of 3 /3
2.6 Solving Absolute Value Inequalities Thinking Back: ! =5 means the distance between x and 0 is 5 units. Core Concepts: pay close attention to your signs! $! + & <( means $! + & < ( AND $! + & > −( $! + & >( means $! + & > ( OR $! + & < −( Example 1: Solving Absolute Value Inequalities Solve each inequality. Graph each solution, if possible. a) !+7 <2 b) 8! − 11 <0 Example 2: Solving Absolute Value Inequalities Solve each inequality. a) (−1 ≥5 b) 10 − 1 ≥ −2 c) 4 2! − 5 + 1 > 21

2.6 Solving Absolute Value Inequalities

  • Author
    others

  • View
    2

  • Download
    0

Embed Size (px)

Text of 2.6 Solving Absolute Value Inequalities

2.6 Solving Absolute Value Inequalities2.6 Solving Absolute Value Inequalities Thinking Back: ! = 5 means the distance between x and 0 is 5 units. Core Concepts: pay close attention to your signs! $! + & < ( means $! + & < ( AND $! + & > −( $! + & > ( means $! + & > ( OR $! + & < −( Example 1: Solving Absolute Value Inequalities Solve each inequality. Graph each solution, if possible.
a) ! + 7 < 2 b) 8! − 11 < 0 Example 2: Solving Absolute Value Inequalities Solve each inequality.