24
274 Chapter 4 Applications of Derivatives x x x x x x . We discard x as an extraneous solution, Ê $' œ % %) $ Ê* œ %) $ Ê "# œ %) Ê œ „# œ # # # # # # a b leaving x . Since D x for x and D x for x , the critical point corresponds to the œ# ! % # ! # % w w ab ab minimum distance. The minimum distance is D . È ab # œ# Geometry Method: The semicircle is centered at the origin and has radius . The distance from the origin to is % $ Š È . The shortest distance from the point to the semicircle is the distance along the radius Ê Š È " $ œ# # # containing the point . That distance is . Š È $ %#œ# (b) The minimum distance is from the point to the point on the graph of y x , and this Š Š È È È $ #ß # $ œ "' # occurs at the value x where D x , the distance squared, has its minimum value. œ# ab 61. (a) The base radius of the cone is r and so the height is h a r a . Therefore, œ œ œ # # # # # # # # 1 1 1 1 a x a x È É ˆ Vx rh a . ab ˆ ˆ É œ œ 1 1 1 1 1 1 $ $ # # # # # # # # a x a x (b) To simplify the calculations, we shall consider the volume as a function of r: volume f r r a r , where œ œ ab È 1 $ # # # r a. f r r a r r r a r r ! œ œ # # œ w # # $ $ $ # # # # " # # ab a b a b Š Š È È 1 1 1 d dr a r a r r ra r È È a b . The critical point occurs when r , which gives r a . Then œ œ œ œ œ 1 1 $ $ $ $ # $ # # $ # $ # ' É ar r a a r a r r a r a È È a b È h a r a . Using r and h , we may now find the values of r and h œ œ œ œ œ œ È É É # # # # $ $ $ $ $ $ $ ' a a a a a È È È for the given values of a. When a : r , h œ% œ œ à % ' $ $ % $ È È When a : r , h œ& œ œ à & ' $ $ & $ È È When a : r , h œ' œ# ' œ# È È When a : r , h œ) œ œ à ) ' $ $ ) $ È È (c) Since r and h , the relationship is . œ œ œ # a a r h È È ' $ $ $ È 62. (a) Let x represent the fixed value of x at the point P, so that P has the coordinates x a , and let m f x be the ! ! ! w a b a b ß œ slope of the line RT. Then the equation of the line RT is y m x x a. The y-intercept of this line is œ a b ! m x a a mx , and the x-intercept is the solution of m x x a , or x . Let O designate a b a b ! œ œ! œ ! ! ! mx a m the origin. Then

274 Chapter 4 Applications of Derivativesshahrabi/welcome/home/...8x 16x 16 16 cos x 1 sin x cos x 1 # œœ œœ 16. lim lim lim lim x0 x0 x0 x0ÄÄ Ä Ä sin x x cos x sin x cos x

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 274 Chapter 4 Applications of Derivativesshahrabi/welcome/home/...8x 16x 16 16 cos x 1 sin x cos x 1 # œœ œœ 16. lim lim lim lim x0 x0 x0 x0ÄÄ Ä Ä sin x x cos x sin x cos x

274 Chapter 4 Applications of Derivatives

x x x x x x . We discard x as an extraneous solution,Ê $' œ % %) � $ Ê * œ %) � $ Ê "# œ %) Ê œ „ # œ �## # # # #a b leaving x . Since D x for x and D x for x , the critical point corresponds to theœ # � ! �% � � # � ! # � � %w wa b a b minimum distance. The minimum distance is D .È a b# œ #

Geometry Method:

The semicircle is centered at the origin and has radius . The distance from the origin to is% "ß $Š ‹È . The shortest distance from the point to the semicircle is the distance along the radiusÊ Š ‹È" � $ œ ##

#

containing the point . That distance is .Š ‹È"ß $ % � # œ #

(b)

The minimum distance is from the point to the point on the graph of y x , and thisŠ ‹ Š ‹È È È"ß $ #ß # $ œ "' � #

occurs at the value x where D x , the distance squared, has its minimum value.œ # a b61. (a) The base radius of the cone is r and so the height is h a r a . Therefore,œ œ � œ �# � # �

# ## # # #1 1

1 1

a x a xÈ É ˆ ‰ V x r h a .a b ˆ ‰ ˆ ‰Éœ œ �1 1 1 1

1 1$ $ # ## # � # �# ##a x a x

(b) To simplify the calculations, we shall consider the volume as a function of r: volume f r r a r , whereœ œ �a b È1

$# # #

r a. f r r a r r r a r r! � � œ � œ † �# � � # œw # #$ $ $

# # # #"

# � �

� � # �a b a b a bŠ ‹ Š ‹È È” • ” •1 1 1ddr a r a r

r r a rÈ È a b# # # #

$ # #

. The critical point occurs when r , which gives r a . Thenœ œ œ œ œ1 1

$ $ $ $# � $ # #

� $ �

# � $ # '” • Éa r r aa r a r

r a r a# $ #

# # # #

# #

È Èa b È

h a r a . Using r and h , we may now find the values of r and hœ � œ � œ œ œ œÈ É É# # # #$ $ $ $ $

$ $'a a a aa# # È È È

for the given values of a.

When a : r , hœ % œ œ à% '$ $

% $È È

When a : r , hœ & œ œ à& '$ $

& $È È

When a : r , hœ ' œ # ' œ # $àÈ È When a : r , hœ ) œ œ à) '

$ $) $È È

(c) Since r and h , the relationship is .œ œ œ #a a rh

È È'$ $

$ È62. (a) Let x represent the fixed value of x at the point P, so that P has the coordinates x a , and let m f x be the! ! !

wa b a bß œ

slope of the line RT. Then the equation of the line RT is y m x x a. The y-intercept of this line isœ � �a b! m x a a mx , and the x-intercept is the solution of m x x a , or x . Let O designatea b a b! � � œ � � � œ ! œ! ! !

�mx am!

the origin. Then

Page 2: 274 Chapter 4 Applications of Derivativesshahrabi/welcome/home/...8x 16x 16 16 cos x 1 sin x cos x 1 # œœ œœ 16. lim lim lim lim x0 x0 x0 x0ÄÄ Ä Ä sin x x cos x sin x cos x

Section 4.5 Applied Optimization Problems 275

(Area of triangle RST) (Area of triangle ORT)œ #

(x-intercept of line RT)(y-intercept of line RT)œ # † "#

a mxœ # † �"#

�!ˆ ‰a bmx a

m!

mœ � ˆ ‰ˆ ‰mx a mx am m! !� �

mœ � ˆ ‰mx am! � #

m xœ � �ˆ ‰!#a

m

Substituting x for x , f x for m, and f x for a, we have A x f x x .!w w

#a b a b a b a b” •œ � � f xf xa ba bw

(b) The domain is the open interval . To graph, let y f x , y f x NDER y , anda b a b a b a bÉ!ß "! œ œ & � & " � œ œ" # ""!!wx#

y A x y x . The graph of the area function y A x is shown below.$ # $

#

œ œ � � œa b a bŠ ‹yy"

#

The vertical asymptotes at x and x correspond to horizontal or vertical tangent lines, which do not formœ ! œ "!

triangles. (c) Using our expression for the y-intercept of the tangent line, the height of the triangle is

a mx f x f x x x x x� œ � † œ & � "!! � � œ & � "!! � �a b a b È Èw " � "# #

# #"!! � "!! �

x x2 x 2 xÈ È# #

#

We may use graphing methods or the analytic method in part (d) to find that the minimum value of A x occurs ata b x . Substituting this value into the expression above, the height of the triangle is 15. This is 3 times the¸ )Þ''

y-coordinate of the center of the ellipse. (d) Part (a) remains unchanged. Assuming C B, the domain is C . To graph, note that  !ßa b f x B B B C x and f x x . Therefore we havea b a b a bÉ Èœ � " � œ � � œ �# œx B

C C#

#

# # w B BxC C x C C x

" �

# � �È È# # # #

A x f x x x xa b a b” • Œ � � �œ � � œ � œ �w#

# #

f xf x

BxC C x

a ba b Èw# #

B C x BxC C x

BC B C x C x

Bx� �

� � �

BC

Bx

C C x

ÈÈ

Š ‹Š ‹È È# #

# #�

# #

# # # #

È

Bx BC B C x C x Bx BC C x B C xœ � � � � œ � � � �" "

� �BCx C x BCx C xÈ È# # # #” • ” •Š ‹Š ‹È È È a b# # # ## # # # # #

# #

BC C C xœ � � œ"

� �

� �

BCx C x x C x

BC C C x

È ÈŠ ‹È

# # # #

# ##

” •Š ‹È # #

#

A x BCw�

�a b œ †Š ‹ Š ‹Š ‹ Š ‹ Š ‹a b

a bx C x C C x C C x x C xÈ È È È a b# # # # # # # #� �

# # # #� �

� # � � � � � � "x x

C x C xÈ È

x C x

#

# # #

x C C x C xœ �# � � � � �BC C C x

x C x

Š ‹Èa b� �

# #

# # # – —Š ‹Š ‹È È# # # # #�

xC x

#

# #È

x C C x x C xœ �# � � � � � �BC C C x

x C x

Š ‹Èa b� �

# #

# # # ” •È a b# # # #

�# #Cx

C x

#

# #È

C C x C Cx C C x C C xœ � � � œ � � � �BC C C x BC C C x

x C x x C x

Š ‹ Š ‹È Èa b a b� � � �

� �

# # # #

# # ## # # $Î#Š ‹È È’ “a bCx

C x

#

# #È �# # # ## # # # #

x C C C xœ # � � �BC C C x

x C x

# # #

# # # $Î#

Š ‹Èa b

� �

�Š ‹È# # # #

Page 3: 274 Chapter 4 Applications of Derivativesshahrabi/welcome/home/...8x 16x 16 16 cos x 1 sin x cos x 1 # œœ œœ 16. lim lim lim lim x0 x0 x0 x0ÄÄ Ä Ä sin x x cos x sin x cos x

276 Chapter 4 Applications of Derivatives

To find the critical points for x C, we solve: x C C C x x C x C C C x! � � # � œ � Ê % � % � œ �# # % # # % % # ## #È x C x x x C . The minimum value of A x for x C occurs at the critical pointÊ % � $ œ ! Ê % � $ œ ! ! � �% # # # # #a b a b x , or x . The corresponding triangle height isœ œC CÈ$

# %# $ #

a mx f x f x x� œ � †a b a bw

B C xœ � � �BCÈ # # Bx

C C

#

# $ #

%É �

C

B C xœ � � �BCÈ # #

B

C C

Š ‹É

$#

%

# $ #

%

C

C�

Bœ � �B CCˆ ‰#

$#

%

#

#

BC

C

Bœ � �B B# #

$

Bœ $

This shows that the traingle has minimum arrea when its height is B.$

4.6 INDETERMINATE FORMS AND L'HOPITAL'S RULE^

1. l'Hopital: lim or lim lim lim ^x 2 x 2 x 2 x 2Ä Ä Ä Ä

x 2 x 2 x 2x 4 x 4 x 4 x x x 4x

� " " � � " "� # � �# �# �#œ#

# #œ œ œ œ œ¹ a ba b

2. l'Hopital: lim 5 or lim 5 lim 5 1 55

^x 0 x 0 x 0Ä Ä Ä

sin 5x 5 cos 5x sin 5x sin 5xx 1 x 5xx

œ œ œ œ † œ¹œ!

3. l'Hopital: lim lim lim or lim lim ^x x x x xÄ _ Ä _ Ä _ Ä _ Ä _

5x 3x 0x 3 10 5 5x 3x 57x 1 14x 14 7 7x 1 7

5

7

# #

# #

� " � �� �

�œ œ œ œ œ

3x

x"

4. l'Hopital: lim lim or lim lim ^x 1 x 1 x 1 x 1Ä Ä Ä Ä

x 1 3x 3 x 14x x 3 12x 1 11 4x x 3 x 4x + 4x + 3

x x x$ # $

$ # $

#� �� � � � � �"

�" � �"œ œ œ a ba ba ba b2

lim œ œx 1Ä

a ba bx x4x + 4x + 3 11

3# � �"2

5. l'Hopital: lim lim lim or lim lim ^x x x x xÄ ! Ä ! Ä ! Ä ! Ä !

1 cos x sin x cos x 1 cos x cos xx 2x 2 x x co

cos x� " � "�# "�

"�# #œ œ œ œ ” ˆ ‰a b

2 s x • lim lim œ œ œ

x xÄ ! Ä !sin x sin x sin x

x cos x x x cos x

#

2a b"� "� #" "” •ˆ ‰ˆ ‰ˆ ‰

6. l'Hopital: lim lim lim or lim lim ^x x x x xÄ _ Ä _ Ä _ Ä _ Ä _

# �$ % � % # � !� � $ �" ' � � "

"� �x x x 3 x 3x

x x 1 x x x x 1

# #

$ # $œ œ œ ! œ œ œ !#

#

" "

# $

x3

x

x x

7. lim lim x 2 x 2Ä Ä

x 2x 4 x 4� " "� ## œ œ

8. lim lim 10x 5 x 5Ä � Ä �

x 25 2xx 5 1

# �� œ œ �

9. lim lim t 3 t 3Ä � Ä �

t 4t 15 3t 4 23t t 12 2t 1 2( 3) 1 7

3( 3) 4$ #

#

#� � �� � � � �

� �œ œ œ �

10. lim lim t 1 t 1Ä Ä

t 1 3t 34t t 3 12t 1 11

$ #

$ #

�� � �œ œ

11. lim lim lim x x xÄ _ Ä _ Ä _5x 3x 0x 3 10 57x 1 14x 14 7

#

#

� " �� œ œ œ

Page 4: 274 Chapter 4 Applications of Derivativesshahrabi/welcome/home/...8x 16x 16 16 cos x 1 sin x cos x 1 # œœ œœ 16. lim lim lim lim x0 x0 x0 x0ÄÄ Ä Ä sin x x cos x sin x cos x

Section 4.6 Indeterminate Forms and L'Hopital's Rule 277^

12. lim lim lim x x xÄ _ Ä _ Ä _x 8x 1 6x 16 2

12x 5x 24x 5 24 3� �" �� �

#

# œ œ œ �

13. lim lim 0t 0 t 0Ä Ä

sin tt 1

cos t (2t)# #

œ œa b

14. lim lim 5t 0 t 0Ä Ä

sin 5t 5 cos 5tt 1œ œ

15. lim lim lim 16x 0 x 0 x 0Ä Ä Ä

8x 16x 16 16cos x 1 sin x cos x 1

#

� � � �œ œ œ œ �

16. lim lim lim lim x 0 x 0 x 0 x 0Ä Ä Ä Ä

sin x x cos x sin x cos xx 3x 6x 6 6� �" � � "$ #œ œ œ œ �

17. lim lim 2) 1 ) 1Ä Î Ä Î2 2

2 2 2cos (2 ) sin (2 ) sin

) 1

1 ) 1 )

�� �œ œ œ �ˆ ‰31

#

18. lim lim 3) 1 ) 1Ä � Î Ä � Î3 3

3 3sin cos

) 1

) )

�� �ˆ ‰ ˆ ‰1 1

3 3œ œ

19. lim lim lim ) 1 ) 1 ) 1Ä Î Ä Î Ä Î2 2 2

1 sin cos sin 1 cos 2 2 sin 2 4 cos 2 ( 4)( 1) 4

� � " "� � � � �

) ) )

) ) )œ œ œ œ

20. lim lim x 1 x 1Ä Ä

xln x sin ( x) 1 cos ( x)

�" " "� ��1 11 1

œ œ"

x

21. lim lim lim lim 2x 0 x 0 x 0 x 0Ä Ä Ä Ä

x 2x 2x 2 2ln (sec x) tan x sec x 1

#

# #œ œ œ œ œˆ ‰sec x tan xsec x

22. lim lim lim lim x 2 x 2 x 2 x 2Ä Î Ä Î Ä Î Ä Î1 1 1 1

ln (csc x)

x 2 x 2 xcot x csc x 1ˆ ‰ˆ ‰

ˆ ‰ˆ ‰ ˆ ‰ˆ ‰ ˆ ‰�

� �� "

# # #11 1

#

#

# #

# #

œ œ œ œ œcsc x cot x

csc x

23. lim lim lim t 0 t 0 t 0Ä Ä Ä

t(1 cos t) (1 cos t) t(sin t) sin t (sin t t cos t)t sin t 1 cos t sin t� � � � �� �œ œ

lim 3œ œ œt 0Ä

cos t cos t cos t t sin t 1 1 0cos t 1

� � � � �"�

24. lim lim lim 2t 0 t 0 t 0Ä Ä Ä

t sin t sin t t cos t1 cos t sin t cos t 1

cos t (cos t t sin t) 1 (1 0)�

� � � � �œ œ œ œ

25. lim x sec x lim lim 1x 2 x 2 x 2Ä Ð Î Ñ Ä Ð Î Ñ Ä Ð Î Ñ1 1 1

� � �

ˆ ‰ ˆ ‰� œ œ œ œ �1

# � �

� " "ˆ ‰xcos x sin x 1

1

#

26. lim x tan x lim lim lim sin x 1x 2 x 2 x 2 x 2Ä Ð Î Ñ Ä Ð Î Ñ Ä Ð Î Ñ Ä Ð Î Ñ1 1 1 1

� � � �

ˆ ‰ ˆ ‰1

# �

� �" #� œ œ œ œˆ ‰1

#

#

xcot x csc x

27. lim lim ln 3) )Ä Ä0 0

3 3 (ln 3)(cos )1 1

3 (ln 3)(1)sin sin) )�")

)œ œ œa b!

28. lim lim ln ln 1 ln 2 ln 2) )Ä Ä0 0

ˆ ‰ ˆ ‰ ˆ ‰ˆ ‰" " "

# # #

) )� "

#

1 ln1)

œ œ œ � œ �ˆ ‰29. lim lim

x 0 x 0Ä Ä

x 2 1 2 02 1 (ln 2) 2 (ln 2) 2 ln

(1) 2 (x)(ln 2) 2x

x x

x x

� #� � "œ œ œa b a ba b †

!

!

30. lim lim x 0 x 0Ä Ä

3 3 ln 3 3 ln 3 ln 32 1 2 ln 2 2 ln 2 ln

x x

x x�"� #œ œ œ

!

!

31. lim lim (ln 2) lim (ln 2) lim (ln 2) lim ln 2x x x x xÄ _ Ä _ Ä _ Ä _ Ä _ln (x 1) ln (x 1)

log x x 1 1x 1� ��2

œ œ œ œ œˆ ‰ˆ ‰ˆ ‰ln x

ln

x 1

x#

"

"

Page 5: 274 Chapter 4 Applications of Derivativesshahrabi/welcome/home/...8x 16x 16 16 cos x 1 sin x cos x 1 # œœ œœ 16. lim lim lim lim x0 x0 x0 x0ÄÄ Ä Ä sin x x cos x sin x cos x

278 Chapter 4 Applications of Derivatives

32. lim lim lim lim x x x xÄ _ Ä _ Ä _ Ä _log x

log (x 3) ln ln (x 3) ln ln 3 ln x ln 3 l2

3

ln xln

ln (x 3)ln 3

x

x 3� # � #œ œ œ œ

ˆ ‰Š ‹

ˆ ‰ˆ ‰#

"

"

ˆ ‰ ˆ ‰ ˆ ‰n 3 x 3ln x#

� lim x Ä _

lim œ œˆ ‰ln 3 ln 3ln 1 ln # #

"x Ä _

33. lim lim lim lim lim 1x x x x xÄ ! Ä ! Ä ! Ä ! Ä !� � � � �

ln x 2xln x x 2x 2x 2

2x 2x 4x 2 2a b Š ‹ˆ ‰

#�

# �

"

#

#

� � �� � #œ œ œ œ œ

2x 2x 2x

x

34. lim lim lim lim 1x x x xÄ ! Ä ! Ä ! Ä !� � � �

ln eln x e 1 e 1

xe e xe 1 0a b Š ‹ˆ ‰

xex

e 1x

x

x x x

x x�"

�� �œ œ œ œ œ

"

35. lim lim lim lim y 0 y 0 y 0 y 0Ä Ä Ä Ä

È ˆ ‰È

5y 25 5y y 1

(5y 25) 5 (5y 25) (5) 52 5y 25

� � � � �

�"#œ œ œ œ

"Î# "#

�"Î#

36. lim lim lim lim , a 0y 0 y 0 y 0 y 0Ä Ä Ä Ä

È a b ˆ ‰ a bÈay a a

y y 1ay a a ay a (a) a

2 ay a� � � � �

�"#

# # "Î# "#

# �"Î#

#œ œ œ œ �

37. lim [ln 2x ln (x 1)] lim ln ln lim ln lim ln 2x x x xÄ _ Ä _ Ä _ Ä _� � œ œ œ œˆ ‰ Š ‹ Š ‹2x 2x 2

x 1 x 1 1� �

38. lim (ln x ln sin x) lim ln ln lim ln lim ln 1 0x x x xÄ ! Ä ! Ä ! Ä !� � � �

� œ œ œ œ œˆ ‰ Š ‹ Š ‹x xsin x sin x cos x

"

39. lim lim h 0 h 0Ä Ä

sin a h sin a cos a h cos ah

a b a b� � � �"œ œ !

40. lim lim lim x x xÄ ! Ä ! Ä !� � �

ˆ ‰ Š ‹3xx sin x x sin x sin x x cos x

(3x 1)(sin x) x 3 sin x (3x 1)(cos x) 1�" " � � � � ��� œ œ

lim 3œ œ œ œx Ä !�

Š ‹3 cos x 3 cos x (3x 1)( sin x) 3 3 (1)(0)cos x cos x x sin x 1 1 0

6� � � � � �� � � � #

41. lim lim lim lim x 1 x 1 x 1 x 1Ä Ä Ä Ä� � � �

ˆ ‰ Š ‹ Š ‹ Š ‹" " �� � � �

� � �"

� �x 1 ln x (x 1)(ln x) (x ln x) x 1ln x (x 1)

(ln x) (x 1)1 x� œ œ œ

"

"

x

xˆ ‰

lim œ œ œ �x 1Ä �

Š ‹�" �" "� � � � #(ln x 1) 1 (0 1) 1

42. lim (csc x cot x cos x) lim cos x lim x x xÄ ! Ä ! Ä !� � �

� � œ � � œˆ ‰ Š ‹" � �sin x sin x sin x

cos x (1 cos x) (sin x)(cos x)

lim 1œ œ œx Ä !�

Š ‹sin x cos x sin x 0 1 0cos x 1

� � � �# #

43. lim lim lim 1) ) )Ä Ä Ä0 0 0

cos sin cos e 1 e 1 e

) ) )

)

�" � �� � �) ) )œ œ œ �

44. lim lim lim h 0 h 0 h 0Ä Ä Ä

e ( h)h h

e eh h h� "� �" "# # ## œ œ œ

45. lim lim lim lim 1t t t tÄ _ Ä _ Ä _ Ä _

e t e 2t e 2 ee 1 e e e

t t t t

t t t t� � ��

#

œ œ œ œ

46. lim x e lim lim lim 0x x x xÄ _ Ä _ Ä _ Ä _# �x x 2x 2

e e eœ œ œ œ#

x x x

47. The limit leads to the indeterminate form 1 . Let f(x) x ln f(x) ln x . Now_ ÎÐ � Ñ ÎÐ � Ñœ Ê œ œ1 1 x 1 1 xa b ln x1 x�

lim ln f(x) lim lim 1. Therefore lim x lim f(x) lim e ex 1 x 1 x 1 x 1 x 1 x 1Ä Ä Ä Ä Ä Ä� � � � � �

ÎÐ � Ñœ œ œ � œ œ œ œln x1 x 1 e

ln f x� �

Ð Ñ �" "ˆ ‰"x 1 1 x

Page 6: 274 Chapter 4 Applications of Derivativesshahrabi/welcome/home/...8x 16x 16 16 cos x 1 sin x cos x 1 # œœ œœ 16. lim lim lim lim x0 x0 x0 x0ÄÄ Ä Ä sin x x cos x sin x cos x

Section 4.6 Indeterminate Forms and L'Hopital's Rule 279^

48. The limit leads to the indeterminate form 1 . Let f(x) x ln f(x) ln x . Now_ ÎÐ � Ñ ÎÐ � Ñœ Ê œ œ1 x 1 1 x 1a b ln xx 1�

lim ln f(x) lim lim 1. Therefore lim x lim f(x) lim e e ex 1 x 1 x 1 x 1 x 1 x 1Ä Ä Ä Ä Ä Ä� � � � � �

ÎÐ � Ñœ œ œ œ œ œ œln xx 1 1

ln f x�

Ð Ñ "ˆ ‰"x 1 x 1

49. The limit leads to the indeterminate form . Let f(x) (ln x) ln f(x) ln (ln x) . Now_ œ Ê œ œ! 1 x 1 xÎ Î ln (ln x)x

lim ln f(x) lim lim 0. Therefore lim (ln x) lim f(x)x x x x xÄ _ Ä _ Ä _ Ä _ Ä _œ œ œ œln (ln x)

x 1

ˆ ‰"

x ln x 1 xÎ

lim e e 1œ œ œx Ä _

ln f xÐ Ñ !

50. The limit leads to the indeterminate form 1 . Let f(x) (ln x) ln f(x) lim ln f(x)_ ÎÐ � Ñ

�œ Ê œ œ1 x e ln (ln x)

x e� x eÄ

lim lim . Therefore (ln x) lim f(x) lim e eœ œ œ œ œ œx e x e x e x eÄ Ä Ä Ä� � � �

ÎÐ � Ñln (ln x)x e 1 e

ln f x e�

" Ð Ñ "Έ ‰"

x ln x 1 x e

51. The limit leads to the indeterminate form 0 . Let f(x) x ln f(x) 1. Therefore! œ Ê œ � œ �� Î1 ln x ln xln x

lim x lim f(x) lim e ex x xÄ ! Ä ! Ä !� � �

� Î1 ln x œ œ œ œln f xe

Ð Ñ �" "

52. The limit leads to the indeterminate form . Let f(x) x ln f(x) 1. Therefore lim x_ œ Ê œ œ! 1 ln x 1 ln xÎ Îln xln x x Ä _

lim f(x) lim e e eœ œ œ œx xÄ _ Ä _1n f xÐ Ñ "

53. The limit leads to the indeterminate form . Let f(x) (1 2x) ln f(x)_ œ � Ê œ! �1 2 ln xÎÐ Ñ ln (1 2x)2 ln x

lim ln f(x) lim lim lim . Therefore lim (1 2x)Ê œ œ œ œ �x x x x xÄ _ Ä _ Ä _ Ä _ Ä _ln (1 2x)

2 ln x 1 2xx�� # #

" " 1 2 ln xÎÐ Ñ

lim f(x) lim e eœ œ œx xÄ _ Ä _ln f xÐ Ñ "Î#

54. The limit leads to the indeterminate form 1 . Let f(x) e x ln f(x)_ Î �œ � Ê œa bx 1 x ln e xx

a bx

lim ln f(x) lim lim 2. Therefore lim e x lim f(x)Ê œ œ œ � œx 0 x 0 x 0 x 0 x 0Ä Ä Ä Ä Ä

ln e xx e x

e 1a bx x

x� �

� a bx 1 xÎ

lim e eœ œx 0Ä

ln f xÐ Ñ #

55. The limit leads to the indeterminate form 0 . Let f(x) x ln f(x) x ln x ln f(x)! œ Ê œ Ê œx ln xˆ ‰"x

lim ln f(x) lim lim lim ( x) 0. Therefore lim x lim f(x)œ œ œ œ � œ œx x x x x xÄ ! Ä ! Ä ! Ä ! Ä ! Ä !� � � � � �

ln xˆ ‰ˆ ‰

Š ‹"

"

"

#x

x

x�

x

lim e e 1œ œ œx Ä !�

ln f xÐ Ñ !

56. The limit leads to the indeterminate form . Let f(x) 1 ln f(x) lim ln f(x)_ œ � Ê œ Ê! " �ˆ ‰x x

ln 1 xx a b�"

�"

x Ä !�

lim lim lim 0. Therefore lim 1 lim f(x)œ œ œ œ � œx x x x xÄ ! Ä ! Ä ! Ä ! Ä !� � � � �

Š ‹� �#

� �"

�# �"

x1 x

� � �" "

x 1 x x 1 xx ˆ ‰x

lim e e 1œ œ œx Ä !�

ln f xÐ Ñ !

57. lim lim lim 9 3x x xÄ _ Ä _ Ä _

ÈÈ9x 1

x 19x 1 9x 1 1

���œ œ œ œÉ É È

58. lim 1x Ä !� Ä!

ÈÈ

x

sin x lim 1œ œ œÊ É" "

x �

sin xx

59. lim lim lim 1x 2 x 2 x 2Ä Î Ä Î Ä Î1 1 1

� � �

sec x cos xtan x cos x sin x sin xœ œ œˆ ‰ ˆ ‰" "

Page 7: 274 Chapter 4 Applications of Derivativesshahrabi/welcome/home/...8x 16x 16 16 cos x 1 sin x cos x 1 # œœ œœ 16. lim lim lim lim x0 x0 x0 x0ÄÄ Ä Ä sin x x cos x sin x cos x

280 Chapter 4 Applications of Derivatives

60. lim lim lim cos x 1x x xÄ ! Ä ! Ä !� � �

cot xcsc x œ œ œ

ˆ ‰ˆ ‰

cos xsin x

sin x"

61. Part (b) is correct because part (a) is neither in the nor form and so l'Hopital's rule may not be used.^00

__

62. Part (b) is correct; the step lim lim in part (a) is false because lim is x 0 x 0 x 0Ä Ä Ä

2x 2 2 2x 22x cos x sin x 2x cos x

� �� #� �œ not

an indeterminate quotient form.

63. Part (d) is correct, the other parts are indeterminate forms and cannot be calculated by the incorrect arithmetic

64. (a) For x 0, f (x) (x 2) 1 and g (x) (x 1) 1. Therefore, lim 1, while lim Á œ � œ œ � œ œ œw wd d 1dx dx g (x) 1 g(x)

f (x) f(x)

x 0 x 0Ä Ä

w

w

2.œ œ œx 2 0 2x 1 0 1� �� �

(b) This does not contradict l'Hopital's rule because neither f nor g is differentiable at x 0^ œ

(as evidenced by the fact that neither is continuous at x 0), so l'Hopital's rule does not apply.^œ

65. If f(x) is to be continuous at x 0, then lim f(x) f(0) c f(0) lim lim œ œ Ê œ œ œx 0 x 0 x 0Ä Ä Ä

9x 3 sin 3x 9 9 cos 3x5x 15x

� �$ #

lim lim .œ œ œx 0 x 0Ä Ä

27 sin 3x 81 cos 3x 2730x 30 10

66. (a)

(b) The limit leads to the indeterminate form :_�_

lim x x x lim x x x lim lim x x x xÄ _ Ä _ Ä _ Ä _Š ‹ Š ‹Š ‹ Š ‹È È� � œ � � œ œ# # � �

� � � � � �

� � �x x xx x x x x x x x x

x x x xÈÈ È Èa b#

# # #

# #

lim œ œ œ �x Ä _�" �" "

"� "� "� "�! #É È"

x

67. The graph indicates a limit near 1. The limit leads to the�

indeterminate form : lim 00 x 1

2x (3x 1) x 2

x 1Ä

# � � �

È

lim lim œ œx 1 x 1Ä Ä

2x 3x x 2x 1 1

4x x x# $Î# "Î# "Î# �"Î#� � �

� �9# #

"

1œ œ œ �4

1 14 5� � �

9# #

"

68. (a) The limit leads to the indeterminate form 1 . Let f(x) 1 ln f(x) x ln 1 lim ln f(x)_ " "œ � Ê œ � ʈ ‰ ˆ ‰x x

x

x Ä _

lim lim lim lim 1œ œ œ œ œ œx x x xÄ _ Ä _ Ä _ Ä _ln 1 ln 1 x

x x 1 01

ˆ ‰ˆ ‰ ˆ ‰a b Š ‹� �

� �" "

"

" "

�"

�" �#

� �#

� �"x

x x

x1 x

lim 1 lim f(x) lim e e eÊ � œ œ œ œx x xÄ _ Ä _ Ä _ˆ ‰" Ð Ñ "

xx ln f x

Page 8: 274 Chapter 4 Applications of Derivativesshahrabi/welcome/home/...8x 16x 16 16 cos x 1 sin x cos x 1 # œœ œœ 16. lim lim lim lim x0 x0 x0 x0ÄÄ Ä Ä sin x x cos x sin x cos x

Section 4.6 Indeterminate Forms and L'Hopital's Rule 281^

(b) x 1ˆ ‰� "x

x

10 2.5937424601100 2.704813829421000 2.7169239322410,000 2.71814592683100,000 2.71826823717

Both functions have limits as x approaches infinity. The function f has a maximum but no minimum while g has no extrema. The limit of f(x) leads to the indeterminate form 1 ._

(c) Let f(x) 1 ln f(x) x ln 1 xœ � Ê œ �ˆ ‰ a b" �#x

x#

lim ln f(x) lim lim lim lim lim 0.Ê œ œ œ œ œ œx x x x x xÄ _ Ä _ Ä _ Ä _ Ä _ Ä _ln 1 x

x x x x 3x 1 6x2x 4x 4a b Š ‹

a b a b�� � �

�#

�" �# $ #

� �$

� �# #2x

1 x

Therefore lim 1 lim f(x) lim e e 1x x xÄ _ Ä _ Ä _ˆ ‰� œ œ œ œ" Ð Ñ !

xx ln f x

#

69. Let f(k) 1 ln f(k) lim lim lim œ � Ê œ Ê œ œˆ ‰r rk k k k 1 rk

k ln 1 rk ln 1 rka b a b Š ‹� �� �

�" �"

�" �" �# �"

� �#

� �"

k k kÄ _ Ä _ Ä _

rk1 rk

lim lim r. Therefore lim 1 lim f(k) lim e e .œ œ œ � œ œ œk k k k kÄ _ Ä _ Ä _ Ä _ Ä _

rk r rk r 1 k

k ln f k r�

Рш ‰70. (a) y x ln y y x . The sign pattern isœ Ê œ Ê œ Ê œ1 x 1 xÎ Îln x 1 ln x

x y x xy (x) ln xw "

# #

ˆ ‰x � w �ˆ ‰ a b

y which indicates a maximum value of y e when x ew œ ± � � � � � ± � � � � œ œ! e

1 eÎ

(b) y x ln y y x . The sign pattern isœ Ê œ Ê œ Ê œ1 x ln x 1 2 ln xx y x

y x 2x ln xx

Î w� �#

# $

w " #

%

ˆ ‰ a bx ˆ ‰ a b1 xÎ #

y which indicates a maximum of y e when x ew œ ± � � � ± � � � � œ œ! È È

e

1 2eÎ

(c) y x ln y y x . The sign pattern isœ Ê œ œ Ê œ1 x 1 xln xx x x

x (ln x) nx x (1 n ln x)Πw � �n n

n 2n 2nx

n n 1 n 1ˆ ‰ ˆ ‰a b" � �

y which indicates a maximum of y e when x ee

w Îœ ± � � � ± � � � � œ œ! È È

n

n1 ne

(d) lim x lim e lim e exp lim exp lim e 1x x x x xÄ _ Ä _ Ä _ Ä _ Ä _1 x ln x ln x x1 x ln x

x nxÎ Ð ÑÎ !Î "n nn

n nœ œ œ œ œ œˆ ‰ ˆ ‰Š ‹ Š ‹71. (a) We should assign the value 1 to f(x) (sin x) toœ x

make it continuous at x 0.œ

(b) ln f(x) x ln (sin x) lim ln f(x) lim lim œ œ Ê œ œln (sin x) ln (sin x) (cos x)ˆ ‰ ˆ ‰

ˆ ‰Š ‹" "

"

"

#x x

sin x

xx x xÄ ! Ä ! Ä !� � � �

lim lim 0 lim f(x) e 1œ œ œ Ê œ œx 0 x 0 x 0Ä Ä Ä

� � !x 2xtan x sec x

#

#

(c) The maximum value of f(x) is close to 1 near the point x 1.55 (see the graph in part (a)).¸

Page 9: 274 Chapter 4 Applications of Derivativesshahrabi/welcome/home/...8x 16x 16 16 cos x 1 sin x cos x 1 # œœ œœ 16. lim lim lim lim x0 x0 x0 x0ÄÄ Ä Ä sin x x cos x sin x cos x

282 Chapter 4 Applications of Derivatives

(d) The root in question is near 1.57.

72. (a) When sin x 0 there are gaps in the sketch. The width�

of each gap is .1

(b) Let f(x) (sin x) ln f(x) (tan x) ln (sin x)œ Ê œtan x

lim ln f(x) lim Ê œx 2 x 2Ä Î Ä Î1 1

� �

ln (sin x)cot x

lim lim 0œ œ œx 2 x 2Ä Î Ä Î1 1

� �

ˆ ‰"

#

sin x (cos x)csc x ( sin x)

cos x� �

lim f(x) e 1. Similarly,Ê œ œx 2Ä Î1 �

!

lim f(x) e 1. Therefore, lim f(x) 1.x 2 x 2Ä Î Ä Î1 1�

œ œ œ!

(c) From the graph in part (b) we have a minimum of about 0.665 at x 0.47 and the maximum is about¸

1.491 at x 2.66.¸

73. Graphing f x on th window by it appears that lim f x . However, we see that if we leta b a bœ Ò�"ß "Ó Ò�!Þ&ß "Ó œ !"� cos xx

'

"#

x 0Ä

u x , then lim f x lim lim lim .œ œ œ œ œ' "� "# # #x 0 u 0 u 0 u 0Ä Ä Ä Ä

a b cos u sin u cos uu u#

74. (a) We seek c in so that . Since f c and g c c we have that a b a b a b�#ß ! œ œ œ � œ " œ # œ �f c f fg c g g c

w

w

a b a b a ba b a b a b! � �#! � �# !�% # # #

!�# " " "w w

c .Ê œ �"

(b) We seek c in a b so that . Since f c and g c c we have that a b a b a bß œ œ œ œ " œ # œf c f b f ag c g b g a b a b a c b a

b aw

w # #

a b a b a ba b a b a b�� � � # �

� " " "w w

c .Ê œ b a�#

(c) We seek c in so that . Since f c c and g c c we have thata b a b a b!ß $ œ œ œ � œ � % œ #f c f fg c g g

w

w

a b a b a ba b a b a b$ � !$ � ! *�! $

�$�! " w # w

c c .cc

# �% "# $ $ $

�"„ $( �"� $(œ � Ê œ Ê œÈ È

Page 10: 274 Chapter 4 Applications of Derivativesshahrabi/welcome/home/...8x 16x 16 16 cos x 1 sin x cos x 1 # œœ œœ 16. lim lim lim lim x0 x0 x0 x0ÄÄ Ä Ä sin x x cos x sin x cos x

Section 4.7 Newton's Method 283

75. (a) By similar triangles, where E is the point on AB such that CE AB :PA CEAB EBœ ¼

←→ ←→ ←→

Thus , since the coordinates of C are cos sin . Hence, x ."� "�� �

"�x cos sin sin

cos ) ) ) ) )

) ) )œ ß " � œa b) )a b

(b) lim x lim lim lim lim ) ) ) ) )Ä Ä Ä Ä Ä0 0 0 0 0

a b" � œ œ œ œ) )

) ) ) )

) ) ) ) ) ) ) ) )a b"�� "�

�"� � � �#cos sin cos sin

sin cos cos sin sin cos sin sin

)

)

lim lim œ œ œ œ $) )Ä Ä0 0

) ) ) )

) )

) ) )a b� � �# � �$ !�$"

sin cos cos cos cos

sin cos

(c) We have that lim x cos lim cos lim cos ) ) )Ä _ Ä _ Ä _

� ‘a b a b a b a b” • ” •" � � " � œ � " � œ " � � ") ) )) )

) ) ) )

)a b"�� �

cos sin sin

As cos oscillates between and , and so it is bounded. Since lim ,) )Ä "� ! # � " œ " � " œ !_Ä _

, a b ˆ ‰)

)

) )� sin

lim cos . Geometrically, this means that as , the distance between points P and D) Ä _

a b” •" � � " œ ! Ä _) ))

) )� sin

approaches 0.

76. Throughout this problem note that r y , r y and that both r and y as # ##œ � " � Ä _ Ä _ Ä Þ)1

(a) lim r y lim ) 1 ) 1Ä Î Ä Î2 2

� œ œ !"�r y

(b) lim r y lim ) 1 ) 1Ä Î Ä Î2 2

# #� œ " œ "

(c) We have that r y r y r ry y y .$ $ # # � � � † � $�� œ � � � œ � œ œ $ †a ba b r ry y y y y y y y

r y r r r

# # # # #

Since lim y lim sin y we have that lim r y .) 1 ) 1 ) 1Ä Î Ä Î Ä Î2 2 2

$ † œ $ † œ _ � œ _yr )

$ $

4 7 NEWTON'S METHODÞ

1. y x x 1 y 2x 1 x x ; x 1 x 1œ � � Ê œ � Ê œ � œ Ê œ � œ# w! "

� �#�n 1 n�

x x 1x 1

#

n n

n

� �

# �

1 1 1 21 3

x x .61905; x 1 x 1 2Ê œ � Ê œ � œ � œ ¸ œ � Ê œ � œ �# # ! "� �

�� � " � �� # �#�

2 2 4 6 9 2 13 1 1 13 3 12 9 3 1 21 1

1

1

4 29 3

43

x 2 1.66667Ê œ � � œ � ¸ �#� �"� �

4 2 54 1 3

2. y x 3x 1 y 3x 3 x x ; x 0 x 0œ � � Ê œ � Ê œ � œ Ê œ � œ �$ w #! "

" "n 1 n�

x 3x 13x 3

$

#

n n

n

� �

� 3 3

x 0.32222Ê œ � � œ � � œ � ¸ �#" " "� � �

�3 3 90 901 13

29"

#

"

7

3

3. y x x 3 y 4x 1 x x ; x 1 x 1œ � � Ê œ � Ê œ � œ Ê œ � œ% w $! "

� ��n 1 n�

x x 34x 1

%

$

n n

n

� �

1 1 3 64 1 5

x 1.16542; x 1 x 1Ê œ � œ � œ � œ ¸ œ � Ê œ � �# ! "� �

�� � "� �

� � �6 6 1296 750 1875 6 171 5763 1 35 5 4320 625 5 4945 4945 4 1

3

1

1296 6625 5

864125

2 x 2 2 1.64516œ � Ê œ � � œ � � œ � ¸ �#� �

� �16 2 3 11 51

32 1 31 31

Page 11: 274 Chapter 4 Applications of Derivativesshahrabi/welcome/home/...8x 16x 16 16 cos x 1 sin x cos x 1 # œœ œœ 16. lim lim lim lim x0 x0 x0 x0ÄÄ Ä Ä sin x x cos x sin x cos x

284 Chapter 4 Applications of Derivatives

4. y 2x x 1 y 2 2x x x ; x 0 x 0œ � � Ê œ � Ê œ � œ Ê œ � œ �# w! "

� �" "#� #n 1 n�

2x x 12 2xn n

n

� �

#0 0

0

x .41667; x 2 x 2 xÊ œ � � œ � � œ � ¸ � œ Ê œ � œ Ê œ �# ! " #" " " � �"# #� # # # #� # # #�

� � �" � �1 5 11 1 1 4 5

5 4 4 5 5"

4 425

2.41667œ � œ � œ ¸5 20 25 4 5 291 1 12# � # # #

� � "

5. One obvious root is x 0. Graphing e and 2x 1 shows that x 0 is the only root. Taking a naive approach we canœ � œ�x

use Newton's Method to estimate the root as follows: Let f x e 2x 1, x 1, and x xa b œ � � œ œ ��x f xf x0

n

nn 1 n�

a ba bw

x . Performing iterations on a calculator, spreadsheet, or CAS gives x 0.111594,œ � œ �ne 2x 1

e 2

xnn

xn 1� �

x 0.00215192, x 0.000000773248. You may get different results depending upon what you select for f x and2 3œ � œ � a b x , and what calculator or computer you may use.0

6. Graphing tan x and 1 2x shows that there is only one root and it is between x 0.3 and x 0.4. Let�1a b � œ œ

f x tan x 2x 1, x 0.3, and x x x . Performing iterations on a calculator,a b a bœ � � œ œ � œ �� � �

�1 f x tan x 2x 1

f x 21n n n

n

1

11 xn

2n 1 n n�

a b a ba bw

spreadsheet, or CAS gives x 0.337205, x 0.337329, x 0.337329. You may get different results depending upon2 3 4œ œ œ

what you select for f x and x , and what calculator or computer you may use.a b 1

7. f(x ) 0 and f (x ) x x gives x x x x x x for all n 0. That is, all of! ! " ! # ! !wœ Á ! Ê œ � œ Ê œ Ê œ  n 1 n n�

f xf xa ba b

n

nw

the approximations in Newton's method will be the root of f(x) 0.œ

8. It does matter. If you start too far away from x , the calculated values may approach some other root. Starting withœ 1

#

x 0.5, for instance, leads to x as the root, not x .! # #œ � œ � œ1 1

9. If x h 0 x x h! " !œ � Ê œ � œ �f(x ) f(h)f (x ) f (h)

!

w w!

h h h 2 h h;œ � œ � œ �È

Š ‹h

"

#Èh

Š ‹Š ‹È È if x h 0 x x h! " !

��œ � � Ê œ � œ � �f(x ) f( h)

f (x ) f ( h)!

w w!

h h h 2 h h.œ � � œ � � œÈ

Š ‹h

�"

2 hÈ

Š ‹Š ‹È È

10. f(x) x f (x) x x xœ Ê œ Ê œ �"Î$ w �#Î$"ˆ ‰3 n 1 n�

xx

"Î$

" �#Î$n

3 nˆ ‰ 2x ; x 1 x 2, x 4, x 8, andœ � œ Ê œ � œ œ �n ! " # $

x 16 and so forth. Since x 2 x we may conclude% œ œ l lk kn n 1�

that n x .Ä _ Ê Ä _k kn

11. i) is equivalent to solving x x .$ � $ � " œ !

ii) is equivalent to solving x x .$ � $ � " œ !

iii) is equivalent to solving x x .$ � $ � " œ !

iv) is equivalent to solving x x .$ � $ � " œ !

All four equations are equivalent.

12. f(x) x 1 0.5 sin x f (x) 1 0.5 cos x x x ; if x 1.5, thenœ � � Ê œ � Ê œ � œw!n 1 n�

x 1 0.5 sin x1 0.5 cos x

n n

n

� �

x 1.49870" œ

Page 12: 274 Chapter 4 Applications of Derivativesshahrabi/welcome/home/...8x 16x 16 16 cos x 1 sin x cos x 1 # œœ œœ 16. lim lim lim lim x0 x0 x0 x0ÄÄ Ä Ä sin x x cos x sin x cos x

Section 4.7 Newton's Method 285

13. For x , the procedure converges to the root ! œ �!Þ$ �!Þ$##")&$&ÞÞÞÞ

(a)

(b)

(c)

(d) Values for x will vary. One possible choice is x 1.! œ !Þ

(e) Values for x will vary.

14. (a) f(x) x 3x 1 f (x) 3x 3 x x the two negative zeros are 1.53209œ � � Ê œ � Ê œ � Ê �$ w #n 1 n�

x 3x 13x 3

$

#

n n

n

� �

and 0.34730�

(b) The estimated solutions of x 3x 1 0 are$ � � œ

1.53209, 0.34730, 1.87939.� �

(c) The estimated x-values where

g(x) 0.25x 1.5x x 5 has horizontal tangentsœ � � �% #

are the roots of g (x) x 3x 1, and these arew $œ � �

1.53209, 0.34730, 1.87939.� �

15. f(x) tan x 2x f (x) sec x 2 x x ; x 1 x 12920445œ � Ê œ � Ê œ � œ Ê œw #! "n 1 n�

tan x 2xsec xa b

a bn n

n

�#

x 1.155327774 x x 1.165561185Ê œ Ê œ œ# 16 17

16. f(x) x 2x x 2x 2 f (x) 4x 6x 2x 2 x x ;œ � � � � Ê œ � � � Ê œ �% $ # w $ #n 1 n�

x 2x x 2x 24x 6x 2x 2

% $ #

$ #

n n n n

n n n

� � � �

� � �

if x 0.5, then x 0.630115396; if x 2.5, then x 2.57327196! % ! %œ œ œ œ

Page 13: 274 Chapter 4 Applications of Derivativesshahrabi/welcome/home/...8x 16x 16 16 cos x 1 sin x cos x 1 # œœ œœ 16. lim lim lim lim x0 x0 x0 x0ÄÄ Ä Ä sin x x cos x sin x cos x

286 Chapter 4 Applications of Derivatives

17. (a) The graph of f(x) sin 3x 0.99 x in the windowœ � � #

2 x 2, 2 y 3 suggests three roots.� Ÿ Ÿ � Ÿ Ÿ

However, when you zoom in on the x-axis near x 1.2,œ

you can see that the graph lies above the axis there. There are only two roots, one near x 1, the otherœ �

near x 0.4.œ

(b) f(x) sin 3x 0.99 x f (x) 3 cos 3x 2xœ � � Ê œ �# w

x x and the solutionsÊ œ �n 1 n�

sin (3x ) 0.99 x3 cos (3x ) 2x

n n

n n

� �

#

are approximately 0.35003501505249 and 1.0261731615301�

18. (a) Yes, three times as indicted by the graphs (b) f(x) cos 3x x f (x)œ � Ê w

3 sin 3x 1 xœ � � Ê n 1�

x ; atœ �ncos 3x x3 sin 3x 1

a ba b

n n

n

� �

approximately 0.979367,�

0.887726, and 0.39004 we have�

cos 3x xœ

19. f(x) 2x 4x 1 f (x) 8x 8x x x ; if x 2, then x 1.30656296; ifœ � � Ê œ � Ê œ � œ � œ �% # w $! 'n 1 n�

2x 4x 18x 8x

% #

$

n n

n n

� �

x 0.5, then x 0.5411961; the roots are approximately 0.5411961 and 1.30656296 because f(x) is! $œ � œ � „ „

an even function.

20. f(x) tan x f (x) sec x x x ; x 3 x 3.13971 x 3.14159 and weœ Ê œ Ê œ � œ Ê œ Ê œw #! " #n 1 n�

tan xsec x

a ba b

n

n#

approximate to be 3.14159.1

21. Graphing e and x x 1 shows that there are two places where the curves intersect, one at x 0 and the other�x 22� � œ

between x 0.5 and x 0.6. Let f x e x x 1, x 0.5, and x x x .œ œ œ � � � œ œ � œ �a b � � � �

� �

x 2 f x e x x 1f x 1 2x 2x e

2

0n n

n

x 2n2

n

n nxn2n 1 n n�

a ba bw

Performing iterations on a calculator, spreadsheet, or CAS gives x 0.536981, x 0.534856, x 0.53485,1 2 3œ œ œ

x 0.53485. (You may get different results depending upon what you select for f x and x , and what calculator or4 0œ a b computer you may use.) Therefore, the two curves intersect at x 0 and x 0.53485.œ œ

22. Graphing ln 1 x and x 1 shows that there are two places where the curves intersect, one between x 1 anda b� � œ �2

x 0.9, and the other between x 0.5 and x 0.6. Let f x ln 1 x x 1, and x xœ � œ œ œ � � � œ �a b a b2 f xf xn 1 n�

a ba bn

nw

x . Performing iterations on a calculator, spreadsheet, or CAS with x 0.5 gives x 0.590992,œ � œ œnln 1 x x 1

1

ˆ ‰� � �

�n2

n2xn

1 xn2

0 1�

x 0.583658, x 0.583597, x 0.583597 and with x 0.9 gives x 0.928237, x 0.924247,2 3 4 0 1 2œ œ œ œ � œ � œ �

x 0.924119, x 0.924119. (You may get different results depending upon what you select for f x and x , and3 4 0œ � œ � a b what calculator or computer you may use.) Therefore, the two curves intersect at x 0.924119 and x 0.583597.œ � œ

23. If f(x) x 2x 4, then f(1) 1 0 and f(2) 8 0 by the Intermediate Value Theorem the equationœ � � œ � � œ � Ê$

x 2x 4 0 has a solution between 1 and 2. Consequently, f (x) 3x 2 and x x .$ w #� � œ œ � œ �n 1 n�

x 2x 43x 2

$

#

n n

n

� �

Then x 1 x 1.2 x 1.17975 x 1.179509 x 1.1795090 the root is approximately! " # $ %œ Ê œ Ê œ Ê œ Ê œ Ê

1.17951.

Page 14: 274 Chapter 4 Applications of Derivativesshahrabi/welcome/home/...8x 16x 16 16 cos x 1 sin x cos x 1 # œœ œœ 16. lim lim lim lim x0 x0 x0 x0ÄÄ Ä Ä sin x x cos x sin x cos x

Section 4.8 Antiderivatives 287

24. We wish to solve 8x 14x 9x 11x 1 0. Let f(x) 8x 14x 9x 11x 1, then% $ # % $ #� � � � œ œ � � � �

f (x) 32x 42x 18x 11 x x .w $ #œ � � � Ê œ �n 1 n�

8x 14x 9x 11x 13 x 42x 18x 11

% $ #

$ #

n n n n

n n n

� � � �

# � � �

x approximation of corresponding root1.0 0.976823589

0.1 0.1003633320.6 0.6427466712.0 1.983713587

!

� �

25. f(x) 4x 4x f (x) 16x 8x x x x . Iterations are performed using theœ � Ê œ � Ê œ � œ �% # w $i�1 i i

f xf x

x xx

a ba b

i

i

i i

iw

$

#

% �#

procedure in problem 13 in this section. (a) For x or x , x as i gets large.! !œ # œ �!Þ) Ä �"i

(b) For x or x , x as i gets large.! !œ �!Þ& œ !Þ#& Ä !i

(c) For x or x , x as i gets large.! !œ !Þ) œ # Ä "i

(d) (If your calculator has a CAS, put it in exact mode, otherwise approximate the radicals with a decimal value.)

For x or x , Newton's method does not converge. The values of x alternate between! !œ � œ �È È21 21

7 7 i

x or x as i increases.! !œ � œ �È È21 21

7 7

26. (a) The distance can be represented by

D(x) (x 2) x , where x 0. Theœ � � �  É ˆ ‰# # "#

#

distance D(x) is minimized when

f(x) (x 2) x is minimized. Ifœ � � �# # "#

#ˆ ‰ f(x) (x 2) x , thenœ � � �# # "

#

#ˆ ‰ f (x) 4 x x 1 and f (x) 4 3x 1 0.w $ ww #œ � � œ � �a b a b Now f (x) 0 x x 1 0 x x 1 1w $ #œ Ê � � œ Ê � œa b x .Ê œ "

�x 1#

(b) Let g(x) x x 1 x g (x) x 1 (2x) 1 1œ � œ � � Ê œ � � � œ �" ��

# w #�" �#

�x 12x

x 1# # #a b a b a b

x x ; x 1 x 0.68233 to five decimal places.Ê œ � œ Ê œn 1 n�

Œ �Î ÑÏ Ò

"

#�

# � �#

x 1nn

2xn

x 1 1n

� x

Š ‹

! %

27. f(x) (x 1) f (x) 40(x 1) x x . With x 2, our computerœ � Ê œ � Ê œ � œ œ%! w $*!n 1 n�

a ba bx 1

40 x 139x

40n

n

n�

�"%!

$*

gave x x x x 1.11051, coming within 0.11051 of the root x 1.)( )) )* #!!œ œ œ â œ œ œ

28. f(x) x 3.6x 36.4 f (x) 3x 7.2x x x ; x 2 x 2.5303œ � � Ê œ � Ê œ � œ Ê œ$ # w #! "n 1 n�

x 3.6x 36.43x 7.2x

$ #

#

n n

n n

� �

x 2.45418225 x 2.45238021 x 2.45237921 which is 2.45 to two decimal places. Recall thatÊ œ Ê œ Ê œ# $ %

x 10 H O H O (x) 10 (2.45) 10 0.000245œ Ê œ œ œ% � � �% �%$ $c d c d a b a b

4.8 ANTIDERIVATIVES

1. (a) x (b) (c) x x# #x x3 3

$ $

� �

2. (a) 3x (b) (c) 3x 8x# #x x8 8

) )

� �

3. (a) x (b) (c) x 3x�$ #� � � �x x3 3

�$ �$

Page 15: 274 Chapter 4 Applications of Derivativesshahrabi/welcome/home/...8x 16x 16 16 cos x 1 sin x cos x 1 # œœ œœ 16. lim lim lim lim x0 x0 x0 x0ÄÄ Ä Ä sin x x cos x sin x cos x

288 Chapter 4 Applications of Derivatives

4. (a) x (b) (c) x� � � � ��##

x x x x4 3 2

�# $ �# #

5. (a) (b) (c) 2x�" �x x x

5 5�

6. (a) (b) (c) " �" "#x 4x 4 x

x# # #

%

7. (a) x (b) x (c) x 2 xÈ ÈÈ È$ $23 �

8. (a) x (b) x (c) x x%Î$ #Î$ %Î$ #Î$"# #

3 34 �

9. (a) x (b) x (c) x#Î$ "Î$ �"Î$

10. (a) x (b) x (c) x"Î# �"Î# �$Î#

11. (a) ln x (b) 7 ln x (c) x 5 ln xl l l l � l l

12. (a) ln x (b) ln x (c) x ln x"3 5 3 x

2 4 1l l l l � l l �

13. (a) cos ( x) (b) 3 cos x (c) cos (3x)1 � ��cos ( x)1

1

14. (a) sin ( x) (b) sin (c) sin sin x1 1ˆ ‰ ˆ ‰ ˆ ‰1 1

1

x 2 x# # �

15. (a) tan x (b) 2 tan (c) tan ˆ ‰ ˆ ‰x 2 3x3 3� #

16. (a) cot x (b) cot (c) x 4 cot (2x)� �ˆ ‰3x#

17. (a) csc x (b) csc (5x) (c) 2 csc� "#5xˆ ‰1

18. (a) sec x (b) sec (3x) (c) sec4 2 x3 1

1ˆ ‰#

19. (a) e (b) e (c) 2e" �3

3x x x/2�

20. (a) e (b) e (c) 5e� �"#

� �2x 4x/3 x/534

21. (a) 3 (b) 2 (c) 1 1 1 5ln 3 ln 2 ln 5/3 3

x x x† † †� � a b ˆ ‰

22. (a) x (b) x (c) x1 1 13 1

3 1 1 21 2È È

È È�

� ��1

1

23. (a) 2 sin x (b) tan x (c) tan x� � �" "# #

1 1 1a b#

24. (a) x (b) x 2 (c) ln x" " "# #

2 3 x x1 1 1ln 1/2 3 ln 2 ln

x� † � † † � l la b ˆ ‰

11

25. (x 1) dx x C 26. (5 6x) dx 5x 3x C' '� œ � � � œ � �x#

##

27. 3t dt t C 28. 4t dt t C' 'ˆ ‰ Š ‹# $ $ %# #� œ � � � œ � �t t t t

4 6

# # $

Page 16: 274 Chapter 4 Applications of Derivativesshahrabi/welcome/home/...8x 16x 16 16 cos x 1 sin x cos x 1 # œœ œœ 16. lim lim lim lim x0 x0 x0 x0ÄÄ Ä Ä sin x x cos x sin x cos x

Section 4.8 Antiderivatives 289

29. 2x 5x 7 dx x x 7x C 30. 1 x 3x dx x x x C' 'a b a b$ % # # & $ '" " "# # #� � œ � � � � � œ � � �5

3

31. x dx x x dx x C C' 'ˆ ‰ ˆ ‰" " " " "# �# #�x 3 3 1 3 3 x 3 3x x x x

#

�" $ $

� � œ � � œ � � � œ � � � �

32. 2x dx 2x 2x dx x C x C' ˆ ‰ ˆ ‰' Š ‹" " " "�$ #�# #5 x 5 5 x x

2 2x 2x 5� � œ � � œ � � � œ � � �$ #

�# #

33. x dx C x C 34. x dx C C' '�"Î$ #Î$ �&Î%# �

�œ � œ � œ � œ �x 3 x 4x

#Î$ �"Î%

"23 4

35. x x dx x x dx C x x C' 'ˆ ‰ ˆ ‰È È� œ � œ � � œ � �33 4

3

"Î# "Î$ $Î# %Î$x x 2 33 4

$Î# %Î$

#

36. dx x 2x dx 2 C x 4x C' 'Š ‹ Š ‹ Š ‹ˆ ‰ÈÈ

x 2 x xx 3# # #

" " ""Î# �"Î# $Î# "Î#� œ � œ � � œ � �$Î# "Î#

#"#

3

37. 8y dy 8y 2y dy 2 C 4y y C' 'Š ‹ Š ‹ˆ ‰� œ � œ � � œ � �2 8y

8y y3"Î%

# $Î%�"Î% # $Î%

# 34

38. dy y dy y C C' 'Š ‹ Š ‹ˆ ‰" " "�&Î%�7 7 7 7

1 4y y

y y� œ � œ � � œ � �&Î% "Î%

�"Î%

14

39. 2x 1 x dx 2x 2x dx 2 C x C' 'a b a b Š ‹� œ � œ � � œ � ��$ �# ## �

2x x 21 x

# �"

40. x (x 1) dx x x dx C C' '�$ �# �$� �# #

" "� œ � œ � � œ � � �a b Š ‹x x1 x x

�" �#

#

41. dt dt t t dt C 2 t C' ' 't t tt t t

t t t t 2t

È ÈÈ� �"Î# �$Î#

�# # #

$Î# "Î# "Î# �"Î#

" "# #

œ � œ � œ � � œ � �Š ‹ Š ‹ˆ ‰ È

42. dt dt 4t t dt 4 C C' ' '4 tt t t t

4 t t t 2 23t

� �$ �&Î#�# �

È$ $ $ #

"Î# �# �$Î#

#$Î#œ � œ � œ � � œ � � �Š ‹ Š ‹ Š ‹ˆ ‰ 3

43. 2 cos t dt 2 sin t C 44. 5 sin t dt 5 cos t C' '� œ � � � œ �

45. 7 sin d 21 cos C 46. 3 cos 5 d sin 5 C' ') )

3 3 53

) ) ) )œ � � œ �

47. 3 csc x dx 3 cot x C 48. dx C' '� œ � � œ � �# sec x tan x3 3

#

49. d csc C 50. sec tan d sec C' 'csc cot 2 25 5

) )

# #"

) ) ) ) ) )œ � � œ �

51. e 5e dx 5e C 52. 2e 3e dx 2e e C' 'a b a b3x x x x 2x x 2xe 33� œ � � � œ � �� � � �

#

3x

53. e 4 dx e C 54. 1.3 dx C' 'a b a b� �x x x 4ln 4 ln 1.3

x 1.3� œ � � � œ �x xa ba b

55. 4 sec x tan x 2 sec x dx 4 sec x 2 tan x C' a b� œ � �#

56. csc x csc x cot x dx cot x csc x C' " " "## #2 a b� œ � � �

57. sin 2x csc x dx cos 2x cot x C 58. (2 cos 2x 3 sin 3x) dx sin 2x cos 3x C' 'a b� œ � � � � œ � �# "#

Page 17: 274 Chapter 4 Applications of Derivativesshahrabi/welcome/home/...8x 16x 16 16 cos x 1 sin x cos x 1 # œœ œœ 16. lim lim lim lim x0 x0 x0 x0ÄÄ Ä Ä sin x x cos x sin x cos x

290 Chapter 4 Applications of Derivatives

59. dt cos 4t dt t C C' '1 cos 4t sin 4t t sin 4t4 2 8

� " " " "# # # # #œ � œ � � œ � �ˆ ‰ ˆ ‰

60. dt cos 6t dt t C C' '1 cos 6t sin 6t t sin 6t6 2 12

� " " " "# # # # #œ � œ � � œ � �ˆ ‰ ˆ ‰

61. dx ln x 5 tan x C 62. dy 2 sin y y C' 'ˆ ‰ Š ‹1 5 2 1 4x x 1 3

1 1 3/41 y y� œ l l � � � œ � �# �

� ��È 2 1/4

63. 3x dx C 64. x dx C' 'È Š ‹È3 2 1œ � œ �3x x3 1 2

Š ‹È È3 1 2�

È È�

65. 1 tan d sec d tan C' 'a b� œ œ �# #) ) ) ) )

66. 2 tan d 1 1 tan d 1 sec d tan C' ' 'a b a b a b� œ � � œ � œ � �# # #) ) ) ) ) ) ) )

67. cot x dx csc x 1 dx cot x x C ' '# #œ � œ � � �a b68. 1 cot x dx 1 csc x 1 dx 2 csc x dx 2x cot x C' ' 'a b a b a ba b� œ � � œ � œ � �# # #

69. cos (tan sec ) d (sin 1) d cos C' ) ) ) ) ) ) ) )� œ � œ � � �'70. d d d d sec d tan C' 'csc csc sin

csc sin csc sin sin 1 sin cos) ) )

) ) ) ) ) ) )� � �" " #

) ) ) ) ) ) )œ œ œ œ œ �ˆ ‰ ˆ ‰ ' ' '# #

71. C (7x 2)ddx 28 28

(7x 2) 4(7x 2) (7)Š ‹� � $% $

� œ œ �

72. C (3x 5)ddx 3 3

(3 x 5) (3x 5) (3)Š ‹ Š ‹� � œ � � œ �� � �#�" �#

73. tan (5x 1) C sec (5x 1) (5) sec (5x 1)ddx 5 5ˆ ‰ a b" " # #� � œ � œ �

74. 3 cot C 3 csc cscd x x xdx 3 3 3 3ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ˆ ‰ ˆ ‰� � œ � � œ�" �" " �"# #

75. C ( 1)( 1)(x 1) 76. Cd d xdx x 1 (x 1) dx x 1 (x 1) (x 1)

(x 1)( ) x(1)ˆ ‰ ˆ ‰�" " "� � � � �

�# � " �� œ � � � œ � œ œ# # #

77. ln x 1 C 78. x e e x e 1 e e x ed ddx x 1 dx

x x x x x xa b a b a ba b� � œ � œ † � † � œ"�

79. tand 1 x 1 1 d x 1 1dx a a a dx a a x

11 a 1

ˆ ‰ ˆ ‰ˆ ‰�

� � �œ † † œ œˆ ‰ Š ‹xa

2 2 22 x2

a2

80. sind x 1 d x 1 1dx a dx a

1

1 a 1 a xˆ ‰ ˆ ‰ˆ ‰�

� � �œ † œ œÉ Ɉ ‰ ˆ ‰ Èx x

a a2 2 2 2

81. If y ln x ln 1 x C, then dy dxœ � � � � œ � �" "# �

#�a b – —tan x x

x x 1 x x

tan x�"

# #

�"Š ‹x1 x� #

dx dx dx,œ � � � œ œŠ ‹" "� � �

� � � � �x 1 x x 1 x x x 1 x x

x tan x tan xx 1 x x x tan x 1 x# # # # # #

�" �"# $ �" #

a b a ba b a ba b

which verifies the formula

Page 18: 274 Chapter 4 Applications of Derivativesshahrabi/welcome/home/...8x 16x 16 16 cos x 1 sin x cos x 1 # œœ œœ 16. lim lim lim lim x0 x0 x0 x0ÄÄ Ä Ä sin x x cos x sin x cos x

Section 4.8 Antiderivatives 291

82. If y x sin x 2x 2 1 x sin x C, thenœ � � � �a b È�" �"# #

dy sin x 2 sin x 2 1 x dx sin x dx, which verifiesœ � � � � � œ’ “a b a bÈ Š ‹�" �" �"# #

� � �

� "#2x sin x

1 x 1 x 1 x2xa bÈ È È

�"

# # #

the formula

83. (a) Wrong: sin x C sin x cos x x sin x cos x x sin xd x 2x x xdx Š ‹# # #

# # # #� œ � œ � Á

(b) Wrong: ( x cos x C) cos x x sin x x sin xddx � � œ � � Á

(c) Right: ( x cos x sin x C) cos x x sin x cos x x sin xddx � � � œ � � � œ

84. (a) Wrong: C (sec tan ) sec tan tan secd sec 3 secd 3 3)

) )Š ‹$ #

� œ œ Á) ) ) ) ) )$ #

(b) Right: tan C (2 tan ) sec tan secdd)ˆ ‰" "# #

# # #) ) ) ) )� œ œ

(c) Right: sec C (2 sec ) sec tan tan secdd)ˆ ‰" "# #

# #) ) ) ) ) )� œ œ

85. (a) Wrong: C 2(2x 1) (2x 1)ddx 3 3

(2x 1) 3(2x 1) (2)Š ‹� � # #$ #

� œ œ � Á �

(b) Wrong: (2x 1) C 3(2x 1) (2) 6(2x 1) 3(2x 1)ddx a b� � œ � œ � Á �$ # # #

(c) Right: (2x 1) C 6(2x 1)ddx a b� � œ �$ #

86. (a) Wrong: x x C x x C (2x 1) 2x 1d 2x 1dx 2 x x Ca b a b È# #"Î# �"Î#" �

# � �� � œ � � � œ Á �È #

(b) Wrong: x x C x x (2x 1) 2x 1d 2x 1dx 2 x xŠ ‹a b a b È# #"Î# �"Î#" �

# �� � œ � � œ Á �È #

(c) Right: 2x 1 C (2x 1) C (2x 1) (2) 2x 1d d 3dx 3 dx 3 6Œ �Š ‹È Ȉ ‰" "

$$Î# "Î#� � œ � � œ � œ �

87. Graph (b), because 2 y x C. Then y(1) 4 C 3.dydx œ B Ê œ � œ Ê œ#

88. Graph (b), because y x C. Then y( 1) 1 C .dydx

3œ �B Ê œ � � � œ Ê œ"# #

#

89. 2x 7 y x 7x C; at x 2 and y 0 we have 0 2 7(2) C C 10 y x 7x 10dydx œ � Ê œ � � œ œ œ � � Ê œ Ê œ � �# # #

90. 10 x y 10x C; at x 0 and y 1 we have 1 10(0) C C 1dydx

x 0œ � Ê œ � � œ œ � � œ � � Ê œ �# #

# #

y 10x 1Ê œ � �x#

#

91. x x x y x C; at x 2 and y 1 we have 1 2 C Cdydx x

x 2œ � œ � Ê œ � � � œ œ œ � � � Ê œ �" "�# �" �"# # ##

# #

y x or yÊ œ � � � œ � � ��"# # # #

" " "x xx

# #

92. 9x 4x 5 y 3x 2x 5x C; at x 1 and y 0 we have 0 3( 1) 2( 1) 5( 1) Cdydx œ � � Ê œ � � � œ � œ œ � � � � � �# $ # $ #

C 10 y 3x 2x 5x 10Ê œ Ê œ � � �$ #

93. x y C ; at x 9x C; at x and y we have ( ) C Cdydx

xœ $ Ê œ � œ * œ � œ �" œ �& �& œ * �" � Ê œ %�#Î$ "Î$ "Î$$ "Î$

"$

y 9xÊ œ � %"Î$

94. x y x C; at x 4 and y 0 we have 0 4 C C 2 y x 2dydx x

œ œ Ê œ � œ œ œ � Ê œ � Ê œ �" "# #

�"Î# "Î# "Î# "Î#È

95. 1 cos t s t sin t C; at t 0 and s 4 we have 4 0 sin 0 C C 4 s t sin t 4dsdt œ � Ê œ � � œ œ œ � � Ê œ Ê œ � �

Page 19: 274 Chapter 4 Applications of Derivativesshahrabi/welcome/home/...8x 16x 16 16 cos x 1 sin x cos x 1 # œœ œœ 16. lim lim lim lim x0 x0 x0 x0ÄÄ Ä Ä sin x x cos x sin x cos x

292 Chapter 4 Applications of Derivatives

96. cos t sin t s sin t cos t C; at t and s 1 we have 1 sin cos C C 0dsdt œ � Ê œ � � œ œ œ � � Ê œ1 1 1

s sin t cos tÊ œ �

97. sin r cos ( ) C; at r 0 and 0 we have 0 cos ( 0) C C r cos ( ) 1drd) œ � Ê œ � œ œ œ � Ê œ �" Ê œ �1 1) 1) ) 1 1)

98. cos r sin( ) C; at r 1 and 0 we have 1 sin ( 0) C C r sin ( ) 1drd) 1 1 1

œ Ê œ � œ œ œ � Ê œ " Ê œ �1) 1) ) 1 1)" " "

99. sec t tan t v sec t C; at v 1 and t 0 we have 1 sec (0) C C v sec tdvdt œ Ê œ � œ œ œ � Ê œ Ê œ �" " " " " "

# # # # # #

100. 8t csc t v 4t cot t C; at v 7 and t we have 7 4 cot C C 7 dvdt œ � Ê œ � � œ � œ � œ � � Ê œ � �# # #

# # #

#1 1 1ˆ ‰ ˆ ‰ 1

v 4t cot t 7Ê œ � � �# #1

101. , t 1 v 3 sec t C; at t 2 and v 0 we have 0 3 sec 2 C C v 3 sec tdv 3dt t t 1

1 1 1œ � Ê œ � œ œ œ � Ê œ � Ê œ �È 2 �

� � �1 1

102. sec t v 8 tan t tan t C; at t 0 and v 1 we have 1 8 tan 0 tan 0 C C 1dv 8dt 1 t

2 1 1œ � Ê œ � � œ œ œ � � Ê œ�� �

2 a b a b v 8 tan t tan t 1Ê œ � ��1

103. 2 6x 2x 3x C ; at 4 and x 0 we have 4 2(0) 3(0) C C 4d y dy dydx dx dx

#

# œ � Ê œ � � œ œ œ � � Ê œ# #" " "

2x 3x 4 y x x 4x C ; at y 1 and x 0 we have 1 0 0 4(0) C C 1Ê œ � � Ê œ � � � œ œ œ � � � Ê œdydx

# # $ # $# # #

y x x 4x 1Ê œ � � �# $

104. 0 C ; at 2 and x 0 we have C 2 2 y 2x C ; at y 0 and x 0 wed y dy dy dydx dx dx dx

#

# œ Ê œ œ œ œ Ê œ Ê œ � œ œ" " #

have 0 2(0) C C 0 y 2xœ � Ê œ Ê œ# #

105. 2t t C ; at 1 and t 1 we have 1 (1) C C 2 t 2d r 2 dr dr drdt t dt dt dt

#

# $œ œ Ê œ � � œ œ œ � � Ê œ Ê œ � ��$ �# �# �#" " "

r t 2t C ; at r 1 and t 1 we have 1 1 2(1) C C 2 r t 2t 2 orÊ œ � � œ œ œ � � Ê œ � Ê œ � ��" �" �"# # #

r 2t 2œ � �"t

106. C ; at 3 and t 4 we have 3 C C 0 s C ; atd s 3t ds 3t ds ds 3t tdt 8 dt 16 dt 16 dt 16 16

3(4)# # # $

#

#

œ Ê œ � œ œ œ � Ê œ Ê œ Ê œ �" " " #

s 4 and t 4 we have 4 C C 0 sœ œ œ � Ê œ Ê œ4 t16 16

$ $

# #

107. 6 6x C ; at 8 and x 0 we have 8 6(0) C C 8 6x 8d y d y d y d ydx dx dx dx

$ # # #

$ # # #œ Ê œ � œ � œ � œ � Ê œ � Ê œ �" " "

3x 8x C ; at 0 and x 0 we have 0 3(0) 8(0) C C 0 3x 8xÊ œ � � œ œ œ � � Ê œ Ê œ �dy dy dydx dx dx

# # ## # #

y x 4x C ; at y 5 and x 0 we have 5 0 4(0) C C 5 y x 4x 5Ê œ � � œ œ œ � � Ê œ Ê œ � �$ # $ # $ #$ $ $

108. 0 C ; at 2 and t 0 we have 2 2t C ; at and t 0 wed d d d d ddt dt dt dt dt dt

$ # # #

$ # # #

) ) ) ) ) )œ Ê œ œ � œ œ � Ê œ � � œ � œ" #"#

have 2(0) C C 2t t t C ; at 2 and t 0 we have� œ � � Ê œ � Ê œ � � Ê œ � � � œ œ" " " "# # # ## # $

#ddt)

) ) È 2 0 (0) C C 2 t t 2È È Èœ � � � Ê œ Ê œ � � �# #" "

# #$ $ )

109. y sin t cos t y cos t sin t C ; at y 7 and t 0 we have 7 cos (0) sin (0) CÐ%Ñ www www" "œ � � Ê œ � � œ œ œ � �

C 6 y cos t sin t 6 y sin t cos t 6t C ; at y 1 and t 0 we haveÊ œ Ê œ � � Ê œ � � � œ � œ" #www ww ww

1 sin (0) cos (0) 6(0) C C 0 y sin t cos t 6t y cos t sin t 3t C ;� œ � � � Ê œ Ê œ � � Ê œ � � � �# # $ww w #

at y 1 and t 0 we have 1 cos (0) sin (0) 3(0) C C 0 y cos t sin t 3tw # w #$ $œ � œ � œ � � � � Ê œ Ê œ � � �

y sin t cos t t C ; at y 0 and t 0 we have 0 sin (0) cos (0) 0 C C 1Ê œ � � � � œ œ œ � � � � Ê œ �$ $% % %

y sin t cos t t 1Ê œ � � � �$

Page 20: 274 Chapter 4 Applications of Derivativesshahrabi/welcome/home/...8x 16x 16 16 cos x 1 sin x cos x 1 # œœ œœ 16. lim lim lim lim x0 x0 x0 x0ÄÄ Ä Ä sin x x cos x sin x cos x

Section 4.8 Antiderivatives 293

110. y cos x 8 sin (2x) y sin x 4 cos (2x) C ; at y 0 and x 0 we haveÐ%Ñ www www"œ � � Ê œ � � � œ œ

0 sin (0) cos (2(0)) C C 4 y sin x 4 cos (2x) 4 y cos x 2 sin (2x) 4x C ;œ � � % � Ê œ Ê œ � � � Ê œ � � �" " #www ww

at y 1 and x 0 we have 1 cos (0) 2 sin (2(0)) 4(0) C C 0 y cos x 2 sin (2x) 4xww ww# #œ œ œ � � � Ê œ Ê œ � �

y sin x cos (2x) 2x C ; at y 1 and x 0 we have 1 sin (0) cos (2(0)) 2(0) C C 0Ê œ � � � œ œ œ � � � Ê œw # w #$ $ $

y sin x cos (2x) 2x y cos x sin (2x) x C ; at y 3 and x 0 we haveÊ œ � � Ê œ � � � � œ œw # $"# %

23

3 cos (0) sin (2(0)) (0) C C 4 y cos x sin (2x) x 4œ � � � � Ê œ Ê œ � � � �" "# #

$ $% %

2 23 3

111. m y 3 x 3x y 2x C; at ( 4) we have 4 2(9) C C 50 y 2x 50œ œ œ Ê œ � *ß œ � Ê œ � Ê œ �w "Î# $Î# $Î# $Î#È112. (a) 6x 3x C ; at y 0 and x 0 we have 0 3(0) C C 0 3xd y dy dy

dx dx dx

#

# œ Ê œ � œ œ œ � Ê œ Ê œ# w # #" " "

y x C ; at y 1 and x 0 we have C 1 y x 1Ê œ � œ œ œ Ê œ �$ $# #

(b) One, because any other possible function would differ from x 1 by a constant that must be zero because$ �

of the initial conditions

113. 1 x y 1 x dx x x C; at (1 0.5) on the curve we have 0.5 1 1 Cdydx 3 3

4 4œ � Ê œ � œ � � ß œ � �"Î$ "Î$ %Î$ %Î$' ˆ ‰ C 0.5 y x xÊ œ Ê œ � �%Î$ "

#

114. x 1 y (x 1) dx x C; at ( 1 1) on the curve we have 1 ( 1) Cdy ( )dx

xœ � Ê œ � œ � � � ß œ � � �' # #

# #�"

C y xÊ œ � Ê œ � �" "# # #

x#

115. sin x cos x y (sin x cos x) dx cos x sin x C; at ( 1) on the curve we havedydx œ � Ê œ � œ � � � � ß�' 1

cos ( ) sin ( ) C C 2 y cos x sin x 2�" œ � � � � � Ê œ � Ê œ � � �1 1

116. sin x x sin x y x sin x dx x cos x C; at (1 ) on thedydx x

œ � œ � Ê œ � œ � � ß #" " "# # #

�"Î# �"Î# "Î#È 1 1 1 1 1 1' ˆ ‰ curve we have 2 1 cos (1) C C 0 y x cos xœ � � Ê œ Ê œ �"Î#

1 1È117. (a) 9.8t 3 s 4.9t 3t C; (i) at s 5 and t 0 we have C 5 s 4.9t 3t 5;ds

dt œ � Ê œ � � œ œ œ Ê œ � �# #

displacement s(3) s(1) ((4.9)(9) 9 5) (4.9 3 5) 33.2 units; (ii) at s 2 and t 0 we haveœ � œ � � � � � œ œ � œ

C 2 s 4.9t 3t 2; displacement s(3) s(1) ((4.9)(9) 9 2) (4.9 3 2) 33.2 units;œ � Ê œ � � œ � œ � � � � � œ#

(iii) at s s and t 0 we have C s s 4.9t 3t s ; displacement s(3) s(1)œ œ œ Ê œ � � œ �! ! !#

((4.9)(9) 9 s ) (4.9 3 s ) 33.2 unitsœ � � � � � œ! !

(b) True. Given an antiderivative f(t) of the velocity function, we know that the body's position function is s f(t) C for some constant C. Therefore, the displacement from t a to t b is (f(b) C) (f(a) C)œ � œ œ � � �

f(b) f(a). Thus we can find the displacement from any antiderivative f as the numerical differenceœ �

f(b) f(a) without knowing the exact values of C and s.�

118. a(t) v (t) 20 v(t) 20t C; at (0 ) we have C 0 v(t) 20t. When t 60, then v(60) 20(60)œ œ Ê œ � ß ! œ Ê œ œ œw

1200 m/sec.œ

119. Step 1: k kt C ; at 88 and t 0 we have C 88 kt 88 d s ds ds dsdt dt dt dt

#

# œ � Ê œ � � œ œ œ Ê œ � � Ê" "

s k 88t C ; at s 0 and t 0 we have C 0 s 88tœ � � � œ œ œ Ê œ � �Š ‹t kt# #

# ## #

Step 2: 0 0 kt 88 tds 88dt kœ Ê œ � � Ê œ

Step 3: 242 88 242 242 k 16œ � Ê œ � � Ê œ Ê œ�

#

k 88k 2k k 2k

(88) (88) (88)ˆ ‰88k

## # #ˆ ‰

Page 21: 274 Chapter 4 Applications of Derivativesshahrabi/welcome/home/...8x 16x 16 16 cos x 1 sin x cos x 1 # œœ œœ 16. lim lim lim lim x0 x0 x0 x0ÄÄ Ä Ä sin x x cos x sin x cos x

294 Chapter 4 Applications of Derivatives

120. k k dt kt C; at 44 when t 0 we have 44 k(0) C C 44d s ds dsdt dt dt

#

# œ � Ê œ � œ � � œ œ œ � � Ê œ'

kt 44 s 44t C ; at s 0 when t 0 we have 0 44(0) C C 0Ê œ � � Ê œ � � � œ œ œ � � � Ê œds ktdt

k(0)# #

# #" " "

s 44t. Then 0 kt 44 0 t and s 44 45Ê œ � � œ Ê � � œ Ê œ œ � � œkt ds 44 44 44dt k k k

k##

# #ˆ ‰ ˆ ‰ˆ ‰44

k

45 45 k 21.5 .Ê � � œ Ê œ Ê œ ¸968 1936 968 968 ftk k k 45 sec2

121. (a) v a dt 15t 3t dt 10t 6t C; (1) 4 4 10(1) 6(1) C C 0œ œ � œ � � œ Ê œ � � Ê œ' ' ˆ ‰"Î# �"Î# $Î# "Î# $Î# "Î#dsdt

v 10t 6tÊ œ �$Î# "Î#

(b) s v dt 10t 6t dt 4t 4t C; s(1) 0 0 4(1) 4(1) C C 0œ œ � œ � � œ Ê œ � � Ê œ' ' ˆ ‰$Î# "Î# &Î# $Î# &Î# $Î#

s 4t 4tÊ œ �&Î# $Î#

122. 5.2 5.2t C ; at 0 and t 0 we have C 0 5.2t s 2.6t C ; at s 4d s ds ds dsdt dt dt dt

#

# œ � Ê œ � � œ œ œ Ê œ � Ê œ � � œ" " ##

and t 0 we have C 4 s 2.6t 4. Then s 0 0 2.6t 4 t 1.24 sec, since t 0œ œ Ê œ � � œ Ê œ � � Ê œ ¸ �## # É 4

2.6

123. a a dt at C; v when t 0 C v at v s v t C ; s sd s ds ds ds atdt dt dt dt

# #

# œ Ê œ œ � œ œ Ê œ Ê œ � Ê œ � � œ' ! ! ! ! " !#

when t 0 s v (0) C C s s v t sœ Ê œ � � Ê œ Ê œ � �! ! " " ! ! !# #a(0) at# #

124. The appropriate initial value problem is: Differential Equation: g with Initial Conditions: v andd s dsdt dt

#

# œ � œ !

s s when t 0. Thus, g dt gt C ; (0) v v ( g)(0) C C vœ œ œ � œ � � œ Ê œ � � Ê œ! " ! ! " " !ds dsdt dt

'

gt v . Thus s gt v dt gt v t C ; s(0) s (g)(0) v (0) C C sÊ œ � � œ � � œ � � � œ œ � � � Ê œdsdt ! ! ! # ! ! # # !

" "# #

# #' a b Thus s gt v t sœ � � �"

##

! !.

125. (a) f(x) dx 1 x C x C (b) g(x) dx x 2 C x C' 'œ � � œ � � œ � � œ �È È" "

(c) f(x) dx 1 x C x C (d) g(x) dx (x 2) C x C' '� œ � � � œ � � œ � � � œ � �ˆ ‰È È" "

(e) [f(x) g(x)] dx 1 x (x 2) C x x C' � œ � � � � œ � �ˆ ‰È È"

(f) [f(x) g(x)] dx 1 x (x 2) C x x C' � œ � � � � œ � � �ˆ ‰È È"

126. Yes. If F(x) and G(x) both solve the initial value problem on an interval I then they both have the same first derivative. Therefore, by Corollary 2 of the Mean Value Theorem there is a constant C such that F(x) G(x) C for all x. In particular, F(x ) G(x ) C, so C F(x ) G(x ) 0. Hence F(x) G(x)œ � œ � œ � œ œ! ! ! !

for all x.

127 130 Example CAS commands:�

:Maple with(student): f := x -> cos(x)^2 + sin(x); ic := [x=Pi,y=1]; F := unapply( int( f(x), x ) + C, x ); eq := eval( y=F(x), ic ); solnC := solve( eq, {C} ); Y := unapply( eval( F(x), solnC ), x ); DEplot( diff(y(x),x) = f(x), y(x), x=0..2*Pi, [[y(Pi)=1]], color=black, linecolor=black, stepsize=0.05, title="Section 4.8 #127" ); : (functions and values may vary)Mathematica The following commands use the definite integral and the Fundamental Theorem of calculus to construct the solution of the initial value problems for exercises 127 - 130.

Page 22: 274 Chapter 4 Applications of Derivativesshahrabi/welcome/home/...8x 16x 16 16 cos x 1 sin x cos x 1 # œœ œœ 16. lim lim lim lim x0 x0 x0 x0ÄÄ Ä Ä sin x x cos x sin x cos x

Chapter 4 Practice Exercises 295

Clear[x, y, yprime]

yprime[x_] = Cos[x] Sin[x];2 �

initxvalue = ; inityvalue = 1;1

y[x_] = Integrate[yprime[t], {t, initxvalue, x}] inityvalue�

If the solution satisfies the differential equation and initial condition, the following yield True yprime[x]==D[y[x], x] //Simplify y[initxvalue]==inityvalue Since exercise 106 is a second order differential equation, two integrations will be required. Clear[x, y, yprime] y2prime[x_] = 3 Exp[x/2] 1;�

initxval = 0; inityval = 4; inityprimeval = 1;�

yprime[x_] = Integrate[y2prime[t],{t, initxval, x}] inityprimeval�

y[x_] = Integrate[yprime[t], {t, initxval, x}] inityval�

Verify that y[x] solves the differential equation and initial condition and plot the solution (red) and its derivative (blue). y2prime[x]==D[y[x], {x, 2}]//Simplify y[initxval]==inityval yprime[initxval]==inityprimeval Plot[{y[x], yprime[x]}, {x, initxval 3, initxval 3}, PlotStyle {RGBColor[1,0,0], RGBColor[0,0,1]}]� � Ä

CHAPTER 4 PRACTICE EXERCISES

1. No, since f(x) x 2x tan x f (x) 3x 2 sec x 0 f(x) is always increasing on its domainœ � � Ê œ � � � Ê$ w # #

2. No, since g(x) csc x 2 cot x g (x) csc x cot x 2 csc x (cos x 2) 0œ � Ê œ � � œ � � œ � � �w # "cos x 2sin x sin x sin x# # #

g(x) is always decreasing on its domainÊ

3. No absolute minimum because lim (7 x)(11 3x) . Next f (x)x Ä _� � œ �_ œ"Î$ w

(11 3x) (7 x)(11 3x) x 1 and x are critical points.� � � � œ œ Ê œ œ"Î$ �#Î$ � � � �� �

(11 3x) (7 x) 4(1 x)(11 3x) (11 3x)

113#Î$ #Î$

Since f 0 if x 1 and f 0 if x 1, f(1) 16 is the absolute maximum.w w� � � � œ

4. f(x) f (x) ; f (3) 0 ( a b a) a b .œ Ê œ œ œ Ê � * � ' � œ ! Ê & � $ œ !ax bx 1

a x 1 2x(ax b) ax 2bx ax 1 x 1

� "� '%

w w� � � � � �

� �#

# #

# ## #a b a b

a b a b We require also that f(3) 1. Thus 3a b . Solving both equations yields a 6 and b 10. Now,œ " œ Ê � œ ) œ œ �3a b

8�

f (x) so that f . Thus f changes sign at x from1 1 31/3

w w w�# $ �" �$

�œ œ ��� ± ��� ± ��� ± ��� ± ��� œ $

a ba ba bx xx 1# #

positive to negative so there is a local maximum at x which has a value f(3) 1.œ $ œ

5. g x e x g x e 1 g the graph is decreasing on , 0 , increasing on 0, ;0

a b a b a b a bœ � Ê œ � Ê œ ��� ± ��� Ê �_ _x xw w

an absolute minimum value is 1 at x 0; x 0 is the only critical point of g; there is no absolute maximum valueœ œ

6. f x f x f the graph is increasing on , ;1

a b a b a bœ Ê œ œ Ê œ ��� ± ��� Ê �_ _2e1 x

1 x 2e 2e 2x

1 x 1 x2e 1 xx

2 2 2

2 x x

2 2

x 2

�w w� † � †

� �

�ˆ ‰a b a b

a b

x 1 is the only critical point of f; there are no absolute maximum values or absolute minimum values.œ

7. f x x 2 ln x on 1 x 3 f x 1 f the graph is decreasing on 1, 2 ,1 2 3

a b a b a bœ � Ÿ Ÿ Ê œ � Ê œ ± ��� ± ��� ± Êw w2x

increasing on 2, 3 ; an absolute minimum value is 2 2 ln 2 at x 2; an absolute maximum value is 1 at x 1.a b � œ œ

Page 23: 274 Chapter 4 Applications of Derivativesshahrabi/welcome/home/...8x 16x 16 16 cos x 1 sin x cos x 1 # œœ œœ 16. lim lim lim lim x0 x0 x0 x0ÄÄ Ä Ä sin x x cos x sin x cos x

296 Chapter 4 Applications of Derivatives

8. f x ln x on 1 x 4 f x f the graph is decreasing on1 2 4

a b a bœ � Ÿ Ÿ Ê œ � � œ Ê œ ± ��� ± ��� ± Ê4 4 2 2x 4x x x x

2 w w�2 2

1, 2 , increasing on 2, 4 ; an absolute minimum value is 2 ln 4 at x 2; an absolute maximum value is 4 at x 1.a b a b � œ œ

9. Yes, because at each point of [ except x 0, the function's value is a local minimum value as well as a!ß "Ñ œ

local maximum value. At x 0 the function's value, 0, is not a local minimum value because each openœ

interval around x 0 on the x-axis contains points to the left of 0 where f equals 1.œ �

10. (a) The first derivative of the function f(x) x is zero at x 0 even though f has no local extreme value atœ œ$

x 0.œ

(b) Theorem 2 says only that if f is differentiable and f has a local extreme at x c then f (c) 0. It does notœ œw

assert the (false) reverse implication f (c) 0 f has a local extreme at x c.w œ Ê œ

11. No, because the interval 0 x 1 fails to be closed. The Extreme Value Theorem says that if the function is� �

continuous throughout a finite closed interval a x b then the existence of absolute extrema is guaranteed onŸ Ÿ

that interval.

12. The absolute maximum is 1 1 and the absolute minimum is 0 0. This is not inconsistent with the Extreme Valuek k k k� œ œ

Theorem for continuous functions, which says a continuous function on a closed interval attains its extreme values on that interval. The theorem says nothing about the behavior of a continuous function on an interval which is half open and half closed, such as , so there is nothing to contradict.Ò�"ß "Ñ

13. (a) There appear to be local minima at x 1.75œ �

and 1.8. Points of inflection are indicated at approximately x 0 and x 1.œ œ „

(b) f (x) x 3x 5x 15x x x 3 x 5 . The pattern y w ( & % # # # $ w

$œ � � � œ � � œ ��� ± ��� ± ��� ± ��� ± ���

� $ & $!a b a b È È È

indicates a local maximum at x 5 and local minima at x 3 .œ œ „$È È (c)

Page 24: 274 Chapter 4 Applications of Derivativesshahrabi/welcome/home/...8x 16x 16 16 cos x 1 sin x cos x 1 # œœ œœ 16. lim lim lim lim x0 x0 x0 x0ÄÄ Ä Ä sin x x cos x sin x cos x

Chapter 4 Practice Exercises 297

14. (a) The graph does not indicate any local extremum. Points of inflection are indicated at

approximately x and x .œ � œ "$%

(b) f (x) x 2x 5 x x 2 x 5 . The pattern f )( indicatesw ( % �$ $ ( w

( $œ � � � œ � � œ ��� ��� ± ��� ± ���

! & #

10x$ a b a b È È

a local maximum at x 5 and a local minimum at x 2 .œ œ(È È3

(c)

15. (a) g(t) sin t 3t g (t) 2 sin t cos t 3 sin (2t) 3 g 0 g(t) is always falling and hence mustœ � Ê œ � œ � Ê � Ê# w w

decrease on every interval in its domain. (b) One, since sin t 3t 5 0 and sin t 3t 5 have the same solutions: f(t) sin t 3t 5 has the same# # #� � œ � œ œ � �

derivative as g(t) in part (a) and is always decreasing with f( 3) 0 and f(0) 0. The Intermediate Value� � �

Theorem guarantees the continuous function f has a root in [ 0].�$ß

16. (a) y tan sec 0 y tan is always rising on its domain y tan increases on everyœ Ê œ � Ê œ Ê œ) ) ) )dyd)

#

interval in its domain

(b) The interval is not in the tangent's domain because tan is undefined at . Thus the tangent� ‘1 1

4 ß œ1 ) ) #

need not increase on this interval.

17. (a) f(x) x 2x 2 f (x) 4x 4x. Since f(0) 2 0, f(1) 1 0 and f (x) 0 for 0 x 1, weœ � � Ê œ � œ � � œ �   Ÿ Ÿ% # w $ w

may conclude from the Intermediate Value Theorem that f(x) has exactly one solution when 0 x 1.Ÿ Ÿ

(b) x 0 x 3 1 and x 0 x .7320508076 .8555996772# #� „ �#œ � Ê œ �   Ê ¸ ¸2 4 8È È È

18. (a) y y 0, for all x in the domain of y is increasing in every interval inœ Ê œ � Ê œx x xx 1 (x 1) x 1 x 1� � � �

w "#

its domain (b) y x 2x y 3x 2 0 for all x the graph of y x 2x is always increasing and can neverœ � Ê œ � � Ê œ �$ w # $

have a local maximum or minimum

19. Let V(t) represent the volume of the water in the reservoir at time t, in minutes, let V(0) a be the initialœ !

amount and V(1440) a (1400)(43,560)(7.48) gallons be the amount of water contained in the reservoirœ �!

after the rain, where 24 hr 1440 min. Assume that V(t) is continuous on [ 1440] and differentiable onœ !ß

( 1440). The Mean Value Theorem says that for some t in ( 1440) we have V (t )!ß !ß œ! !w �

�V(1440) V(0)

1440 0

316,778 gal/min. Therefore at t the reservoir's volumeœ œ œa (1400)(43,560)(7.48) a 456,160,320 gal1440 1440 min

! !� �!

was increasing at a rate in excess of 225,000 gal/min.