17
ENS6104  Advanced Mechanical Design Lecture 2   Fatigue I Dr. Ferdinando Guzzomi [email protected]  Image Source:  http://www.prlog.o rg/11380026-mech anical-design-services -mechanical-engineering-dr awing-services.html

2014 L2m - Fatigue I

Embed Size (px)

Citation preview

Page 1: 2014 L2m - Fatigue I

7/27/2019 2014 L2m - Fatigue I

http://slidepdf.com/reader/full/2014-l2m-fatigue-i 1/18

ENS6104  Advanced Mechanical Design

Lecture 2 –

 Fatigue I

Dr. Ferdinando Guzzomi

[email protected] 

Image Source: http://www.prlog.org/11380026-mechanical-design-services-mechanical-engineering-drawing-services.html

Page 2: 2014 L2m - Fatigue I

7/27/2019 2014 L2m - Fatigue I

http://slidepdf.com/reader/full/2014-l2m-fatigue-i 2/18

Case Study: De Havilland Comet

Image source: http://en.wikipedia.org/wiki/De_Havilland_Comet

Page 3: 2014 L2m - Fatigue I

7/27/2019 2014 L2m - Fatigue I

http://slidepdf.com/reader/full/2014-l2m-fatigue-i 3/18

De Havilland Comet: 

http://www.youtube.com/watch?v=QFKP7xCsGsc 

Disaster & Progression 

Page 4: 2014 L2m - Fatigue I

7/27/2019 2014 L2m - Fatigue I

http://slidepdf.com/reader/full/2014-l2m-fatigue-i 4/18

Fatigue Failure: Evidence

Page 5: 2014 L2m - Fatigue I

7/27/2019 2014 L2m - Fatigue I

http://slidepdf.com/reader/full/2014-l2m-fatigue-i 5/18

Design for Strength or Life?

σ σ 

t t

Failure

Failure

Design for Strength Design for Life

Page 6: 2014 L2m - Fatigue I

7/27/2019 2014 L2m - Fatigue I

http://slidepdf.com/reader/full/2014-l2m-fatigue-i 6/18

Stage I  – Micro-cracks

Stage II  – Macro-cracks

Stage III  – Minimised area (Brittle or yield failure)

Fatigue Failure: Fracture Surfaces

Image source: http://www.twi-global.com/technical-knowledge/job-knowledge/fatigue-testing-078/

Crack initiation due to: Rapid cross section changes

(design)

Pitting/Spalling due to contact

loads

Construction marks / FabricationFaults

Material composition due to

 processing

Page 7: 2014 L2m - Fatigue I

7/27/2019 2014 L2m - Fatigue I

http://slidepdf.com/reader/full/2014-l2m-fatigue-i 7/18

Fatigue Failure: Fracture Surfaces

Image source: Shigley’s Mechanical Engineering Design

Page 8: 2014 L2m - Fatigue I

7/27/2019 2014 L2m - Fatigue I

http://slidepdf.com/reader/full/2014-l2m-fatigue-i 8/18

Fatigue Fracture: Worked Example

Stage I  – Micro-cracks

Stage II  – Macro-cracks

Stage III  – Minimised area (Brittle or yield failure)

Initial crack

Crack

propagation

(Beach marks)

Final fast

failure (Roughsurface)

Low nominal stressNo stress concentration

Rotational bending

Page 9: 2014 L2m - Fatigue I

7/27/2019 2014 L2m - Fatigue I

http://slidepdf.com/reader/full/2014-l2m-fatigue-i 9/18

Fatigue Fracture: Class Example

Image source: www.uh.edu and http://www.doobybrain.com/2009/03/02/giant-crankset-on-a-bicycle/

High Nominal Stress

Unidirectional bending

Severe Stress Concentration

High Nominal Stress?

What type of loading conditions produced this fatigue failure surface?

Application?

 

 

 

Page 10: 2014 L2m - Fatigue I

7/27/2019 2014 L2m - Fatigue I

http://slidepdf.com/reader/full/2014-l2m-fatigue-i 10/18

S-N Diagram: Basics

Image Source: http://www.accutektesting.com/testing-services/mechanical-testing/rotating-beam/

Fatigue life can be predicted using one of the

following methods:

Stress Life

Strain Life

Linear-Elastic Fracture Mechanics

Sut

High Cycle

Finite Life Infinite Life

106

Number of stress cycles, N

Log(N)

Fatigue Strength, SfLog(Sf)

Low

Cycle

103

Se

Page 11: 2014 L2m - Fatigue I

7/27/2019 2014 L2m - Fatigue I

http://slidepdf.com/reader/full/2014-l2m-fatigue-i 11/18

S-N Diagram: Steel Example 

Sut

Se

Low Cycle High Cycle

Finite Life Infinite Life

106

Number of stress cycles, N

Log(N)

Fatigue Strength, Sf

Log(Sf)

103

Page 12: 2014 L2m - Fatigue I

7/27/2019 2014 L2m - Fatigue I

http://slidepdf.com/reader/full/2014-l2m-fatigue-i 12/18

S-N Diagram:  Aluminium Example

Sut

Low Cycle High Cycle

106

Log(N)

Log(S)

Note:• Only some materials show endurance strengths

• Materials like Aluminium have no infinite life

Steel

 Aluminium

Page 13: 2014 L2m - Fatigue I

7/27/2019 2014 L2m - Fatigue I

http://slidepdf.com/reader/full/2014-l2m-fatigue-i 13/18

Endurance Strength

Ferrite Pearlite Martensite

Carbon Steel 0.57 - 0.63 0.38 - 0.41 … 

 Alloy Steel …  …  0.23 - 0.47

 A table for the endurance limit ratio S’e/Sut is shown below. 

In practice when using simple relationships, without testing it is worth being

conservative:

 MPaS  MPaS 

 MPaS S S 

ut e

ut ut e

1400700

14005.0'

'

The above is a reasonable approach for steel. Cast irons generally have a lower

endurance limit ratio and a lower peak endurance strength, defined by:

 MPaS  MPaS 

 MPaS S S 

ut e

ut ut e

600275

60045.0

'

'

Page 14: 2014 L2m - Fatigue I

7/27/2019 2014 L2m - Fatigue I

http://slidepdf.com/reader/full/2014-l2m-fatigue-i 14/18

High-Cycle Fatigue

Low cycle fatigue (< 10 3 cycles):

Life prediction from Strain-Life method

High cycle fatigue (> 10 3 cycles): 

Life prediction from Stress-Life method

Identified estimate of mean endurance limit for steel is either half the tensile

strength or 700MPa (whichever is lower) at > 10 6  cycles

However, is it possible to

estimate the fatigue strength

within the high cycle region? 

Sut

Se

Low Cycle High Cycle

106

Number of stress cycles, N

Log(N)   F  a   t   i  g  u  e

   S   t  r  e  n  g   t   h ,

   S   f

   L  o  g   (   S   f   )

103

Page 15: 2014 L2m - Fatigue I

7/27/2019 2014 L2m - Fatigue I

http://slidepdf.com/reader/full/2014-l2m-fatigue-i 15/18

S-N curve: Estimating Fatigue Strength

Traditionally, for wrought steels data suggests that at 1000 cycles (the start of high-cycle

fatigue) the mean fatigue strength is:

)65.0 vely,conservati(or80.0 33 10,10,   ut  f  ut  f     S S S S   

In the absence of actual fatigue testing , a fatigue strength fraction, f, is estimated from the

graph below to determine the fatigue strength (as a fraction of Sut) at 1000 cycles (Sf,103).

Conservatively, f = 0.9 for Sut < 490MPa

The following equation is used to estimate thehigh-cycle fatigue strength (103 < N < 106 ):

:  whereb

 f     N aS   

e

ut 

S  f  a

2)(

 

  

 

e

ut 

S  f  b

 log

3

1

490 560 630 700 770 840 910 980 1050 1120 1190 1260 1330 140

Sut [MPa]

0.76

Page 16: 2014 L2m - Fatigue I

7/27/2019 2014 L2m - Fatigue I

http://slidepdf.com/reader/full/2014-l2m-fatigue-i 16/18

For a completely reversed stress, Sf can be set to the reversed stress and

rearranging the equation above can provide the expected life (103    N    106 cycles):

b

 f     N aS  

Calculates: Mean Fatigue Strength Sf  for given 

cycles, N

Calculates: Cycles N, for given Mean Fatigue

Strength Sf  (or Reversed stress a)

S-N curve: Finding Fatigue Strength or Cycles

b

aS 

 N    f  

/1

 

  

 

High-cycle (between 103 and 106 cycles) fatigue strength can be estimated using

the following equation:

  

  

3log

  f  

ut  f     N S S 

 Although a crude approximation, the following equation can estimate the low-cycle

fatigue strength:

Estimates: Mean Fatigue Strength Sf  for given 

cycles, N (where 1    N    1000)

W k d E l F i S h

Page 17: 2014 L2m - Fatigue I

7/27/2019 2014 L2m - Fatigue I

http://slidepdf.com/reader/full/2014-l2m-fatigue-i 17/18

Worked Example: Fatigue Strength

The endurance limit of a thoroughly tested (in fatigue) wrought steel

member is 112MPa and the tensile strength is 385MPa. What is the

fatigue strength corresponding to a life of 70x103 cycles?

Example source: Shigley’s Mechanical Engineering Design

ℎ , , = 0.8 = 0.8 385 = 308 

= (308)

112  = 847  =

1

3log

  308

112  = 0.146 

Now finding the equation coefficients:

The high-cycle fatigue strength can then be calculated using the followingequation:

 = = 847 70 × 10 −. = 166 

W k d E l F ti St th

Page 18: 2014 L2m - Fatigue I

7/27/2019 2014 L2m - Fatigue I

http://slidepdf.com/reader/full/2014-l2m-fatigue-i 18/18

Worked Example: Fatigue Strength

For a hot-rolled 1050 steel sample with Tensile Strength of 620MPa, calculate the following:

I. The rotating-beam endurance limit at 106 cycles,

II. The endurance strength of a polished rotating-beam specimen corresponding to 10

4

 cycles to failure,

III. The expected life a polished rotating-beam specimen under a completely reversed

stress of 385MPa.

Example source: Shigley’s Mechanical Engineering Design

I. Sut = 620MPa < 1400MPa, therefore: ′ = 0.5 ⟹ ′ = 0.5 620 = 310 

II. For Sut = 620MPa, f = 0.86

= (533)

310  = 916  =

1

3log

  533

310  = 0.0785 

 = = 916 1 × 10 −. = 445 

⇒ ,= () = 0.86 620 = 533 

III. For a = 385MPa, = 

⇒ =  385

916

−.

= 62.4 × 10