203s11Oscillations1

Embed Size (px)

Citation preview

  • 8/7/2019 203s11Oscillations1

    1/3

    SimpleHarmonicMotionAmassonaspringisanexample

    ofperiodicmotion.

    Intheabsenceoffrictionand

    dragforces,itoscillatesbetween

    itsreleasepointandapoint

    equa y ar romequ r um.

    Thisiscalledsimpleharmonic

    motion. Therestoringforcehas

    thesimplestpossibleform:

    HOOKESLAW

    F= kxnote: minussignjusttellsusthatthe

    forceopposesthedisplacement

    BestIgnored

    Useyourphysicsintuition!

    Forceconstantk Tellsushowstiffthespringis.

    Stiffspring largek

    Units:N/m [NewtonperMeter]

    Example:

    A0.5102kg masshangs

    fromaspringandis

    foundtostretchthe

    unstretched

    length

    springby0.25m fromits

    unstretchedlength.

    Whatisthespring

    constantofthespring?

    equilibrium

    stretch(d)

    equilibrium

    position

    SimpleHarmonicMotionDisplacement(x) isthedirected

    distanceoftheobjectfrom

    equilibrium.

    Amplitude(A) isthemaximum

    displacement.

    Period(T) isthetimeforonefull

    cycle.

    Frequency(f) isthenumberoffull

    cyclespersecond.

    Thinkaboutitthisway:

    f=1/T T=1/for

    Ablockonaspringbouncesupanddown

    every0.200seconds. Howmanytimesdoes

    itbounceupanddowninonesecond?

    T=0.200s

    f=1/T=5timespersecond

    f=5Hz(hertz)

  • 8/7/2019 203s11Oscillations1

    2/3

    Bigpoint:

    TheperiodT (orfrequencyf)ofanoscillatoris

    relatedonlytothestiffness k oftherestoring

    forceandtotheinertiam ofthesystem.

    Itdoesnottellyouanythingabouthowthe

    systemgotstartedandisindependentofthe

    amplitudeA.

    Howdoweknowthis? Letscheckitout!

    kxdt

    xdmmaF

    2

    2

    ===N2:

    m

    kwith)tcos(A)t(x =+=

    Assumesolution:

    0xm

    k

    dt

    xd2

    2

    =+

    )tsin(Adt

    )t(dx+=

    )t(xm

    k)t(x)tcos(A

    dt

    )t(xd 222

    2

    ==+=

    kxdt

    xdmmaF

    2

    2

    ===

    m

    kwith)tcos(A)t(x =+=

    N2:

    Assumesolution:

    0xm

    k

    dt

    xd2

    2

    =+

    oscillatorharmonic0)t(xm

    k

    dt

    )t(xd2

    2

    =+

    k

    m2Tand

    m

    k

    2

    1ff2

    m

    k=

    ===

    Whatwefind:

    kmT 2=Period:

    mkTf

    2

    1/1 ==

    In epen ento ampl tu e

    (naturalfrequency)Frequency:

    Problem:

    A2.00kg blockhangsfromaspringandoscillateswith

    aperiod T=1.00s. Whatmassofblock,hungfromthe

    samespring,wouldhaveaperiodof T=2.00s?

    mT 2

    k=

    .

    EnergyofSimpleHarmonicMotionPotentialenergyofaspring:

    Elasticforcesareconservative, therefore,thetotalmechanicalenergyisconserved.

    Itiseasiesttocalculatethetotalenergyatthe

    endpointsofmotion,wherethekineticenergyis

    zeroandtheenergyisallpotentialenergy.

  • 8/7/2019 203s11Oscillations1

    3/3

    SimpleHarmonicMotionThetotalenergyofanobjectinsimpleharmonicmotionisdirectlyproportionaltothesquareoftheamplitudeoftheobjectsdisplacement.

    SimpleHarmonicMotionThisallowsustocalculatethevelocityasafunction

    ofposition:

    kA2 =kx2 +mv2 .....

    andthemaximumvelocity(atx=0):

    SimpleHarmonicMotionTheenergyvariesfrombeingcompletelykineticto

    completelypotential,andbackagain.

    EquationsofMotionAnequationofmotiongivesthepositionofanobject

    asafunctionoftime.

    Simpleharmonicmotioncanberepresentedasa

    componentofuniformcircularmotion:(xldemo)

    EquationsofMotionTheequationofmotionfortheoscillatingobject

    couldbe givenby:

    ere, eon yposs y s a y= a = . ore

    likely,wewouldwanty=A att=0;thatis,att=0the

    objectwouldhaveitsmaximumdisplacement.Inthat

    case,

    Puzzle! A mass attached to a spring oscillates back and

    forth as indicated in the position vs. time plot below. At point

    P, the mass has:

    P

    t

    x

    2

    x A cos( t)

    v A sin( t)

    a A cos( t)

    =

    =

    =

    1. positive velocity and positive acceleration.

    2. positive velocity and negative acceleration.

    3. positive velocity and zero acceleration.

    4. negative velocity and positive acceleration.

    5. negative velocity and negative acceleration.

    6. negative velocity and zero acceleration.

    7. zero velocity but is accelerating (positively or

    negatively).

    8. zero velocity and zero acceleration.