86

?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 2: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 3: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 4: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 5: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 6: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 7: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 8: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 9: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 10: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 11: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 12: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 13: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 14: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

!"##"$% #& '(#)$"

*+ !"#$%& ' ()* +,- ' , ."%/0 1--, ' 22234567893:;<

74=98 5 >?@> 58@;4 A89BB789C ,DE.F5C 7B?4@ 5 >;6 ?B;B656?: A89BB?4@G0HFI J7845:9 G)1K830HFC L;M9N:;I J;8 ,- >;78B3 F;2=98 OP85Q=?JJ85:6?;4 25B A98J;8<9= MQ 5 :;4R946?;45N OP85Q BA9:68;<96982?6> 5 @85A>?69 <;4;:>8;<56;8 G%H!#P1---C %?@5S7I3 H4694B?6Q=565 2989 :;NN9:69= 2?6> /7L! 85=?56?;4 ;R98 5 1! 854@9 J8;< T! 6;U-! 56 5 B69A 2?=6> ;J -3-1!3V?@789 , B>;2B 5 6QA?:5N OP85Q =?JJ85:6?;4 A566984 ;J .@W1 65S94

56 8;;< 69<A98567893 "NN 6>9 ?4694B9 A95SB :54 M9 ?4=9X9= 5BB7<?4@54 >9X5@;45N 74?6 :9NNC 2?6> ! Y Z3-UE"[ 54= " Y Z3T1+ "[ 3 V?@789 1B>;2B 6>9 :8QB65N B687:6789 ;J .@W1 G89J3 TIC ;J 2>?:> 6>9 BA5:9@8;7A ?B #E\$$$ G4;3,D,I3 "B B>;24 ?4 V?@3 1C 6>9 M;8;4 56;<B 58958854@9= ?4 N5Q98BC 2?6> N5Q98B ;J .@ ?4698N95R9= M962994 6>9<3 #>9B687:6789 ;J 95:> M;8;4 N5Q98 ?B 6>9 B5<9 5B 6>56 ;J 5 N5Q98 ?4 6>9@85A>?69 B687:6789] 95:> M;8;4 56;< ?B >989 9^7?=?B6546 J8;< 6>899;6>98 M;8;4 56;<B3 #>989J;89C .@W1 ?B :;<A;B9= ;J 62; N5Q98B ;JM;8;4 54= <5@49B?7< 5N;4@ 6>9 " 5X?B ?4 6>9 >9X5@;45N N566?:93.5@496?_56?;4<95B789<946B 2989 5NB; A98J;8<9= 2?6> 5 `a$HK

<5@496;<9698 G.F.`%1C a75467< K9B?@4I3 V?@789 Z B>;2B 6>9<5@496?: B7B:9A6?M?N?6Q G" Y %&'C 2>989 % ?B <5@496?_56?;4 54=' ?B <5@496?: b9N=I ;J .@W1 5B 5 J74:6?;4 ;J 69<A9856789C 74=98

:;4=?6?;4B ;J _98; b9N= :;;N?4@ GcV/I 54= b9N= :;;N?4@ GV/I 56,-)93 #>9 9X?B694:9 ;J 6>9 B7A98:;4=7:6?4@ A>5B9 25B 6>94 :;4Pb8<9= 745<M?@7;7BNQ MQ <95B78?4@ 6>9 .9?BB498 9JJ9:6 ;4 :;;N?4@?4 5 <5@496?: b9N=3 #>9 ;4B96 ;J 5 29NNP=9b49= .9?BB498 9JJ9:6 25B;MB98R9= 56 ZD L3 " B7A98:;4=7:6?4@ R;N7<9 J85:6?;4 ;J +Dd 74=985 <5@496?: b9N= ;J ,-)9 25B ;M65?49= 56 TLC ?4=?:56?4@ 6>56 6>9B7A98:;4=7:6?R?6Q ?B M7NS ?4 4567893 #>9 B654=58= J;78PA8;M969:>4?^79 25B 7B9= J;8 89B?B6?R?6Q <95B789<946B3V?@789 + B>;2B 6>9 69<A9856789 =9A94=94:9 ;J 6>9 89B?B6?R?6Q ;J

.@W1 74=98 _98;<5@496?: b9N=3 #>9 ;4B96 54= 94=PA;?46 6854B?6?;469<A9856789B 589 ZD L 54= ZULC 89BA9:6?R9NQC ?4=?:56?4@ 6>56 6>9B7A98:;4=7:6?R?6Q 25B 687NQ 895N?_9= ?4 6>?B BQB69<3 !

%9:9?R9= 1+ e54758Qf 5::9A69= T V9M8758Q 1--,3

,3 #5S5@?C 03 ?4 #()"* +,-* .),/* ), %!-0(1!23 !,4 %0"5!,13$3 )/ 6780("),47"-191-:; '1<5 =0$80(!-7(0

6780("),47"-)(3 >+* #5:31"! . !"#$!"%& Zgh G1---I3

13 #54?@5S?C L3 0- !2* `7A98:;4=7:6?R?6Q 56 ZZ L ?4 /BX%MQ/E-3 ?!-7(0 !'(& 111g11Z G,DD,I3

Z3 /5R5C %3 (3 0- !2* `7A98:;4=7:6?R?6Q 4958 Z- L 2?6>;76 :;AA98] 6>9 W5-3EL-3+W?)Z A98;RBS?693 ?!-7(0

!!(& U,+gU,E G,DUUI3

+3 `:>;i4C e3 03C LN;:C />3 j W56N;@@C W3 `7A98:;4=7:6?R?6Q 56 T1 L ?4 >;N9P=;A9= /E-3 ?!-7(0 ")%& T+Dg

TT1 G1---I3

T3 e;49BC .3 j .58B>C %3 #>9 A89A5856?;4 54= B687:6789 ;J <5@49B?7< M;8?=9C .@W13 @* A$* .50$* 6)"*

*+& ,+Z+g,+ZE G,DT+I3

!"#$%&'()*(+($,-

#>?B 2;8S 25B A586?5NNQ B7AA;869= MQ 5 k8546P?4P"?= J;8 `:?94:9 %9B958:> J8;< 6>9.?4?B68Q ;J &=7:56?;4C `:?94:9C `A;86B 54= /7N6789C e5A54 54= MQ 5 @8546 J8;< /%&`#3

/;889BA;4=94:9 54= 89^79B6B J;8 <5698?5NB B>;7N= M9 5==89BB9= 6; e3"3G9P<5?N] l74mB;N?6;43A>QB35;Q5<535:3lAI3

10 20 30 40 50 60 70 80

(001

)

( 100

)

( 101

)

( 002

)

(110

)(1

02)

( 111

)

( 200

)

( 201

)

2! (degrees)

Inte

nsity

(arb

itrar

y un

its)

CuK�a = 3.086 Åc = 3.524 Å

./*01( 2 !"#$% &'((#$)*'+, -$**.#, +( /012 $* #++3 *.3-.#$*4#.5

Mg

B

c

a a

./*01( 3 6#%7*$8 7*#4)*4#. +( /0125

Tc = 39 K

F C

ZF C

H = 10 Oe

0

– 0.01

– 0.02

– 0.03

– 0.04

0 10 20 30 40 50 60

Temperature (K)

Sus

cept

ibili

ty (e

.m.u

. g–1

)

./*01( 4/$0,.*') 747).-*'9'8'*% " +( /012 $7 $ (4,)*'+, +( *.3-.#$*4#.5 :$*$ $#. 7;+<,

(+# 3.$74#.3.,*7 4,&.# )+,&'*'+,7 +( =.#+ >.8& )++8',0 ?@A6B $,& >.8& )++8',0 ?A6B $*

CD E.5

100

80

60

40

20

00 20 40 60 80 100

Res

istiv

ity (µ�

cm

)

Temperature (K)

Tc = 39 K

./*01( 5 F.3-.#$*4#. &.-.,&.,). +( *;. #.7'7*'G'*% +( /012 4,&.# =.#+ 3$0,.*') >.8&5

© 2001 Macmillan Magazines Ltd

ba

c

Page 15: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 16: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 17: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 18: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 19: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 20: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 21: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 22: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

100

80

60

40

20

0

Spez

ifisc

her W

ider

stan

d (µΩ

cm)

25020015010050

Temperatur (K)

Tc

onset

Tc

0

Page 23: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 24: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 25: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

MgO

MgB2

MgO

MgO Substat

3nm

30nm

5nm

Page 26: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

0.4

0.3

0.2

0.1

0.0

Sput

terr

ate

(Å/s

)

MgMg (mit Shutter)B

15W

300W

15W

Mg B Mg(Blende)

Page 27: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 28: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

102

103

104

105

106

107

108

109

1010

log

Inte

nsitä

t (cp

s)

38.6 42.9 51.82θ(°)

MgO (002)

MgB2

(0002)

0.7Å/s

kβ kα

0.93Å/s

0.58Å/s

0.46Å/s

0.81Å/s

Page 29: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 30: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 31: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

MgO

MgB2

MgO

MgO Substat

3nm

30nm

5nm

Page 32: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

10-6

10-5

10-4

10-3

10-2

10-1

100

101

Norm

iert

e In

tensi

tät (c

ps)

543212θ (°)

1

2

3

4

a

bc

de

f

Page 33: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 34: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

180

160

140

120

Net

Are

a (a

rb.u

nits)

450 550 650 750

Auslagerungstemperatur (°C)

51.65

51.60

51.55

51.50

MgB

2 Peak Pos (°)

ap

3.545

3.540

3.535Gitte

rkonst

ante

c (Å

)

50050Auslagerungstemperatur (°C)

Page 35: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 36: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

50+m 1+m 1+m

0nm

570.67nm

MgB2

MgO

Substrat

Page 37: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

27.0

26.8

26.6

26.4

26.2

26.0

25.8

25.6

Kri

tisch

e Te

mpe

ratu

r (K

)

650600550500450

Auslagerungstemperatur (°C)

6.37

3.3

5.98

4.05

2.9

3.6

24.4

14.6

11.61

Ts272°C Ts288°C Ts297°C

Page 38: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

100

102

104

ρ (µΩ

cm)

260 280 300Ts(°C)

250

200

150

100

50

0

ρ(µΩcm

)

4035302520Temperatur (K)

450°C450°C

550°C

650°C

Page 39: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 40: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 41: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 42: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

B

MgB2

MgO

MgO Substat

[0;5]nm

30nm

5nm

MgO 3nm

Heizen

Page 43: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

500

450

400

350

300

250

200

spez

. W

ider

stan

d (µΩ

cm)

543210Bor Schichtdicke (nm)

3.5

3.0

2.5

2.0

1.5

ΔT

c (K)

17.04K

14.37K

16.02K

15.63K

Page 44: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

24

22

20

18

16

T c(K

)

0 15 30 60 120Zeit (min)

4000

3000

2000

1000

Spez. Widerstand (µ

Ωcm

)

Page 45: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

600500400300200100

ρ (µΩ

cm)

600500400300Auslagerungstemperatur (C°)

Page 46: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

24

22

20

18

16

T c (K

)

650600550500450400350Auslagerungstemperatur (°C)

3.0

2.5

2.0

1.5

ΔT

C

Page 47: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

103

104

105

106

107

42.9 51.82θ(°)

MgO

103

104

105

106

107

log

Inte

nsitä

t (cp

s)

41.67 51.82θ(°)

Saphir

650°C

550°C

750°C

400°C

MgB2(0002)

Substrat kβkβ kαkα

MgB2(0002)

Substrat

600

400

200

0

Inte

nsitä

t (cp

s)

700600500400Temperatur (°C)

MgO

Saphir

Page 48: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

103

105

107

log

Inte

nsitä

t (cp

s)

2θ(°)

MgB2

(0001)MgB2

(0002)MgO(002)

kαkβ

600nm 600nm 600nm 600nm 600nm 600nm

305°C 393°C 523°C 609°C 653°C 696°C390°C 420°C 610°C 650°C 700°C300°C

Page 49: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

0nm

145.71nm

Page 50: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

15

10RM

S (n

m)

700600500400300Auslagerungstemperatur (°C)

Page 51: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 52: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 53: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

1.0

0.8

0.6

0.4

0.2

0.0

R(T

)/R(4

0K)

40302010Temperatur (K)

10 1530 60 120nm

Page 54: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

25

24

23

22

21

20

T c (K

)

12010080604020Schichtdicke (nm)

10

8

6

4

2

ΔT

c (K)

I

I

(a) (b)

Page 55: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

25

24

23

22

21

20

19

T c (K

)

12010080604020

Schichtdicke (nm)

Kritische Schichtdicke bei 2.39nm

Page 56: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 57: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

500

400

300

200

100

0

(µΩ

cm)

28242016Temperatur (K)

22.34K

24.01K

23.68K

Al2O3

ZrO2

MgO

(a) (b)

Page 58: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

1.0

0.8

0.6

0.4

0.2

0.0

R(T

)/R(4

0K)

322824Temperatur (K)

Al2O3MgO

Page 59: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 60: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 61: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

1.00

0.95

0.90

0.85

R(T

)/R(4

0K)

302928Temperatur (K)

1T

0T0.5T

Page 62: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 63: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

1.0

0.8

0.6

0.4

0.2

0.0W

ider

stan

d N

orm

iert

3530252015Temperatur (K)

(b)

0T4T

1.0

0.8

0.6

0.4

0.2

0.0

R(T

)/R

(40

K)

3530252015Temperatur (K)

(a)

0T4T

5

4

3

2

1

0

µ0H

(T)

1.000.980.960.940.920.90T/Tc

H||ab=20.07T

C2

C2

H||c=17.33T

Page 64: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 65: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

Tc�Tc

I

Page 66: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

250

200

150

100

50

0ρ(µΩcm

)

201510Temperatur (K)

(b)

Delta Tc 3K

14 3 2 0.5 0T

250

200

150

100

50

0

ρ(µΩcm

)

2015105Temperatur (K)

(a)

4 3 2 1 0.5 0T

4

3

2

1

0

µoH

(T)

1.000.950.900.850.80T/Tc

H||ab=14.73T

H||c=10.8T

C2

C2

Page 67: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

Fe MgB2

MgB2

(001) MgO

c-A

ch

se

a-b Ebene

5µm

300µm

300µm

30nm

1000µm

Page 68: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

2.0

1.5

1.0

0.5

Norm

iert

e Le

itfä

hig

keit (dI/d

V)

-10 -8 -6 -4 -2 0 2 4 6 8 10Spannung (mV)

-2

-1

0

1

2

Strom

(mA

)2Δσ=5.5meV

I-V B=0T dI/dV B=0T dI/dV B=0.125T

2ΔΠ=1meV

Page 69: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 70: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 71: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 72: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

1.0

0.5

0.0

dI/

dV

No

rmie

rt

-10 0 10Spannung (mV)

2

0

-2

Strom

(mA

)

Page 73: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 74: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 75: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 76: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 77: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 78: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 79: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 80: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 81: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 82: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc
Page 83: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

Transport measurements on lateral MgB2=Fe=MgB2 junctions

Savio Fabretti,a) Markus Schafers, Oliver Schebaum, Patrick Thomas, and Andy Thomasb)

Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld NRW 33615, Germany

(Presented 3 November 2011; received 23 September 2011; accepted 20 October 2011; publishedonline 15 February 2012)

The magnetic anisotropy and transport properties of superconducting MgB2 thin films on MgO(100) substrates were studied. The films were prepared by rf=dc-magnetron cosputtering and within situ annealing temperatures of 650 !C. The film orientation was measured by X-ray diffractome-try, which revealed a c-axis orientation of the MgB2 films. The critical onset temperature withoutfield cooling is 15.5 K. We found a critical field of 14.73 T parallel to the film plane and 10.79 Tperpendicular to the film plane from transport measurements of the dependence of the appliedmagnetic field. Differential conductance measurements of a lateral MgB2=Fe=MgB2 junction showthe Dp gap and the Dr gap. VC 2012 American Institute of Physics. [doi:10.1063/1.3671792]

I. INTRODUCTION

Even ten years after the discovery of the superconduct-ing properties of magnesium diboride (MgB2),1 it remains atopic of interest for both basic research and technical appli-cations. A high transition temperature of 40 K and a large co-herence length makes the BCS-superconductor MgB2

interesting for spintronic devices.2,3 Many thin film prepara-tion techniques have been developed since the discovery ofthe superconductivity of MgB2, but sputtering is the onlysuitable method for large-scale production.4 Until now, onlya few technical devices with MgB2 thin films have been fab-ricated by sputtering.

Many ferromagnets, in particular Heusler compoundswith their cubic L21-structure, fit MgO (100) substrates witha mismatch of only a few percent.5 The magnetic characteri-zation and investigation of the transport properties of sput-tered MgB2 thin films on MgO (100) substrates is thereforerequired to use MgB2 as a superconductor-ferromagnet-superconductor (p-)junction. Furthermore, lateral junctionsare also of interest for creating SQUIDs based on ferromag-netic weak links.6 A further advantage of MgO substratesover Al2O3 substrates is that no reaction is observed withMgB2 at annealing temperatures up to 800 !C.7 This alsomakes MgO valuable for thin film device applications.

In this work, we will show that MgB2 thin films pre-pared by sputtering on MgO (100) substrates have magneticanisotropic properties that are comparable to films on hexag-onal Al2O3 substrates. Furthermore, we created an iron-based lateral junction that shows tunneling-like behaviorwith respect to its I-V and dI=dV characteristics.

II. SAMPLE PREPARATION

We used MgO (100) substrates for our samples. First, anMgO buffer layer with a thickness of 5 nm was deposited byrf-magnetron sputtering to create a clean surface. Next, a

30 nm thick and 300 lm wide iron strip was sputteredthrough a shadow mask. Then, the sample was placed on aheated substrate holder, which was rotating at 5 rpm. TheMgB2 was deposited by magnetron rf and dc co-sputteringon the heated substrate. Subsequently, the MgB2 layer wascovered with a 3.5 nm thick Boron layer. The substrate tem-perature (Ts) was kept constant at 290 !C during the sputter-ing process. Finally, the samples were in situ annealed at650 !C for 20 min. A 300 lm wide and 7 mm long strip witha thickness of 30 6 3 nm was created by lithography and ionbeam etching for the magnetic anisotropy characterization ofthe MgB2. The values were corrected for an offset of 3.8 Xfrom 2-point measurements of the resistance.

For the I-V and dI=dV measurements, an MgB2 cross-strip with a length of approximately 1000 lm was prepared.A sketch of the sample geometry is given in Fig. 1. TheMgB2 strip was disconnected by a groove of approximately5 lm. With this alignment, we obtain a lateral superconduc-tor ferromagnet superconductor double ‘barrier’ junction. Aquasiparticle current thus flows on the junction surface inboth the c-axis direction and the a-b plane direction of theMgB2 thin film. At the superconducting state, the resistivityof the junction is equal to 5 X as measured by a standardfour-point probe. The transport measurements were taken ina closed-cycle 4He-cryostat with a temperature range of1.6–300 K and a magnetic field of up to 4 T.

III. EXPERIMENTS AND DISCUSSION

First, we determined the transition temperature withmagnetic field applied in both directions. In Fig. 2, the transi-tion temperatures for the magnetic field perpendicular to thefilm plane are shown. Similarly, the in-plane transition tem-perature is shown in Fig. 3. We define the critical onset tem-perature at a resistivity of 90% with regard to the resistivityin the non-superconducting state. This is marked by thedashed lines in Fig. 2 and Fig. 3. The critical onset tempera-ture is 15.5 K at 0 T. This small transition temperature iscaused by the in situ annealing process and the non-epitaxialgrowth of the MgB2 due to the sputtering process. The Tc

a)Author to whom correspondence should be addressed. Electronic mail: [email protected].

b)URL: www.spinelectronics.de.

0021-8979/2012/111(7)/07E112/3/$30.00 VC 2012 American Institute of Physics111, 07E112-1

JOURNAL OF APPLIED PHYSICS 111, 07E112 (2012)

Downloaded 01 Oct 2012 to 129.70.124.89. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions

Page 84: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

differs with the preparation method and the choice of thesubstrates.8–12 Our Tc is in good agreement with the investi-gation of Mori et al. if we compare our results with theirsamples that were in situ annealed at 600 !C for 30 min.4 Weachieve transition onset temperatures of up to 31 K for ex-situ annealed MgB2 samples with a thickness of 60 nm onsapphire substrates. However, the in situ annealed samplesare of greater interest for further investigations with respectto applications and devices. We observed a (0002) MgB2

peak at a 2 H angle of 51.8! by X-ray diffraction measure-ments with an average wavelength of k " 1:54184A emittedby a copper anode. This indicates an out-of-plane orientationof the c-axis with a lattice constant of c " 3:5298A. Due tothe different crystal structures of MgB2 and MgO, a non-epitaxial growth is most certain. However, it was reported byvan Erven et al. that the MgB2 film is rotated by approxi-mately 45! in the plane with respect to MgO. This leads to alattice mismatch of # 3% for two unit cells of MgB2 on oneMgO unit cell.13,14

Figure 4 shows the dependence on the upper criticalfield of the normalized transition temperature. We estimatedour upper critical field with the formula

HC2 T$ % " HC2 0$ % 1& T=Tc$ %2%h i

;

which was also used by Shimakage et al.15 The anisotropymeasurements of our films lead to a critical magnetic field of

HkC2 " 14:73 T and H?C2 " 10:8 T. The coherence length forthe a-b plane is nab" 4.06 nm and for the c-plane is nc" 3.1nm as calculated by the Ginzburg-Landau theory.16 Withthese values, we achieve a magnetic anisotropy ratio ofc" 1.36, which is an increase of 11.8% over the resultsof Shimakage et al.15 They measured an anisotropy ratio ofc" 1.25 for sputtered thin films on hexagonal-oriented sap-phire substrates.

Finally, we conducted transport measurements of lat-eral junctions. Figure 5 shows the I-V characteristic of thejunction at 2 K. The I-V measurement shows the expectedohmic behavior at room temperature (not shown), whereasthe gap in the density of states of the superconductor isobserved in the superconducting state. The dI=dV character-istics are also shown in Fig. 5. These characteristics showthe weakly coupled three-dimensional Dp gap at approxi-mately 0.5 meV and the strongly coupled two dimensionalDr gap at 2.25 meV. The small values of both gaps arecaused by the low transition temperature of 15.5 K. Withrespect to this low Tc, the gaps at 0 K can be theoreticallyestimated as Dr" 2.67 meV and Dp" 0.86 meV by usingthe formulas of Liu et al.17 The zero bias conductance peak(ZBCP) and a decrease in the normalized differential con-ductance down to 0.36 are caused by proximity effects at

FIG. 2. (Color online) Magnetic field dependence of the electrical resistivitywith the magnetic field perpendicular to the film plane. The dashed linedefines the critical onset temperature.

FIG. 3. (Color online) Magnetic field dependence of the resistivity with themagnetic field parallel to the film plane.

FIG. 4. (Color online) The magnetic field in dependence of the normalizedtemperatures. The solid line shows the fit of the upper critical field (HC2(0))perpendicular and in plane to the a-b axis of MgB2.

FIG. 1. (Color online) The schematic sample geometry of the iron based lat-eral junction. The MgB2 strip is separated by a groove of 5 lm.

07E112-2 Fabretti et al. J. Appl. Phys. 111, 07E112 (2012)

Downloaded 01 Oct 2012 to 129.70.124.89. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions

Page 85: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc

the ferromagnet-superconductor interface. A magnetic fieldof 1 T parallel to the a-b plane destroys the gap in the pband, which was reported by Gonnelli et al. in point contactstudies of MgB2 single crystals.18 The p-gap vanishes at0.125 T parallel to the film plane in our measurements. Thiscould be caused by a small contribution of the quasiparticlecurrent to the a-b plane due to the small transition tempera-ture. Figure 5 shows the dI=dV characteristic with anapplied magnetic field of 0.125 T parallel to the surface.

IV. SUMMARY

In summary, we show that the magnetic properties of sput-tered MgB2 films on MgO (100) substrates provide results thatare comparable to MgB2 films prepared on sapphire substrates.Furthermore, we observed the density of states of MgB2 in lat-eral junctions. These devices are easily prepared and allow theobservation of both gaps on the (001) MgO substrates. Furtherinvestigations in this direction could lead to sputtered MgB2

films that are suitable for technical applications.

ACKNOWLEDGMENTS

We would like to acknowledge the MIWF of the NRWstate government and the German Research Foundation DFGfor financial support. We are very grateful to J. S. Mooderaand G. Reiss for encouraging us to start this project.

1J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu,Nature 410, 63 (2001).

2X. X. Xi, Supercond. Sci. Tech. 22, 043001 (2009).3R. Richter, H. Boeve, L. Bar, J. Bangert, U. K. Klostermann, J. Wecker,and G. Reiss, J. Magn. Magn. Mater. 240, 127 (2002).

4Z. Mori, T. Doi, K. Eitoku, Y. Ishizaki, H. Kitaguchi, M. Okada,K. Saitoh, and Y. Hakuraku, Supercond. Sci. Technol. 17, 47(2004).

5D. Ebke, P. Thomas, and O. Schebaum, J. Magn. 322, 996 (2010).6J.-B. Laloe, T. H. Kim, and J. S. Moodera, Adv. Condens. Matter Phys.2011, 1 (2011).

7M. Naito, Supercond. Sci. Technol. 17, R1 (2004).8J.-R. Ahn, S.-G. Lee, Y. Hwang, G. Y. Sung, and I.-S. Kim, Physica C388, 127 (2003).

9R. Micunek, A. Pecenik, P. Kus, M. Zahoran, M. Tomasek, T. Plecenik,M. Gregor, M. !Stefecka, V. Jacko, J. Gregus, B. Grancic, M. Kubinec, andM. Mahel, Physica C 435, 78 (2006).

10A. Saito, A. Kawakami, H. Shimakage, and Z. Wang, Jpn. J. Appl. Phys.41, 127 (2001).

11S.-G. Lee, J.-R. Ahn, Y. Kim, S.-H. Moon, K. W. Lee, I.-S. Kim, andY. K. Park, Supercond. Sci. Technol. 16, 1550 (2003).

12R. Vaglio, M. G. Maglione, and R. D. Capua, Supercond. Sci. Technol.15, 1236 (2002).

13A. J. M. van Erven, T. H. Kim, M. Muenzenberg, and J. S. Moodera,Appl. Phys. Lett. 81, 26 (2002).

14S. D. Bu, D. M. Kim, J. H. Choi, J. Giencke, E. E. Hellstrom, D. C.Larbalestier, S. Patnaik, L. Cooley, C. B. Eom, J. Lettieri, D. G. Schlom,W. Tian, and X. Q. Pan, Appl. Phys. Lett. 81, 10 (2002).

15H. Shimakage, S. Miki, K. Tsujimoto, Z. Wang, T. Ishida, and M. Tonou-chi, IEEE Trans. Appl. Superconduct. 15, 3269 (2005).

16K. Vinod, R. G. Abhilash Kumar, and U. Syamaprasad, Superconduct. Sci.Technol. 20, R1 (2007).

17A. Liu, I. Mazin, and J. Kortus, Phys. Rev. Lett. 87, 87005 (2001).18R. Gonnelli, D. Daghero, A. Calzolari, G. Ummarino, V. Dellarocca,

V. Stepanov, J. Jun, S. Kazakov, and J. Karpinski, Phys. Rev. B 69,100504 (2004).

FIG. 5. (Color online) dI=dV spectra. The red curve shows the spectra at 0T. The blue curve an applied field of 125 mT. The black curve shows the I-Vcurve.

07E112-3 Fabretti et al. J. Appl. Phys. 111, 07E112 (2012)

Downloaded 01 Oct 2012 to 129.70.124.89. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions

Page 86: ?2`bi2HHmM;mM/ +? ` Fi2`BbB2`mM; pQM/ jMM2M ;2bTmii2`i2M … › download › 2547239 › ... · / NGc