2D Truss and Direct Stiffness

Embed Size (px)

Citation preview

  • 7/28/2019 2D Truss and Direct Stiffness

    1/6

    1

    2D Truss

    60o 60o

    2.5m

    25kN 1

    2 3

    A=6cm2

    200GPa

    '

    '

    1,

    Uu

    '

    '1

    1

    ,

    V

    v

    1

    '

    2

    2,

    Uu

    '

    '2

    2

    ,V

    v

    X

    Y

    '

    X

    ' Y

    Where

    ' 1

    1 2

    ,U U are forces along the member (along local co-ordinate direction, 'X )' 1

    1 2,V V are the forces perpendicular to the member (along local co-ordinate direction,'

    Y )' ' ' '

    1 2 1 2, , ,u u v v are the corresponding displacements

    Let 1 1 1 1 2 2 2 2, , , , , , ,U V u v U V u v be the corresponding global values

  • 7/28/2019 2D Truss and Direct Stiffness

    2/6

    2

    ' ' '

    1 1 2

    ' ' '

    2 2 1

    ( )

    ( )

    AEU u u

    l

    AEU u u

    l

    ' '1 2 0v v

    ' '

    1 1

    ' '

    1 1

    ' '

    2 2

    ' '

    2 2

    1 0 1 0

    0 0 0 0

    1 0 1 0

    0 0 0 0

    u U

    v VAE

    l u U

    v V

    ' '

    1 1

    ' '

    ' ' '1 1

    ' '

    2 2

    ' '

    2 2

    1 0 1 0

    0 0 0 0, ,

    1 0 1 00 0 0 0

    e e

    u U

    v VAEk d F

    l u Uv V

    but

    ' ' '

    e ek d F

    'e ed T d 'F T F

    'e ek T d T F Multiplying both sides with

    1T

    1 1'

    e eT k T d T T F

    1 '

    e e

    e e

    k d F

    where k T k T

    Solutioncos( ) sin( ) 0 0

    sin( ) cos( ) 0 0

    0 0 cos( ) sin( )

    0 0 sin( ) cos( )

    T

  • 7/28/2019 2D Truss and Direct Stiffness

    3/6

    3

    1

    cos( ) sin( ) 0 0

    sin( ) cos( ) 0 0

    0 0 cos( ) sin( )

    0 0 sin( ) cos( )

    TT T

    Hence

    cos( ) sin( ) 0 0 1 0 1 0

    sin( ) cos( ) 0 0 0 0 0 0

    0 0 cos( ) sin( ) 1 0 1 0

    0 0 sin( ) cos( ) 0 0 0 0

    cos( ) sin( ) 0 0

    sin( ) cos( ) 0 0

    0 0 cos( ) sin( )0 0 sin( ) cos( )

    e

    AEk

    l

    2 2

    2 2

    2 2

    2 2

    e

    C C S C C S

    C S S C S S AEk

    l C C S C C S

    C S S C S S

    2 2

    2 2

    1 11 2 2

    1

    2 2

    e

    C C S C C S

    C S S C S S A E

    k l C C S C C S

    C S S C S S

    1 11

    1

    0.25 0.433 0.25 0.433

    0.433 0.75 0.433 0.75

    0.25 0.433 0.25 0.433

    0.433 0.75 0.433 0.75

    e

    A Ek

    l

    2 22

    2

    0.25 0.433 0.25 0.433

    0.433 0.75 0.433 0.75

    0.25 0.433 0.25 0.433

    0.433 0.75 0.433 0.75

    e

    A Ek

    l

    AssemblyNumber of rows=columns=no. of nodes X degrees of freedom=3X2=6

  • 7/28/2019 2D Truss and Direct Stiffness

    4/6

    4

    Applying Boundary conditions ( ) 4.8 [. .] =.

  • 7/28/2019 2D Truss and Direct Stiffness

    5/6

    5

    Numerical example: Direct stiffness matrix method

    Calculate the nodal displacements and element forces for the composite bar shown

    in figure:

    30cm 20cm 10cm

    10cm

    dia

    5cm

    dia

    Steel

    Aluminium

    4P

    P

    P

    P=5kN

    Esteel=210GPa

    EAl=70GPa

    (1) (2) (3)

    1 2 3 4Nodes

    Elements

    Element 1

    Element 2

    Element 3

  • 7/28/2019 2D Truss and Direct Stiffness

    6/6

    6

    Global stiffness matrix

    9

    5.495 5.495 0 0

    5.495 5.495 2.06 2.06 010

    0 2.06 2.06 1.37375 1.37375

    0 0 1.37375 1.37375

    K

    Applying the point loads and reaction at nodes

    1

    3

    29

    33

    4

    5.495 5.495 0 0

    5.495 5.495 2.06 2.06 0 2 5 1010

    0 2.06 2.06 1.37375 1.37375 00 0 1.37375 1.37375 4 5 10

    au R

    u

    u

    u

    1

    1

    29 4

    3

    4

    0

    1 0 0 0 0

    0 7.555 2.06 0 110 10

    0 2.06 3.43375 1.37375 0

    0 0 1.37375 1.37375 2

    u

    u

    u

    u

    u

    1

    62

    5

    3

    5

    4

    0

    1.819 10

    1.153 10

    2.609 10

    u

    u

    u

    u