Ch. 30 - 176

Phillips Cascade Process

Simple to design and operateSimple cycle Frame 5 gas turbines mechanical driveNo helper turbine or large motor needed for start-upIncreased size with two gas turbine trains for eachrefrigerant processParallel compressor trains avoids capacity limitsIncreased CAPEX due to more (six) trains offset by increased availability 95-96% with parallel train operationLoss of one train does not cause plant shut downProduction carries on with reduced capacityRefrigerant and exchangers temperature not affected by one train trip enabling quick restart

TOSHIBA
Migas Indonesia