30
2D Mass Mapping OU-LE3 Weak Lensing - Lausanne 2015 François Lanusse Jean-Luc Starck, Adrienne Leonard, Sandrine Pires CosmoStat Laboratory Laboratoire AIM, UMR CEA-CNRS-Paris 7, Irfu, SAp, CEA-Saclay

2D Mass Mapping - OU-LE3 Weak Lensing - Lausanne 2015 · 2D Mass Mapping OU-LE3 Weak Lensing - Lausanne 2015 François Lanusse Jean-Luc Starck, Adrienne Leonard, Sandrine Pires CosmoStat

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

  • 2D Mass MappingOU-LE3 Weak Lensing - Lausanne 2015

    François LanusseJean-Luc Starck, Adrienne Leonard, Sandrine Pires

    CosmoStat LaboratoryLaboratoire AIM, UMR CEA-CNRS-Paris 7, Irfu, SAp, CEA-Saclay

  • Mass mapping with sparsity prior Cluster density mapping Substructure recovery using Flexion

    Introduction

    Main issues in Weak-Lensing mass-mapping:• Missing data (mask and limited number densities)• Shape noise• Reduced shear

    =⇒ Most approaches avoid these issues by smoothing

    Our goalWrite the mass-mapping as a single optimization problem witha multi-scale sparsity prior addressing all these issues.

    François Lanusse (CEA-Saclay) 2D Mass Mapping 2/ 19

  • Mass mapping with sparsity prior Cluster density mapping Substructure recovery using Flexion

    Optimization problem

    minκ

    1

    2‖ (1− κ)g −Pκ ‖22 +λ ‖ Φtκ ‖1

    • g : reduced shear• λ : regularization parameter

    • P : lensing operator• Φ : wavelet dictionary

    A few remarks:• Recovers the convergence from the reduced shear• P can be defined with and without binning the shear• P can be ill-posed in case of missing data• Sparse regularization of noise and missing data• We use isotropic wavelets for Φ

    =⇒ Adapted to the recovery of cluster signal

    François Lanusse (CEA-Saclay) 2D Mass Mapping 3/ 19

  • Mass mapping with sparsity prior Cluster density mapping Substructure recovery using Flexion

    Optimization problem

    minκ

    1

    2‖ (1− κ)g −Pκ ‖22︸ ︷︷ ︸Data fidelity term

    +λ ‖ Φtκ ‖1

    • g : reduced shear• λ : regularization parameter

    • P : lensing operator• Φ : wavelet dictionary

    A few remarks:• Recovers the convergence from the reduced shear• P can be defined with and without binning the shear• P can be ill-posed in case of missing data• Sparse regularization of noise and missing data• We use isotropic wavelets for Φ

    =⇒ Adapted to the recovery of cluster signalFrançois Lanusse (CEA-Saclay) 2D Mass Mapping 3/ 19

  • Mass mapping with sparsity prior Cluster density mapping Substructure recovery using Flexion

    Optimization problem

    minκ

    1

    2‖ (1− κ)g −Pκ ‖22 +λ ‖ Φtκ ‖1︸ ︷︷ ︸

    Sparsity term

    • g : reduced shear• λ : regularization parameter

    • P : lensing operator• Φ : wavelet dictionary

    A few remarks:• Recovers the convergence from the reduced shear• P can be defined with and without binning the shear• P can be ill-posed in case of missing data• Sparse regularization of noise and missing data• We use isotropic wavelets for Φ

    =⇒ Adapted to the recovery of cluster signalFrançois Lanusse (CEA-Saclay) 2D Mass Mapping 3/ 19

  • Mass mapping with sparsity prior Cluster density mapping Substructure recovery using Flexion

    Proximal minimization algorithmPrimal-dual splitting:{

    κ(n+1) = κ(n) + τ(∇F (κ(n)) + Φα(n)

    )α(n+1) = (Id− STλ)

    (α(n+1) + Φt(2κ(n+1) − κ(n))

    )adapted from Vu (2013)

    • Fast and flexible algorithm

    • Sparsity constraint λ estimated locally by noise simulations=⇒ Accounts for survey geometry, varying noise levels

    • Same algorithm used for all the problems presented here

    François Lanusse (CEA-Saclay) 2D Mass Mapping 4/ 19

  • Mass mapping with sparsity prior Cluster density mapping Substructure recovery using Flexion

    Handling missing data:

    (a) Input (b) Galaxy catalogue with 30gal/arcmin2

    François Lanusse (CEA-Saclay) 2D Mass Mapping 5/ 19

  • Mass mapping with sparsity prior Cluster density mapping Substructure recovery using Flexion

    Handling missing data:

    (a) Input (b) Kaiser-Squires with 1’ bins

    François Lanusse (CEA-Saclay) 2D Mass Mapping 5/ 19

  • Mass mapping with sparsity prior Cluster density mapping Substructure recovery using Flexion

    Handling missing data:

    (a) Input (b) Kaiser-Squires with 0.05’bins

    François Lanusse (CEA-Saclay) 2D Mass Mapping 5/ 19

  • Mass mapping with sparsity prior Cluster density mapping Substructure recovery using Flexion

    Handling missing data:

    (a) Input (b) Kaiser-Squires with 0.05’bins + 0.1’ smoothing

    François Lanusse (CEA-Saclay) 2D Mass Mapping 5/ 19

  • Mass mapping with sparsity prior Cluster density mapping Substructure recovery using Flexion

    Handling missing data:

    (a) Input (b) Glimpse 2D

    François Lanusse (CEA-Saclay) 2D Mass Mapping 5/ 19

    Lavf56.15.102

    out4.mp4Media File (video/mp4)

  • Mass mapping with sparsity prior Cluster density mapping Substructure recovery using Flexion

    Handling shape noise:

    (a) Input (b) Kaiser-Squires + 0.5’smoothing

    François Lanusse (CEA-Saclay) 2D Mass Mapping 6/ 19

  • Mass mapping with sparsity prior Cluster density mapping Substructure recovery using Flexion

    Handling shape noise:

    (a) Input (b) Kaiser-Squires + 1.0’smoothing

    François Lanusse (CEA-Saclay) 2D Mass Mapping 6/ 19

  • Mass mapping with sparsity prior Cluster density mapping Substructure recovery using Flexion

    Handling shape noise:

    (a) Input (b) Glimpse 2D

    François Lanusse (CEA-Saclay) 2D Mass Mapping 6/ 19

  • Mass mapping with sparsity prior Cluster density mapping Substructure recovery using Flexion

    • So far, we have only considered mapping from shear alone.

    • The framework can be expanded to include additionalinformation, in particular redshifts.

    =⇒ Allows cluster density mapping1 (assumingknowledge of lens and sources redshifts)

    1Lanusse F., Starck J.-L., Leonard A., and Pires S. (2015), High ResolutionWeak Lensing Mass Mapping combining Shear and Flexion , in prep.

    François Lanusse (CEA-Saclay) 2D Mass Mapping 7/ 19

  • Mass mapping with sparsity prior Cluster density mapping Substructure recovery using Flexion

    Our method is particularly well suited as it doesn’t need to binthe data.

    Why avoid binning the shear catalogue ?=⇒ Allows to include individual galaxy redshifts :

    minκ∞

    1

    2‖ (1− Zκ∞)g − ZPκ∞ ‖22 +λ ‖ Φtκ∞ ‖1

    with Z = Σ∞critic/Σcritic(zi) and Σlens = κ∞Σ∞critic

    Individual redshifts have two benefits:• Directly map the surface mass density of the lens

    • Mitigate the mass-sheet degeneracy when κ becomessignificant (Bradac et al. 2004)

    François Lanusse (CEA-Saclay) 2D Mass Mapping 8/ 19

  • Mass mapping with sparsity prior Cluster density mapping Substructure recovery using Flexion

    Our method is particularly well suited as it doesn’t need to binthe data.

    Why avoid binning the shear catalogue ?=⇒ Allows to include individual galaxy redshifts :

    minκ∞

    1

    2‖ (1− Zκ∞)g − ZPκ∞ ‖22 +λ ‖ Φtκ∞ ‖1

    with Z = Σ∞critic/Σcritic(zi) and Σlens = κ∞Σ∞critic

    Individual redshifts have two benefits:• Directly map the surface mass density of the lens

    • Mitigate the mass-sheet degeneracy when κ becomessignificant (Bradac et al. 2004)

    François Lanusse (CEA-Saclay) 2D Mass Mapping 8/ 19

  • Mass mapping with sparsity prior Cluster density mapping Substructure recovery using Flexion

    Our method is particularly well suited as it doesn’t need to binthe data.

    Why avoid binning the shear catalogue ?=⇒ Allows to include individual galaxy redshifts :

    minκ∞

    1

    2‖ (1− Zκ∞)g − ZPκ∞ ‖22 +λ ‖ Φtκ∞ ‖1

    with Z = Σ∞critic/Σcritic(zi) and Σlens = κ∞Σ∞critic

    Individual redshifts have two benefits:• Directly map the surface mass density of the lens

    • Mitigate the mass-sheet degeneracy when κ becomessignificant (Bradac et al. 2004)

    François Lanusse (CEA-Saclay) 2D Mass Mapping 8/ 19

  • Mass mapping with sparsity prior Cluster density mapping Substructure recovery using Flexion

    Our method is particularly well suited as it doesn’t need to binthe data.

    Why avoid binning the shear catalogue ?=⇒ Allows to include individual galaxy redshifts :

    minκ∞

    1

    2‖ (1− Zκ∞)g − ZPκ∞ ‖22 +λ ‖ Φtκ∞ ‖1

    with Z = Σ∞critic/Σcritic(zi) and Σlens = κ∞Σ∞critic

    Individual redshifts have two benefits:• Directly map the surface mass density of the lens

    • Mitigate the mass-sheet degeneracy when κ becomessignificant (Bradac et al. 2004)

    François Lanusse (CEA-Saclay) 2D Mass Mapping 8/ 19

  • Mass mapping with sparsity prior Cluster density mapping Substructure recovery using Flexion

    Simulation set:• Density maps from Bolshoi simulations (Kyplin et al. 2011)

    • Virial masses [1014 h−1M�]: 10.9 - 3.02 - 2.70

    • Cluster redshift: zclus = 0.30

    • Field size: 10× 10 arcmin2 ∼ 2× 2 h−2Mpc2

    4 2 0 2 4

    4

    2

    0

    2

    4

    Field 1

    4 2 0 2 4

    Field 2

    4 2 0 2 4

    Field 3

    0.000.150.300.450.600.750.901.051.201.351.50

    Figure : Convergence maps for sources at z →∞

    François Lanusse (CEA-Saclay) 2D Mass Mapping 9/ 19

  • Mass mapping with sparsity prior Cluster density mapping Substructure recovery using Flexion

    Simulated deep space-based galaxy catalogue (HST/ACS):

    • Uniform angular distribution with ngal = 80 gal/arcmin2

    • Redshift distribution zmed = 1.75

    • Strongly lensed sources (|g| > 1) excluded

    • Gaussian photo-z errors σz = 0.05(1 + z)

    • Gaussian shape noise σ� = 0.30

    =⇒We generate 100 independent noise and galaxy distributionrealisations

    François Lanusse (CEA-Saclay) 2D Mass Mapping 10/ 19

  • Mass mapping with sparsity prior Cluster density mapping Substructure recovery using Flexion

    François Lanusse (CEA-Saclay) 2D Mass Mapping 11/ 19

  • Mass mapping with sparsity prior Cluster density mapping Substructure recovery using Flexion

    0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0R [arcmin]

    0.5

    1.0

    1.5

    2.0 Halo 1

    0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0R [arcmin]

    0.5

    1.0

    1.5

    2.0 Halo 2

    0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0R [arcmin]

    0.5

    1.0

    1.5

    2.0 Halo 3

    Field Input Map Measured Map1014 h−1M� 1014 h−1M�

    1 4.08 3.91± 0.182 1.88 1.90± 0.203 1.59 1.60± 0.18

    Table : Aperture mass in the central 2′ of each field.

    François Lanusse (CEA-Saclay) 2D Mass Mapping 12/ 19

  • Mass mapping with sparsity prior Cluster density mapping Substructure recovery using Flexion

    • Shear is noise dominated on small scales=⇒ Substructure is lost when mapping from shear alone.

    • Small-scale substructure can be recovered from stronglensing when available.

    • Gravitational Flexion is useful in the intermediate regime.

    Figure : Shear (left) and first flexion (right) (Bartelmann 2010)

    François Lanusse (CEA-Saclay) 2D Mass Mapping 13/ 19

  • Mass mapping with sparsity prior Cluster density mapping Substructure recovery using Flexion

    10-3 10-2 10-1

    k [arcsec]−1

    10-4

    10-3

    10-2

    10-1

    100

    101

    102

    103

    104

    N2

    Shear aloneFlexion aloneFlexion (Pires et al. 2010)Combined

    Figure : Noise power spectra for convergence estimator from shearand flexion

    François Lanusse (CEA-Saclay) 2D Mass Mapping 14/ 19

  • Mass mapping with sparsity prior Cluster density mapping Substructure recovery using Flexion

    • Recent forward fitting method developed by Cain et al.(2011) and flexion mapping paper on substructurerecovery Cain et al. (2015).

    • We can integrate flexion in our reconstruction framework=⇒ Jointly fit shear and flexion

    minκ

    1

    2‖ (1− κ)

    [gF

    ]−[PQ

    ]κ ‖22 +λ ‖ Φtκ ‖1

    Adding flexion to our simulation set:• Flexion noise σF = 0.029 arcsec−1

    =⇒ Reported by Cain et al. (2011) for Abell 1689

    • Simulate reduced flexion, strongly flexed galaxiesexcluded (|F | > 1.0 arcsec−1)

    François Lanusse (CEA-Saclay) 2D Mass Mapping 15/ 19

  • Mass mapping with sparsity prior Cluster density mapping Substructure recovery using Flexion

    Figure : Reconstruction from one realisation

    François Lanusse (CEA-Saclay) 2D Mass Mapping 16/ 19

  • Mass mapping with sparsity prior Cluster density mapping Substructure recovery using Flexion

    Figure : Mean of 100 reconstructions

    François Lanusse (CEA-Saclay) 2D Mass Mapping 17/ 19

  • Mass mapping with sparsity prior Cluster density mapping Substructure recovery using Flexion

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0R [arcmin]

    0.0

    0.5

    1.0

    1.5

    2.0 Halo 1

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0R [arcmin]

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0 Halo 2

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0R [arcmin]

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0 Halo 3

    Benefits of adding flexion:

    • Improvement on the recovered profiles below 0.5 arcmin

    • Recovery of small-scale substructure at the 10 arcsecscale

    François Lanusse (CEA-Saclay) 2D Mass Mapping 18/ 19

  • Mass mapping with sparsity prior Cluster density mapping Substructure recovery using Flexion

    Conclusion:• New method to recover mass maps accounting for

    • Reduced shear• Missing data• Shape noise

    • Particularly efficient to recover small scale information(useful to detect and map galaxy clusters)

    • Can be extended by including individual redshifts andflexion for high resolution cluster density mapping

    • Can be trivially extended to 3D mapping (work in progress)

    François Lanusse (CEA-Saclay) 2D Mass Mapping 19/ 19

    Mass mapping with sparsity priorThe optimisation problemPrimal-Dual algorithmHandling missing data and noise

    Cluster density mappingIncluding individual galaxy redshiftsSet of cluster simulationsResults from shear only

    Substructure recovery using FlexionWhy including flexion ?Our approachTests on simulationsConclusion