2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

Embed Size (px)

Citation preview

  • 7/29/2019 2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

    1/34

    www.bris.ac.uk/composites

    Polymer Nanocomposite Coatings foraerospace composite components

    Hua-Xin Peng ( )

    Advanced Composites Centre for Innovation and Science ACCIS)

    &

    NanoScience and Quantum Information (NSQI)

  • 7/29/2019 2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

    2/34

    13 staff members ~20RAs ~50 PhDs

    25m National Composites Centre

    7.2m Centre for Doctor Training (CDT)

    Rolls Royce UTC (4.35m)

    Industrial Doctorate Centre (3.8m)

    GE Aviation UTSP (1.25m)

    Vestas UTC (1.3m) Extensive links to aerospace companies

    Advanced Composites Centre for

    Innovation and Science(ACCIS)

  • 7/29/2019 2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

    3/34

    ACCIS research themes

    Multifunctional Composites

    and Novel Microstructures

    Design, Analysis and Failure

    Intelligent Structures

    Composites Processing andCharacterisation

    HierarchicalMicrostructures

    Scaling effectson strength

    Multistablemorphingcomposites

    Simulating drapeon complexparts

  • 7/29/2019 2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

    4/34

    National Composites Centre (GBP 25m)

  • 7/29/2019 2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

    5/34

    Carbon laminate

    Carbon sandwich

    Fiberglass

    Aluminum

    Aluminum/steel/titanium pylons

    Carbon laminate

    Carbon sandwich

    Fiberglass

    Aluminum

    Aluminum/steel/titanium pylons

    Carbon laminate

    Carbon sandwich

    Fiberglass

    Aluminum

    Aluminum/steel/titanium pylons

    Applications ofCarbon Fibre Composites (CFC)

    National Composites Centre

  • 7/29/2019 2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

    6/34

    AgustaWestland

    AirmanJamesR.Evans,U.S.Navy

    Aeronautical applications focus

    Report2009

  • 7/29/2019 2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

    7/34

    HH60 Kuwait Landing

    AgustaWestland

    AirmanJamesR.Evans,U.S.Navy

    The Challenges

  • 7/29/2019 2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

    8/34

    HH60 Kuwait Landing

    AgustaWestland

    AirmanJamesR.Evans,U.S.Navy

    The Challenges

  • 7/29/2019 2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

    9/34

    The Challenges

    Erosion

    - particle abrasion

    - sharp object cut

    - water erosion

    Lightning protection

    De-icing

    Solution Nano-enabledCoatings

  • 7/29/2019 2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

    10/34

    Nano-particle(s) Polymeric matrix

    Particles functionalization & matrix compatibility

    Dispersion & Formulation

    (Bead milling system)

    Spray coatings

    (Dowty)

    Tape applications

    (3M, WHL)

    Erosion performance:---Sand, Water, Cutting

    Physical properties

    ---Lightning effects

    Mechanical properties

    Paints

    (PPG, AUK, WHL)

    Propellers (DP), rotor blade (WHL, 3M), Paint (WHL,

    Airbus, PPG), wind turbines (3M), automobiles (3M).

    ACCIS nano-Roadmap

    Fundamentals

    Routes toApplication

    Characteristics

    Applications

  • 7/29/2019 2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

    11/34

    Erosion & Impact Damage

  • 7/29/2019 2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

    12/34

    Erosion & Impact Damage

    Development erosion and cut resistant polymer nano-composite coatings for rotor & propeller blades

    Comparison of PU tape (left) & sprayed PU (right) to 1%nano-diamond coating (middle) in sand erosion tests

    PUtape 1%ND SprayedPU

  • 7/29/2019 2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

    13/34

    Sand Erosion Mechanism

    Soft/ductilecoating

    Hard/brittlecoating

    Nanocomposite

    coating

  • 7/29/2019 2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

    14/34

    Nanocomposite Scratch Resistance

    Scratch-resistance performance of nano-alumina particleswith various loading in UV curable coatingsNanophase Technologies Corp.

  • 7/29/2019 2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

    15/34

    Nano-diamond reinforcement

    Why nano-diamond?

    Driven by potential erosion/cut

    protection:

    Hard

    Mass produced (and cheap)

    Potential for surface functionality

    And coincidentally >5x greaterthermal conduction than silver

    MaterialThermal

    Conduction

    (W/mK)Epoxy 0.59

    Polyurethane 0.16

    Alumina 40

    SiC 120

    Aluminum 220

    Gold 310

    Nickel 90

    Silver 429

    St. Steel 16

    Titanium 22

    Diamond >2000

    d l

  • 7/29/2019 2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

    16/34

    Key to reap the full benefits of the nanoparticles

    Provides the low cost and high performance

    Large-scale production.

    Involves the following:

    Particle/polymer interface modification

    Dispersion

    Incorporation into spraying apparatus

    Fundamental aspects Process 1

    F d t l t P 2

  • 7/29/2019 2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

    17/34

    Preploymer Curing AgentNanoparticles

    Add particles to solvent whilemixing with HSD

    Highly loaded, but de-agglomerated and dispersed

    slurry

    Recirculate in bead mill withdispersant

    Mix with solvent Heat to 70C

    Mill Base

    Add Mill base toparticle slurry

    slowly but withrapid stirring using

    HSD/Bead mill

    Mix with solvent Heat to 70C

    1 2 1 2

    1 spray coating

    2 moulding(heated mould)

    Fundamental aspects Process 2

    F d t l t F ti li i

  • 7/29/2019 2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

    18/34

    Chlorine stage 1: Free radical attack of surface hydrogen

    ND

    H

    + Cl2

    ND

    Cl

    + HCl

    Functionalising nano- diamond particles:

    Chlorine stage 2: Chlorine substitution reaction

    ND

    Cl

    + NH3 or H2O

    UV

    ND

    NH2

    ND

    OH

    + H2O

    or

    Fundamental aspects Functionalizing

    F d t l t Rh t

  • 7/29/2019 2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

    19/34

    Fundamental aspects - Rheometry

    0.10

    1.00

    10.00

    100.00

    0.10 1.00 10.00 100.00 1000.00

    Shear rate (1/s)

    Viscosity(Pa.s

    )

    0% ND 1% ND

    3% ND 5% ND

    25C, Malvern Gemini Rheometer

    Particular importance to sprayed coatings

    Large increase in viscosity at 5% weight

    Departure from Newtonian behaviour Large increases in solvents needed to maintain

    processing ability

    HVLP 2k spray system

    T i S d i i

  • 7/29/2019 2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

    20/34

    Testing: Sand erosion resistance

    ACCIS produced PU and 1wt% nanodiamond / PU

    tested using grit blaster at extreme close range (

  • 7/29/2019 2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

    21/34

    Testing: Thermal Conduction

    0.0000

    0.0400

    0.0800

    0.1200

    0.1600

    0.2000

    0.2400

    0 1 3 5 8% weight of filler in PU

    Therm

    alConduction(W/mK)

    Batch ABatch B

    21.1% increase at 1%

    29.5% increase at 5%

    Conduction plateau reached?

  • 7/29/2019 2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

    22/34

    Lightning and de-icing

    Li ht i t ik

  • 7/29/2019 2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

    23/34

    Protecting the 787

    Lightning strike

    Li ht i t ik

  • 7/29/2019 2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

    24/34

    Lightning strike

    Li ht i t ik

  • 7/29/2019 2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

    25/34

    Lightning strike

    Aircraft Blade De-icing

  • 7/29/2019 2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

    26/34

    Aircraft Blade De-icing

    Small quantities of ice buildup on aerofoil sections leads

    to rapid & significantchanges blade lift & pitchingmoments

    Icing is not just a problem

    encountered in cold climates

    Inflatable boots or spraychemical solutions simply

    not as versatile or robust asheat based systems

    Ice build up on a Wessex rotor blade

    Aircraft Blade De-icing

  • 7/29/2019 2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

    27/34

    10mm 10mm

    Awareness that current polymer coatings inhibit thermalde-icing systems.

    Modern helicoptersneed as much as6kW which istransferred through

    slip rings at therotor hub

    Due to insulationeffect much of thiswill go backwards

    into the carbon fibrestructure

    Copper heaterelements embedded

    in composite rotorstructure

    Aircraft Blade De-icing

    Lightning strike & De icing

  • 7/29/2019 2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

    28/34

    Lightning strike & De-icing

    What properties?

    - electrical conductivity

    - thermal

    - dielectric

    CNT, ACCIS buckypaper andcomposites

    Fundamental aspects

  • 7/29/2019 2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

    29/34

    Fundamental aspects

    Decorating MWCNTs with Agnanoparticles

    X-ray EDX of Ag/MWNTs

    Fundamental aspects

  • 7/29/2019 2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

    30/34

    Fundamental aspects

    Decorated CNTs and ACCIS Buckypapers

    Fundamental aspects

  • 7/29/2019 2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

    31/34

    Fundamental aspects

    Buckypapers and Composites

    ACCIS buckypaper

  • 7/29/2019 2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

    32/34

    Materials(monolayer)

    Electricalconductivity

    (S/cm)

    Thickness/(m)

    EMI shieldingeffectiveness

    (dB)

    MWNT/ NPs 40 110 38.47

    MWNT 27.7 120 36.07

    Electrical conductivity and EMI:

    ACCIS buckypaper

    ACCIS buckypaper

  • 7/29/2019 2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

    33/34

    ACCIS buckypaper

    5 Volts

    6V

    7V

    Temperature(oC)

    Heating Stabilising Cooling

    Time, (s)Thermal imaging ofMax Temp. @ volts

    Joule heating under various electric voltages:

    Thermalresponse:

    Concluding remarks

  • 7/29/2019 2_Polymer Nanocomposite Coatings for Aerospace Composite Components - Dr. Hua-Xin Peng, ACCIS, United Kingdom

    34/34

    g

    Nanotechnology affords the opportunity to create a range

    of advanced materials & composites

    Challenges facing the Aerospace engineering:

    Hardness, Radiation, solar absorption, infrad emission Heat pipes, antenna reflector & systems

    Electrical housing/bond

    Space craft structures

    Solar array substructures