225_Module 03 - Chemical Thermodynamics_2015presented-4

Embed Size (px)

Citation preview

  • 8/9/2019 225_Module 03 - Chemical Thermodynamics_2015presented-4

    1/32

    Module 3

    Chemical Thermodynamics Thermodynamics Fundamentals (Ch. 1.4)

    First Law of Thermodynamics

    System Definition Energy alance

    Enthal!y

    S!ecific "eat

    Second Law of Thermodynamics

    Entro!y

    Third Law of Thermodynamics

    #$solute %ero Chemical Thermodynamics (Ch. &.1'&.)

    i$$*s Free Energy (+ot in te,t$oo-)

    an 1/ &01

  • 8/9/2019 225_Module 03 - Chemical Thermodynamics_2015presented-4

    2/32

    Chemical Thermodynamics

    2hy is this to!ic im!ortant inenvironmental engineering?

    #nswers to the following3

    2ill heat $e gien off or a$sor$ed $y a system5 2hat will $e the tem!erature changes associated with

    the heat transfer5

    2ill a reaction occur without addition of e,ternal energy5

    "ow do we -now whether final/ sta$le (e6uili$rium)conditions hae $een esta$lished5

  • 8/9/2019 225_Module 03 - Chemical Thermodynamics_2015presented-4

    3/32

    Chemical Thermodynamics

    2hy is this to!ic im!ortant inenvironmental engineering?

    #!!lications such as

    7ncineration Com$ustion

    Chemical handling

    Thermal !ollution studies 8!timi9ing the energy efficiency of !lants

    :any others

  • 8/9/2019 225_Module 03 - Chemical Thermodynamics_2015presented-4

    4/32

    First Law of Thermodynamics

    Energy Conseration and System Definition

    Energy cannot $e created or destroyed 7t can only change forms

    ;rinci!le of conseration of energy

    #nalysis on a physico-chemical system

    (similar to a control olume)

    8utside of the chemical system3 surroundings

    Open system3

    matter and energy can cross system*s $oundaries Closed system3

    only energy can cross system*s $oundaries

    Isolated system3

    nor matter neither energy can cross system*s $oundaries

  • 8/9/2019 225_Module 03 - Chemical Thermodynamics_2015presented-4

    5/32

    nergy !alance

    For a !hysico'chemical system/ we can write and energy

    $alance including 6uantities

    "eatthat entered the system (Qin) nergyaccumulated in the system (E)

    #or$!erformed on the surroundings $y system (Wout)

    Total energy (E) includes3

    < internal %U&3 Tem!erature (moement of molecules)< $inetic %KE&' :oement of the system< potential %PE&'raitational eleation of system

    (ystem

    outin WQPEKEUE =++=

    outin WQE =EinQ outW

  • 8/9/2019 225_Module 03 - Chemical Thermodynamics_2015presented-4

    6/32

    nthalpy )efinition

    nthalpy %H&

    Thermodynamic !otential (amount of

    wor- o$taina$le from a system)

    Sum of internal energy (U) and the

    !ressure !otential (PV)

    E,!eriment

    #dd heat while maintaining constant

    !ressure Tem!erature will increase

    =olume will increase

    y moing the !iston u!/ the system is

    using the heat !roided to do wor$

    (T*T +

    P= 1 atmT= 20C

    P= 1 atmT= 40C

    (T*T ,

    PVUH +=

  • 8/9/2019 225_Module 03 - Chemical Thermodynamics_2015presented-4

    7/32

    oundary wor-3

    nthalpy )efinition

    (T*T ,

    (T*T +( ) 1212 UUVVPQin =

    ( ) ( )1122 PVUPVUQin++=

    12 HHQin =

    VPUH +=

    PEKEUWQoutin

    ++=

    UWQ outin =

    ( )12

    2

    1

    VVPPdVW

    V

    Vout

    ==

  • 8/9/2019 225_Module 03 - Chemical Thermodynamics_2015presented-4

    8/32

    Change in nthalpy %H&3 6uantity of heat

    a$sor$ed $y a system at constant ;

    Total enthal!y (H) of a system difficult to

    measure

    7nterested in the changein enthal!y/ not thea$solute alue

    +eed reference !oint

    Trac$ing the nthalpy of a (ystem

    VPUH +=

  • 8/9/2019 225_Module 03 - Chemical Thermodynamics_2015presented-4

    9/32

    Module 3

    Chemical Thermodynamics Thermodynamics Fundamentals (Ch. 1.4)

    First Law of Thermodynamics

    System Definition Energy alance

    Enthal!y S!ecific "eat

    Second Law of Thermodynamics

    Entro!y

    Third Law of Thermodynamics

    #$solute %ero Chemical Thermodynamics (Ch. &.1'&.)

    i$$*s Free Energy (+ot in te,t$oo-)

    an 1/ &01

  • 8/9/2019 225_Module 03 - Chemical Thermodynamics_2015presented-4

    10/32

    nthalpy Change of a Chemical eaction

    and )efinition of (tandard Conditions

    (tandard reference state3 &oC (&>?@)/ andreactants and !roducts at 1 atm for gases or 1 molAL for solutes

    Standard enthal!y of elements B 0

    Standard enthal!y of a com!ound3 heat of reaction $y which it is

    formed from its elements

    Change in "eat of reaction (H) B

    (enthal!ies of the reaction !roducts H, stoichiometric coeff.)

    (enthal!ies of the reactants H , stoichiometric coeff.)

    EDBA edba ++

  • 8/9/2019 225_Module 03 - Chemical Thermodynamics_2015presented-4

    11/32

    Data on standard enthal!ies of formation at

    standard conditions aaila$le from

    e,!eriments (results in ta$les)

    Com$ustion of methane gas (natural gas)3

    nthalpy Change of a Chemical eaction

    at (tandard Conditions

    ./0124+ 54+ .36314+ .,0+124,

    )O(H2)(CO)(O2)(CH 2224 gggg ++

    )85.74()8.241(2)5.393(0298 +=H

    methaneofkJmo!3.8020298 =H

    0298H

  • 8/9/2019 225_Module 03 - Chemical Thermodynamics_2015presented-4

    12/32

  • 8/9/2019 225_Module 03 - Chemical Thermodynamics_2015presented-4

    13/32

  • 8/9/2019 225_Module 03 - Chemical Thermodynamics_2015presented-4

    14/32

    (pecific "eat )efinition

    (pecific "eat %C&'energy re6uired to raise

    the tem!erature of a unit mass of asu$stance $y one degree - A -g 0C

    constant !ressure

    < Qinor H3 heat in!ut(for a solution/ it can $e from chemical reaction)

    < m3 mass of material a$sor$ing energy

    (immediate surrounding solution is mainly "&8)

    < T3 change in tem!erature

    Tm

    QC inp = Tm

    HCp

    =

  • 8/9/2019 225_Module 03 - Chemical Thermodynamics_2015presented-4

    15/32

    Change in "eat of a (olution 7y Chemical eaction

    Solution3 7mmediate surrounding water

    Geaction system

    +HH

    queendothermiH

    ueexothermiqH

    edba

    #

    #

    EDBA

    +

    ++

  • 8/9/2019 225_Module 03 - Chemical Thermodynamics_2015presented-4

    16/32

    Systems moe from highly orderedtomore randomstates

    Systems moe towards e6uili$rium (minimum energy state)

    2or- is re6uired to create order

    +eed to measure order3 entro!y ()

    Entro!y increases with disorder

    (econd Law of Thermodynamics

    Low Entro!y "igh Entro!y

    D$ff%&$on an$mat$on# htt'#.o%t%*e.+omat+h,

    -/B$02e-Hh1feat%e'!ae4eta$!'a0e

  • 8/9/2019 225_Module 03 - Chemical Thermodynamics_2015presented-4

    17/32

    #hat is ntropy %S&?

    Entro!y is a measure of molecular disorder/ ormolecular randomness

    Hncertainty a$out the !ositions of molecules at

    any instant

  • 8/9/2019 225_Module 03 - Chemical Thermodynamics_2015presented-4

    18/32

    nergy Organiation vs #or$' ntropy %S&

    Disorgani9ed energy cannot $e used to do wor-

  • 8/9/2019 225_Module 03 - Chemical Thermodynamics_2015presented-4

    19/32

  • 8/9/2019 225_Module 03 - Chemical Thermodynamics_2015presented-4

    20/32

    nergy Characteristics' @uantity and @uality

    Iuantity of energy always !resered (1stLaw)

    Iuality of energy always decreases (&ndLaw)

    i.e./ entro!y increases

    +5 $A

    8erall system*s

    entro!y increases

    Constant

  • 8/9/2019 225_Module 03 - Chemical Thermodynamics_2015presented-4

    21/32

    Third Law of Thermodynamics

    Third Law'entro!y is 9ero at a tem!erature of

    a$solute 9ero

    :olecules motionless

    State of ultimate molecular order

    +o uncertainty a$out !osition of molecules

  • 8/9/2019 225_Module 03 - Chemical Thermodynamics_2015presented-4

    22/32

  • 8/9/2019 225_Module 03 - Chemical Thermodynamics_2015presented-4

    23/32

    # reaction will !roceed spontaneouslyonly if

    the !rocess leads to a decrease in the free

    energy of the system ( J 0)

    Ks!ontaneously*3 without energy $eing

    added to the system

    #hat is the se of Bi77s Free nergy?

    * !1) J 0

    &) M 0

    ) B 0

    * !

    * !

    e6uili$rium

    driing

    force5

  • 8/9/2019 225_Module 03 - Chemical Thermodynamics_2015presented-4

    24/32

    Change in free energy during a reaction

    #hat is the se of Bi77s Free nergy?

    FreeEnergy

    Geactants ;roducts

    *

    !

    C )

    F

  • 8/9/2019 225_Module 03 - Chemical Thermodynamics_2015presented-4

    25/32

    Free energy cannot $e measured directly

    (tandard reference state3 &oC/ and

    all reactantsA!roducts at 1 atm for gases or 1 molAL for solutes

    Standard free energy of elements B 0

    Standard free energy of a com!ound (0) B free energy of

    formation from its elements

    Change in standard free energy for a reaction3

    Change in Bi77s Free nergy of a eaction

    at (tandard Conditions

    oB

    (free energy of the reaction !roducts , stoichiometric coeff.)

    ' (free energy of the reactants , stoichiometric coeff.)

  • 8/9/2019 225_Module 03 - Chemical Thermodynamics_2015presented-4

    26/32

    *cid rain3 result of $urning fossil fuels

    #ill These eactions Droceed?

    Fossil

    fuel

    S8&

    Com$ustion

    "&

    S8

    Dissoles in water dro!lets in atmos!here

    "&S84

    8,idation $y o,ygen or !ero,ide/

    cataly9ed $y Cu or Fe in cloud water

  • 8/9/2019 225_Module 03 - Chemical Thermodynamics_2015presented-4

    27/32

    Changing From

  • 8/9/2019 225_Module 03 - Chemical Thermodynamics_2015presented-4

    28/32

    Changing From

    (tandard Conditions to Field Conditions For nonstandard conditions (!)3

    eaction @uotient %@&

    67# 8hemo4nam$+ A+t$-$t 9mo!:;&o!%te&

    o

    9'at$a! 'e&&%e $n atm;0a&e&

    < = (a+t$-$t +oeff$+$ent)

    { } { }

    { } { }

    +=

    ba

    d%

    o

    &'

    (C)T!! !n

    D+C*BaA ++

    ( )(>)etem'eat%A*&o!%te#

    mo!

    kJ103143.8+on&tanta&?ea!#

    +on$t$on&&tanafo#

    enefee&@$**$nChane#

    3

    TK

    )

    !!

    !

    o

    =

    Thermodynamic )efinition of

  • 8/9/2019 225_Module 03 - Chemical Thermodynamics_2015presented-4

    29/32

    For nonstandard conditions (!)3

    Thermodynamic )efinition of

    =uili7rium Constant %E&

    #t e6uili$rium/

    =uili7rium constant %E&

    [ ] [ ]

    [ ] [ ]

    +=

    ba

    d%

    o

    &'

    (C)T!! !n

    D+C*BaA ++

    [ ] [ ]

    [ ] [ ]

    =

    ba

    d%

    o

    &'

    (C)T! !n

    (atm)'e&&%e'at$a!a&o(mo!:)$on+on+entat&o!%te

    #ill These eactions Droceed In The Field?

  • 8/9/2019 225_Module 03 - Chemical Thermodynamics_2015presented-4

    30/32

    #ill These eactions Droceed In The Field?S8&(g)

    "&S8(a6)

    "&S84(a6)

    m*ppm+

    mo",-!#H#H# oaq"g

    0285.00.150

    0.3)(32)(2)(2 +=+

    m*atmm*

    mo",-!#H##H oaq$eCu

    gaq

    028.021.0028.0

    5.210)(42

    )(221

    )(32 = +

    [ ][ ][ ]

    +=

    )(2)(2

    )(32!n

    "g

    aqo

    #H#

    #H)T!!

    [ ][ ][ ]

    +=2

    1

    )(2)(32

    )(42!n

    gaq

    aqo

    ##H

    #H)T!!

    ( )K)

    CTatmPtota"

    =

    ==

    mo!kJ103143.8

    151

    3

    *t #hat Dartial Dressure #ould

  • 8/9/2019 225_Module 03 - Chemical Thermodynamics_2015presented-4

    31/32

    *t #hat Dartial Dressure #ould

    (O,eaction !e at =uili7rium?S8&(g)

    "&S8

    (a6)

    m*atm

    mo",-!#H#H# oaq"g

    0285.0,

    0.3)(32)(2)(2 +=+

    [ ]

    [ ][ ]

    +=

    )(2)(2

    )(32!n

    "g

    aqo

    #H#

    #H)T!!

    ( )K)CTatmPtota"

    ===

    mo!kJ103143.8

    1513

    0=

    [ ][ ])(2

    )(32

    )(2

    e' "

    o

    aq

    g

    #H)T

    !

    #H#

    =

  • 8/9/2019 225_Module 03 - Chemical Thermodynamics_2015presented-4

    32/32

    2ill a reaction occur spontaneously5

    Change in enthal!y alone will not dictate whether

    reaction will !roceed s!ontaneously

    oth enthalpyand entropyneed to $econsidered Bi77s free energy %GB&

    8nly change in Bi77s free energy %GB& can !redict

    whether a reaction will !roceed s!ontaneously

    Geactants must hae more energy than !roducts

    2hen GB5/ reaction is at e=uili7rium

    Forward reaction rate B ac-ward reaction rate

    #ill * eaction Droceed?

    Can *lso )etermine the =uili7rium Conditions