68
New particle discovery at LHC and first properties measurements Estelle Scifo Laboratoire de l’Accélérateur Linéaire

21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

Embed Size (px)

Citation preview

Page 1: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

New particle discovery at LHCand first properties measurements

Estelle ScifoLaboratoire de l’Accélérateur Linéaire

Page 2: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

2

OUTLINE

1. Theory2. Higgs Status before LHC3. LHC and its detectors4. Data taking and results

21/01/2013

Page 3: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

3

1. THEORY

21/01/2013

Page 4: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

4

THE ATOM

3 elementary particles: e, u, d21/01/2013

Page 5: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

5

NEUTRINOS• An exemple of

complementarity between theory and experiment;

• Postulated in 1930 by Wolfang Pauli (and called neutrino in 1933 by Enrico Fermi) to explain an observed missing energy in beta decay;

• Weakly interacting particle;• Discovered in 1956 by Frederick

Reines and Clyde Cowan (Nobel prize 1995)

21/01/2013

Page 6: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

6

INTERACTIONS

• Interaction = exchange of mediator particles

• Electromagnetic: between electrically charged particles (photons γ)

• Strong: needed to explain nucleus coherence (gluons g)

• Weak: reponsible for some radioactive decays (W± & Z0)

• Gravity: (graviton ?)21/01/2013

Page 7: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

7

STANDARD MODEL OF PARTICLE PHYSICS

21/01/2013

Fermions:

Bosons:

Page 8: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

8

MASS HIERARCHY

• Photons (m<10-18 eV) and gluons massless • Neutrinos: massless in minimal SM but some hints (such as neutrinos

oscillations) indicate they should have a very small mass21/01/2013

Order of magnitudeme = 0.5 GeV ≈ 10-30 kg

Page 9: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

9

HIGGS MECHANISM

• Problem:– In the theory so far (described by quantum field

theory), W and Z bosons have no mass, – but experiments found masses ~ 80 GeV

• Solution:– Nice suggestion by (Brout-Englert) Higgs in the 60’s :

• Vacuum is filled with a ‘’Higgs’’ field that interact with particles and give mass to elementary particles.

• The mediator associated to this interaction: the Higgs boson

21/01/2013

Page 10: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

10

SPONTANEOUS SYMMETRY BREAKING• Higgs potential:

– Mexican hat– Stable solutions symmetric– The system has to chose one

of them spontaneous symmetry breaking(= the stable solution do not have the same symmetry than the physics)

• Other SSB in physics:

21/01/2013

Phase transition Column buckling

Page 11: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

11

ANALOGY WITH SUPERCONDUCTIVITY

• For T<Tc, magnetic field locked outside the material → photons have a mass ≠ 0

21/01/2013

• Critical temperature for SSB related to the BEH mechanism corresponds to ~100 GeV and is therefore equal to ~ 1015 K. • It happened at a time of ~ 10-10 s after the big bang

Page 12: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

12

‘’QCD MASS’’• Without Higgs, you would also have a mass!• Ex: a proton is made of 3 quarks

– Mproton = 938 MeV

– ∑mquarks = 9.4 MeV

• Explanation: more realistic view of protons

21/01/2013

DU

U

DU

U

g

gg

DU

U

g

g

DU

U

g

g

DU

U

• A proton at time t:

• The proton mass is mainly due to energy: m=E/c²

Page 13: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

13

TOWARDS EXPERIMENTS

• Need to observe this ‘’(BE)Higgs boson’’ to validate the theory;

• All properties predicted by the theory except its mass;

• In particular, we know its lifetime (≈10-24s !!) and its decay modes;

• The (BE)Higgs boson will therefore be observed through its decay modes and not directly. → several channels can be analyzed

21/01/2013

Page 14: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

14

2. HIGGS STATUS BEFORE LHC

21/01/2013

Page 15: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

15

LABORATORIES

• Several laboratories have contributed to the construction and evolution of particle physics

• Accelerators : LHC, TeVatron• Detectors (experiments): Atlas, CMS, D0, CDF21/01/2013

Page 16: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

16

CERN• European organisation for Nuclear Research• Created in 1954• Member states: (at the beginning) (joined)

• Contributions from outside Europe Country (Japan, USA…)• Budget in 2012: 887 million CHF 16 ≈ 707 million €21/01/2013

Page 17: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

17

FIRST HIGGS SEARCHES: LEP

• LEP– Electron-positron collider– 27km circumference– Center of mass energy up to 200 GeV– 4 detectors

• Results about Higgs:– No discovery– But allow to exclude some mass range…

21/01/2013

Page 18: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

18

LIMIT ON THE HIGGS MASS– LEP – TeVatron (1 TeV proton-antiproton collider in Chicago)

21/01/2013

Page 19: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

19

3. LHC AND ITS DETECTORS

21/01/2013

Page 20: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

20

LARGE HADRON COLLIDER (LHC)

• Proton-proton collider• In the same tunnel than LEP

(27 km)• Each proton energy: 7 TeV

(nominal value)• Previous CERN facilities still

used to prepare the beam before injection in the LHC

• Collisions each 25ns (nominal value), 50 ns (today) → each experiment needs a very effective trigger system to select interesting signature (low energy events eg are skipped)

21/01/2013

Page 21: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

21

LHC TUNNEL

21/01/2013

Page 22: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

22

LHC CONTROL ROOM

21/01/2013

Page 23: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

2321/01/2013

Page 24: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

24

LUMINOSITY• Caracteristic of the accelerator• Related to the number of collisions delivered• The higher luminosity, the higher the number of

recorded event, the better for search for rare process

21/01/2013

Number of collisions per second

Luminosity Probability of interaction btw 2 protons

• Dimension: L-2T-1; Current unit: inverse barn per second

• Integrated luminosity

Page 25: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

25

HIGGS PRODUCTION AT LHC

• Modes:

– Important because involve different Higgs couplings (to W, Z or quarks)

21/01/2013

Page 26: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

26

SENSIBLE HIGGS DECAY MODES

• H→bb:– Highest branching ratio– But: very high background– Study possible in very specific cases

lower number of events and smaller mass resolution

• H→ZZ: the ‘’golden channel’’;• H→γγ: clear signature, another important channel at LHC;• Other (less important because poor mass resolution):

– H →WW ,– H→τ τ

21/01/2013

Page 27: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

27

WHAT TO DO WITH DECAY PRODUCTS ?

21/01/2013

ΨAMass=mA

Part. 1

Part. 2

Signal:

Background:

Ψ

Part. 1

Part. 2

A

Page 28: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

28

WHAT TO DO WITH DECAY PRODUCTS ?

21/01/2013

Total:

Page 29: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

29

H→ZZ→4l: THE GOLDEN CHANNEL

• 3 possibilities: ZZ→eeee; ZZ→µµµµ; ZZ→eeµµ• Signal over Background ratio very high;• But very few expected events

(due to the BR(Z→ll)=3%);• Expected m4l distribution:

– mass resolution ≈1.5 GeV

21/01/2013

H

l

l

Z

l

l

Z

Page 30: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

30

H→gg: THE DIPHOTON CHANNEL

• Vertex Hgg impossible in the SM because photons are massless (= no coupling to Higgs boson)– Process allowed through loops involving massive particles:

• Clear signature• Expected mgg distribution

– mass resolution ≈1.5 GeV

21/01/2013

H

γ

γ

Page 31: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

31

INTERPRETATION:STATISTICAL TOOLS

21/01/2013

• Important variable: p-value (p0): estimate

‘’the probability for the background to fluctuate at least as much as the observed data’’

– If p-value is high: observed data are consistent with the hypothesis of background only

– If p-value is small (<10-7): there are more events in data than the expected background, even taking into account fluctuations

→ there might be a signal !

Page 32: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

32

EXPERIMENTS ON THE LHC

• 4 detectors:– ATLAS: general purpose– CMS: general purpose– LHCb: asymmetry matter/antimatter (CP-violation)– ALICE: heavy ions studies (Quarks and gluons plasma)

• ATLAS and CMS designed mainly for Higgs (and SUSY) searches

21/01/2013

Page 33: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

33

A GENERAL DETECTOR DESCRIPTION• Need to measure:

– Trajectories– Energies: calorimeters

(need to destroy incident particle)

• Ex: CMS

• And need to identify particles21/01/2013

Page 34: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

34

THE ATLAS DETECTOR

21/01/2013

Page 35: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

35

ATLAS DURING ASSEMBLING

21/01/2013

Page 36: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

36

CMS Silicon Tracker

The Silicon tracker (200m2) has 10M channels

Limoges 14-1-2013

Page 37: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

Limoges 14-1-2013 37

(E)/E = 3%/EGeV 0.7 %

CMS EM calorimeter more than 75000 cristals of PbW04

Page 38: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

IMPORTANCE OF GRANULARITY

• Ex. of ATLAS calorimeter: 3 longitudinal layers• 1st sampling very fine transverse granularity

– Allow to distinguish between photons and their main background: two close photons coming from the decay of energetic π°'s

• Photon π°

21/01/2013 38

π°γγ

Page 39: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

39

4. DATA TAKING AND RESULTS

21/01/2013

Page 40: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

LHC SCHEDULE

40

2008

2009

2011

10th september 2008 : first beams around19th september 2008 : incident

20th november 2009 : first beams around (again) december 2009 : collisions at 2.36 TeV

14 months of major repairs and consolidationNew Protection system

30th march 2010 : first collisions at 7 TeV august 2010 : luminosity of 1031 cm-2 s-1

2010

november 2011 : integrated luminosity ~ 5 fb-1

13th december 2011 : first ‘signal’ around 126 GeV

2012 march 2012 : start again at 8 TeV

4th July 2012 : evidence for a new boson ( total 8 TeV integrated luminosity for discovery : 6 fb-1) luminosity = 8 1033 cm-2s-1

now at 8 TeV : 13 fb-1 published 20 fb-1 taken

Page 41: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

41

DATA TAKING CONDITIONS• Btw 2010 and 2012, LHC

increases its performance: more and more events collected per unit of time

• Good point for search for rare phenomenon

• Drawback: more and more pile-up: lot of particles to identify in a single event

21/01/2013

2010 2011 2012

Page 42: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

42

FIRST ATLAS RESULTS(2010 DATA)

• All known particles were rediscovered at the right mass → give confidence in the new results

21/01/2013

Page 43: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

43

HIGGS DISCOVERY STEPS

• 13th December 2011: observation of an excess

• 4th July 2012: discovery

21/01/2013

Page 44: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

4421/01/2013

Page 45: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

45

RESULTS PER DECAY MODEINVARIANT MASS DISTRIBUTION

H→ZZ→4l H→gg

21/01/2013 NB: plots shown are updated plots from December 2012

Page 46: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

46

p0 DISTRIBUTIONS

H→ZZ→4l H→gg

21/01/2013

Page 47: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

47

COMBINED RESULTS

• ATLAS

21/01/2013

• CMS

p0 < 10-7 = discoveryFor both ATLAS and CMS There is a new particle

Page 48: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

EVOLUTION OF THE EXCESS

48

Page 49: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

49

UPDATE DECEMBER 2012

• Update with more data 6→13 fb-1

• Blue line ≈ July value

21/01/2013

Page 50: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

50

EVENT DISPLAY: H→γγ

21/01/2013

Page 51: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

51

EVENT DISPLAY: H→ZZ→4e

21/01/2013

Page 52: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

52

EVENT DISPLAY: H→ZZ→4Μ

21/01/2013

Page 53: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

53

NEXT

• Measure the properties of this new particle – Check it is really the Higgs boson…– Probe the SM

• Properties to measure:– Signal strength

(=number of observed signal wrt expected)– Couplings to other particles– Spin (0 in the SM)

21/01/2013

Page 54: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

54

SOME PRELIMINARY RESULTSSIGNAL STRENGTH

21/01/2013

Small excess in γγ wrt SM ? To be confirmed by more data.

Very good agreement with SM

Page 55: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

55

SOME PRELIMINARY RESULTS SPIN

• How to measure the spin ? • Idea: spin has an impact on angular

distribution– Spin 0: totally symmetric wrt space

orientation: angular distribution flat– Spin ≠ 0: angular distribution not flat…

• Plus: statistical analysis

21/01/2013

From γγ channel only:Probability for spin 0: 29%Probability for spin 2: 8.6%

Page 56: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

56

LIMITATIONS OF THE SM

• We already know some phenomenon that can not be explained by the SM– Neutrinos masses and oscillations– Mass hierarchy– Dark matter/energy

• Theories exist to explain this (eg supersymmetry) predict the existence of new heavy particles

(eg. SUSY have at least 5 Higgs bosons)

• That can contribute to the loop processes (eg H→gg) and change the experimental rate of this process by a few permil (otherwise would already have been observed) necessity to measure very precisely the branching ratios

21/01/2013

Page 57: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

57

LHC FUTURE

• 2012 pp run finished• Long shutdown:

2013-2015• Restart in 2015 at 13 TeV

21/01/2013

Page 58: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

58

CONCLUSIONS

• After many years and thanks to many people, a new particle has been observed at the LHC, by both ATLAS and CMS

• Very similar to the predicted (BE)Higgs-boson• Mass:

– ATLAS: mH=125.2 ± 0.3 (stat) ± 0.6 (syst)

– CMS: mH=125.8 ± 0.4 (stat) ± 0.4 (syst)

• Still need to measure very precisely its properties (spin, parity, BR) to probe the SM and perhaps find new physics ?

21/01/2013

Page 59: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

59

BACKUP

21/01/2013

Page 60: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

60

PRELIMINARY RESULTSCOUPLINGS

21/01/2013

Page 61: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

61

CONFINEMENT

21/01/2013

Page 62: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

LES JETS

• Confinement un quark libre n’existe pas• Comment est-ce qu’ils se manifestent dans

nos expériences ? Sous la forme d’un « flot » de particules appelé

‘’jet’’

62

Page 63: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

OBSERVATION DE JETS DANS ATLAS

63

Un événement avec jets

Un événement sans jet

Page 64: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

Collision

Une particule chargée Une autre particule chargée

Détecteur de traces

1) MESURE DE LA TRAJECTOIRE

Les électrons proches de la trajectoire de la particule chargée sont arrachés de leur atome et sont collectés par un système électronique sous la forme d’un signal électrique.

64

Page 65: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

2) MESURE DE L’ÉNERGIE• Formation de gerbe électromagnétique : nécessite la destruction de

la particule initiale

• Même principe pour mesurer l’énergie des électrons/positrons et des autres particules.

65

Calorimètreélectromagnétique

Électron (ou position)Photon

Page 66: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

66

ParticuleStable

Détecteur de traces

Calorimètre électro-

magnétique

Calorimètre hadronique

Détecteur de muons

Photon

Électron

Quark/Gluon Jets

Muons

Neutrinos

• Beaucoup de particules• Seules celles qui sont stables peuvent être identifiées

directement• Pour les autres, une analyse plus poussée est nécessaire

3) Identifier les particules

Page 67: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

67

LHC BUDGET

21/01/2013

54%

12%1%

1%

3%

2%

2%

15%

3%2% 3% 2%

Aimants

Cryogénie

Décharge de faisceau

Radio-frequence

Vide

Convertisseurs de puissance

Instrumentation du faisceau

Génie civil

Refroidissement & ventilation

Distribution d'énergie

Infrastructures & services

Installation & coordination

Page 68: 21/01/20132 3 3 elementary particles: e, u, d 21/01/20134

68

LIMITS: BRAZILIAN PLOT

21/01/2013