54
§ 2.2 Logically Equivalent Statements

2.2 Logically Equivalent Statements

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 2.2 Logically Equivalent Statements

§ 2.2 Logically Equivalent Statements

Page 2: 2.2 Logically Equivalent Statements

Definition

DefinitionTwo expressions are logically equivalent provided that they have thesame truth value for all possible combinations of truth values for allvariables appearing in the two expressions. In this case, we writeX ≡ Y and say that X and Y are logically equivalent.

Page 3: 2.2 Logically Equivalent Statements

Are They Logically Equivalent?

ExampleIs p→ q ≡ p ∧ ¬q true?

How will we prove this?

Truth tables is a common way to go.

p q p→ q ¬q p ∧ ¬qT T T F FT F F T TF T T F FF F T T F

Conclusion? These statements are not logically equivalent.

Page 4: 2.2 Logically Equivalent Statements

Are They Logically Equivalent?

ExampleIs p→ q ≡ p ∧ ¬q true?

How will we prove this?

Truth tables is a common way to go.

p q p→ q ¬q p ∧ ¬qT T T F FT F F T TF T T F FF F T T F

Conclusion? These statements are not logically equivalent.

Page 5: 2.2 Logically Equivalent Statements

Are They Logically Equivalent?

ExampleIs p→ q ≡ p ∧ ¬q true?

How will we prove this?

Truth tables is a common way to go.

p q p→ q ¬q p ∧ ¬qT T T F FT F F T TF T T F FF F T T F

Conclusion? These statements are not logically equivalent.

Page 6: 2.2 Logically Equivalent Statements

Are They Logically Equivalent?

ExampleIs p→ q ≡ p ∧ ¬q true?

How will we prove this?

Truth tables is a common way to go.

p q p→ q ¬q p ∧ ¬q

T T T F FT F F T TF T T F FF F T T F

Conclusion? These statements are not logically equivalent.

Page 7: 2.2 Logically Equivalent Statements

Are They Logically Equivalent?

ExampleIs p→ q ≡ p ∧ ¬q true?

How will we prove this?

Truth tables is a common way to go.

p q p→ q ¬q p ∧ ¬qT T T F FT F F T TF T T F FF F T T F

Conclusion? These statements are not logically equivalent.

Page 8: 2.2 Logically Equivalent Statements

Are They Logically Equivalent?

ExampleIs p→ q ≡ p ∧ ¬q true?

How will we prove this?

Truth tables is a common way to go.

p q p→ q ¬q p ∧ ¬qT T T F FT F F T TF T T F FF F T T F

Conclusion?

These statements are not logically equivalent.

Page 9: 2.2 Logically Equivalent Statements

Are They Logically Equivalent?

ExampleIs p→ q ≡ p ∧ ¬q true?

How will we prove this?

Truth tables is a common way to go.

p q p→ q ¬q p ∧ ¬qT T T F FT F F T TF T T F FF F T T F

Conclusion? These statements are not logically equivalent.

Page 10: 2.2 Logically Equivalent Statements

Are They Logically Equivalent?

Example

Determine if (¬q)→ (p ∧ (¬p)) ≡ q.

p q ¬p ¬q p ∧ (¬p) (¬q)→ (p ∧ (¬p))T T F F F TT F F T F FF T T F F TF F T T F F

Conclusion? The statements are logically equivalent.

Page 11: 2.2 Logically Equivalent Statements

Are They Logically Equivalent?

Example

Determine if (¬q)→ (p ∧ (¬p)) ≡ q.

p q ¬p ¬q p ∧ (¬p) (¬q)→ (p ∧ (¬p))

T T F F F TT F F T F FF T T F F TF F T T F F

Conclusion? The statements are logically equivalent.

Page 12: 2.2 Logically Equivalent Statements

Are They Logically Equivalent?

Example

Determine if (¬q)→ (p ∧ (¬p)) ≡ q.

p q ¬p ¬q p ∧ (¬p) (¬q)→ (p ∧ (¬p))T T F F F TT F F T F FF T T F F TF F T T F F

Conclusion? The statements are logically equivalent.

Page 13: 2.2 Logically Equivalent Statements

Are They Logically Equivalent?

Example

Determine if (¬q)→ (p ∧ (¬p)) ≡ q.

p q ¬p ¬q p ∧ (¬p) (¬q)→ (p ∧ (¬p))T T F F F TT F F T F FF T T F F TF F T T F F

Conclusion?

The statements are logically equivalent.

Page 14: 2.2 Logically Equivalent Statements

Are They Logically Equivalent?

Example

Determine if (¬q)→ (p ∧ (¬p)) ≡ q.

p q ¬p ¬q p ∧ (¬p) (¬q)→ (p ∧ (¬p))T T F F F TT F F T F FF T T F F TF F T T F F

Conclusion? The statements are logically equivalent.

Page 15: 2.2 Logically Equivalent Statements

One More With 3 Statements

Example

Determine if p→ (q ∨ r) ≡ (¬q)→ ((¬p) ∨ r).

p q r q ∨ r p → (q ∨ r) ¬p ¬q (¬p) ∨ r (¬q) → ((¬p) ∨ r)T T T T T F F T TT T F T T F F F TT F T T T F T T TF T T T T T F T TT F F F F F T F FF T F T T T F T TF F T T T T T T TF F F F T T T T T

Therefore, the statements are logically equivalent.

Page 16: 2.2 Logically Equivalent Statements

One More With 3 Statements

Example

Determine if p→ (q ∨ r) ≡ (¬q)→ ((¬p) ∨ r).

p q r q ∨ r p → (q ∨ r) ¬p ¬q (¬p) ∨ r (¬q) → ((¬p) ∨ r)

T T T T T F F T TT T F T T F F F TT F T T T F T T TF T T T T T F T TT F F F F F T F FF T F T T T F T TF F T T T T T T TF F F F T T T T T

Therefore, the statements are logically equivalent.

Page 17: 2.2 Logically Equivalent Statements

One More With 3 Statements

Example

Determine if p→ (q ∨ r) ≡ (¬q)→ ((¬p) ∨ r).

p q r q ∨ r p → (q ∨ r) ¬p ¬q (¬p) ∨ r (¬q) → ((¬p) ∨ r)T T T T T F F T TT T F T T F F F TT F T T T F T T TF T T T T T F T TT F F F F F T F FF T F T T T F T TF F T T T T T T TF F F F T T T T T

Therefore, the statements are logically equivalent.

Page 18: 2.2 Logically Equivalent Statements

One More With 3 Statements

Example

Determine if p→ (q ∨ r) ≡ (¬q)→ ((¬p) ∨ r).

p q r q ∨ r p → (q ∨ r) ¬p ¬q (¬p) ∨ r (¬q) → ((¬p) ∨ r)T T T T T F F T TT T F T T F F F TT F T T T F T T TF T T T T T F T TT F F F F F T F FF T F T T T F T TF F T T T T T T TF F F F T T T T T

Therefore, the statements are logically equivalent.

Page 19: 2.2 Logically Equivalent Statements

DeMorgan’s Laws for Logic

TheoremDeMorgan’s LawsFor statements p and q,

The statement ¬(p ∧ q) is logically equivalent to ¬p ∨ ¬q. Thiscan be written as

¬(p ∧ q) ≡ ¬p ∨ ¬q

The statement ¬(p ∨ q) is logically equivalent to ¬p ∧ ¬q. Thiscan be written as

¬(p ∨ q) ≡ ¬p ∧ ¬q

Page 20: 2.2 Logically Equivalent Statements

Proof of DeMorgan’s Law

Generally, for proofs such as this, we use truth tables. So let’s not andsee how we could reason through a proof for the first case.

¬(p ∧ q) ≡ ¬p ∨ ¬q

Proof.p ∧ q is true only when p and q are both true statements. So, ¬(p ∧ q)is only false when p and q are both true statements.

On the other hand, the only way for a disjunction to be false is whenboth p and q are false. For ¬p ∨ ¬q, this only occurs when ¬p and ¬qare false, or when p and q are true.

Page 21: 2.2 Logically Equivalent Statements

Proof of DeMorgan’s Law

Generally, for proofs such as this, we use truth tables. So let’s not andsee how we could reason through a proof for the first case.

¬(p ∧ q) ≡ ¬p ∨ ¬q

Proof.p ∧ q is true only when p and q are both true statements.

So, ¬(p ∧ q)is only false when p and q are both true statements.

On the other hand, the only way for a disjunction to be false is whenboth p and q are false. For ¬p ∨ ¬q, this only occurs when ¬p and ¬qare false, or when p and q are true.

Page 22: 2.2 Logically Equivalent Statements

Proof of DeMorgan’s Law

Generally, for proofs such as this, we use truth tables. So let’s not andsee how we could reason through a proof for the first case.

¬(p ∧ q) ≡ ¬p ∨ ¬q

Proof.p ∧ q is true only when p and q are both true statements. So, ¬(p ∧ q)is only false when p and q are both true statements.

On the other hand, the only way for a disjunction to be false is whenboth p and q are false. For ¬p ∨ ¬q, this only occurs when ¬p and ¬qare false, or when p and q are true.

Page 23: 2.2 Logically Equivalent Statements

Proof of DeMorgan’s Law

Generally, for proofs such as this, we use truth tables. So let’s not andsee how we could reason through a proof for the first case.

¬(p ∧ q) ≡ ¬p ∨ ¬q

Proof.p ∧ q is true only when p and q are both true statements. So, ¬(p ∧ q)is only false when p and q are both true statements.

On the other hand, the only way for a disjunction to be false is whenboth p and q are false.

For ¬p ∨ ¬q, this only occurs when ¬p and ¬qare false, or when p and q are true.

Page 24: 2.2 Logically Equivalent Statements

Proof of DeMorgan’s Law

Generally, for proofs such as this, we use truth tables. So let’s not andsee how we could reason through a proof for the first case.

¬(p ∧ q) ≡ ¬p ∨ ¬q

Proof.p ∧ q is true only when p and q are both true statements. So, ¬(p ∧ q)is only false when p and q are both true statements.

On the other hand, the only way for a disjunction to be false is whenboth p and q are false. For ¬p ∨ ¬q, this only occurs when ¬p and ¬qare false, or when p and q are true.

Page 25: 2.2 Logically Equivalent Statements

Logical Equivalence and Conditional Statements

TheoremFor statements p and q,

1 The conditional statement p→ q is logically equivalent to¬p ∨ q.

2 The statement ¬(p→ q) is logically equivalent to p ∧ ¬q.3 The conditional statement p→ q is logically equivalent to its

contrapositive ¬q→ ¬p.

This is a theorem in the book but it is not proved, so we will do sonow with truth tables.

Page 26: 2.2 Logically Equivalent Statements

Logical Equivalence and Conditional Statements

TheoremFor statements p and q,

1 The conditional statement p→ q is logically equivalent to¬p ∨ q.

2 The statement ¬(p→ q) is logically equivalent to p ∧ ¬q.

3 The conditional statement p→ q is logically equivalent to itscontrapositive ¬q→ ¬p.

This is a theorem in the book but it is not proved, so we will do sonow with truth tables.

Page 27: 2.2 Logically Equivalent Statements

Logical Equivalence and Conditional Statements

TheoremFor statements p and q,

1 The conditional statement p→ q is logically equivalent to¬p ∨ q.

2 The statement ¬(p→ q) is logically equivalent to p ∧ ¬q.3 The conditional statement p→ q is logically equivalent to its

contrapositive ¬q→ ¬p.

This is a theorem in the book but it is not proved, so we will do sonow with truth tables.

Page 28: 2.2 Logically Equivalent Statements

Logical Equivalence and Conditional Statements

TheoremFor statements p and q,

1 The conditional statement p→ q is logically equivalent to¬p ∨ q.

2 The statement ¬(p→ q) is logically equivalent to p ∧ ¬q.3 The conditional statement p→ q is logically equivalent to its

contrapositive ¬q→ ¬p.

This is a theorem in the book but it is not proved, so we will do sonow with truth tables.

Page 29: 2.2 Logically Equivalent Statements

Proof of Part 1

We will show p→ q ≡ ¬p ∨ q.

p q p→ q ¬p ¬p ∨ qT T T F TT F F F FF T T T TF F T T T

Page 30: 2.2 Logically Equivalent Statements

Proof of Part 1

We will show p→ q ≡ ¬p ∨ q.

p q p→ q ¬p ¬p ∨ qT T T F TT F F F FF T T T TF F T T T

Page 31: 2.2 Logically Equivalent Statements

Proof of Part 2

We will show ¬(p→ q) ≡ p ∧ ¬q

p q p→ q ¬(p→ q) ¬q p ∧ ¬qT T T F F FT F F T T TF T T F F FF F T F T F

Page 32: 2.2 Logically Equivalent Statements

Proof of Part 2

We will show ¬(p→ q) ≡ p ∧ ¬q

p q p→ q ¬(p→ q) ¬q p ∧ ¬qT T T F F FT F F T T TF T T F F FF F T F T F

Page 33: 2.2 Logically Equivalent Statements

Proof of Part 3

We will show p→ q ≡ ¬q→ ¬p

p q p→ q ¬q ¬p ¬q→ ¬pT T T F F TT F F T F FF T T F T TF F T T T T

Page 34: 2.2 Logically Equivalent Statements

Proof of Part 3

We will show p→ q ≡ ¬q→ ¬p

p q p→ q ¬q ¬p ¬q→ ¬pT T T F F TT F F T F FF T T F T TF F T T T T

Page 35: 2.2 Logically Equivalent Statements

Negation

Negation of a conditional statement is not another conditionalstatement.

Example

¬(p→ q) ≡ p ∧ ¬q

We will verify this using truth tables.

p q p→ q ¬(→ q) ¬q p ∧ ¬qT T T F F FT F F T T TF T T F F FF F T F T F

Page 36: 2.2 Logically Equivalent Statements

Negation

Negation of a conditional statement is not another conditionalstatement.

Example

¬(p→ q) ≡ p ∧ ¬q

We will verify this using truth tables.

p q p→ q ¬(→ q) ¬q p ∧ ¬qT T T F F FT F F T T TF T T F F FF F T F T F

Page 37: 2.2 Logically Equivalent Statements

Negation

Negation of a conditional statement is not another conditionalstatement.

Example

¬(p→ q) ≡ p ∧ ¬q

We will verify this using truth tables.

p q p→ q ¬(→ q) ¬q p ∧ ¬qT T T F F FT F F T T TF T T F F FF F T F T F

Page 38: 2.2 Logically Equivalent Statements

Negation

Negation of a conditional statement is not another conditionalstatement.

Example

¬(p→ q) ≡ p ∧ ¬q

We will verify this using truth tables.

p q p→ q ¬(→ q) ¬q p ∧ ¬qT T T F F FT F F T T TF T T F F FF F T F T F

Page 39: 2.2 Logically Equivalent Statements

Important Equivalences

De Morgan’s Laws ¬(p ∧ q) ≡ ¬p ∨ ¬q¬(p ∨ q) ≡ ¬p ∧ ¬q

Conditional Statements p→ q ≡ ¬q→ ¬pp→ q ≡ ¬p ∨ q¬(p→ q) ≡ p ∧ ¬q

Biconditional Statement (p↔ q) ≡ (p→ q) ∧ (q→ p)Double Negation ¬(¬p) ≡ pDistributive Laws p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)Conditionals with p→ (q ∨ r) ≡ (p ∧ ¬q)→ rDisjunctions (p ∨ q)→ r ≡ (p→ r) ∧ (q→ r)

These are truth table verifications, and a couple are homeworkexercises.

Page 40: 2.2 Logically Equivalent Statements

Important Equivalences

De Morgan’s Laws ¬(p ∧ q) ≡ ¬p ∨ ¬q¬(p ∨ q) ≡ ¬p ∧ ¬q

Conditional Statements p→ q ≡ ¬q→ ¬pp→ q ≡ ¬p ∨ q¬(p→ q) ≡ p ∧ ¬q

Biconditional Statement (p↔ q) ≡ (p→ q) ∧ (q→ p)Double Negation ¬(¬p) ≡ pDistributive Laws p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)Conditionals with p→ (q ∨ r) ≡ (p ∧ ¬q)→ rDisjunctions (p ∨ q)→ r ≡ (p→ r) ∧ (q→ r)

These are truth table verifications, and a couple are homeworkexercises.

Page 41: 2.2 Logically Equivalent Statements

Important Equivalences

De Morgan’s Laws ¬(p ∧ q) ≡ ¬p ∨ ¬q¬(p ∨ q) ≡ ¬p ∧ ¬q

Conditional Statements p→ q ≡ ¬q→ ¬pp→ q ≡ ¬p ∨ q¬(p→ q) ≡ p ∧ ¬q

Biconditional Statement (p↔ q) ≡ (p→ q) ∧ (q→ p)

Double Negation ¬(¬p) ≡ pDistributive Laws p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)Conditionals with p→ (q ∨ r) ≡ (p ∧ ¬q)→ rDisjunctions (p ∨ q)→ r ≡ (p→ r) ∧ (q→ r)

These are truth table verifications, and a couple are homeworkexercises.

Page 42: 2.2 Logically Equivalent Statements

Important Equivalences

De Morgan’s Laws ¬(p ∧ q) ≡ ¬p ∨ ¬q¬(p ∨ q) ≡ ¬p ∧ ¬q

Conditional Statements p→ q ≡ ¬q→ ¬pp→ q ≡ ¬p ∨ q¬(p→ q) ≡ p ∧ ¬q

Biconditional Statement (p↔ q) ≡ (p→ q) ∧ (q→ p)Double Negation ¬(¬p) ≡ pDistributive Laws p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

Conditionals with p→ (q ∨ r) ≡ (p ∧ ¬q)→ rDisjunctions (p ∨ q)→ r ≡ (p→ r) ∧ (q→ r)

These are truth table verifications, and a couple are homeworkexercises.

Page 43: 2.2 Logically Equivalent Statements

Important Equivalences

De Morgan’s Laws ¬(p ∧ q) ≡ ¬p ∨ ¬q¬(p ∨ q) ≡ ¬p ∧ ¬q

Conditional Statements p→ q ≡ ¬q→ ¬pp→ q ≡ ¬p ∨ q¬(p→ q) ≡ p ∧ ¬q

Biconditional Statement (p↔ q) ≡ (p→ q) ∧ (q→ p)Double Negation ¬(¬p) ≡ pDistributive Laws p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)Conditionals with p→ (q ∨ r) ≡ (p ∧ ¬q)→ r

Disjunctions (p ∨ q)→ r ≡ (p→ r) ∧ (q→ r)

These are truth table verifications, and a couple are homeworkexercises.

Page 44: 2.2 Logically Equivalent Statements

Important Equivalences

De Morgan’s Laws ¬(p ∧ q) ≡ ¬p ∨ ¬q¬(p ∨ q) ≡ ¬p ∧ ¬q

Conditional Statements p→ q ≡ ¬q→ ¬pp→ q ≡ ¬p ∨ q¬(p→ q) ≡ p ∧ ¬q

Biconditional Statement (p↔ q) ≡ (p→ q) ∧ (q→ p)Double Negation ¬(¬p) ≡ pDistributive Laws p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)Conditionals with p→ (q ∨ r) ≡ (p ∧ ¬q)→ rDisjunctions (p ∨ q)→ r ≡ (p→ r) ∧ (q→ r)

These are truth table verifications, and a couple are homeworkexercises.

Page 45: 2.2 Logically Equivalent Statements

Important Equivalences

De Morgan’s Laws ¬(p ∧ q) ≡ ¬p ∨ ¬q¬(p ∨ q) ≡ ¬p ∧ ¬q

Conditional Statements p→ q ≡ ¬q→ ¬pp→ q ≡ ¬p ∨ q¬(p→ q) ≡ p ∧ ¬q

Biconditional Statement (p↔ q) ≡ (p→ q) ∧ (q→ p)Double Negation ¬(¬p) ≡ pDistributive Laws p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)Conditionals with p→ (q ∨ r) ≡ (p ∧ ¬q)→ rDisjunctions (p ∨ q)→ r ≡ (p→ r) ∧ (q→ r)

These are truth table verifications, and a couple are homeworkexercises.

Page 46: 2.2 Logically Equivalent Statements

A Final Proof

Let p and q be statements. show that

((p ∨ q) ∧ ¬(p ∧ q)) ≡ ¬(p↔ q)

Proof

(p ∨ q) ∧ ¬(p ∧ q) Given statement(p ∨ q) ∧ (¬p ∨ ¬q) DeMorgan’s Law(p ∧ (¬p ∨ ¬q)) ∨ (q ∧ (¬p ∨ ¬q)) Distribution Law(p ∧ ¬p) ∨ (p ∧ ¬q) ∨ (q ∧ ¬p) ∨ (q ∧ ¬q) Distribution Law(p ∧ ¬q) ∨ (q ∧ ¬p) Impossibility¬(p→ q) ∨ ¬(q→ p) Conditional Law¬((p→ q) ∧ (q→ p)) DeMorgan’s Law¬(p↔ q) Definition of IFF

Page 47: 2.2 Logically Equivalent Statements

A Final Proof

Let p and q be statements. show that

((p ∨ q) ∧ ¬(p ∧ q)) ≡ ¬(p↔ q)

Proof

(p ∨ q) ∧ ¬(p ∧ q) Given statement

(p ∨ q) ∧ (¬p ∨ ¬q) DeMorgan’s Law(p ∧ (¬p ∨ ¬q)) ∨ (q ∧ (¬p ∨ ¬q)) Distribution Law(p ∧ ¬p) ∨ (p ∧ ¬q) ∨ (q ∧ ¬p) ∨ (q ∧ ¬q) Distribution Law(p ∧ ¬q) ∨ (q ∧ ¬p) Impossibility¬(p→ q) ∨ ¬(q→ p) Conditional Law¬((p→ q) ∧ (q→ p)) DeMorgan’s Law¬(p↔ q) Definition of IFF

Page 48: 2.2 Logically Equivalent Statements

A Final Proof

Let p and q be statements. show that

((p ∨ q) ∧ ¬(p ∧ q)) ≡ ¬(p↔ q)

Proof

(p ∨ q) ∧ ¬(p ∧ q) Given statement(p ∨ q) ∧ (¬p ∨ ¬q) DeMorgan’s Law

(p ∧ (¬p ∨ ¬q)) ∨ (q ∧ (¬p ∨ ¬q)) Distribution Law(p ∧ ¬p) ∨ (p ∧ ¬q) ∨ (q ∧ ¬p) ∨ (q ∧ ¬q) Distribution Law(p ∧ ¬q) ∨ (q ∧ ¬p) Impossibility¬(p→ q) ∨ ¬(q→ p) Conditional Law¬((p→ q) ∧ (q→ p)) DeMorgan’s Law¬(p↔ q) Definition of IFF

Page 49: 2.2 Logically Equivalent Statements

A Final Proof

Let p and q be statements. show that

((p ∨ q) ∧ ¬(p ∧ q)) ≡ ¬(p↔ q)

Proof

(p ∨ q) ∧ ¬(p ∧ q) Given statement(p ∨ q) ∧ (¬p ∨ ¬q) DeMorgan’s Law(p ∧ (¬p ∨ ¬q)) ∨ (q ∧ (¬p ∨ ¬q)) Distribution Law

(p ∧ ¬p) ∨ (p ∧ ¬q) ∨ (q ∧ ¬p) ∨ (q ∧ ¬q) Distribution Law(p ∧ ¬q) ∨ (q ∧ ¬p) Impossibility¬(p→ q) ∨ ¬(q→ p) Conditional Law¬((p→ q) ∧ (q→ p)) DeMorgan’s Law¬(p↔ q) Definition of IFF

Page 50: 2.2 Logically Equivalent Statements

A Final Proof

Let p and q be statements. show that

((p ∨ q) ∧ ¬(p ∧ q)) ≡ ¬(p↔ q)

Proof

(p ∨ q) ∧ ¬(p ∧ q) Given statement(p ∨ q) ∧ (¬p ∨ ¬q) DeMorgan’s Law(p ∧ (¬p ∨ ¬q)) ∨ (q ∧ (¬p ∨ ¬q)) Distribution Law(p ∧ ¬p) ∨ (p ∧ ¬q) ∨ (q ∧ ¬p) ∨ (q ∧ ¬q) Distribution Law

(p ∧ ¬q) ∨ (q ∧ ¬p) Impossibility¬(p→ q) ∨ ¬(q→ p) Conditional Law¬((p→ q) ∧ (q→ p)) DeMorgan’s Law¬(p↔ q) Definition of IFF

Page 51: 2.2 Logically Equivalent Statements

A Final Proof

Let p and q be statements. show that

((p ∨ q) ∧ ¬(p ∧ q)) ≡ ¬(p↔ q)

Proof

(p ∨ q) ∧ ¬(p ∧ q) Given statement(p ∨ q) ∧ (¬p ∨ ¬q) DeMorgan’s Law(p ∧ (¬p ∨ ¬q)) ∨ (q ∧ (¬p ∨ ¬q)) Distribution Law(p ∧ ¬p) ∨ (p ∧ ¬q) ∨ (q ∧ ¬p) ∨ (q ∧ ¬q) Distribution Law(p ∧ ¬q) ∨ (q ∧ ¬p) Impossibility

¬(p→ q) ∨ ¬(q→ p) Conditional Law¬((p→ q) ∧ (q→ p)) DeMorgan’s Law¬(p↔ q) Definition of IFF

Page 52: 2.2 Logically Equivalent Statements

A Final Proof

Let p and q be statements. show that

((p ∨ q) ∧ ¬(p ∧ q)) ≡ ¬(p↔ q)

Proof

(p ∨ q) ∧ ¬(p ∧ q) Given statement(p ∨ q) ∧ (¬p ∨ ¬q) DeMorgan’s Law(p ∧ (¬p ∨ ¬q)) ∨ (q ∧ (¬p ∨ ¬q)) Distribution Law(p ∧ ¬p) ∨ (p ∧ ¬q) ∨ (q ∧ ¬p) ∨ (q ∧ ¬q) Distribution Law(p ∧ ¬q) ∨ (q ∧ ¬p) Impossibility¬(p→ q) ∨ ¬(q→ p) Conditional Law

¬((p→ q) ∧ (q→ p)) DeMorgan’s Law¬(p↔ q) Definition of IFF

Page 53: 2.2 Logically Equivalent Statements

A Final Proof

Let p and q be statements. show that

((p ∨ q) ∧ ¬(p ∧ q)) ≡ ¬(p↔ q)

Proof

(p ∨ q) ∧ ¬(p ∧ q) Given statement(p ∨ q) ∧ (¬p ∨ ¬q) DeMorgan’s Law(p ∧ (¬p ∨ ¬q)) ∨ (q ∧ (¬p ∨ ¬q)) Distribution Law(p ∧ ¬p) ∨ (p ∧ ¬q) ∨ (q ∧ ¬p) ∨ (q ∧ ¬q) Distribution Law(p ∧ ¬q) ∨ (q ∧ ¬p) Impossibility¬(p→ q) ∨ ¬(q→ p) Conditional Law¬((p→ q) ∧ (q→ p)) DeMorgan’s Law

¬(p↔ q) Definition of IFF

Page 54: 2.2 Logically Equivalent Statements

A Final Proof

Let p and q be statements. show that

((p ∨ q) ∧ ¬(p ∧ q)) ≡ ¬(p↔ q)

Proof

(p ∨ q) ∧ ¬(p ∧ q) Given statement(p ∨ q) ∧ (¬p ∨ ¬q) DeMorgan’s Law(p ∧ (¬p ∨ ¬q)) ∨ (q ∧ (¬p ∨ ¬q)) Distribution Law(p ∧ ¬p) ∨ (p ∧ ¬q) ∨ (q ∧ ¬p) ∨ (q ∧ ¬q) Distribution Law(p ∧ ¬q) ∨ (q ∧ ¬p) Impossibility¬(p→ q) ∨ ¬(q→ p) Conditional Law¬((p→ q) ∧ (q→ p)) DeMorgan’s Law¬(p↔ q) Definition of IFF