35
PurePath TM HD Class-G Power Supply Ref. Design 110 VAC 240 VAC ® 25 V–50 V ANALOG AUDIO INPUT 12 V PurePath TM HD TAS5630 (2.1 Configuration) 3 OPA1632 ´ ±15 V TAS5630 www.ti.com SLES220B – JUNE 2009 – REVISED FEBRUARY 2010 300-W STEREO / 600-W MONO PurePath™ HD ANALOG-INPUT POWER STAGE Check for Samples: TAS5630 1FEATURES APPLICATIONS Mini Combo System 23PurePath™ HD Enabled Integrated Feedback Provides: AV Receivers DVD Receivers Signal Bandwidth up to 80 kHz for High-Frequency Content From HD Sources Active Speakers Ultralow 0.03% THD at 1 W into 4 DESCRIPTION Flat THD at all Frequencies for Natural Sound The TAS5630 is a high-performance analog-input class-D amplifier with integrated closed-loop 80-dB PSRR (BTL, No Input Signal) feedback technology (known as PurePath HD >100-dB (A-weighted) SNR technology) with the ability to drive up to 300 W (1) Click- and Pop-Free Start-Up stereo into 4-to 8-speakers from a single 50-V supply. Multiple Configurations Possible on the Same PCB With Stuffing Options: PurePath HD technology enables traditional Mono Parallel Bridge-Tied Load (PBTL) AB-amplifier performance (<0.03% THD) levels while providing the power efficiency of traditional class-D Stereo Bridge-Tied Load (BTL) amplifiers. 2.1 Single-Ended Stereo Pair and Unlike traditional class-D amplifiers, the distortion Bridge-Tied Load Subwoofer curve only increases once the output levels move into Quad Single-Ended Outputs clipping. PurePath HD™ Total Output Power at 10% THD+N PurePath HD technology enables lower idle losses, 600 W in Mono PBTL Configuration making the device even more efficient. Coupled with 300 W per Channel in Stereo BTL TI’s class-G power-supply reference design for Configuration TAS563x, industry-leading levels of efficiency can be achieved. 145 W per Channel in Quad Single-Ended Configuration High-Efficiency Power Stage (>88%) With 60-mOutput MOSFETs Two Thermally Enhanced Package Options: PHD (64-Pin QFP) DKD (44-Pin PSOP3) Self-Protection Design (Including Undervoltage, Overtemperature, Clipping, and Short-Circuit Protection) With Error Reporting EMI Compliant When Used With Recommended System Design (1) Achievable output power levels are dependent on the thermal configuration of the target application. A high-performance thermal interface material between the exposed package heat slug and the heat sink should be used to achieve high output power levels. 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. 2PurePath HD is a trademark of Texas Instruments. 3All other trademarks are the property of their respective owners. PRODUCTION DATA information is current as of publication date. Copyright © 2009–2010, Texas Instruments Incorporated Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

300W STEREO / 600W MONO PurePath HDTM ANALOG-INPUT …skory.gylcomp.hu/alkatresz/tas5630.pdf · 2011. 7. 15. · Title: 300W STEREO / 600W MONO PurePath HDTM ANALOG-INPUT POWER STAGE

  • Upload
    others

  • View
    13

  • Download
    8

Embed Size (px)

Citation preview

  • PurePathTM

    HDClass-G Power Supply

    Ref. Design

    110 VAC 240 VAC®

    25 V–50 V

    ANALOGAUDIOINPUT

    12 V

    PurePathTM

    HDTAS5630

    (2.1 Configuration)

    ♫♪

    ♫♪

    ♫♪

    3 OPA1632´

    ±15 V

    TAS5630

    www.ti.com SLES220B –JUNE 2009–REVISED FEBRUARY 2010

    300-W STEREO / 600-W MONO PurePath™ HD ANALOG-INPUT POWER STAGECheck for Samples: TAS5630

    1FEATURES APPLICATIONS• Mini Combo System

    23• PurePath™ HD Enabled Integrated FeedbackProvides: • AV Receivers

    • DVD Receivers– Signal Bandwidth up to 80 kHz forHigh-Frequency Content From HD Sources • Active Speakers

    – Ultralow 0.03% THD at 1 W into 4 ΩDESCRIPTION– Flat THD at all Frequencies for Natural

    Sound The TAS5630 is a high-performance analog-inputclass-D amplifier with integrated closed-loop– 80-dB PSRR (BTL, No Input Signal)feedback technology (known as PurePath HD– >100-dB (A-weighted) SNR technology) with the ability to drive up to 300 W (1)

    – Click- and Pop-Free Start-Up stereo into 4-Ω to 8-Ω speakers from a single 50-Vsupply.• Multiple Configurations Possible on the Same

    PCB With Stuffing Options: PurePath HD technology enables traditional– Mono Parallel Bridge-Tied Load (PBTL) AB-amplifier performance (88%) With

    60-mΩ Output MOSFETs• Two Thermally Enhanced Package Options:

    – PHD (64-Pin QFP)– DKD (44-Pin PSOP3)

    • Self-Protection Design (IncludingUndervoltage, Overtemperature, Clipping, andShort-Circuit Protection) With Error Reporting

    • EMI Compliant When Used WithRecommended System Design

    (1) Achievable output power levels are dependent on the thermalconfiguration of the target application. A high-performancethermal interface material between the exposed package heatslug and the heat sink should be used to achieve high outputpower levels.

    1

    Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of TexasInstruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

    2PurePath HD is a trademark of Texas Instruments.3All other trademarks are the property of their respective owners.

    PRODUCTION DATA information is current as of publication date. Copyright © 2009–2010, Texas Instruments IncorporatedProducts conform to specifications per the terms of the TexasInstruments standard warranty. Production processing does notnecessarily include testing of all parameters.

    http://focus.ti.com/docs/prod/folders/print/tas5630.htmlhttps://commerce.ti.com/stores/servlet/SCSAMPLogon?storeId=10001&langId=-1&catalogId=10001&reLogonURL=SCSAMPLogon&URL=SCSAMPSBDResultDisplay&GPN1=tas5630

  • PIN ONE LOCATION PHD PACKAGE

    2616

    15

    OC_ADJ

    14

    RESET

    13

    C_STARTUP

    12

    INPUT_A

    11

    INPUT_B

    10

    VI_CM

    9

    GND8AGND7

    VREG

    6

    INPUT_C

    5

    INPUT_D

    4

    FREQ_ADJ

    3

    OSC_IO+

    2

    OSC_IO-

    1

    SD 64-pins QFP package

    Pin 1 MarkerWhite Dot

    32

    GN

    D_D

    31

    PV

    DD

    _D

    30

    PV

    DD

    _D

    29

    OU

    T_D

    28

    OU

    T_D

    27

    BS

    T_D

    GV

    DD

    _D

    25

    GV

    DD

    _C

    24

    GN

    D23

    GN

    D22

    NC

    21

    NC

    20

    NC

    19

    NC

    18

    PS

    U_R

    EF

    17

    VD

    D

    33 GND_D34 GND_C35 GND_C36 OUT_C37 OUT_C38 PVDD_C39 PVDD_C40 BST_C41 BST_B42 PVDD_B43

    OUT_B44

    GND_B45

    GND_A

    464748

    55

    49

    50

    51

    RE

    AD

    Y

    52

    M1

    53

    M2

    54

    M3

    GN

    D

    56

    GN

    D57

    GV

    DD

    _B

    58

    GV

    DD

    _A

    59

    BS

    T_A

    60

    OU

    T_A

    61

    OU

    T_A

    62

    PV

    DD

    _A

    63

    PV

    DD

    _A

    64

    GN

    D_A

    OTW1

    CLIP

    PVDD_B

    OUT_B

    GND_B

    DKD PACKAGE(TOP VIEW)

    44

    pins

    PA

    CK

    AG

    E(T

    OP

    VIE

    W)

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    44

    43

    42

    41

    40

    39

    38

    37

    36

    35

    34

    33

    32

    31

    30

    29

    28

    27

    26

    25

    24

    23M3

    OC_ADJ

    VDD

    PSU_REF

    M2

    M1

    READY

    OTW

    SD

    OSC_IO-

    OSC_IO+

    FREQ_ADJ

    INPUT_D

    INPUT_C

    VREG

    AGND

    GND

    VI_CM

    INPUT_B

    INPUT_A

    C_STARTUP

    RESET

    GND_C

    OUT_A

    BST_A

    OUT_B

    BST_B

    PVDD_B

    PVDD_A

    BST_C

    PVDD_C

    OUT_C

    GND_A

    GND_B

    OUT_D

    PVDD_D

    BST_D

    GND_D

    GVDD_AB

    GVDD_CD

    PVDD_A

    PVDD_D

    OUT_D

    OUT_A

    OT

    W2

    PHD PACKAGE(TOP VIEW)

    Electrical Pin 1

    TAS5630

    SLES220B –JUNE 2009–REVISED FEBRUARY 2010 www.ti.com

    These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foamduring storage or handling to prevent electrostatic damage to the MOS gates.

    DEVICE INFORMATION

    Terminal Assignment

    The TAS5630 is available in two thermally enhanced packages:• 64-Pin QFP (PHD) power package• 44-Pin PSOP3 package (DKD)

    The package types contain heat slugs that are located on the top side of the device for convenient thermalcoupling to the heat sink.

    2 Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated

    Product Folder Link(s): TAS5630

    http://focus.ti.com/docs/prod/folders/print/tas5630.htmlhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLES220BB&partnum=TAS5630http://focus.ti.com/docs/prod/folders/print/tas5630.html

  • TAS5630

    www.ti.com SLES220B –JUNE 2009–REVISED FEBRUARY 2010

    MODE SELECTION PINS

    MODE PINS OUTPUTANALOG INPUT DESCRIPTION

    CONFIGURATIONM3 M2 M1

    0 0 0 Differential 2 × BTL AD mode

    0 0 1 — — Reserved

    0 1 0 Differential 2 × BTL BD mode

    Differential0 1 1 1 × BTL +2 ×SE BD mode, BTL differentialsingle-ended

    1 0 0 Single-ended 4 × SE AD mode

    INPUT_C (1) INPUT_D (1)

    1 0 1 Differential 1 × PBTL 0 0 AD mode

    1 0 BD mode

    1 1 0Reserved

    1 1 1

    (1) INPUT_C and D are used to select between a subset of AD and BD mode operations in PBTL mode (1=VREG and 0=AGND).

    PACKAGE HEAT DISSIPATION RATINGS (1)

    PARAMETER TAS5630PHD TAS5630DKD

    RqJC (°C/W) – 2 BTL or 4 SE channels 2.63 1.4

    RqJC (°C/W) – 1 BTL or 2 SE channel(s) 4.13 2.04

    RqJC (°C/W) – 1 SE channel 6.45 3.45

    Pad area (2) 64 mm2 80 mm2

    (1) RqJC is junction-to-case, RqCH is case-to-heat sink(2) RqCH is an important consideration. Assume a 2-mil (0.051-mm) thickness of thermal grease with a thermal conductivity of 2.5 W/mK

    between the pad area and the heat sink and both channels active. The RqCH with this condition is 1.1°C/W for the PHD package and0.44°C/W for the DKD package.

    Table 1. ORDERING INFORMATION (1)

    TA PACKAGE DESCRIPTION

    0°C–70°C TAS5630PHD 64-pin HTQFP

    0°C–70°C TAS5630DKD 44-pin PSOP3

    (1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TIwebsite at www.ti.com.

    Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 3

    Product Folder Link(s): TAS5630

    http://focus.ti.com/docs/prod/folders/print/tas5630.htmlhttp://www.ti.comhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLES220BB&partnum=TAS5630http://focus.ti.com/docs/prod/folders/print/tas5630.html

  • TAS5630

    SLES220B –JUNE 2009–REVISED FEBRUARY 2010 www.ti.com

    ABSOLUTE MAXIMUM RATINGSover operating free-air temperature range unless otherwise noted (1)

    VALUE UNIT

    VDD to AGND –0.3 to 13.2 V

    GVDD to AGND –0.3 to 13.2 V

    PVDD_X to GND_X (2) –0.3 to 69 V

    OUT_X to GND_X (2) –0.3 to 69 V

    BST_X to GND_X (2) –0.3 to 82.2 V

    BST_X to GVDD_X (2) –0.3 to 69 V

    VREG to AGND –0.3 to 4.2 V

    GND_X to GND –0.3 to 0.3 V

    GND_X to AGND –0.3 to 0.3 V

    OC_ADJ, M1, M2, M3, OSC_IO+, OSC_IO–, FREQ_ADJ, VI_CM, C_STARTUP, –0.3 to 4.2 VPSU_REF to AGND

    INPUT_X –0.3 to 5 V

    RESET, SD, OTW1, OTW2, CLIP, READY to AGND –0.3 to 7 V

    Continuous sink current (SD, OTW1, OTW2, CLIP, READY) 9 mA

    Operating junction temperature range, TJ 0 to 150 °C

    Storage temperature, Tstg –40 to 150 °C

    Human-body model (3) (all pins) ±2 kVElectrostatic discharge

    Charged-device model (3) (all pins) ±500 V

    (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratingsonly, and functional operation of the device at these or any other conditions beyond those indicated under Recommended OperatingConditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

    (2) These voltages represents the dc voltage + peak ac waveform measured at the terminal of the device in all conditions.(3) Failure to follow good anti-static ESD handling during manufacture and rework contributes to device malfunction. Ensure operators

    handling the device are adequately grounded through the use of ground straps or alternative ESD protection.

    RECOMMENDED OPERATING CONDITIONSover operating free-air temperature range (unless otherwise noted)

    MIN NOM MAX UNIT

    PVDD_x Half-bridge supply DC supply voltage 25 50 52.5 V

    Supply for logic regulators and gate-driveGVDD_x DC supply voltage 10.8 12 13.2 Vcircuitry

    VDD Digital regulator supply voltage DC supply voltage 10.8 12 13.2 V

    RL(BTL) 3.5 4Output filter according to schematics inRL(SE) Load impedance 1.8 2 Ωthe application information section

    RL(PBTL) 1.6 2

    LOUTPUT(BTL) 7 10

    LOUTPUT(SE) Output filter inductance Minimum output inductance at IOC 7 15 mH

    LOUTPUT(PBTL) 7 10

    Nominal 385 400 415PWM frame rate selectable for AMfPWM interference avoidance; 1% resistor AM1 315 333 350 kHz

    tolerance. AM2 260 300 335

    Nominal; master mode 9.9 10 10.1

    RFREQ_ADJ PWM frame-rate-programming resistor AM1; master mode 19.8 20 20.2 kΩAM2; master mode 29.7 30 30.3

    Voltage on FREQ_ADJ pin for slave modeVFREQ_ADJ Slave mode 3.3 Voperation

    TJ Junction temperature 0 150 °C

    4 Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated

    Product Folder Link(s): TAS5630

    http://focus.ti.com/docs/prod/folders/print/tas5630.htmlhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLES220BB&partnum=TAS5630http://focus.ti.com/docs/prod/folders/print/tas5630.html

  • TAS5630

    www.ti.com SLES220B –JUNE 2009–REVISED FEBRUARY 2010

    PIN FUNCTIONSPIN

    Function (1) DESCRIPTIONNAME PHD NO. DKD NO.

    AGND 8 10 P Analog ground

    BST_A 54 43 P HS bootstrap supply (BST), external 0.033-mF capacitor to OUT_A required.

    BST_B 41 34 P HS bootstrap supply (BST), external 0.033-mF capacitor to OUT_B required.

    BST_C 40 33 P HS bootstrap supply (BST), external 0.033-mF capacitor to OUT_C required.

    BST_D 27 24 P HS bootstrap supply (BST), external 0.033-mF capacitor to OUT_D required.

    CLIP 18 — O Clipping warning; open drain; active-low

    C_STARTUP 3 5 O Start-up ramp requires a charging capacitor of 4.7 nF to AGND in BTL mode

    FREQ_ADJ 12 14 I PWM frame-rate-programming pin requires resistor to AGND

    7, 23, 24, 57,GND 9 P Ground58

    GND_A 48, 49 38 P Power ground for half-bridge A

    GND_B 46, 47 37 P Power ground for half-bridge B

    GND_C 34, 35 30 P Power ground for half-bridge C

    GND_D 32, 33 29 P Power ground for half-bridge D

    GVDD_A 55 — P Gate-drive voltage supply requires 0.1-mF capacitor to GND_A

    GVDD_B 56 — P Gate drive voltage supply requires 0.1-mF capacitor to GND_B

    GVDD_C 25 — P Gate drive voltage supply requires 0.1-mF capacitor to GND_C

    GVDD_D 26 — P Gate drive voltage supply requires 0.1-mF capacitor to GND_D

    GVDD_AB — 44 P Gate drive voltage supply requires 0.22-mF capacitor to GND_A/GND_B

    GVDD_CD — 23 P Gate drive voltage supply requires 0.22-mF capacitor to GND_C/GND_D

    INPUT_A 4 6 I Input signal for half-bridge A

    INPUT_B 5 7 I Input signal for half-bridge B

    INPUT_C 10 12 I Input signal for half-bridge C

    INPUT_D 11 13 I Input signal for half-bridge D

    M1 20 20 I Mode selection

    M2 21 21 I Mode selection

    M3 22 22 I Mode selection

    NC 59–62 – — No connect; pins may be grounded.

    Analog overcurrent-programming pin requires resistor to AGND. 64-pinOC_ADJ 1 3 O package (PHD) = 22 kΩ. 44-pin PSOP3 (DKD) = 24 kΩOSC_IO+ 13 15 I/O Oscillator master/slave output/input

    OSC_IO– 14 16 I/O Oscillator master/slave output/input

    OTW — 18 O Overtemperature warning signal, open-drain, active-low

    OTW1 16 — O Overtemperature warning signal, open-drain, active-low

    OTW2 17 — O Overtemperature warning signal, open-drain, active-low

    OUT_A 52, 53 39, 40 O Output, half-bridge A

    OUT_B 44, 45 36 O Output, half-bridge B

    OUT_C 36, 37 31 O Output, half-bridge C

    OUT_D 28, 29 27, 28 O Output, half-bridge D

    PSU_REF 63 1 P PSU reference requires close decoupling of 330 pF to AGND.

    Power-supply input for half-bridge A requires close decoupling of 0.01-mFPVDD_A 50, 51 41, 42 P capacitor in parallel with 2.2-mF capacitor to GND_A.

    Power-supply input for half-bridge B requires close decoupling of 0.01-mFPVDD_B 42, 43 35 P capacitor in parallel with 2.2-mF capacitor to GND_B.

    Power-supply input for half-bridge C requires close decoupling of 0.0- mFPVDD_C 38, 39 32 P capacitor in parallel with 2.2-mF capacitor to GND_C.

    (1) I = Input, O = Output, P = Power

    Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 5

    Product Folder Link(s): TAS5630

    http://focus.ti.com/docs/prod/folders/print/tas5630.htmlhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLES220BB&partnum=TAS5630http://focus.ti.com/docs/prod/folders/print/tas5630.html

  • TAS5630

    SLES220B –JUNE 2009–REVISED FEBRUARY 2010 www.ti.com

    PIN FUNCTIONS (continued)

    PINFunction (1) DESCRIPTION

    NAME PHD NO. DKD NO.

    Power-supply input for half-bridge D requires close decoupling of 0.01-mFPVDD_D 30, 31 25, 26 P capacitor in parallel with 2.2-mF capacitor to GND_D.

    READY 19 19 O Normal operation; open-drain; active-high

    RESET 2 4 I Device reset input; active-low

    SD 15 17 O Shutdown signal, open-drain, active-low

    Power supply for digital voltage regulator requires a 10-mF capacitor in parallelVDD 64 2 P with a 0.1-mF capacitor to GND for decoupling.

    Analog comparator reference node requires close decoupling of 1 nF toVI_CM 6 8 O AGND.

    VREG 9 11 P Digital regulator supply filter pin requires 0.1-mF capacitor to AGND.

    6 Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated

    Product Folder Link(s): TAS5630

    http://focus.ti.com/docs/prod/folders/print/tas5630.htmlhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLES220BB&partnum=TAS5630http://focus.ti.com/docs/prod/folders/print/tas5630.html

  • 2-CHANNELH-BRIDGEBTL MODE

    Output

    H-Bridge 2

    PV

    DD

    _A

    ,B

    ,C

    ,D

    GN

    D_

    A,

    B,C

    ,D

    Hardwire

    Over-

    Current

    Limit

    8

    GN

    D

    VD

    D

    VR

    EG

    AG

    ND

    OC

    _A

    DJ

    PVDDPower Supply

    Decoupling

    GVDD, VDD,

    & VREGPower Supply

    Decoupling

    SYSTEM

    Power

    Supplies

    PVDD

    GVDD (12V)/VDD (12V)

    GND

    50V

    12V

    GND

    VAC

    Bootstrap

    Caps

    BST_C

    BST_D

    2nd

    Order

    L-C Output

    Filter for

    each

    H-Bridge

    OUT_C

    OUT_D

    GV

    DD

    _A

    ,B

    ,C

    ,D

    Bootstrap

    Caps

    BST_A

    BST_B

    INPUT_A 2nd

    Order

    L-C Output

    Filter for

    each

    H-Bridge

    OUT_A

    OUT_B

    8 4

    Output

    H-Bridge 1

    Input

    H-Bridge 1INPUT_B

    M2

    M1

    M3

    Hardwire

    Mode

    Control

    Input

    H-Bridge 2

    INPUT_C

    INPUT_DV

    I_C

    M

    C_S

    TA

    RT

    UP

    PS

    U_R

    EF

    Caps for

    External

    Filtering

    &

    Startup/Stop

    Input DC

    Blocking

    Caps

    Input DC

    Blocking

    Caps

    /RE

    SE

    T

    /OT

    W1

    ,/O

    TW

    2,/O

    TW

    /CLIP

    System

    microcontroller

    or

    Analog circuitry

    RE

    AD

    Y

    /SD

    ANALOG_IN_A

    ANALOG_IN_B

    ANALOG_IN_C

    ANALOG_IN_D

    FREQ_ADJ

    Hardwire

    PWM Frame

    Rate Adjust

    &

    Master/Slave

    Mode

    OSC_IO+

    OSC_IO-

    Oscillator

    Synchronization

    2

    2

    2

    2

    (2)

    TAS5630

    www.ti.com SLES220B –JUNE 2009–REVISED FEBRUARY 2010

    TYPICAL SYSTEM BLOCK DIAGRAM

    Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 7

    Product Folder Link(s): TAS5630

    http://focus.ti.com/docs/prod/folders/print/tas5630.htmlhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLES220BB&partnum=TAS5630http://focus.ti.com/docs/prod/folders/print/tas5630.html

  • M1

    M2

    /RESET

    /SD

    /OTW2

    AGND

    OC_ADJ

    VREG

    VDD

    GVDD_A

    M3

    GND

    INPUT_D

    OUT_A

    GND_A

    PVDD_A

    BST_A

    GVDD_A

    PWM

    ACTIVITY

    DETECTOR

    GVDD_C

    GVDD_B

    INPUT_C

    OUT_B

    GND_B

    PVDD_B

    BST_B

    GVDD_B GVDD_D

    GVDD_C

    OUT_C

    GND_C

    PVDD_C

    BST_C

    GVDD_D

    OUT_D

    GND_D

    PVDD_D

    BST_D

    INPUT_B

    INPUT_A

    PVDD_XOUT_XGND_X

    TIMING

    CONTROLCONTROL GATE-DRIVE

    TIMING

    CONTROLCONTROL GATE-DRIVE

    TIMINGCONTROL

    CONTROL GATE-DRIVE

    TIMING

    CONTROLCONTROL GATE-DRIVE

    PWMRECEIVER

    PWM

    RECEIVER

    PWM

    RECEIVER

    PWM

    RECEIVER

    +

    -

    AN

    AL

    OG

    CO

    MP

    AR

    ATO

    RM

    UX

    +

    -

    +

    -

    +

    -

    PR

    OT

    EC

    TIO

    N&

    I/O

    LO

    GIC

    VI_CM

    STARTUP

    CONTROL

    POWER-UP

    RESET

    TEMPSENSE

    OVER-LOAD

    PROTECTION

    PPSC

    CB3C

    UVP

    CURRENT

    SENSE

    VREG

    C_STARTUP

    ANALOG

    LOOP FILTER

    ANALOG

    LOOP FILTER

    ANALOG

    LOOP FILTER

    ANALOG

    LOOP FILTER

    OSCILLATOR

    FREQ_ADJ

    OSC_SYNC_IO-

    AN

    AL

    OG

    INP

    UT

    MU

    X

    PSU_FFPSU_REF

    4

    4

    4

    PVDD_X4

    GND

    OSC_SYNC_IO+

    /OTW1

    READY

    /CLIP

    TAS5630

    SLES220B –JUNE 2009–REVISED FEBRUARY 2010 www.ti.com

    FUNCTIONAL BLOCK DIAGRAM

    8 Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated

    Product Folder Link(s): TAS5630

    http://focus.ti.com/docs/prod/folders/print/tas5630.htmlhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLES220BB&partnum=TAS5630http://focus.ti.com/docs/prod/folders/print/tas5630.html

  • TAS5630

    www.ti.com SLES220B –JUNE 2009–REVISED FEBRUARY 2010

    AUDIO CHARACTERISTICS (BTL)PCB and system configuration are in accordance with recommended guidelines. Audio frequency = 1 kHz, PVDD_X = 50 V,GVDD_X = 12 V, RL = 4 Ω, fS = 400 kHz, ROC = 22 kΩ, TC = 75°C; output filter: LDEM = 7 mH, CDEM = 680 nF,MODE = 010, unless otherwise noted.

    PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

    RL = 4 Ω, 10% THD+N, clipped output signal 300RL = 6 Ω, 10% THD+N, clipped output signal 210RL = 8 Ω, 10% THD+N, clipped output signal 160

    PO Power output per channel WRL = 4 Ω, 1% THD+N, unclipped output signal 240RL = 6 Ω, 1% THD+N, unclipped output signal 160RL = 8 Ω, 1% THD+N, unclipped output signal 125

    THD+N Total harmonic distortion + noise 1 W 0.03%

    A-weighted, AES17 filter, input capacitorVn Output integrated noise 270 mVgrounded

    |VOS| Output offset voltage Inputs ac-coupled to AGND 40 150 mV

    SNR Signal-to-noise ratio (1) A-weighted, AES17 filter 100 dB

    DNR Dynamic range A-weighted, AES17 filter 100 dB

    Pidle Power dissipation due to idle losses (IPVDD_X) PO = 0, four channels switching(2) 2.7 W

    (1) SNR is calculated relative to 1% THD+N output level.(2) Actual system idle losses also are affected by core losses of output inductors.

    AUDIO SPECIFICATION (Single-Ended Output)PCB and system configuration are in accordance with recommended guidelines. Audio frequency = 1kHz, PVDD_X = 50 V,GVDD_X = 12 V, RL = 4 Ω, fS = 400 kHz, ROC = 22 kΩ, TC = 75°C; output filter: LDEM = 15 mH, CDEM = 470 mF,MODE = 100, unless otherwise noted.

    PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

    RL = 2 Ω, 10% THD+N, clipped output signal 145RL = 3 Ω, 10% THD+N, clipped output signal 100RL = 4 Ω, 10% THD+N, clipped output signal 75

    PO Power output per channelRL = 2 Ω, 1% THD+N, unclipped output signal 110 WRL = 3 Ω, 1% THD+N, unclipped output signal 75RL = 4 Ω, 1% THD+N, unclipped output signal 55

    THD+N Total harmonic distortion + noise 1 W 0.07%

    Vn Output integrated noise A-weighted, AES17 filter, input capacitor grounded 340 mV

    SNR Signal-to-noise ratio (1) A-weighted, AES17 filter 93 dB

    DNR Dynamic range A-weighted, AES17 filter 93 dB

    Pidle Power dissipation due to idle losses (IPVDD_X) PO = 0, four channels switching(2) 2 W

    (1) SNR is calculated relative to 1% THD+N output level.(2) Actual system idle losses are affected by core losses of output inductors.

    Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 9

    Product Folder Link(s): TAS5630

    http://focus.ti.com/docs/prod/folders/print/tas5630.htmlhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLES220BB&partnum=TAS5630http://focus.ti.com/docs/prod/folders/print/tas5630.html

  • TAS5630

    SLES220B –JUNE 2009–REVISED FEBRUARY 2010 www.ti.com

    AUDIO SPECIFICATION (PBTL)PCB and system configuration are in accordance with recommended guidelines. Audio frequency = 1 kHz, PVDD_X = 50 V,GVDD_X = 12 V, RL = 2 Ω, fS = 400 kHz, ROC = 22 kΩ, TC = 75°C; output filter: LDEM = 7 mH, CDEM = 1.5 mF,MODE = 101-10, unless otherwise noted.

    PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

    RL = 2 Ω, 10% THD+N, clipped output signal 600RL = 3 Ω, 10% THD+N, clipped output signal 400RL = 4 Ω, 10% THD+N, clipped output signal 300

    PO Power output per channel WRL = 2 Ω, 1% THD+N, unclipped output signal 480RL = 3 Ω, 1% THD+N, unclipped output signal 310RL = 4 Ω, 1% THD+N, unclipped output signal 230

    THD+N Total harmonic distortion + noise 1 W 0.05%

    Vn Output integrated noise A-weighted 260 mV

    SNR Signal to noise ratio (1) A-weighted 100 dB

    DNR Dynamic range A-weighted 100 dB

    Pidle Power dissipation due to idle losses (IPVDD_X) PO = 0, four channels switching(2) 2.7 W

    (1) SNR is calculated relative to 1% THD-N output level.(2) Actual system idle losses are affected by core losses of output inductors.

    ELECTRICAL CHARACTERISTICSPVDD_X = 50 V, GVDD_X = 12 V, VDD = 12 V, TC (Case temperature) = 75°C, fS = 400 kHz, unless otherwise specified.

    PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

    INTERNAL VOLTAGE REGULATOR AND CURRENT CONSUMPTION

    Voltage regulator, only used as referenceVREG VDD = 12 V 3 3.3 3.6 Vnode, VREG

    VI_CM Analog comparator reference node, VI_CM 1.5 1.75 1.9 V

    Operating, 50% duty cycle 22.5IVDD VDD supply current mA

    Idle, reset mode 22.5

    50% duty cycle 12.5IGVDD_X GVDD_x gate-supply current per half-bridge mA

    Reset mode 1.5

    50% duty cycle with recommended output 13.3 mAfilterIPVDD_X Half-bridge supply currentReset mode, No switching 870 mA

    ANALOG INPUTS

    RIN Input resistance READY = HIGH 33 kΩVIN Maximum input voltage swing 5 V

    IIN Maximum input current 342 mA

    G Voltage gain (VOUT/VIN) 23 dB

    OSCILLATOR

    Nominal, master mode 3.85 4 4.15

    fOSC_IO+ AM1, master mode FPWM × 10 3.15 3.33 3.5 MHz

    AM2, master mode 2.6 3 3.35

    VIH High level input voltage 1.86 V

    VIL Low level input voltage 1.45 V

    OUTPUT-STAGE MOSFETs

    Drain-to-source resistance, low side (LS) 60 100 mΩTJ = 25°C, excludes metallizationRDS(on) resistance, GVDD = 12 VDrain-to-source resistance, high side (HS) 60 100 mΩ

    10 Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated

    Product Folder Link(s): TAS5630

    http://focus.ti.com/docs/prod/folders/print/tas5630.htmlhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLES220BB&partnum=TAS5630http://focus.ti.com/docs/prod/folders/print/tas5630.html

  • TAS5630

    www.ti.com SLES220B –JUNE 2009–REVISED FEBRUARY 2010

    ELECTRICAL CHARACTERISTICS (continued)PVDD_X = 50 V, GVDD_X = 12 V, VDD = 12 V, TC (Case temperature) = 75°C, fS = 400 kHz, unless otherwise specified.

    PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

    I/O PROTECTION

    Undervoltage protection limit, GVDD_x andVuvp,G 9.5 VVDD

    Vuvp,hyst(1) 0.6 V

    OTW1 (1) Overtemperature warning 1 95 100 105 °C

    OTW2 (1) Overtemperature warning 2 115 125 135 °C

    Temperature drop needed below OTWOTWhyst

    (1) temperature for OTW to be inactive after 25 °COTW event

    Overtemperature error 145 155 165 °COTE (1)

    OTE-OTW differential 30 °C

    A reset must occur for SD to be releasedOTEhyst(1) 25 °Cfollowing an OTE event.

    OLPC Overload protection counter fPWM = 400 kHz 2.6 ms

    Resistor – programmable, nominal peakcurrent in 1-Ω load,

    19 A64-pin QFP package (PHD)ROCP = 22 kΩOvercurrent limit protectionResistor – programmable, nominal peak

    IOC current in 1-Ω load, 19 A44-Pin PSOP3 package (DKD),ROCP = 24 kΩResistor – programmable, nominal peakcurrent in 1-Ω load,Overcurrent limit protection, latched 19 AROCP = 47 kΩTime from switching transition to flip-stateIOCT Overcurrent response time 150 nsinduced by overcurrent

    Connected when RESET is active toInternal pulldown resistor at output of eachIPD provide bootstrap charge. Not used in SE 3 mAhalf-bridge mode

    STATIC DIGITAL SPECIFICATIONS

    VIH High-level input voltage 2 VINPUT_X, M1, M2, M3, RESET

    VIL Low-level input voltage 0.8 V

    Ilkg Input leakage current 100 mA

    OTW/SHUTDOWN (SD)

    Internal pullup resistance, OTW1 to VREG,RINT_PU 20 26 32 kΩOTW2 to VREG, SD to VREGInternal pullup resistor 3 3.3 3.6

    VOH High-level output voltage VExternal pullup of 4.7 kΩ to 5 V 4.5 5

    VOL Low-level output voltage IO = 4 mA 200 500 mV

    Device fanout OTW1, OTW2, SD, CLIP,FANOUT No external pullup 30 devicesREADY

    (1) Specified by design.

    Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 11

    Product Folder Link(s): TAS5630

    http://focus.ti.com/docs/prod/folders/print/tas5630.htmlhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLES220BB&partnum=TAS5630http://focus.ti.com/docs/prod/folders/print/tas5630.html

  • 0

    340

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    220

    240

    260

    280

    300

    320

    25 5030 35 40 45

    PVDD - Supply Voltage - VP

    - O

    utp

    ut

    Po

    wer

    - W

    O

    T = 75°C

    THD+N at 10%C

    4 W

    6 W

    8 W

    0.005

    10

    0.01

    0.02

    0.05

    0.1

    0.2

    0.5

    1

    2

    5

    20m 400100m200m 1 2 5 10 20 50 100

    TH

    D+

    N -

    To

    tal H

    arm

    on

    ic D

    isto

    rtio

    n +

    No

    ise -

    %

    P - Output Power - WO

    4 W

    6 W

    8 W

    T = 75°CC

    0

    100

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    65

    70

    75

    80

    85

    90

    95

    0 700100 200 300 400 500 6002 Channel Output Power - W

    Eff

    icie

    ncy -

    %

    T = 25°C

    THD+N at 10%C

    4 W6 W8 W

    0

    300

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    220

    240

    260

    280

    25 5030 35 40 45PVDD - Supply Voltage - V

    P-

    Ou

    tpu

    t P

    ow

    er

    - W

    O

    T = 75°CC

    4 W

    6 W

    8 W

    TAS5630

    SLES220B –JUNE 2009–REVISED FEBRUARY 2010 www.ti.com

    TYPICAL CHARACTERISTICS, BTL CONFIGURATIONTOTAL HARMONIC+NOISE OUTPUT POWER

    vs vsOUTPUT POWER SUPPLY VOLTAGE

    Figure 1. Figure 2.

    UNCLIPPED OUTPUT POWER SYSTEM EFFICIENCYvs vs

    SUPPLY VOLTAGE OUTPUT POWER

    Figure 3. Figure 4.

    12 Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated

    Product Folder Link(s): TAS5630

    http://focus.ti.com/docs/prod/folders/print/tas5630.htmlhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLES220BB&partnum=TAS5630http://focus.ti.com/docs/prod/folders/print/tas5630.html

  • 0

    340

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    220

    240

    260

    280

    300

    320

    10 12020 30 40 50 60 70 80 90 100 110P

    - O

    utp

    ut

    Po

    wer

    - W

    O

    4 W

    6 W

    8 W

    THD+N at 10%

    T - Case Temperature - °CC

    0

    80

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    65

    70

    75

    0 600100 200 300 400 500

    2 Channel Output Power - W

    T = 25°C

    THD+N at 10%C

    4 W

    8 W

    6 W

    Po

    wer

    Lo

    ss -

    W

    -160

    +0

    -150

    -140

    -130

    -120

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    0k 4k 6k 8k 10k 12k 14k 16k 18k 22kf - Frequency - Hz

    No

    ise

    Am

    plitu

    de -

    dB

    T = 75°C,

    V = 31.9 V,

    Sample Rate = 48 kHz,FFT Size = 16384

    C

    REF

    4 W

    2k 20k

    TAS5630

    www.ti.com SLES220B –JUNE 2009–REVISED FEBRUARY 2010

    TYPICAL CHARACTERISTICS, BTL CONFIGURATION (continued)SYSTEM POWER LOSS OUTPUT POWER

    vs vsOUTPUT POWER CASE TEMPERATURE

    Figure 5. Figure 6.

    NOISE AMPLITUDEvs

    FREQUENCY

    Figure 7.

    Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 13

    Product Folder Link(s): TAS5630

    http://focus.ti.com/docs/prod/folders/print/tas5630.htmlhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLES220BB&partnum=TAS5630http://focus.ti.com/docs/prod/folders/print/tas5630.html

  • 0.005

    10

    0.01

    0.02

    0.05

    0.1

    0.2

    0.5

    1

    2

    5

    20m 200m 1 2 5 10 20 50 100

    P - Output Power - WO

    TH

    D+

    N -

    To

    tal H

    arm

    on

    ic D

    isto

    rtio

    n +

    No

    ise -

    % 4 W

    3 W

    T = 75°CC

    2 W

    0

    170

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    110

    120

    130

    140

    150

    160

    25 5030 35 40 45

    PVDD - Supply Voltage - V

    4 W

    3 W

    2 W

    T = 75°C

    THD+N at 10%C

    P-

    Ou

    tpu

    t P

    ow

    er

    - W

    O

    0

    180

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    110

    120

    130

    140

    150

    160

    170

    10 12020 30 40 50 60 70 80 90 100 110

    P-

    Ou

    tpu

    t P

    ow

    er

    - W

    O

    THD+N at 10%

    T - Case Temperature - °CC

    4 W

    3 W

    2 W

    TAS5630

    SLES220B –JUNE 2009–REVISED FEBRUARY 2010 www.ti.com

    TYPICAL CHARACTERISTICS, SE CONFIGURATIONTOTAL HARMONIC DISTORTION + NOISE OUTPUT POWER

    vs vsOUTPUT POWER SUPPLY VOLTAGE

    Figure 8. Figure 9.

    OUTPUT POWERvs

    CASE TEMPERATURE

    Figure 10.

    14 Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated

    Product Folder Link(s): TAS5630

    http://focus.ti.com/docs/prod/folders/print/tas5630.htmlhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLES220BB&partnum=TAS5630http://focus.ti.com/docs/prod/folders/print/tas5630.html

  • 0.005

    10

    0.01

    0.02

    0.05

    0.1

    0.2

    0.5

    1

    2

    5

    20m 700100m 200m 1 2 5 10 20 50 100 200

    TH

    D+

    N -

    To

    tal H

    arm

    on

    ic D

    isto

    rtio

    n +

    No

    ise -

    %

    P - Output Power - WO

    4 W

    3 W

    2 W

    6 W

    8 W

    T = 75°CC

    0

    650

    50

    100

    150

    200

    250

    300

    350

    400

    450

    500

    550

    600

    25 5030 35 40 45

    PVDD - Supply Voltage - VP

    - O

    utp

    ut

    Po

    wer

    - W

    O

    T = 75°C

    THD+N at 10%C

    6 W

    8 W

    4 W

    3 W

    2 W

    0

    700

    50

    100

    150

    200

    250

    300

    350

    400

    450

    500

    550

    600

    650

    10 12020 30 40 50 60 70 80 90 100 110

    THD+N at 10%

    6 W

    8 W

    4 W

    3 W

    2 W

    P-

    Ou

    tpu

    t P

    ow

    er

    - W

    O

    T - Case Temperature - °CC

    TAS5630

    www.ti.com SLES220B –JUNE 2009–REVISED FEBRUARY 2010

    TYPICAL CHARACTERISTICS, PBTL CONFIGURATIONTOTAL HARMONIC DISTORTION + NOISE OUTPUT POWER

    vs vsOUTPUT POWER SUPPLY VOLTAGE

    Figure 11. Figure 12.

    OUTPUT POWERvs

    CASE TEMPERATURE

    Figure 13.

    Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 15

    Product Folder Link(s): TAS5630

    http://focus.ti.com/docs/prod/folders/print/tas5630.htmlhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLES220BB&partnum=TAS5630http://focus.ti.com/docs/prod/folders/print/tas5630.html

  • TAS5630

    SLES220B –JUNE 2009–REVISED FEBRUARY 2010 www.ti.com

    APPLICATION INFORMATION

    PCB MATERIAL RECOMMENDATION

    FR-4 2-oz. (70-mm) glass epoxy material is recommended for use with the TAS5630. The use of this material canprovide for higher power output, improved thermal performance, and better EMI margin (due to lower PCB traceinductance).

    PVDD CAPACITOR RECOMMENDATION

    The large capacitors used in conjunction with each full bridge are referred to as the PVDD capacitors. Thesecapacitors should be selected for proper voltage margin and adequate capacitance to support the powerrequirements. In practice, with a well-designed system power supply, 1000 mF, 63-V supports more applications.The PVDD capacitors should be the low-ESR type, because they are used in a circuit associated with high-speedswitching.

    DECOUPLING CAPACITOR RECOMMENDATIONS

    To design an amplifier that has robust performance, passes regulatory requirements, and exhibits good audioperformance, quality decoupling capacitors should be used. In practice, X7R should be used in this application.

    The voltage of the decoupling capacitors should be selected in accordance with good design practices.Temperature, ripple current, and voltage overshoot must be considered. This fact is particularly true in theselection of the 2.2-mF capacitor that is placed on the power supply to each half-bridge. It must withstand thevoltage overshoot of the PWM switching, the heat generated by the amplifier during high power output, and theripple current created by high power output. A minimum voltage rating of 63 V is required for use with a 50-Vpower supply.

    SYSTEM DESIGN RECOMMENDATIONS

    The following schematics and PCB layouts illustrate best practices used for the TAS5630.

    16 Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated

    Product Folder Link(s): TAS5630

    http://focus.ti.com/docs/prod/folders/print/tas5630.htmlhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLES220BB&partnum=TAS5630http://focus.ti.com/docs/prod/folders/print/tas5630.html

  • IN_

    LE

    FT

    _N

    IN_

    LE

    FT

    _P

    R_

    RIG

    HT

    _N

    IN_

    RIG

    HT

    _P

    /RE

    SE

    T

    /SD

    /OT

    W1

    /OT

    W2

    /CL

    IP

    RE

    AD

    Y

    OS

    C_

    IO+

    OS

    C_

    IO-

    GV

    DD

    /VD

    D (

    +12

    V)

    PV

    DD G

    VD

    D/V

    DD

    (+

    12V

    )

    PV

    DD

    PV

    DD

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    VR

    EG

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    VR

    EG

    VR

    EG

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    OU

    T_

    LE

    FT

    _P

    OU

    T_

    LE

    FT

    _M

    +-

    OU

    T_

    RIG

    HT

    _P

    OU

    T_

    RIG

    HT

    _M

    +-17

    62

    63 18

    19

    64

    20

    21

    24

    23

    22

    25

    27

    26

    29

    28

    30

    31

    32

    1

    33

    34

    35

    37

    2 3

    36

    4

    38

    39

    5 6 7

    40

    41

    8 9

    42

    10

    43

    11

    44

    45

    12

    46

    47

    13

    48

    14

    15

    49

    16

    50

    51

    52

    54

    53

    56

    55

    57

    58

    59

    60

    61

    C2

    3

    33

    0pF

    C2

    3

    33

    0pF

    R7

    1

    3.3

    R

    R7

    1

    3.3

    R

    C1

    5

    10

    0p

    F

    C1

    5

    10

    0p

    F

    R7

    23

    .3R

    R7

    23

    .3R

    C3

    0

    10

    0n

    F

    C3

    0

    10

    0n

    F

    C3

    3

    10

    0nF

    C3

    3

    10

    0nF

    C2

    0

    4.7

    nF

    C2

    0

    4.7

    nF

    C6

    1

    2.2

    uF

    C6

    1

    2.2

    uF

    R7

    33

    .3R

    R7

    33

    .3R

    R32

    3.3

    R

    R32

    3.3

    R

    C72

    1nF

    C72

    1nF

    R2

    1

    10kR2

    1

    10k

    C6

    02

    .2u

    FC

    60

    2.2

    uF

    L11

    7uH

    L11

    7uH

    C53

    680nF

    C53

    680nF

    C2

    2

    10

    0n

    F

    C2

    2

    10

    0n

    F

    R3

    0

    3.3

    R

    R3

    0

    3.3

    R

    C1

    8

    10

    0p

    F

    C1

    8

    10

    0p

    F

    C50

    680nF

    C50

    680nF

    R3

    1

    3.3

    R

    R3

    1

    3.3

    R

    C52

    680nF

    C52

    680nF

    C64

    1000

    uF

    C64

    1000

    uF

    L1

    07uH

    L1

    07uH

    C3

    2

    10

    0nF

    C3

    2

    10

    0nF

    C77

    10

    nF

    C77

    10

    nF

    C1

    7

    10

    0p

    F

    C1

    7

    10

    0p

    F

    C41

    33

    nF

    C41

    33

    nF

    R7

    03

    .3R

    R7

    03

    .3R

    C11

    10

    0p

    F

    C11

    10

    0p

    F

    C40

    33n

    FC

    40

    33n

    F

    R11

    10

    0R

    R11

    10

    0R

    L1

    27uH

    L1

    27uH

    R33

    3.3

    R

    R33

    3.3

    R

    C66

    1000uF

    C66

    1000uF

    C42

    33

    nF

    C42

    33

    nF

    C1

    6

    10

    uF

    C1

    6

    10

    uF

    C69

    2.2

    uF

    C69

    2.2

    uF

    C1

    4

    10

    uF

    C1

    4

    10

    uF

    C78

    10nF

    C78

    10nF

    R1

    9

    47

    k

    R1

    9

    47

    k

    C1

    2

    10

    uF

    C1

    2

    10

    uF

    R1

    3

    10

    0R

    R1

    3

    10

    0R

    L1

    3

    7uH

    L1

    3

    7uH

    C74

    10

    nF

    C74

    10

    nF

    C2

    61

    00

    nF

    C2

    61

    00

    nF

    C2

    1

    1nF

    C2

    1

    1nF

    C2

    51

    0u

    FC

    25

    10

    uF

    C1

    0

    10

    uF

    C1

    0

    10

    uF

    C67

    1000

    uF

    C67

    1000

    uF

    R1

    0

    10

    0R

    R1

    0

    10

    0R

    C51

    680nF

    C51

    680nF

    C70

    1nF

    C70

    1nF

    R1

    8

    10

    0R

    R1

    8

    10

    0R

    C43

    33n

    FC

    43

    33n

    F

    C75

    10

    nF

    C75

    10

    nF

    C6

    22.2

    uF

    C6

    22.2

    uF

    R2

    0

    22.0

    k

    R2

    0

    22.0

    k

    C6

    5

    1000

    uF

    C6

    5

    1000

    uF

    C1

    31

    00

    pF

    C1

    31

    00

    pF

    C71

    1nF

    C71

    1nF

    C31

    100

    nF

    C31

    100

    nF

    C6

    32

    .2u

    FC

    63

    2.2

    uF

    C73

    1nF

    C73

    1nF

    R74

    3.3

    R

    R74

    3.3

    R

    R1

    2

    10

    0R

    R1

    2

    10

    0R

    C76

    10

    nF

    C76

    10

    nFC

    68

    47uF

    63V

    C68

    47uF

    63V

    U1

    0

    TA

    S56

    30

    PH

    D

    U1

    0

    TA

    S56

    30

    PH

    D

    OC

    _A

    DJ

    /RE

    SE

    T

    C_S

    TA

    RT

    UP

    INP

    UT

    _A

    INP

    UT

    _B

    VI_

    CM

    GN

    D

    AG

    ND

    VR

    EG

    INP

    UT

    _C

    INP

    UT

    _D

    FR

    EQ

    _A

    DJ

    OS

    C_IO

    +

    OS

    C_IO

    -

    /SD

    /OT

    W1

    /OTW2

    /CLIP

    READY

    M1

    M2

    M3

    GND

    GND

    GVDD_C

    GVDD_D

    BST_D

    OUT_D

    OUT_D

    PVDD_D

    PVDD_D

    GND_D

    GN

    D_A

    GN

    D_B

    GN

    D_B

    OU

    T_B

    OU

    T_B

    PV

    DD

    _B

    PV

    DD

    _B

    BS

    T_B

    BS

    T_C

    PV

    DD

    _C

    PV

    DD

    _C

    OU

    T_C

    OU

    T_C

    GN

    D_C

    GN

    D_C

    GN

    D_D

    VDD

    PSU_REF

    NC

    NC

    NC

    NC

    GND

    GND

    GVDD_B

    GVDD_A

    BST_A

    OUT_A

    OUT_A

    PVDD_A

    PVDD_A

    GND_A

    TAS5630

    www.ti.com SLES220B –JUNE 2009–REVISED FEBRUARY 2010

    Figure 14. Typical Differential-Input BTL Application With BD Modulation Filters

    Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 17

    Product Folder Link(s): TAS5630

    http://focus.ti.com/docs/prod/folders/print/tas5630.htmlhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLES220BB&partnum=TAS5630http://focus.ti.com/docs/prod/folders/print/tas5630.html

  • IN_

    N

    IN_

    P

    /RE

    SE

    T

    /SD

    /OT

    W1

    /OT

    W2

    /CL

    IP

    RE

    AD

    Y

    GV

    DD

    (+

    12

    V)

    PV

    DD

    OS

    C_

    IO+

    OS

    C_

    IO-

    GV

    DD

    (+

    12

    V)

    VD

    D (

    +1

    2V

    )

    PV

    DD

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    VR

    EG

    GN

    D

    GN

    D

    GN

    D

    GN

    DG

    ND

    VR

    EG

    GN

    DG

    ND

    GN

    D

    GN

    DG

    ND

    GN

    D

    VR

    EG

    VR

    EG

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    1 2 3 4 5 6 7 8 9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    38

    39

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    61

    62

    63

    64

    +-

    OU

    T_LE

    FT

    _P

    OU

    T_LE

    FT

    _M

    4.7

    nF

    4.7

    nF

    10

    0n

    F1

    00

    nF

    3.3

    R3

    .3R

    10

    0n

    F1

    00

    nF

    10

    0n

    F1

    00

    nF

    10

    00

    uF

    63

    V1

    00

    0u

    F6

    3V

    10

    uF

    10

    uF

    33

    0p

    F3

    30

    pF

    10

    00

    uF

    63

    V

    10

    00

    uF

    63

    V7

    uH

    7u

    H

    3.3

    R3

    .3R

    47

    k4

    7k

    2.2

    uF

    10

    0V

    2.2

    uF

    10

    0V

    3.3

    R3

    .3R

    1n

    F1

    00

    V1

    nF

    10

    0V

    10

    0n

    F1

    00

    nF

    10

    00

    uF

    63

    V1

    00

    0u

    F6

    3V

    10

    uF

    10

    uF

    7u

    H7

    uH

    3.3

    R3

    .3R

    33

    nF

    33

    nF

    47

    uF

    63

    V

    47

    uF

    63

    V

    1u

    F2

    50

    V2

    50

    V

    25

    0V

    1u

    F

    25

    0V

    10

    0R

    10

    0R

    1n

    F1

    nF

    10

    0R

    10

    0R

    3.3

    R3

    .3R

    10

    nF

    10

    0V

    10

    nF

    10

    0V

    10

    0R

    10

    0R

    2.2

    uF

    10

    0V

    2.2

    uF

    10

    0V

    7u

    H7

    uH

    33

    nF

    33

    nF

    10

    0n

    F1

    00

    nF

    10

    nF

    10

    0V

    10

    nF

    10

    0V

    10

    0p

    F1

    00

    pF

    10

    uF

    10

    uF

    1n

    F1

    00

    V1

    nF

    10

    0V

    TA

    S5

    63

    0P

    HD

    TA

    S5

    63

    0P

    HD

    OC

    _A

    DJ

    /RE

    SE

    T

    C_

    STA

    RT

    UP

    INP

    UT

    _A

    INP

    UT

    _B

    VI_

    CM

    GN

    D

    AG

    ND

    VR

    EG

    INP

    UT

    _C

    INP

    UT

    _D

    FR

    EQ

    _A

    DJ

    OS

    C_

    IO+

    OS

    C_

    IO-

    /SD

    /OT

    W1

    /OTW2

    /CLIP

    READY

    M1

    M2

    M3

    GND

    GND

    GVDD_C

    GVDD_D

    BST_D

    OUT_D

    OUT_D

    PVDD_D

    PVDD_D

    GND_D

    GN

    D_

    A

    GN

    D_

    B

    GN

    D_

    B

    OU

    T_

    B

    OU

    T_

    B

    PV

    DD

    _B

    PV

    DD

    _B

    BS

    T_

    B

    BS

    T_

    C

    PV

    DD

    _C

    PV

    DD

    _C

    OU

    T_

    C

    OU

    T_

    C

    GN

    D_

    C

    GN

    D_

    C

    GN

    D_

    D

    VDD

    PSU_REF

    NC

    NC

    NC

    NC

    GND

    GND

    GVDD_B

    GVDD_A

    BST_A

    OUT_A

    OUT_A

    PVDD_A

    PVDD_A

    GND_A

    2.2

    uF

    10

    0V

    2.2

    uF

    10

    0V

    10

    0p

    F1

    00

    pF

    22

    .0k

    22

    .0k

    10

    nF

    10

    0V

    10

    nF

    10

    0V

    2.2

    uF

    10

    0V

    2.2

    uF

    10

    0V

    3.3

    R3

    .3R

    33

    nF

    33

    nF

    3.3

    R3

    .3R

    7u

    H7

    uH

    10

    00

    uF

    63

    V1

    00

    0u

    F6

    3V

    2.2

    uF

    10

    0V

    2.2

    uF

    10

    0V

    10

    0p

    F1

    00

    pF

    10

    0n

    F1

    00

    nF

    33

    nF

    33

    nF

    10

    k1

    0k

    TAS5630

    SLES220B –JUNE 2009–REVISED FEBRUARY 2010 www.ti.com

    Figure 15. Typical Differential (2N) PBTL Application With BD Modulation Filters

    18 Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated

    Product Folder Link(s): TAS5630

    http://focus.ti.com/docs/prod/folders/print/tas5630.htmlhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLES220BB&partnum=TAS5630http://focus.ti.com/docs/prod/folders/print/tas5630.html

  • IN_B

    IN_A

    IN_D

    IN_C

    /RE

    SE

    T /SD

    /OT

    W1

    /OT

    W2

    /CLIP

    RE

    AD

    Y

    PV

    DD

    A

    PV

    DD

    B

    PV

    DD

    C

    PV

    DD

    D

    A

    B C D

    GV

    DD

    (+

    12V

    )

    PV

    DD

    OS

    C_IO

    +

    OS

    C_IO

    -

    GV

    DD

    (+

    12V

    )

    VD

    D (

    +12V

    )

    PV

    DD

    PV

    DD

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    DG

    ND

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    VR

    EG

    GN

    D

    VR

    EG

    GN

    DG

    ND

    GN

    D

    GN

    D

    GN

    D

    GN

    DG

    ND

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    DG

    ND

    VR

    EG

    GN

    D

    62

    17

    63 18

    64

    19

    20

    21

    24

    23

    22

    25

    27

    26

    29

    28

    30

    31

    32

    33

    34

    1

    35

    37

    2

    36

    3

    38

    4

    39

    5 6

    40

    41

    742

    8 9

    10

    43

    44

    45

    11

    46

    12

    47

    13

    48

    14

    15

    49

    16

    50

    51

    52

    54

    53

    56

    55

    57

    58

    59

    60

    61

    OU

    T_B

    _P

    OU

    T_B

    _M

    +- +-

    OU

    T_D

    _P

    OU

    T_D

    _M

    +-

    OU

    T_C

    _P

    OU

    T_C

    _M

    +-

    OU

    T_A

    _P

    OU

    T_A

    _M

    TA

    S5

    63

    0P

    HD

    TA

    S5

    63

    0P

    HD

    OC

    _A

    DJ

    /RE

    SE

    T

    C_S

    TA

    RT

    UP

    INP

    UT

    _A

    INP

    UT

    _B

    VI_

    CM

    GN

    D

    AG

    ND

    VR

    EG

    INP

    UT

    _C

    INP

    UT

    _D

    FR

    EQ

    _A

    DJ

    OS

    C_IO

    +

    OS

    C_IO

    -

    /SD

    /OT

    W1

    /OTW2

    /CLIP

    READY

    M1

    M2

    M3

    GND

    GND

    GVDD_C

    GVDD_D

    BST_D

    OUT_D

    OUT_D

    PVDD_D

    PVDD_D

    GND_D

    GN

    D_A

    GN

    D_B

    GN

    D_B

    OU

    T_B

    OU

    T_B

    PV

    DD

    _B

    PV

    DD

    _B

    BS

    T_B

    BS

    T_C

    PV

    DD

    _C

    PV

    DD

    _C

    OU

    T_C

    OU

    T_C

    GN

    D_C

    GN

    D_C

    GN

    D_D

    VDD

    PSU_REF

    NC

    NC

    NC

    NC

    GND

    GND

    GVDD_B

    GVDD_A

    BST_A

    OUT_A

    OUT_A

    PVDD_A

    PVDD_A

    GND_A

    3.3

    R3.3

    R

    100nF

    100nF

    2.2

    uF

    2.2

    uF

    2.2

    uF

    2.2

    uF

    15uH

    15uH

    470uF

    50V

    470uF

    50V

    470uF

    50V

    470uF

    50V

    470uF

    50V

    470uF

    50V

    10nF

    100V

    10nF

    100V

    15uH

    15uH

    33nF

    33nF

    470uF

    50V

    470uF

    50V

    100nF

    100V

    100nF

    100V

    3.3

    R3.3

    R

    470uF

    50V

    470uF

    50V

    10nF

    100V

    10nF

    100V

    3.3

    R3.3

    R

    10k

    1%

    10k

    1%

    47uF

    63V

    47uF

    63V

    100R

    100R

    3.3

    R3.3

    R

    15uH

    15uH

    100R

    100R

    100nF

    100V

    100nF

    100V

    10uF

    10uF

    100pF

    100pF

    470nF

    250V

    470nF

    250V

    R_C

    OM

    PR

    _C

    OM

    P

    10k

    1%

    10k

    1%

    10uF

    10uF

    100nF

    100V

    100nF

    100V

    10uF

    10uF

    1nF

    1nF

    100nF

    100nF

    22.0

    k22.0

    k

    3.3

    R3.3

    R

    100nF

    100V

    100nF

    100V

    100pF

    100pF

    470uF

    50V

    470uF

    50V

    10uF

    10uF

    3.3

    R3.3

    R

    10uF

    10uF

    470nF

    250V

    470nF

    250V

    3.3

    R3.3

    R

    10k

    10k

    R_C

    OM

    PR

    _C

    OM

    P

    10k

    1%

    10k

    1%

    10nF

    10nF

    3.3

    R3.3

    R

    10k

    10k

    10nF

    100V

    10nF

    100V

    10k

    1%

    10k

    1%

    10k

    1%

    10k

    1%

    100nF

    100nF

    330pF

    330pF

    47k

    47k

    R_C

    OM

    PR

    _C

    OM

    P

    10k

    10k

    R_C

    OM

    PR

    _C

    OM

    P100nF

    100V

    100nF

    100V

    470nF

    250V

    470nF

    250V

    100pF

    100pF

    10nF

    10nF

    100nF

    100V

    100nF

    100V

    100R

    100R

    100nF

    100nF

    2.2

    uF

    2.2

    uF

    100R

    100R

    10k

    10k

    10k

    1%

    10k

    1%

    3.3

    R3.3

    R

    15uH

    15uH

    100pF

    100pF

    10nF

    100V

    10nF

    100V

    2.2

    uF

    2.2

    uF 1

    00nF

    100V

    100nF

    100V

    100pF

    100pF

    10nF

    100V

    10nF

    100V

    10k

    1%

    10k

    1%

    470uF

    50V

    470uF

    50V

    3.3

    R3.3

    R 470uF

    50V

    470uF

    50V

    33nF

    33nF

    3.3

    R3.3

    R

    470nF

    250V

    470nF

    250V

    10k

    10k

    2.2

    uF

    2.2

    uF

    100nF

    100nF

    10k

    1%

    10k

    1%

    10nF

    100V

    10nF

    100V

    33nF

    33nF

    100nF

    100nF

    3.3

    R3.3

    R

    33nF

    33nF

    3.3

    R3.3

    R

    10nF

    100V

    10nF

    100V

    100R

    100R

    100nF

    100V

    100nF

    100V

    10nF

    100V

    10nF

    100V

    PV

    DD

    R

    _C

    OM

    P

    50V

    147k

    49

    V 165k

    48V

    187k

    <4

    8V

    191k

    W W W W

    TAS5630

    www.ti.com SLES220B –JUNE 2009–REVISED FEBRUARY 2010

    Figure 16. Typical SE Application

    Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 19

    Product Folder Link(s): TAS5630

    http://focus.ti.com/docs/prod/folders/print/tas5630.htmlhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLES220BB&partnum=TAS5630http://focus.ti.com/docs/prod/folders/print/tas5630.html

  • IN_

    CE

    NT

    ER

    _N

    IN_

    CE

    NT

    ER

    _P

    IN_

    RIG

    HT

    IN_

    LE

    FT

    /RE

    SE

    T

    /SD

    /OT

    W1

    /OT

    W2

    /CL

    IP

    RE

    AD

    Y

    GV

    DD

    (+

    12

    V)

    PV

    DD

    OS

    C_

    IO+

    OS

    C_

    IO-

    GV

    DD

    (+

    12

    V)

    VD

    D (

    +1

    2V

    )

    PV

    DD

    PV

    DD

    PV

    DD

    PV

    DD

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    DG

    ND

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    VR

    EG

    GN

    D

    VR

    EG

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    DG

    ND

    VR

    EG

    GN

    DG

    ND

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    62

    17

    63 18

    64

    19

    20

    21

    24

    23

    22

    25

    27

    26

    29

    28

    30

    31

    32

    33

    34

    1

    35

    37

    2

    36

    3

    38

    4

    39

    5 6

    40

    41

    74

    2

    8 9

    10

    43

    44

    45

    11

    46

    12

    47

    13

    48

    14

    15

    49

    16

    50

    51

    52

    54

    53

    56

    55

    57

    58

    59

    60

    61

    OU

    T_

    CE

    NT

    ER

    _P

    OU

    T_

    CE

    NT

    ER

    _M

    +-

    OU

    T_

    LE

    FT

    _M

    OU

    T_

    RIG

    HT

    _M

    +- +-

    OU

    T_

    LE

    FT

    _P

    OU

    T_

    RIG

    HT

    _P

    10

    0n

    F1

    00

    nF

    10

    0n

    F1

    00

    nF

    10

    uF

    10

    uF

    10

    k1

    0k

    10

    0n

    F1

    00

    nF

    3.3

    R3

    .3R

    10

    k

    1%

    10

    k

    1%

    TA

    S5630P

    HD

    TA

    S5630P

    HD

    OC

    _A

    DJ

    /RE

    SE

    T

    C_

    STA

    RT

    UP

    INP

    UT

    _A

    INP

    UT

    _B

    VI_

    CM

    GN

    D

    AG

    ND

    VR

    EG

    INP

    UT

    _C

    INP

    UT

    _D

    FR

    EQ

    _A

    DJ

    OS

    C_

    IO+

    OS

    C_

    IO-

    /SD

    /OT

    W1

    /OTW2

    /CLIP

    READY

    M1

    M2

    M3

    GND

    GND

    GVDD_C

    GVDD_D

    BST_D

    OUT_D

    OUT_D

    PVDD_D

    PVDD_D

    GND_D

    GN

    D_

    A

    GN

    D_

    B

    GN

    D_

    B

    OU

    T_

    B

    OU

    T_

    B

    PV

    DD

    _B

    PV

    DD

    _B

    BS

    T_

    B

    BS

    T_

    C

    PV

    DD

    _C

    PV

    DD

    _C

    OU

    T_

    C

    OU

    T_

    C

    GN

    D_

    C

    GN

    D_

    C

    GN

    D_

    D

    VDD

    PSU_REF

    NC

    NC

    NC

    NC

    GND

    GND

    GVDD_B

    GVDD_A

    BST_A

    OUT_A

    OUT_A

    PVDD_A

    PVDD_A

    GND_A

    10

    0p

    F1

    00

    pF

    R_

    CO

    MP

    R_

    CO

    MP

    47

    0n

    F2

    50

    V4

    70

    nF

    25

    0V

    10

    0n

    F1

    00

    nF

    10

    nF

    10

    0V

    10

    nF

    10

    0V

    47

    0u

    F5

    0V

    47

    0u

    F5

    0V

    10

    0n

    F1

    00

    nF

    10

    uF

    10

    uF

    10

    00

    uF

    63

    V

    10

    00

    uF

    63

    V

    10

    0n

    F1

    00

    V

    10

    0n

    F1

    00

    V

    10

    0p

    F1

    00

    pF

    10

    0n

    F1

    00

    V

    10

    0n

    F1

    00

    V

    33

    0p

    F3

    30

    pF

    10

    nF

    10

    0V

    10

    nF

    10

    0V

    47

    0u

    F5

    0V

    47

    0u

    F5

    0V

    10

    k

    1%

    10

    k

    1%

    10

    k1

    0k

    3.3

    R3

    .3R

    47

    uF

    63

    V

    47

    uF

    63

    V

    3.3

    R3

    .3R

    10

    k

    1%

    10

    k

    1%

    2.2

    uF

    10

    0V

    2.2

    uF

    10

    0V

    47

    0n

    F2

    50

    V4

    70

    nF

    25

    0V

    10

    uF

    10

    uF

    10

    nF

    10

    0V

    10

    nF

    10

    0V

    15

    uH

    15

    uH

    3.3

    R3

    .3R

    68

    0n

    F2

    50

    V

    68

    0n

    F2

    50

    V

    R_

    CO

    MP

    R_

    CO

    MP

    10

    uF

    10

    uF

    33

    nF

    33

    nF

    47

    0u

    F5

    0V

    47

    0u

    F5

    0V

    3.3

    R3

    .3R

    10

    nF

    10

    0V

    10

    nF

    10

    0V

    10

    0R

    10

    0R

    10

    nF

    10

    0V

    10

    nF

    10

    0V

    1n

    F1

    00

    V

    1n

    F1

    00

    V

    3.3

    R3

    .3R

    10

    0R

    10

    0R

    3.3

    R3

    .3R

    47

    k4

    7k

    2.2

    uF

    10

    0V

    2.2

    uF

    10

    0V

    15

    uH

    15

    uH

    33

    nF

    33

    nF

    10

    0n

    F1

    00

    V

    10

    0n

    F1

    00

    V

    10

    0n

    F1

    00

    nF

    10

    0R

    10

    0R

    3.3

    R3

    .3R

    10

    0n

    F1

    00

    V

    10

    0n

    F1

    00

    V

    10

    uF

    10

    uF

    10

    0p

    F1

    00

    pF

    3.3

    R3

    .3R

    10

    0R

    10

    0R

    2.2

    uF

    10

    0V

    2.2

    uF

    10

    0V

    2.2

    uF

    10

    0V

    2.2

    uF

    10

    0V

    10

    0p

    F1

    00

    pF

    10

    nF

    10

    0V

    10

    nF

    10

    0V

    10

    k1

    0k

    10

    nF

    10

    0V

    10

    nF

    10

    0V

    2.2

    uF

    10

    0V

    2.2

    uF

    10

    0V

    1n

    F1

    00

    V

    1n

    F1

    00

    V

    68

    0n

    F

    25

    0V

    68

    0n

    F

    25

    0V

    33

    nF

    33

    nF

    7u

    H7

    uH

    33

    nF

    33

    nF

    10

    0p

    F1

    00

    pF

    10

    nF

    10

    nF

    22

    .0k

    22

    .0k

    10

    0R

    10

    0R

    7u

    H7

    uH

    10

    00

    uF

    63

    V1

    00

    0u

    F6

    3V

    47

    0u

    F5

    0V

    47

    0u

    F5

    0V

    3.3

    R3

    .3R

    1n

    F1

    nF

    3.3

    R3

    .3R

    10

    k

    1%

    10

    k

    1%

    TAS5630

    SLES220B –JUNE 2009–REVISED FEBRUARY 2010 www.ti.com

    Figure 17. Typical 2.1 System Differential-Input BTL and Unbalanced-Input SE Application

    20 Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated

    Product Folder Link(s): TAS5630

    http://focus.ti.com/docs/prod/folders/print/tas5630.htmlhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLES220BB&partnum=TAS5630http://focus.ti.com/docs/prod/folders/print/tas5630.html

  • IN_

    LE

    FT

    _N

    IN_

    LE

    FT

    _P

    IN_

    RIG

    HT

    _N

    IN_

    RIG

    HT

    _P /SD

    /OT

    W

    RE

    AD

    Y

    GV

    DD

    (+

    12

    V)

    PV

    DD

    OS

    C_

    IO+

    OS

    C_

    IO-

    GV

    DD

    (+

    12

    V)

    VD

    D (

    +1

    2V

    )

    PV

    DD

    PV

    DD

    /RE

    SE

    T

    GN

    DG

    ND

    GN

    D

    GN

    DG

    ND

    GN

    DG

    ND

    GN

    D

    GN

    D

    GN

    DG

    ND

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    VR

    EG

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    D

    GN

    DV

    RE

    G

    GN

    D

    GN

    D

    VR

    EG

    GN

    D

    GN

    D

    OU

    T_

    LE

    FT

    _P

    OU

    T_

    LE

    FT

    _M

    OU

    T_

    RIG

    HT

    _P

    OU

    T_

    RIG

    HT

    _M

    +-+-1 2 3 4 5 6 7 8 9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    33

    34

    35

    36

    37

    38

    39

    40

    41

    42

    43

    44

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    C8

    83

    3n

    FC

    88

    33

    nF

    C8

    5

    1n

    F

    C8

    5

    1n

    F

    3.3

    R3

    .3R

    7u

    H7

    uH

    2.2

    uF

    10

    0V

    2.2

    uF

    10

    0V

    C4

    13

    3n

    FC

    41

    33

    nF

    68

    0n

    F2

    50

    V

    68

    0n

    F2

    50

    V

    10

    nF

    10

    0V

    10

    nF

    10

    0V

    3.3

    R3

    .3R

    10

    uF

    10

    uF

    10

    uF

    10

    uF

    10

    uF

    10

    uF

    R4

    5

    10

    0R

    R4

    5

    10

    0R

    10

    nF

    10

    0V

    10

    nF

    10

    0V

    10

    00

    uF

    63

    V

    10

    00

    uF

    63

    V

    C8

    1

    10

    0p

    F

    C8

    1

    10

    0p

    F

    C7

    81

    00

    pF

    C7

    81

    00

    pF

    C3

    73

    3n

    FC

    37

    33

    nF

    C7

    9

    10

    0p

    F

    C7

    9

    10

    0p

    F

    R1

    4

    24

    k

    R1

    4

    24

    k

    C3

    51

    00

    nF

    C3

    51

    00

    nF

    R4

    4

    47

    k

    R4

    4

    47

    k

    C3

    81

    00

    nF

    C3

    81

    00

    nF

    C3

    42

    .2u

    FC

    34

    2.2

    uF

    R3

    4

    1.5

    R

    R3

    4

    1.5

    R

    C8

    0

    10

    0p

    F

    C8

    0

    10

    0p

    F

    U1

    2

    TA

    S5630D

    KD

    U1

    2

    TA

    S5630D

    KD

    PS

    U_

    RE

    F

    VD

    D

    OC

    _A

    DJ

    /RE

    SE

    T

    C_

    STA

    RT

    UP

    INP

    UT

    _A

    INP

    UT

    _B

    VI_

    CM

    GN

    D

    AG

    ND

    VR

    EG

    INP

    UT

    _C

    INP

    UT

    _D

    FR

    EQ

    _A

    DJ

    OS

    C_

    IO+

    OS

    C_

    IO-

    /OT

    WO

    UT

    _D

    OU

    T_

    D

    GN

    D_

    D

    GN

    D_

    C

    OU

    T_

    C

    PV

    DD

    _C

    BS

    T_

    C

    BS

    T_

    B

    PV

    DD

    _B

    OU

    T_

    B

    GN

    D_

    B

    GN

    D_

    A

    OU

    T_

    A

    OU

    T_

    A

    /SD

    GV

    DD

    _A

    B

    BS

    T_

    A

    PV

    DD

    _A

    PV

    DD

    _A

    M1

    M2

    M3

    GV

    DD

    _C

    D

    BS

    T_

    D

    PV

    DD

    _D

    RE

    AD

    YP

    VD

    D_

    D

    C3

    3

    33

    nF

    C3

    3

    33

    nF

    68

    0n

    F

    25

    0V

    68

    0n

    F

    25

    0V

    C9

    12

    .2u

    FC

    91

    2.2

    uF

    7u

    H7

    uH

    R1

    3

    10

    0R

    R1

    3

    10

    0R

    C8

    41

    00

    nF

    C8

    41

    00

    nF

    3.3

    R3

    .3R

    10

    nF

    10

    0V

    10

    nF

    10

    0V

    C8

    71

    00

    nF

    C8

    71

    00

    nF

    1n

    F1

    00

    V1

    nF

    10

    0V

    3.3

    R3

    .3R

    R6

    0

    10

    0R

    R6

    0

    10

    0R

    68

    0n

    F2

    50

    V

    68

    0n

    F2

    50

    V

    10

    00

    uF

    63

    V1

    00

    0u

    F6

    3V

    3.3

    R3

    .3R

    C4

    2

    10

    0n

    F

    C4

    2

    10

    0n

    F

    C9

    02

    .2u

    FC

    90

    2.2

    uF

    R2

    0

    10

    kR2

    0

    10

    k

    C4

    41

    0u

    FC

    44

    10

    uF

    7u

    H7

    uH

    68

    0n

    F

    25

    0V

    68

    0n

    F

    25

    0V

    10

    uF

    10

    uF

    C8

    32

    .2u

    FC

    83

    2.2

    uF

    10

    00

    uF

    63

    V

    10

    00

    uF

    63

    V

    C8

    91

    00

    nF

    C8

    91

    00

    nF

    R3

    1

    1.5

    R

    R3

    1

    1.5

    R1

    00

    0u

    F6

    3V

    10

    00

    uF

    63

    V

    C4

    5

    4.7

    nF

    C4

    5

    4.7

    nF

    10

    nF

    10

    0V

    10

    nF

    10

    0V

    C8

    6

    33

    0p

    F

    C8

    6

    33

    0p

    F1

    0n

    F1

    00

    V1

    0n

    F1

    00

    V

    47

    uF

    63

    V

    47

    uF

    63

    VR

    53

    10

    0R

    R5

    3

    10

    0R

    1n

    F1

    00

    V1

    nF

    10

    0V

    C8

    2

    10

    0p

    F

    C8

    2

    10

    0p

    F

    7u

    H7

    uH

    1n

    F1

    00

    V1

    nF

    10

    0V

    1n

    F1

    00

    V1

    nF

    10

    0V

    R5

    4

    10

    0R

    R5

    4

    10

    0R

    TAS5630

    www.ti.com SLES220B –JUNE 2009–REVISED FEBRUARY 2010

    Figure 18. Typical Differential-Input BTL Application With BD Modulation Filters, DKD Package

    Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 21

    Product Folder Link(s): TAS5630

    http://focus.ti.com/docs/prod/folders/print/tas5630.htmlhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLES220BB&partnum=TAS5630http://focus.ti.com/docs/prod/folders/print/tas5630.html

  • TAS5630

    SLES220B –JUNE 2009–REVISED FEBRUARY 2010 www.ti.com

    THEORY OF OPERATION

    POWER SUPPLIES

    To facilitate system design, the TAS5630 needs only a 12-V supply in addition to the (typical) 50-V power-stagesupply. An internal voltage regulator provides suitable voltage levels for the digital and low-voltage analogcircuitry. Additionally, all circuitry requiring a floating voltage supply, e.g., the high-side gate drive, isaccommodated by built-in bootstrap circuitry requiring only an external capacitor for each half-bridge.

    To provide outstanding electrical and acoustical characteristics, the PWM signal path, including gate drive andoutput stage, is designed as identical, independent half-bridges. For this reason, each half-bridge has separategate drive supply pins (GVDD_X), bootstrap pins (BST_X), and power-stage supply pins (PVDD_X).Furthermore, an additional pin (VDD) is provided as supply for all common circuits. Although supplied from thesame 12-V source, it is highly recommended to separate GVDD_A, GVDD_B, GVDD_C, GVDD_D, and VDD onthe printed-circuit board (PCB) by RC filters (see application diagram for details). These RC filters provide therecommended high-frequency isolation. Special attention should be paid to placing all decoupling capacitors asclose to their associated pins as possible. In general, inductance between the power supply pins and decouplingcapacitors must be avoided. (See reference board documentation for additional information.)

    For a properly functioning bootstrap circuit, a small ceramic capacitor must be connected from each bootstrap pin(BST_X) to the power-stage output pin (OUT_X). When the power-stage output is low, the bootstrap capacitor ischarged through an internal diode connected between the gate-drive power-supply pin (GVDD_X) and thebootstrap pin. When the power-stage output is high, the bootstrap capacitor potential is shifted above the outputpotential and thus provides a suitable voltage supply for the high-side gate driver. In an application with PWMswitching frequencies in the range from 300 kHz to 400 kHz, it is recommended to use 33-nF ceramic capacitors,size 0603 or 0805, for the bootstrap supply. These 33-nF capacitors ensure sufficient energy storage, evenduring minimal PWM duty cycles, to keep the high-side power stage FET (LDMOS) fully turned on during theremaining part of the PWM cycle.

    Special attention should be paid to the power-stage power supply; this includes component selection, PCBplacement, and routing. As indicated, each half-bridge has independent power-stage supply pins (PVDD_X). Foroptimal electrical performance, EMI compliance, and system reliability, it is important that each PVDD_X pin isdecoupled with a 2.2-mF ceramic capacitor placed as close as possible to each supply pin. It is recommended tofollow the PCB layout of the TAS5630 reference design. For additional information on recommended powersupply and required components, see the application diagrams in this data sheet.

    The 12-V supply should be from a low-noise, low-output-impedance voltage regulator. Likewise, the 50-Vpower-stage supply is assumed to have low output impedance and low noise. The power-supply sequence is notcritical as facilitated by the internal power-on-reset circuit. Moreover, the TAS5630 is fully protected againsterroneous power-stage turnon due to parasitic gate charging. Thus, voltage-supply ramp rates (dV/dt) arenon-critical within the specified range (see the Recommended Operating Conditions table of this data sheet).

    SYSTEM POWER-UP/POWER-DOWN SEQUENCE

    Powering Up

    The TAS5630 does not require a power-up sequence. The outputs of the H-bridges remain in a high-impedancestate until the gate-drive supply voltage (GVDD_X) and VDD voltage are above the undervoltage protection(UVP) voltage threshold (see the Electrical Characteristics table of this data sheet). Although not specificallyrequired, it is recommended to hold RESET in a low state while powering up the device. This allows an internalcircuit to charge the external bootstrap capacitors by enabling a weak pulldown of the half-bridge output.

    Powering Down

    The TAS5630 does not require a power-down sequence. The device remains fully operational as long as thegate-drive supply (GVDD_X) voltage and VDD voltage are above the undervoltage protection (UVP) voltagethreshold (see the Electrical Characteristics table of this data sheet). Although not specifically required, it is agood practice to hold RESET low during power down, thus preventing audible artifacts including pops or clicks.

    22 Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated

    Product Folder Link(s): TAS5630

    http://focus.ti.com/docs/prod/folders/print/tas5630.htmlhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLES220BB&partnum=TAS5630http://focus.ti.com/docs/prod/folders/print/tas5630.html

  • TAS5630

    www.ti.com SLES220B –JUNE 2009–REVISED FEBRUARY 2010

    ERROR REPORTING

    The SD, OTW, OTW1 and OTW2 pins are active-low, open-drain outputs. Their function is for protection-modesignaling to a PWM controller or other system-control device.

    Any fault resulting in device shutdown is signaled by the SD pin going low. Likewise, OTW and OTW2 go lowwhen the device junction temperature exceeds 125°C and OTW1 goes low when the junction temperatureexceeds 100°C (see the following table).

    OTW2,SD OTW1 DESCRIPTIONOTW

    0 0 0 Overtemperature (OTE) or overload (OLP) or undervoltage (UVP)

    Overload (OLP) or undervoltage (UVP). Junction temperature higher than 100°C (overtemperature0 0 1 warning)

    0 1 1 Overload (OLP) or undervoltage (UVP)

    1 0 0 Junction temperature higher than 125°C (overtemperature warning)

    1 0 1 Junction temperature higher than 100°C (overtemperature warning)

    1 1 1 Junction temperature lower than 100°C and no OLP or UVP faults (normal operation)

    Note that asserting either RESET low forces the SD signal high, independent of faults being present. TIrecommends monitoring the OTW signal using the system microcontroller and responding to an overtemperaturewarning signal by, e.g., turning down the volume to prevent further heating of the device resulting in deviceshutdown (OTE).

    To reduce external component count, an internal pullup resistor to 3.3 V is provided on both SD and OTWoutputs. Level compliance for 5-V logic can be obtained by adding external pullup resistors to 5 V (see theElectrical Characteristics table of this data sheet for further specifications).

    DEVICE PROTECTION SYSTEM

    The TAS5630 contains advanced protection circuitry carefully designed to facilitate system integration and easeof use, as well as to safeguard the device from permanent failure due to a wide range of fault conditions such asshort circuits, overload, overtemperature, and undervoltage. The TAS5630 responds to a fault by immediatelysetting the power stage in a high-impedance (Hi-Z) state and asserting the SD pin low. In situations other thanoverload and overtemperature error (OTE), the device automatically recovers when the fault condition has beenremoved, i.e., the supply voltage has increased.

    The device functions on errors, as shown in the following table.

    BTL Mode PBTL Mode SE Mode

    Local error in Turns Off or in Local error in Turns Off or in Local error in Turns Off or in

    A A AA + B A + B

    B B BA + B + C + D

    C C CC + D C + D

    D D D

    Bootstrap UVP does not shut down according to the table; it shuts down the respective half-bridge.

    PIN-TO-PIN SHORT-CIRCUIT PROTECTION (PPSC)

    The PPSC detection system protects the device from permanent damage if a power output pin (OUT_X) isshorted to GND_X or PVDD_X. For comparison, the OC protection system detects an overcurrent after thedemodulation filter, whereas PPSC detects shorts directly at the pin before the filter. PPSC detection isperformed at startup, i.e., when VDD is supplied; consequently, a short to either GND_X or PVDD_X aftersystem startup does not activate the PPSC detection system. When PPSC detection is activated by a short onthe output, all half-bridges are kept in a Hi-Z state until the short is removed; the device then continues thestartup sequence and starts switching. The detection is controlled globally by a two-step sequence. The first stepensures that there are no shorts from OUT_X to GND_X; the second step tests that there are no shorts fromOUT_X to PVDD_X. The total duration of this process is roughly proportional to the capacitance of the output LC

    Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 23

    Product Folder Link(s): TAS5630

    http://focus.ti.com/docs/prod/folders/print/tas5630.htmlhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLES220BB&partnum=TAS5630http://focus.ti.com/docs/prod/folders/print/tas5630.html

  • TAS5630

    SLES220B –JUNE 2009–REVISED FEBRUARY 2010 www.ti.com

    filter. The typical duration is

  • TAS5630

    www.ti.com SLES220B –JUNE 2009–REVISED FEBRUARY 2010

    OSCILLATOR

    The oscillator frequency can be trimmed by external control of the FREQ_ADJ pin.

    To reduce interference problems while using a radio receiver tuned within the AM band, the switching frequencycan be changed from nominal to lower values. These values should be chosen such that the nominal and thelower-value switching frequencies together result in the fewest cases of interference throughout the AM band,and can be selected by the value of the FREQ_ADJ resistor connected to AGND in master mode.

    For slave-mode operation, turn off the oscillator by pulling the FREQ_ADJ pin to VREG. This configures theOSC_I/O pins as inputs, which must be slaved from an external clock.

    PRINTED CIRCUIT BOARD RECOMMENDATION

    Use an unbroken ground plane to have a good low-impedance and -inductance return path to the power supplyfor power and audio signals. PCB layout, audio performance and EMI are linked closely together. The circuitcontains high, fast-switching currents; therefore, care must be taken to prevent damaging voltage spikes. Routingof the audio input should be kept short and together with the accompanying audio-source ground. A local groundarea underneath the device is important to keep solid to minimize ground bounce.

    Netlist for this printed circuit board is generated from the schematic in Figure 14.

    Note T1: PVDD bulk decoupling capacitors C60–C64 should be as close as possible to the PVDD_X and GND_Xpins; the heat sink sets the distance. Wide traces should be routed on the top layer with direct connection to the pinsand without going through vias. No vias or traces should be blocking the current path.

    Note T2: Close decoupling of PVDD with low impedance X7R ceramic capacitors is placed under the heat sink andclose to the pins.

    Note T3: Heat sink must have a good connection to PCB ground.

    Note T4: Output filter capacitors must be linear in the applied voltage range, preferably metal film types.

    Figure 19. Printed Circuit Board – Top Layer

    Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 25

    Product Folder Link(s): TAS5630

    http://focus.ti.com/docs/prod/folders/print/tas5630.htmlhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLES220BB&partnum=TAS5630http://focus.ti.com/docs/prod/folders/print/tas5630.html

  • TAS5630

    SLES220B –JUNE 2009–REVISED FEBRUARY 2010 www.ti.com

    Note B1: It is important to have a direct-low impedance return path for high current back to the power supply. Keepimpedance low from top to bottom side of PCB through a lot of ground vias.

    Note B2: Bootstrap low-impedance X7R ceramic capacitors placed on bottom side provide a short, low-inductancecurrent loop.

    Note B3: Return currents from bulk capacitors and output filter capacitors

    Figure 20. Printed Circuit Board – Bottom Layer

    REVISION HISTORY

    Changes from Original (July 2009) to Revision A Page

    • Deleted Product Preview from the PHD package ................................................................................................................. 3

    Changes from Revision A (September 2009) to Revision B Page

    • Changed several frame-rate specifications in Recommended Operating Conditions .......................................................... 4

    • Changed oscillator frequency specifications in Electrical Characteristics .......................................................................... 10

    • Changed specification for overload protection counter in Electrical Characteristics .......................................................... 11

    26 Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated

    Product Folder Link(s): TAS5630

    http://focus.ti.com/docs/prod/folders/print/tas5630.htmlhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLES220BB&partnum=TAS5630http://focus.ti.com/docs/prod/folders/print/tas5630.html

  • PACKAGE OPTION ADDENDUM

    www.ti.com 13-Apr-2011

    Addendum-Page 1

    PACKAGING INFORMATION

    Orderable Device Status (1) Package Type PackageDrawing

    Pins Package Qty Eco Plan (2) Lead/Ball Finish

    MSL Peak Temp (3) Samples

    (Requires Login)

    TAS5630DKD ACTIVE HSSOP DKD 44 29 Green (RoHS& no Sb/Br)

    CU NIPDAU Level-4-260C-72 HR

    TAS5630DKDR ACTIVE HSSOP DKD 44 500 Green (RoHS& no Sb/Br)

    CU NIPDAU Level-4-260C-72 HR

    TAS5630PHD ACTIVE HTQFP PHD 64 90 Green (RoHS& no Sb/Br)

    CU NIPDAU Level-5A-260C-24 HR

    TAS5630PHDR ACTIVE HTQFP PHD 64 1000 Green (RoHS& no Sb/Br)

    CU NIPDAU Level-5A-260C-24 HR

    (1) The marketing status values are defined as follows:ACTIVE: Product device recommended for new designs.LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.PREVIEW: Device has been announced but is not in production. Samples may or may not be available.OBSOLETE: TI has discontinued the production of the device.

    (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availabilityinformation and additional product content details.TBD: The Pb-Free/Green conversion plan has not been defined.Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement thatlead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.Pb-Free (RoHS Exempt): This component has a RoHS exemption for eit