31
2D Nano-Electromechanical Materials: Recent Highlights Karel-Alexander Duerloo*, Yao Li, Dr. Mitchell Ong, Prof. Evan Reed (PI)

2D Nano-Electromechanical Materials: Recent Highlightsweb.stanford.edu/group/ahpcrc/HewittVisit/AHPCRC_Duerloo.pdf · 2D Nano-Electromechanical Materials: Recent Highlights Karel-Alexander

  • Upload
    others

  • View
    18

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 2D Nano-Electromechanical Materials: Recent Highlightsweb.stanford.edu/group/ahpcrc/HewittVisit/AHPCRC_Duerloo.pdf · 2D Nano-Electromechanical Materials: Recent Highlights Karel-Alexander

2D Nano-Electromechanical Materials: Recent Highlights

Karel-Alexander Duerloo*, Yao Li, Dr. Mitchell Ong, Prof. Evan Reed (PI)

Page 2: 2D Nano-Electromechanical Materials: Recent Highlightsweb.stanford.edu/group/ahpcrc/HewittVisit/AHPCRC_Duerloo.pdf · 2D Nano-Electromechanical Materials: Recent Highlights Karel-Alexander

Recent highlights 1.   We discover piezoelectric 2D materials

•  Building blocks of 2D sensor and filter devices 2.   We discover accessible phase

transitions in 2D materials •  Information and energy storage in 2D

materials

Page 3: 2D Nano-Electromechanical Materials: Recent Highlightsweb.stanford.edu/group/ahpcrc/HewittVisit/AHPCRC_Duerloo.pdf · 2D Nano-Electromechanical Materials: Recent Highlights Karel-Alexander

3D Materials vs. 2D Materials

108 atoms

108 a

tom

s

108 atoms

few atoms thick

Normal (3D) material Two-dimensional (2D) material

not naturally occurring, but can be synthesized

Page 4: 2D Nano-Electromechanical Materials: Recent Highlightsweb.stanford.edu/group/ahpcrc/HewittVisit/AHPCRC_Duerloo.pdf · 2D Nano-Electromechanical Materials: Recent Highlights Karel-Alexander

Advantages of 2D materials: 1.  Ultra-lightweight; 2.  Ultra-flexible, wearable; 3.  Very strong (up to 20% strain); 4.  Low power requirements; 5.  Good and diverse electronic properties; 6.  Can be combined via stacking.

Page 5: 2D Nano-Electromechanical Materials: Recent Highlightsweb.stanford.edu/group/ahpcrc/HewittVisit/AHPCRC_Duerloo.pdf · 2D Nano-Electromechanical Materials: Recent Highlights Karel-Alexander

2010 Nobel Prize in Physics

graphite graphene

Page 6: 2D Nano-Electromechanical Materials: Recent Highlightsweb.stanford.edu/group/ahpcrc/HewittVisit/AHPCRC_Duerloo.pdf · 2D Nano-Electromechanical Materials: Recent Highlights Karel-Alexander

Many different 2D materials exist:

Graphene (C) BN

MoS2 MoSe2 MoTe2 WS2

WSe2

WTe2 TaS2

TaSe2 TaTe2 NbS2

NbSe2 NbTe2

In2Se3 InSe HfS2 …

Which have the most useful properties for electronic devices and sensors? Our HPC efforts provide

direction.

Page 7: 2D Nano-Electromechanical Materials: Recent Highlightsweb.stanford.edu/group/ahpcrc/HewittVisit/AHPCRC_Duerloo.pdf · 2D Nano-Electromechanical Materials: Recent Highlights Karel-Alexander

Recent highlights 1.   We discover piezoelectric 2D materials

•  Building blocks of 2D sensor and filter devices 2.   We discover accessible phase

transitions in 2D materials •  Information and energy storage in 2D

materials

Page 8: 2D Nano-Electromechanical Materials: Recent Highlightsweb.stanford.edu/group/ahpcrc/HewittVisit/AHPCRC_Duerloo.pdf · 2D Nano-Electromechanical Materials: Recent Highlights Karel-Alexander

Piezoelectricity Defined Coupling between mechanical stress and electrical polarization.

_ + + _

Most engineering materials do not have this property.

Page 9: 2D Nano-Electromechanical Materials: Recent Highlightsweb.stanford.edu/group/ahpcrc/HewittVisit/AHPCRC_Duerloo.pdf · 2D Nano-Electromechanical Materials: Recent Highlights Karel-Alexander

Applications for Piezoelectricity 1.  Impact or Pressure sensors 2.  Vibration sensors 3.  Generation/detection of sonar waves 4.  Nanometer-precision motors and actuators 5.  Surface Acoustic Wave (SAW) signal filters 6.  Electricity generation 7.  In-service detection of propagating cracks

a SAW filter (used in every

cellphone)

Can 2D materials be applied in this context?

Page 10: 2D Nano-Electromechanical Materials: Recent Highlightsweb.stanford.edu/group/ahpcrc/HewittVisit/AHPCRC_Duerloo.pdf · 2D Nano-Electromechanical Materials: Recent Highlights Karel-Alexander

Computational Prediction of 2D Piezoelectricity

quantum mechanical simulations

HPC

Page 11: 2D Nano-Electromechanical Materials: Recent Highlightsweb.stanford.edu/group/ahpcrc/HewittVisit/AHPCRC_Duerloo.pdf · 2D Nano-Electromechanical Materials: Recent Highlights Karel-Alexander

2D Piezoelectricity

Graphene (C) BN

MoS2 MoSe2 MoTe2 WS2

WSe2

WTe2 TaS2 TaSe2 TaTe2 NbS2

NbSe2 NbTe2

In2Se3 InSe HfS2 …

Page 12: 2D Nano-Electromechanical Materials: Recent Highlightsweb.stanford.edu/group/ahpcrc/HewittVisit/AHPCRC_Duerloo.pdf · 2D Nano-Electromechanical Materials: Recent Highlights Karel-Alexander

Calculated d11 coefficients (pm/V):

0

2

4

6

8

10

12

AlN

α-quartz

ZnO

BN MoS2 MoSe2 MoTe2 WS2 WSe2 WTe2

Duerloo, J. Phys. Chem. Lett., 3, 19 (2012)

Our HPC-enabled approach enables identification of promising materials.

Page 13: 2D Nano-Electromechanical Materials: Recent Highlightsweb.stanford.edu/group/ahpcrc/HewittVisit/AHPCRC_Duerloo.pdf · 2D Nano-Electromechanical Materials: Recent Highlights Karel-Alexander

Applications for Piezoelectricity 1.  Impact or Pressure sensors 2.  Vibration sensors 3.  Generation/detection of sonar waves 4.  Nanometer-precision motors and actuators 5.  Surface Acoustic Wave (SAW) signal filters 6.  Electricity generation 7.  In-service detection of propagating cracks

a SAW filter (used in every

cellphone)

Can 2D materials be applied in this context? yes

Page 14: 2D Nano-Electromechanical Materials: Recent Highlightsweb.stanford.edu/group/ahpcrc/HewittVisit/AHPCRC_Duerloo.pdf · 2D Nano-Electromechanical Materials: Recent Highlights Karel-Alexander

0 0.005 0.01 0.015 0.020

1

2

3

4x 10

!17

Strain !11

! !22

Qm

eta

l (C

)

0 2 4 6 8 10 120

0.005

0.01

0.015

0.02

Str

ain

!11 !

!22

Time (s)

0 2 4 6 8 10 12!0.01

!0.005

0

0.005

0.01

Curr

ent (p

A)

Time (s)

Our HPC-enabled predictions have driven experimental observation

Confirmed in experiments at Columbia U. ARL has parallel efforts.

Page 15: 2D Nano-Electromechanical Materials: Recent Highlightsweb.stanford.edu/group/ahpcrc/HewittVisit/AHPCRC_Duerloo.pdf · 2D Nano-Electromechanical Materials: Recent Highlights Karel-Alexander

Leveraged Piezoelectricity in Ultra-Thin Bilayers

Duerloo, Nano Lett., 13, 1681-1686 (2013)

Page 16: 2D Nano-Electromechanical Materials: Recent Highlightsweb.stanford.edu/group/ahpcrc/HewittVisit/AHPCRC_Duerloo.pdf · 2D Nano-Electromechanical Materials: Recent Highlights Karel-Alexander

Recent highlights 1.   We discover piezoelectric 2D materials

•  Building blocks of 2D sensor and filter devices 2.   We discover accessible phase

transitions in 2D materials •  Information and energy storage in 2D

materials

Page 17: 2D Nano-Electromechanical Materials: Recent Highlightsweb.stanford.edu/group/ahpcrc/HewittVisit/AHPCRC_Duerloo.pdf · 2D Nano-Electromechanical Materials: Recent Highlights Karel-Alexander

Some materials have more than one 2D crystal structure:

2H

1T

1T’

semiconductor

metal

metal

Page 18: 2D Nano-Electromechanical Materials: Recent Highlightsweb.stanford.edu/group/ahpcrc/HewittVisit/AHPCRC_Duerloo.pdf · 2D Nano-Electromechanical Materials: Recent Highlights Karel-Alexander

Semiconducting Metallic

Two phases have been observed in chemically exfoliated monolayer

MoS2 and WS2.

Eda et al, ACS Nano 6, 7311 (2012); Voiry et al, Nat. Mat. (2013).

Can the phases of monolayers be engineered and employed in devices?

Metallic

Page 19: 2D Nano-Electromechanical Materials: Recent Highlightsweb.stanford.edu/group/ahpcrc/HewittVisit/AHPCRC_Duerloo.pdf · 2D Nano-Electromechanical Materials: Recent Highlights Karel-Alexander

Some materials have more than one 2D crystal structure:

2H

1T’

semiconductor

metal

Can this phase transition be controlled in an electronic device? If so: which material is most promising?

Page 20: 2D Nano-Electromechanical Materials: Recent Highlightsweb.stanford.edu/group/ahpcrc/HewittVisit/AHPCRC_Duerloo.pdf · 2D Nano-Electromechanical Materials: Recent Highlights Karel-Alexander

HPC challenge: find phase-changing materials

MoS2 WS2

MoSe2 WSe2

MoTe2 WTe2

Page 21: 2D Nano-Electromechanical Materials: Recent Highlightsweb.stanford.edu/group/ahpcrc/HewittVisit/AHPCRC_Duerloo.pdf · 2D Nano-Electromechanical Materials: Recent Highlights Karel-Alexander

2D p

hase

ene

rgy

(e

V p

er M

X2)

Our semi-local DFT calculations indicate MoTe2 and WTe2 exhibit the smallest

2H-1T’ energy difference.

PBE EXC. No phonons.

Page 22: 2D Nano-Electromechanical Materials: Recent Highlightsweb.stanford.edu/group/ahpcrc/HewittVisit/AHPCRC_Duerloo.pdf · 2D Nano-Electromechanical Materials: Recent Highlights Karel-Alexander

Discovery: tension causes phase transition

Page 23: 2D Nano-Electromechanical Materials: Recent Highlightsweb.stanford.edu/group/ahpcrc/HewittVisit/AHPCRC_Duerloo.pdf · 2D Nano-Electromechanical Materials: Recent Highlights Karel-Alexander

x-axis extension (%)

y-ax

is e

xten

sion

(%)

Lesson from HPC-enabled screening: 1)   Use MoTe2; 2)   Apply tension along the

crystal’s y-axis.

HPC bypasses trial-and-error steps and guides future experiments.

Page 24: 2D Nano-Electromechanical Materials: Recent Highlightsweb.stanford.edu/group/ahpcrc/HewittVisit/AHPCRC_Duerloo.pdf · 2D Nano-Electromechanical Materials: Recent Highlights Karel-Alexander

Duerloo will be visiting ARL in July for a week to participate in this ARL experiment with Madan Dubey et al.

Page 25: 2D Nano-Electromechanical Materials: Recent Highlightsweb.stanford.edu/group/ahpcrc/HewittVisit/AHPCRC_Duerloo.pdf · 2D Nano-Electromechanical Materials: Recent Highlights Karel-Alexander

x-axis extension (%)

y-ax

is e

xten

sion

(%)

In-depth HPC calculations on Garnet show temperature brings 2D phase transition even

closer to ambient conditions.

MoTe2, PBE, 300 K

x-axis extension (%) y-

axis

ext

ensi

on (%

) MoTe2, HSE06, 300 K

2

0

6

4

10

8

0 4 8 -4

2

0

6

4

0 2 4 -2

Page 26: 2D Nano-Electromechanical Materials: Recent Highlightsweb.stanford.edu/group/ahpcrc/HewittVisit/AHPCRC_Duerloo.pdf · 2D Nano-Electromechanical Materials: Recent Highlights Karel-Alexander

Recent highlights 1.   We discover piezoelectric 2D materials

•  Building blocks of 2D sensor and filter devices 2.   We discover accessible phase

transitions in 2D materials •  Information and energy storage in 2D

materials

Page 27: 2D Nano-Electromechanical Materials: Recent Highlightsweb.stanford.edu/group/ahpcrc/HewittVisit/AHPCRC_Duerloo.pdf · 2D Nano-Electromechanical Materials: Recent Highlights Karel-Alexander

Strain engineering of electrical contacts with monolayers

Phase transitions in monolayer TMDs

Experiments being done at ARL (Madan Dubey,

Matt Chin, et al) to study impact of piezoelectricity

on electrical contacts under strain.

ARMY COLLABORATIONS ON FLEXIBLE ELECTRONICS

ARL experiments (Dubey et al.) with flexible

substrates to observe metal transitions in MoTe2.

Upcoming ARL visits: •  Duerloo visits for a week in

July to participate in experiment

•  Reed visits in July

Page 28: 2D Nano-Electromechanical Materials: Recent Highlightsweb.stanford.edu/group/ahpcrc/HewittVisit/AHPCRC_Duerloo.pdf · 2D Nano-Electromechanical Materials: Recent Highlights Karel-Alexander

HIVE Data Visualization

Page 29: 2D Nano-Electromechanical Materials: Recent Highlightsweb.stanford.edu/group/ahpcrc/HewittVisit/AHPCRC_Duerloo.pdf · 2D Nano-Electromechanical Materials: Recent Highlights Karel-Alexander

data provided by Yao Li

Page 30: 2D Nano-Electromechanical Materials: Recent Highlightsweb.stanford.edu/group/ahpcrc/HewittVisit/AHPCRC_Duerloo.pdf · 2D Nano-Electromechanical Materials: Recent Highlights Karel-Alexander

PROJECT PUBLICATIONS FY 2013

Recent journal publications: •  Duerloo, K.-A. N., Li, Y., Reed, E. J., “Structural Phase Transitions in Two-

Dimensional Mo and W-Dichalcogenide Monolayers,” Nature Communications, in press (2014).

•  Duerloo, K.-A. N., Reed, E. J., “Flexural Electromechanical Coupling: a Nanoscale Emergent Property of Boron Nitride Bilayers,” Nano Letters, 13, 1681-1686, doi:10.1021/nl4001635 (2013).

•  Ong, M. T., Duerloo, K.-A. N., Reed, E. J., “The Effect of Hydrogen and Fluorine Coadsorption on the Piezoelectric Properties of Graphene. Journal of Physical Chemistry C,” 117, 3615-3620, doi:10.1021/jp3112759 (2013).

Recent Army visits: ARL (Nov. 2012), Picatinny (Dec. 2012), Natick (Jan. 2013), ARL (May 2013, February Feb. 2014). ARL Adelphi and Aberdeen upcoming in July 2014.

Page 31: 2D Nano-Electromechanical Materials: Recent Highlightsweb.stanford.edu/group/ahpcrc/HewittVisit/AHPCRC_Duerloo.pdf · 2D Nano-Electromechanical Materials: Recent Highlights Karel-Alexander

2D Nano-Electromechanical Materials Karel-Alexander Duerloo*, Yao Li,

Dr. Mitchell Ong, Prof. Evan Reed (PI)