29
LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF 22 Nuclei !!! !!! !!! SUBSECTIONS ARE UNDER CONSTRUCTION !!! !!! !!! c Karl G. Kreuzer •→ www.kreuzer-dsr.de •→ EMAIL 328 •→ FLYER 2018-11-9

22 Nuclei !!! !!! !!! SUBSECTIONS ARE UNDER CONSTRUCTIONkreuzer-dsr.de/kdsr/bulletin/KDSR_HypotronTheory-CH22.pdf · LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

Embed Size (px)

Citation preview

Page 1: 22 Nuclei !!! !!! !!! SUBSECTIONS ARE UNDER CONSTRUCTIONkreuzer-dsr.de/kdsr/bulletin/KDSR_HypotronTheory-CH22.pdf · LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

22 Nuclei

!!! !!! !!! SUBSECTIONS ARE UNDER CONSTRUCTION !!! !!! !!!

c© Karl G. Kreuzer •→ www.kreuzer-dsr.de •→ EMAIL 328 •→ FLYER 2018-11-9

Page 2: 22 Nuclei !!! !!! !!! SUBSECTIONS ARE UNDER CONSTRUCTIONkreuzer-dsr.de/kdsr/bulletin/KDSR_HypotronTheory-CH22.pdf · LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

22.1 Hypotron-Core of Nuclei

A HSuC (p•)K1(n•)K2

(n•)K3which consist out of K1 proton cores and K2 neutron cores

and K3 anti-neutron cores is called a nucleus core.

From n•n• ∼ (g•)6 ∼ (γ•)4(ω•)2 it follows that a nucleus core can be considered equivalently

as

(p•)K1(n•)K2

(n•)K3∼ (p•)K1

(n•)Kdiff(n•n•)Kpairs

if K2 < K3 ,

(p•)K1(n•)K2

(n•)K3∼ (p•)K1

(n•n•)Kpairsif K2 = K3 ,

(p•)K1(n•)K2

(n•)K3∼ (p•)K1

(n•)Kdiff(n•n•)Kpairs

if K2 > K3 ,

(n•n•)Kpairs∼ (g•)6Kpairs

∼ (γ•)4Kpairs(ω•)2Kpairs

∼ (γ•)2Kpairs(T•T•)2Kpairs

,

where

Kdiff := | K2 −K3 | , Kpairs :=1

2[(K2 +K3)− | K2 −K3 |] = K2 if K2 < K3

= K3 if K2 > K3 .

This feature is referred to as nucleus core equivalence.

c© Karl G. Kreuzer •→ www.kreuzer-dsr.de •→ EMAIL 329 •→ FLYER 2018-11-9

Page 3: 22 Nuclei !!! !!! !!! SUBSECTIONS ARE UNDER CONSTRUCTIONkreuzer-dsr.de/kdsr/bulletin/KDSR_HypotronTheory-CH22.pdf · LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

Using the rules for calculating supercharge of a compound systems the supercharge can be

expressed as a quadratic form of the variables K1, K2, K3 :

Y ((p•)K1(n•)K2

(n•)K3)

= 4K21 + 6K2

2 − 6K23 + 12K1K2 + 6K1K3 mixed nucleus core ( I )

= 4 K1 ( K1 + 3K2 +3

2K3 ) + 6 ( K2

2 −K23 )

= 6

(

(K1 +K2)2 − (

1

2K1 −K3)

2 − 1

12K2

1

)

.

If K3 = 0 ( no anti-neutron cores ) expression I reduces to

Y ((p•)K1(n•)K2

) = 4K21 + 6K2

2 + 12K1K2 neutronic nucleus core ( II ) .

If K2 = 0 ( no neutron cores ) expression I reduces to

Y ((p•)K1(n•)K3

) = 4K21 − 6K2

3 + 6K1K3 anti-neutronic nucleus core ( III ) .

c© Karl G. Kreuzer •→ www.kreuzer-dsr.de •→ EMAIL 330 •→ FLYER 2018-11-9

Page 4: 22 Nuclei !!! !!! !!! SUBSECTIONS ARE UNDER CONSTRUCTIONkreuzer-dsr.de/kdsr/bulletin/KDSR_HypotronTheory-CH22.pdf · LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

Properties of supercharge of neutronic nuceleus cores ( case II ) :

• Y is positive

• Y is increasing if K2 is increasing

• for non-vanishing K2 the supercharge squared Y 2 is minimized if

K2 = 1

Properties of supercharge anti-neutronic nuceleus cores ( case III ) :

• Y is positive or negative or zero, depending on the values of K1,

• Y vanishes if K3 would be is a non-integer number given by

K3 =1

6(3 +

√33)K1

• Y 2 is minimized if K3 is given by

K3 = integer ≥ 1 closest to1

6(3 +

√33)K1

c© Karl G. Kreuzer •→ www.kreuzer-dsr.de •→ EMAIL 331 •→ FLYER 2018-11-9

Page 5: 22 Nuclei !!! !!! !!! SUBSECTIONS ARE UNDER CONSTRUCTIONkreuzer-dsr.de/kdsr/bulletin/KDSR_HypotronTheory-CH22.pdf · LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

Thus, in contrast to neutronic nucleus cores, for one or two specific values of K3 squared

supercharge Y 2 of anti-neutronic nucleus cores adopts one or two a local minima. !!!

In a nuclide chart, which illustrates the location of nuclei in a diagram with an axis for the

number of protons and an axis for the number of anti-neutrons instead of neutrons, the location

of anti-neutronic nucleus cores agrees roughly with the region where stable nuclei or nuclei with

large half-life are located. !!!

This leads to the conjecture that there exists a relationship between supercharge of nucleus

cores and stability and half-life of nuclei of the real world. !!!

c© Karl G. Kreuzer •→ www.kreuzer-dsr.de •→ EMAIL 332 •→ FLYER 2018-11-9

Page 6: 22 Nuclei !!! !!! !!! SUBSECTIONS ARE UNDER CONSTRUCTIONkreuzer-dsr.de/kdsr/bulletin/KDSR_HypotronTheory-CH22.pdf · LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

square of supercharge of anti-neutronic nucleus cores

surface given by (4K21 − 6K2

3 + 6K1K3)2 , K1 = number of protons , K3 = number of anti-neutrons

the red line represents the location of solutions of

4K21 − 6K2

3 + 6K1K3 = 0 , i.e. K3 = integer ≥ 1 closest to 16(3 +

√33)K1

c© Karl G. Kreuzer •→ www.kreuzer-dsr.de •→ EMAIL 333 •→ FLYER 2018-11-9

Page 7: 22 Nuclei !!! !!! !!! SUBSECTIONS ARE UNDER CONSTRUCTIONkreuzer-dsr.de/kdsr/bulletin/KDSR_HypotronTheory-CH22.pdf · LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

Properties of supercharge of nuceleus cores which include neutrons as well as anti-neutron

( case I ) :

Resolving expression I for K2 and K3 yields the equations

K2 =

−K1 ±√√√√√

(K1

2−K3)

2 +1

12K2

1︸ ︷︷ ︸

≥ 1

12

=1

3( −3K1 ±

√3√

K21 − 3K1K3 + 3K2

3︸ ︷︷ ︸

≥ 1

36

) (A)

and

K3 =

K1

√√√√√

(K1 +K2)2 − 1

12K2

1︸ ︷︷ ︸

≥11

12

=1

6( 3K1±

√3√

11K21 + 24K1K2 + 12K2

2︸ ︷︷ ︸≥11

) (B) .

c© Karl G. Kreuzer •→ www.kreuzer-dsr.de •→ EMAIL 334 •→ FLYER 2018-11-9

Page 8: 22 Nuclei !!! !!! !!! SUBSECTIONS ARE UNDER CONSTRUCTIONkreuzer-dsr.de/kdsr/bulletin/KDSR_HypotronTheory-CH22.pdf · LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

Solutions of equations (A) and (B) have the followig properties :

• If K1 ≥ 1 and K2 ≥ 0, K3 ≥ 0 then the arguments of the square roots are positive.

• Using the negative sign of square roots results in negative values of K2, K3

and only the positive sign of square roots results in positive values of K2, K3 .

• If K1 ≥ 1 and K2 ≥ 0 then K3 ≥ (12+√

1112)K1 =

16(3 +

√33)K1 > 1 . ( follows from eq. (A) )

• Supercharge vanishes if K3 would be a non-integer number given by

K3 =K1

2+

(K1 +K2)2 −1

12K2

1 , K2 ≥ 0 (C1)

• for fixed K2 square of supercharge is minimized with respect to K3 if K3 satisfies

K3 = integer ≥ 1 closest toK1

2+

(K1 +K2)2 −1

12K2

1 , K2 ≥ 0 (C2)

• if K ′2 > K2 and K ′

3, K3 satisfy eq. (C1) or (C2) then K ′3 > K3

c© Karl G. Kreuzer •→ www.kreuzer-dsr.de •→ EMAIL 335 •→ FLYER 2018-11-9

Page 9: 22 Nuclei !!! !!! !!! SUBSECTIONS ARE UNDER CONSTRUCTIONkreuzer-dsr.de/kdsr/bulletin/KDSR_HypotronTheory-CH22.pdf · LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

For a family of nuclei characterized by a fixed number of protons K1 the following properties

hold and definitions can be made :

• For each fixed value of K2 a minimum of Y 2 exists and the corresponding value K locmin,K2

3

is given by (C2).

• For each fixed value of K2 the minimum of Y 2 is a local minimum ( can be checked

numerically ).

• A pair of values of (K2, Klocmin,K2

3 ) is called aminimalistic neutron-anti-neutron constellation.

• The minimum of all of the local minima is the absolute minimum of Y 2 .

• A pair of values of (K2, K3) corresponding to this absolute minimum of Y 2 is called a

minimum neutron-anti-neutron constellation

• The minimum neutron-anti-neutron constellations might be degenerate ( i.e. no uniqueness ),

but possess a ’lowest’ pair (Kmin

2 , Kmin

3 ) defined by minimizing both :

1. the difference of the square of the number of particles and anti-particles of the corresponding

atom core, which is defined as the nucleus core merged with electrons,

i.e. (p•)K1(n•)K2

(n•)K3(e•)K1

: 2K1(K2 −K3) ,

2. the number of neutrons and anti-neutrons : K2 +K3 ,

c© Karl G. Kreuzer •→ www.kreuzer-dsr.de •→ EMAIL 336 •→ FLYER 2018-11-9

Page 10: 22 Nuclei !!! !!! !!! SUBSECTIONS ARE UNDER CONSTRUCTIONkreuzer-dsr.de/kdsr/bulletin/KDSR_HypotronTheory-CH22.pdf · LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

Thus, for a given number of protons K1 the minimum neutron-anti-neutron constellation of

possible nucleus cores, i.e. the values of integers K2, K3 , is specified by three requirements :

• Y (K1, K2, K3)2/g2 = (4K2

1 + 6K22 − 6K2

3 + 12K1K2 + 6K1K3)2 → minimum

• (2K1 +K2 −K3)2 = 4K2

1 + (4K1 + (K2 −K3)) (K2 −K3) → minimum

• (K1 +K2) → minimum

These requirements are referred to as the nucleus constellation principle.

For practical purposes the minimum neutron-anti-neutron constellation can be found by calculating

(K2, Klocmin,K2

3 ) for K2 = 0, 1, 2, 3, . . . by means of (C2) in order to obtain the minimalistic

neutron-anti-neutron constellations, and then, in a subsequent step, to sort out the minimum

neutron-anti-neutron constellation. !!!

Proceeding this way a 3-dimensional nuclid chart can be generated, which visualizes the

location of minimum neutron-anti-neutron constellations of families of nucleus cores.

c© Karl G. Kreuzer •→ www.kreuzer-dsr.de •→ EMAIL 337 •→ FLYER 2018-11-9

Page 11: 22 Nuclei !!! !!! !!! SUBSECTIONS ARE UNDER CONSTRUCTIONkreuzer-dsr.de/kdsr/bulletin/KDSR_HypotronTheory-CH22.pdf · LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

location of minimum neutron-anti-neutron constellations of families of nucleus cores

c© Karl G. Kreuzer •→ www.kreuzer-dsr.de •→ EMAIL 338 •→ FLYER 2018-11-9

Page 12: 22 Nuclei !!! !!! !!! SUBSECTIONS ARE UNDER CONSTRUCTIONkreuzer-dsr.de/kdsr/bulletin/KDSR_HypotronTheory-CH22.pdf · LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

M-code generating the picture :

MinimumConstellations =

{{0, 0, 1}, {3, 0, 2}, {4, 0, 3}, {6, 0, 4}, {7, 0, 5}, {9, 0, 6}, {10, 0, 7}, {12, 0, 8}, {13, 0, 9},

{15, 0, 10}, {16, 0, 11}, {17, 0, 12}, {20, 1, 13}, {20, 0, 14}, {26, 4, 15}, {23, 0, 16}, {32, 7, 17},

{26, 0, 18}, {39, 11, 19}, {29, 0, 20}, {47, 16, 21}, {32, 0, 22}, {55, 21, 23}, {35, 0, 24}, {64, 27, 25},

{41, 3, 26}, {74, 34, 27}, {46, 5, 28}, {84, 41, 29}, {52, 8, 30}, {95, 49, 31}, {58, 11, 32},

{107, 58, 33}, {65, 15, 34}, {119, 67, 35}, {71, 18, 36}, {132, 77, 37}, {79, 23, 38}, {61, 4, 39},

{86, 27, 40}, {160, 99, 41}, {94, 32, 42}, {72, 9, 43}, {102, 37, 44}, {78, 12, 45}, {111, 43, 46},

{84, 15, 47}, {71, 1, 48}, {224, 151, 49}, {76, 3, 50}, {97, 22, 51}, {138, 61, 52}, {260, 181, 53},

{148, 68, 54}, {279, 197, 55}, {158, 75, 56}, {118, 34, 57}, {98, 13, 58}, {319, 231, 59}, {104, 16, 60},

{133, 43, 61}, {110, 19, 62}, {141, 48, 63}, {202, 107, 64}, {149, 53, 65}, {214, 116, 66}, {107, 9, 67},

{226, 125, 68}, {166, 64, 69}, {136, 33, 70}, {175, 70, 71}, {143, 37, 72}, {124, 17, 73}, {150, 41, 74},

{130, 20, 75}, {278, 165, 76}, {136, 23, 77}, {122, 8, 78}, {212, 95, 79}, {306, 187, 80}, {222, 102, 81},

{180, 59, 82}, {155, 33, 83}, {188, 64, 84}, {242, 116, 85}, {196, 69, 86}, {253, 124, 87}, {150, 21, 88},

{137, 7, 89}, {156, 24, 90}, {275, 140, 91}, {162, 27, 92}, {286, 148, 93}, {137, 0, 94}, {153, 14, 95},

{142, 2, 96}, {204, 61, 97}, {147, 4, 98}, {321, 174, 99}, {466, 317, 100}, {333, 183, 101}, {194, 44, 102},

{176, 25, 103}, {276, 122, 104}, {182, 28, 105}, {168, 13, 106}, {188, 31, 107}, {296, 136, 108},

{384, 222, 109}, {179, 18, 110}, {397, 232, 111}, {316, 150, 112}, {268, 101, 113}, {236, 68, 114},

{424, 253, 115}, {196, 26, 116}, {183, 12, 117}, {202, 29, 118}, {452, 275, 119}, {208, 32, 120}}

ListPointPlot3D[

MinimumConstellations,

AxesLabel -> {anti-neutrons, neutrons, protons},

Filling -> Bottom, ColorFunction -> "Rainbow",

BoxRatios -> Automatic,

FillingStyle -> Directive[LightGreen, Thick, Opacity[.1]] ,

PlotStyle -> PointSize[0.01] ]

c© Karl G. Kreuzer •→ www.kreuzer-dsr.de •→ EMAIL 339 •→ FLYER 2018-11-9

Page 13: 22 Nuclei !!! !!! !!! SUBSECTIONS ARE UNDER CONSTRUCTIONkreuzer-dsr.de/kdsr/bulletin/KDSR_HypotronTheory-CH22.pdf · LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

Numerical calulations show that Kmin

2 < Kmin

3 for all families nucleus cores,

i.e. for K1 = 1, . . . , 118, . . . ). !!!

Having found Kmin

2 , Kmin

3 corresponding to the minimum neutron-anti-neutron constellation of

nucleus core family with K1 protons, one can make use of the nucleus core equivalence

n• n• ∼ (g•)6 ∼ (γ•)4 (ω•)2 ,

which yields

(p•)K1(n•)Kmin

2(n•)Kmin

3∼ (p•)K1

(n•)Kdiff(n•n•)Kpairs

if K2 < K3 ,

(n•n•)Kpairs∼ (g•)6Kpairs

∼ (γ•)4Kpairs(ω•)2Kpairs

∼ (γ•)2Kpairs(T•T•)2Kpairs

,

where

Kdiff := Kmin

3 −Kmin

2 ,

Kpairs := Kmin

2 .

c© Karl G. Kreuzer •→ www.kreuzer-dsr.de •→ EMAIL 340 •→ FLYER 2018-11-9

Page 14: 22 Nuclei !!! !!! !!! SUBSECTIONS ARE UNDER CONSTRUCTIONkreuzer-dsr.de/kdsr/bulletin/KDSR_HypotronTheory-CH22.pdf · LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

This means that each nucleus core which corresponds to a

minimum neutron-anti-neutron constellation (Kmin

2 , Kmin

3 ) is

equivalent to an anti-neutronic nucleus core containing Kmin

3 −Kmin

2 anti-neutrons

’plus’ 6Kmin

2 strongon cores !!!or equivalently

’plus’ 4Kmin

2 photon cores and 2Kmin

2 virolon cores

or equivalently

’plus’ 2Kmin

2 photon cores and 2Kmin

2 tripolonium cores.

Likewise, each nucleus core which corresponds to a

minimalistic neutron-anti-neutron constellation (K2, Klocmin,K2

3 ) is

equivalent to an anti-neutronic nucleus core containing K locmin,K2

3 −K2 anti-neutrons

’plus’ 6K2 strongon cores !!!or equivalently

’plus’ 4K2 photon cores and 2K2 virolon cores

or equivalently

’plus’ 2K2 photon cores and 2K2 tripolonium cores.

c© Karl G. Kreuzer •→ www.kreuzer-dsr.de •→ EMAIL 341 •→ FLYER 2018-11-9

Page 15: 22 Nuclei !!! !!! !!! SUBSECTIONS ARE UNDER CONSTRUCTIONkreuzer-dsr.de/kdsr/bulletin/KDSR_HypotronTheory-CH22.pdf · LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

Instead of considering HSuCs of the form (p•)K1(n•)K2

(n•)K3and determining minimalistic

and minimum nucleus cores via minimizing the square of supercharge the same results are

obtained if (p•)K1(n•)K3

(g•)6J2 is considered and K3, J2 are determined via minimizing the

square of supercharge

In a nuclide chart which illustrates the location of nucleus cores in a diagram

with axises for the number of protons and the number of anti-neutrons

the location of these equivalent anti-neutronic nucleus cores agrees with the region where stable

nuclei or nuclei with large half-life are located. !!!

c© Karl G. Kreuzer •→ www.kreuzer-dsr.de •→ EMAIL 342 •→ FLYER 2018-11-9

Page 16: 22 Nuclei !!! !!! !!! SUBSECTIONS ARE UNDER CONSTRUCTIONkreuzer-dsr.de/kdsr/bulletin/KDSR_HypotronTheory-CH22.pdf · LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

location of equivalent anti-neutronic nucleus cores ( lower line )

( The upper line in the diagram visualizes the location of the straight line specified by the angle π/4 . )

c© Karl G. Kreuzer •→ www.kreuzer-dsr.de •→ EMAIL 343 •→ FLYER 2018-11-9

Page 17: 22 Nuclei !!! !!! !!! SUBSECTIONS ARE UNDER CONSTRUCTIONkreuzer-dsr.de/kdsr/bulletin/KDSR_HypotronTheory-CH22.pdf · LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

M-code generating the picture :

EquivalentMinimumConstellations =

{{0, 1}, {3, 2}, {4, 3}, {6, 4}, {7, 5}, {9, 6}, {10, 7}, {12, 8}, {13, 9}, {15, 10}, {16, 11}, {17, 12}, {19, 13}, {20, 14}, {22, 15}, {23, 16},

{25, 17}, {26, 18}, {28, 19}, {29, 20}, {31, 21}, {32, 22}, {34, 23}, {35, 24}, {37, 25}, {38, 26}, {40, 27}, {41, 28}, {43, 29}, {44, 30},

{46, 31}, {47, 32}, {49, 33}, {50, 34}, {52, 35}, {53, 36}, {55, 37}, {56, 38}, {57, 39}, {59, 40}, {61, 41}, {62, 42}, {63, 43}, {65, 44},

{66, 45}, {68, 46}, {69, 47}, {70, 48}, {73, 49}, {73, 50}, {75, 51}, {77, 52}, {79, 53}, {80, 54}, {82, 55}, {83, 56}, {84, 57}, {85, 58},

{88, 59}, {88, 60}, {90, 61}, {91, 62}, {93, 63}, {95, 64}, {96, 65}, {98, 66}, {98, 67}, {101, 68}, {102, 69}, {103, 70}, {105, 71}, {106, 72},

{107, 73}, {109, 74}, {110, 75}, {113, 76}, {113, 77}, {114, 78}, {117, 79}, {119, 80}, {120, 81}, {121, 82}, {122, 83}, {124, 84}, {126, 85}, {127, 86},

{129, 87}, {129, 88}, {130, 89}, {132, 90}, {135, 91}, {135, 92}, {138, 93}, {137, 94}, {139, 95}, {140, 96}, {143, 97}, {143, 98}, {147, 99},

{149, 100}, {150, 101}, {150, 102}, {151, 103}, {154, 104}, {154, 105}, {155, 106}, {157, 107}, {160, 108}, {162, 109}, {161, 110}, {165, 111},

{166, 112}, {167, 113}, {168, 114}, {171, 115}, {170, 116}, {171, 117}, {173, 118}, {177, 119}, {176, 120}}

ListPlot[EquivalentMinimumConstellations, AxesLabel -> {anti-neutrons, protons}]

c© Karl G. Kreuzer •→ www.kreuzer-dsr.de •→ EMAIL 344 •→ FLYER 2018-11-9

Page 18: 22 Nuclei !!! !!! !!! SUBSECTIONS ARE UNDER CONSTRUCTIONkreuzer-dsr.de/kdsr/bulletin/KDSR_HypotronTheory-CH22.pdf · LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

Minimum neutron-anti-neutron constellations and equivalent anti-neutron constellations

of nucleus cores :

protons neutrons anti-neutr. neutrons anti-neutr. Y 2/g2 Y/g symbol

1 0 1 0 1 16 4 H2 0 3 0 3 4 -2 He3 0 4 0 4 144 12 Li4 0 6 0 6 64 -8 Be5 0 7 0 7 256 16 B6 0 9 0 9 324 -18 C7 0 10 0 10 256 16 N8 0 12 0 12 1024 -32 O9 0 13 0 13 144 12 F10 0 15 0 15 2500 -50 Ne11 0 16 0 16 16 4 Na12 0 17 0 17 4356 66 Mg13 1 20 0 19 4 -2 Al14 0 20 0 20 4096 64 Si15 4 26 0 22 0 0 P16 0 23 0 23 3364 58 S17 7 32 0 25 4 -2 Cl18 0 26 0 26 2304 48 Ar19 11 39 0 28 4 -2 K

c© Karl G. Kreuzer •→ www.kreuzer-dsr.de •→ EMAIL 345 •→ FLYER 2018-11-9

Page 19: 22 Nuclei !!! !!! !!! SUBSECTIONS ARE UNDER CONSTRUCTIONkreuzer-dsr.de/kdsr/bulletin/KDSR_HypotronTheory-CH22.pdf · LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

protons neutrons anti-neutr. neutrons anti-neutr. Y 2/g2 Y/g symbol

20 0 29 0 29 1156 34 Ca21 16 47 0 31 0 0 Sc22 0 32 0 32 256 16 Ti23 21 55 0 34 4 -2 V24 0 35 0 35 36 -6 Cr25 27 64 0 37 4 -2 Mn26 3 41 0 38 16 4 Fe27 34 74 0 40 0 0 Co28 5 46 0 41 4 -2 Ni29 41 84 0 43 4 -2 Cu30 8 52 0 44 0 0 Zn31 49 95 0 46 4 -2 Ga32 11 58 0 47 4 -2 Ge33 58 107 0 49 0 0 As34 15 65 0 50 16 4 Se35 67 119 0 52 4 -2 Br36 18 71 0 53 36 -6 Kr37 77 132 0 55 4 -2 Rb38 23 79 0 56 16 4 Sr39 4 61 0 57 0 0 Y40 27 86 0 59 4 -2 Zr41 99 160 0 61 4 -2 Nb42 32 94 0 62 0 0 Mo43 9 72 0 63 4 -2 Tc44 37 102 0 65 4 -2 Ru45 12 78 0 66 0 0 Rh

c© Karl G. Kreuzer •→ www.kreuzer-dsr.de •→ EMAIL 346 •→ FLYER 2018-11-9

Page 20: 22 Nuclei !!! !!! !!! SUBSECTIONS ARE UNDER CONSTRUCTIONkreuzer-dsr.de/kdsr/bulletin/KDSR_HypotronTheory-CH22.pdf · LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

protons neutrons anti-neutr. neutrons anti-neutr. Y 2/g2 Y/g symbol

46 43 111 0 68 16 4 Pd47 15 84 0 69 4 -2 Ag48 1 71 0 70 0 0 Cd49 151 224 0 73 4 -2 In50 3 76 0 73 4 -2 Sn51 22 97 0 75 0 0 Sb52 61 138 0 77 4 -2 Te53 181 260 0 79 4 -2 I54 68 148 0 80 0 0 Xe55 197 279 0 82 4 -2 Cs56 75 158 0 83 4 -2 Ba57 34 118 0 84 0 0 La58 13 98 0 85 4 -2 Ce59 231 319 0 88 4 -2 Pr60 16 104 0 88 0 0 Nd61 43 133 0 90 4 -2 Pm62 19 110 0 91 4 -2 Sm63 48 141 0 93 0 0 Eu64 107 202 0 95 4 -2 Gd65 53 149 0 96 4 -2 Tb66 116 214 0 98 0 0 Dy67 9 107 0 98 4 -2 Ho68 125 226 0 101 4 -2 Er69 64 166 0 102 0 0 Tm

c© Karl G. Kreuzer •→ www.kreuzer-dsr.de •→ EMAIL 347 •→ FLYER 2018-11-9

Page 21: 22 Nuclei !!! !!! !!! SUBSECTIONS ARE UNDER CONSTRUCTIONkreuzer-dsr.de/kdsr/bulletin/KDSR_HypotronTheory-CH22.pdf · LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

protons neutrons anti-neutr. neutrons anti-neutr. Y 2/g2 Y/g symbol

70 33 136 0 103 4 -2 Yb71 70 175 0 105 16 4 Lu72 37 143 0 106 0 0 Hf73 17 124 0 107 4 -2 Ta74 41 150 0 109 4 -2 W75 20 130 0 110 0 0 Re76 165 278 0 113 4 -2 Os77 23 136 0 113 4 -2 Ir78 8 122 0 114 0 0 Pt79 95 212 0 117 4 -2 Au80 187 306 0 119 4 -2 Hg81 102 222 0 120 0 0 Tl82 59 180 0 121 4 -2 Pb83 33 155 0 122 4 -2 Bi84 64 188 0 124 0 0 Po85 116 242 0 126 64 -8 At86 69 196 0 127 4 -2 Rn87 124 253 0 129 0 0 Fr88 21 150 0 129 4 -2 Ra89 7 137 0 130 4 -2 Ac90 24 156 0 132 0 0 Th91 140 275 0 135 16 4 Pa92 27 162 0 135 4 -2 U93 148 286 0 138 0 0 Np94 0 137 0 137 4 -2 Pu95 14 153 0 139 64 -8 Am

c© Karl G. Kreuzer •→ www.kreuzer-dsr.de •→ EMAIL 348 •→ FLYER 2018-11-9

Page 22: 22 Nuclei !!! !!! !!! SUBSECTIONS ARE UNDER CONSTRUCTIONkreuzer-dsr.de/kdsr/bulletin/KDSR_HypotronTheory-CH22.pdf · LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

protons neutrons anti-neutr. neutrons anti-neutr. Y 2/g2 Y/g symbol

96 2 142 0 140 0 0 Cm97 61 204 0 143 4 -2 Bk98 4 147 0 143 4 -2 Cf99 174 321 0 147 0 0 Es100 317 466 0 149 4 -2 Fm101 183 333 0 150 4 -2 Md102 44 194 0 150 0 0 No103 25 176 0 151 4 -2 Lr104 122 276 0 154 64 -8 Rf105 28 182 0 154 0 0 Db106 13 168 0 155 4 -2 Sg107 31 188 0 157 4 -2 Bh108 136 296 0 160 0 0 Hs109 222 384 0 162 16 4 Mt110 18 179 0 161 4 -2 Ds111 232 397 0 165 0 0 Rg112 150 316 0 166 64 -8 Cn113 101 268 0 167 4 -2 Uut114 68 236 0 168 0 0 Fl115 253 424 0 171 4 -2 Uup116 26 196 0 170 64 -8 Lv117 12 183 0 171 0 0 Uus118 29 202 0 173 4 -2 Uuo119 275 452 0 177 4 -2 nn120 32 208 0 176 0 0 nn

c© Karl G. Kreuzer •→ www.kreuzer-dsr.de •→ EMAIL 349 •→ FLYER 2018-11-9

Page 23: 22 Nuclei !!! !!! !!! SUBSECTIONS ARE UNDER CONSTRUCTIONkreuzer-dsr.de/kdsr/bulletin/KDSR_HypotronTheory-CH22.pdf · LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

22.2 Bare Nuclei - Shell Configuration Condition

a HSuC of the form

(p•)K1(n•)K2

(n•)K3(γ•)J1 (g•)J2 (z•)J3 (ω•)J4

is called a bare nucleus

if K2 ≤ K3 , then a bare nucleus specified by K1, K2, K3 is equivalent to

(p•)K1(n•)K ′

3(g•)6K2

(γ•)J1 (g•)J2 (z•)J3 (ω•)J4

in the following only minimalistic ( and minimal ) nucleus cores are considered,

so K2 ≤ K3 is satisfied

c© Karl G. Kreuzer •→ www.kreuzer-dsr.de •→ EMAIL 350 •→ FLYER 2018-11-9

Page 24: 22 Nuclei !!! !!! !!! SUBSECTIONS ARE UNDER CONSTRUCTIONkreuzer-dsr.de/kdsr/bulletin/KDSR_HypotronTheory-CH22.pdf · LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

supercharge of a minimalistic bare nucleus :

Y

(p•)K1

(n•)K ′3(g•)6K2

︸ ︷︷ ︸core

(γ•)J1 (g•)J2 (z•)J3 (ω•)J4︸ ︷︷ ︸

shell

= Y (core) + Y (shell)︸ ︷︷ ︸

=0

+ Z(core, shell)

= Y (core) + K1Z(p, shell) + K ′3Z(n, shell) + 6K2Z(g, shell)

︸ ︷︷ ︸=0

= . . . = Y (core) + (5K1 − 4K ′3)J1 + (3K1 − 2K ′

3)J2 + K1J3 + (−K1 + 2K ′3)J4

because of the equivalence properties of a hypotron shell the latter may be considered to

contain no strongons, i.e. J2 = 0

then supercharge of a bare nuclues is given by

Y

(p•)K1

(n•)K ′3(g•)6K2

︸ ︷︷ ︸core

(γ•)J1 (z•)J3 (ω•)J4︸ ︷︷ ︸

shell

= Y (core) + (5K1 − 4K ′3)J1 + K1J3 + (−K1 + 2K ′

3)J4

c© Karl G. Kreuzer •→ www.kreuzer-dsr.de •→ EMAIL 351 •→ FLYER 2018-11-9

Page 25: 22 Nuclei !!! !!! !!! SUBSECTIONS ARE UNDER CONSTRUCTIONkreuzer-dsr.de/kdsr/bulletin/KDSR_HypotronTheory-CH22.pdf · LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

Y (bare nucleus) vanishes if J1, J3, J4 satisfy

Y (core) + (5K1 − 4K ′3)J1 + K1J3 + (−K1 + 2K ′

3)J4 = 0

Y (bare nucleus)2 has local minima with respect to the variable J3 , keeping J1, J4 fixed

which can be found by resolving Y (...) = 0 for J3 and calculating the resulting integers

according to :

J3 = integer ≥ 1 closest to1

K1[(−5K1 + 4K ′

3)J1 + (K1 − 2K ′3)J4 − Y (core)] (SCC)

this equation is referred to as the shell configuration condition for bare nuclei

for J1, J4 = 0, 1, 2, 3, . . . and J3 calculated from (SCC) different shells are obtained

which can be interpreted as ground states (Y 2 = 0) and exited states (Y 2 > 0) of a bare

nucleus !!!

c© Karl G. Kreuzer •→ www.kreuzer-dsr.de •→ EMAIL 352 •→ FLYER 2018-11-9

Page 26: 22 Nuclei !!! !!! !!! SUBSECTIONS ARE UNDER CONSTRUCTIONkreuzer-dsr.de/kdsr/bulletin/KDSR_HypotronTheory-CH22.pdf · LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

example : gold

minimum nucleus core plus shell :

(p•)79 (n•)95 (n•)212 (γ•)J1 (g•)J2 (z•)J3 (ω•)J4 , Q/e = 79 , Y (core)/g = −2

∼ (p•)79 (n•)0 (n•)117 (g•)6·95 (γ•)J1 (g•)J2 (z•)J3 (ω•)J4

values of (J1, J2 = 0, J3, J4) which yield (Y (bare nucleus))2/g2 = 0 :

(14, 0, 11, 1) , (15, 0, 8, 3) , (16, 0, 5, 5) , (17, 0, 2, 7) ,

(54, 0, 46, 2) , (55, 0, 43, 4) , (56, 0, 40, 6) , (57, 0, 37, 8) , (58, 0, 34, 10) , (59, 0, 31, 12) ,

(60, 0, 28, 14) , (61, 0, 25, 16) , (62, 0, 22, 18) , (63, 0, 19, 20) , (64, 0, 16, 22) ,

(65, 0, 13, 24) , (66, 0, 10, 26) , (67, 0, 7, 28) , (68, 0, 4, 30) , (69, 0, 1, 32) ,

(93, 0, 84, 1) , (94, 0, 81, 3) , (95, 0, 78, 5) , (96, 0, 75, 7) , (97, 0, 72, 9) , (98, 0, 69, 11) , (99, 0, 66, 13) ,

(100, 0, 63, 15) , (101, 0, 60, 17) , (102, 0, 57, 19) , (103, 0, 54, 21) , (104, 0, 51, 23) ,

(105, 0, 48, 25) , (106, 0, 45, 27) , (107, 0, 42, 29) , (108, 0, 39, 31) , (109, 0, 36, 33) ,

(110, 0, 33, 35) , . . . . . . . . .

. . . . . . . . .

c© Karl G. Kreuzer •→ www.kreuzer-dsr.de •→ EMAIL 353 •→ FLYER 2018-11-9

Page 27: 22 Nuclei !!! !!! !!! SUBSECTIONS ARE UNDER CONSTRUCTIONkreuzer-dsr.de/kdsr/bulletin/KDSR_HypotronTheory-CH22.pdf · LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

22.3 Dressed Nuclei

c© Karl G. Kreuzer •→ www.kreuzer-dsr.de •→ EMAIL 354 •→ FLYER 2018-11-9

Page 28: 22 Nuclei !!! !!! !!! SUBSECTIONS ARE UNDER CONSTRUCTIONkreuzer-dsr.de/kdsr/bulletin/KDSR_HypotronTheory-CH22.pdf · LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

22.4 Neutrino-Involved Neutron Conversion ’Inside’ the Core of a Nucleus

(p•)K1(n•)K2

(n•)K3

∼ (p•)K1(n•)K2−L (n•)K3

(g•)2L (ν•)L , L < K2

∼ (p•)K1(n•)K2

(n•)K3−L (g•)2L (ν•)L , L < K3

(p•)K1(n•)K2

(n•)K3(ν•)L

∼ (p•)K1(n•)K2

(n•)K3−L (g•)4L , L < K3

(p•)K1(n•)K2

(n•)K3(ν•)L

∼ (p•)K1(n•)K2−L (n•)K3

(g•)4L , L < K2

c© Karl G. Kreuzer •→ www.kreuzer-dsr.de •→ EMAIL 355 •→ FLYER 2018-11-9

Page 29: 22 Nuclei !!! !!! !!! SUBSECTIONS ARE UNDER CONSTRUCTIONkreuzer-dsr.de/kdsr/bulletin/KDSR_HypotronTheory-CH22.pdf · LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

LECTURE NOTES ON HYPOTRON THEORY •→ TP •→ TOC •→ REF

22.5 Selected Examples of Nuclei : Hydrogen, Deuterium, Tritium, He, Na, ...

... hydrogen , deuterium , tritium , helium , natrium, ...

... carbon and oxygen ...

... neon and xenon ...

... silver and gold ...

... caesium and uran ...

c© Karl G. Kreuzer •→ www.kreuzer-dsr.de •→ EMAIL 356 •→ FLYER 2018-11-9