4
1 2013 Source Inversion Validation (SIV) Workshop Report P. Martin Mai 1 , D. Schorlemmer 2 , Morgan Page 3 1 KAUST, Division of Physical Sciences & Engineering 4700 King Abdullah University of Science and Technology Thuwal 239556900, Kingdom of Saudi Arabia 2 GeoForschungszentrum Potsdam (GFZ) Telegrafenberg 14473 Potsdam, Germany 3 U.S. Geological Survey 525 S. Wilson Ave. Pasadena CA, 91106, U.S.A Summary The Source Inversion Validation (SIV) group conducted its 8 th workshop (since 2008) in conjunction with the Annual SCEC meeting in Palm Springs (Sept 811, 2013). There were approximately 50 participants in attendance during the 4hr workshop, to discuss methods and approaches to source inversion, to share the latest results related to the SIV exercises, and to discuss the continuation of the SIV project. The detailed program of the workshop can be found at http://www.scec.org/workshops/2013/siv/index.html, with links to individual presentations. The “Notes” below summarize the presentation and subsequent discussion of the workshop. The main outcome of the 2013 SIV workshop was a plan for developing a benchmark exercise using teleseismic data for the sourceinversion problem as well as for testing backprojection approaches, and to include additional tests at local & regional scale for ruptures embedded in 3D geological structure. It was also decided to hold a dedicated workshop in Southern California (Caltech/USC), presumably in March 2014, focusing on the teleseismic benchmarking as well as quantitative measures of “goodnessoffit” of rupturemodel solutions. Notes on Workshop Presentations The meeting opened with an introduction by Martin Mai, in which he presented results from the current suite of SIV benchmarks. First, new participants have completed the forward modeling tests. Among the submissions to date, one of the contributions has serious problems, and the remaining submissions have smaller differences. Work still needs to be done to fully understand the nature of these differences, since the forward problem is welldefined and has a correct solution, but most likely, solutions with small differences are due to slightly different parameter settings (or handling of code

2013!Source!Inversion!Validation!(SIV)!Workshop!Report! · 2013!Source!Inversion!Validation!(SIV)!Workshop!Report!!! P.#Martin#Mai1,D.Schorlemmer2,Morgan#Page3# # 1#KAUST,#Division#of#Physical#Sciences#&#Engineering#

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 2013!Source!Inversion!Validation!(SIV)!Workshop!Report! · 2013!Source!Inversion!Validation!(SIV)!Workshop!Report!!! P.#Martin#Mai1,D.Schorlemmer2,Morgan#Page3# # 1#KAUST,#Division#of#Physical#Sciences#&#Engineering#

1

 2013  Source  Inversion  Validation  (SIV)  Workshop  Report  

   

P.  Martin  Mai1,  D.  Schorlemmer2,  Morgan  Page3    

1  KAUST,  Division  of  Physical  Sciences  &  Engineering  4700  King  Abdullah  University  of  Science  and  Technology  

Thuwal  23955-­‐6900,  Kingdom  of  Saudi  Arabia    

2  GeoForschungszentrum  Potsdam  (GFZ)  Telegrafenberg  

14473  Potsdam,  Germany    

3  U.S.  Geological  Survey  525  S.  Wilson  Ave.  

Pasadena  CA,  91106,  U.S.A      Summary    The   Source   Inversion   Validation   (SIV)   group   conducted   its   8th   workshop   (since   2008)   in  conjunction   with   the   Annual   SCEC   meeting   in   Palm   Springs   (Sept   8-­‐11,   2013).   There   were  approximately  50  participants  in  attendance  during  the  4-­‐hr  workshop,  to  discuss  methods  and  approaches  to  source  inversion,  to  share  the  latest  results  related  to  the  SIV  exercises,  and  to  discuss  the  continuation  of  the  SIV  project.  The  detailed  program  of  the  workshop  can  be  found  at  http://www.scec.org/workshops/2013/siv/index.html,  with  links  to  individual  presentations.  The   “Notes”  below   summarize   the  presentation  and   subsequent  discussion  of   the  workshop.  The  main  outcome  of  the  2013  SIV  workshop  was  a  plan  for  developing  a  benchmark  exercise  using   teleseismic  data   for   the   source-­‐inversion  problem  as  well  as   for   testing  back-­‐projection  approaches,  and  to  include  additional  tests  at  local  &  regional  scale  for  ruptures  embedded  in  3D  geological  structure.  It  was  also  decided  to  hold  a  dedicated  workshop  in  Southern  California  (Caltech/USC),  presumably  in  March  2014,  focusing  on  the  teleseismic  benchmarking  as  well  as  quantitative  measures  of  “goodness-­‐of-­‐fit”  of  rupture-­‐model  solutions.        Notes  on  Workshop  Presentations    The  meeting  opened  with  an  introduction  by  Martin  Mai,  in  which  he  presented  results  from  the  current  suite  of  SIV  benchmarks.    First,  new  participants  have  completed  the   forward  modeling   tests.    Among  the  submissions  to  date,  one  of  the  contributions  has  serious  problems,  and  the  remaining  submissions  have   smaller   differences.     Work   still   needs   to   be   done   to   fully   understand   the   nature   of   these  differences,   since   the   forward   problem   is   well-­‐defined   and   has   a   correct   solution,   but   most   likely,  solutions  with   small   differences   are   due   to   slightly   different   parameter   settings   (or   handling   of   code-­‐

Page 2: 2013!Source!Inversion!Validation!(SIV)!Workshop!Report! · 2013!Source!Inversion!Validation!(SIV)!Workshop!Report!!! P.#Martin#Mai1,D.Schorlemmer2,Morgan#Page3# # 1#KAUST,#Division#of#Physical#Sciences#&#Engineering#

2

internal   parameters)   in   the   forward-­‐modeling   engines.   Second,   the   current   benchmark   inv2   was  presented,  for  which  also  GPS  synthetics  are  available.  Four  groups  have  submitted  results  so  far.  This  benchmark  uses  a  M~7  normal-­‐faulting  event,  embedded  in  layered  structure  (inv2a,  see  Figure  1)  and  in  a  3D  heterogeneous  velocity  structure  (inv2b).  None  of  the  groups  used  the  provided  GPS  data.  One  of   the   four  groups  had  a  slip  distribution   that   looked  visually  quite  different   than   the   target;  all  other  groups,  however,  fit  the  data  well  (according  to  their  own  calculated  synthetics)  and  seem  to  reproduce  the  target  model.    So  far,  no  solutions  have  been  submitted  for  inversion  benchmark  2b,  which  contains  Green’s  function  uncertainty.    Yugi  Yagi  presented  results  from  his   inversion  method  that   incorporates  the  effect  of  Green’s  function  errors   that  generate  correlated  errors   in   the  data  vector.  By  accounting   for   these  errors,  he   is  able   to  obtain  plausible   solutions  without   imposing   a  nonnegativity   constraint  on   the   slip.     This  methodology  makes   the   solution  more   stable   and   less   dependent   on   the   sampling   rate.     Furthermore,   it   fits   high-­‐amplitude   signals   better   than   an   inversion   that   does   not   account   for   these   errors.   Even   though   the  resulting  L2-­‐norm  data  fit  is  worse,  the  more  robust  parts  of  the  data  signal  are  well-­‐fit.    This  reinforces  the  notion  that  the  L2  norm  is  not  a  good  misfit  criteria;  solutions  that  fit   the  data  well  by  this  metric  may  not  reproduce  the  parts  of  the  solution  that  are  stable  with  respect  to  Green’s  function  error.  Yagi  also  presented   results   from  a  hybrid  backprojection  method   that   is   similar   to  a  heavily  damped   least-­‐squares  method.    Next,   Zacharie   Duputel   presented  work   that   uses   ensembles   of  models   to   capture   uncertainty   in   the  solution.  His  method  also   includes  uncertainty   in   the  Green’s   function,   and   though   the   application  of  Sarah  Minson’s  Bayesian  sampler  (CATMIP)  he  is  able  to  produce  multiple  models.  Synthetic  tests  show  that   when   uncertainty   in   the   Earth   model   is   included,   the   true   parameter   values   are   within   the  uncertainties  given  by  the   inversion  method;  not  only  are  the  estimated  covariances  realistic,  but  also  the  mean  parameter  values  are  approximately  correct.    Subsequently,  Hoby  Razafindrakoto  discussed  how  choices  for  the  source-­‐time  function  and  variations  in  the   assumed   1D-­‐velocity   structure   drive   differences   in   inversion   results.   Her   work   uses   a   Bayesian  approach,   such   that   the   final   results   can   be   examined   in   terms   of   variations   in   the   a   posteriori  probability  density  functions  (PDFs)  of  the  kinematic  source  parameters.  While  there  are  methods  that  can   account   for   uncorrelated   errors   in   velocity   structure,   errors   in   layer   depths   are  more   difficult   to  incorporate  –  these  types  of  errors  lead  to  time  shifts  in  the  data,  although  aligning  waveforms  before  inverting   can   mitigate   this.   Hoby   reported   that   different   slip-­‐time   function   parameterizations   led   to  different  inverted  rupture  velocities  because  the  inversion  is  sensitive  to  peak  slip  rather  than  initial  slip.    Compared  to  a   regularized  Yoffe  slip-­‐time   function,  Hoby   finds   that   the   triangle  slip-­‐time   function  has  earlier  rupture  times  and  introduces  an  artificial  correlation  between  rise  time  and  rupture  time.    William   Barnhart   next   discussed   work   with   Gavin   Hayes,   Guangfu   Shuo,   and   Chen   Ji   developing   fast  finite-­‐fault   inversions  at   the  NEIC.  Their   fast   finite-­‐fault  model   is  produced  within  60-­‐95  minutes  of  an  event,   and   then   revised  with  geodetic  observations,   a   refined   fault  model,   strong  ground  motion  and  intensity  data,  and  manual  wave  picks  in  the  following  hours  to  months.  Their  fast  finite-­‐fault  model  is  generated  automatically  with  W-­‐phase  data  and  a  fault  location  matching  the  best-­‐fit  CMT  nodal  plane.  The   total   amount   of   slip   is   constrained   by   moment.   This   initial   model   requires   30-­‐40   minuets   of  computation  time  (single  processor).    They  are  moving  to  improve  the  speed  at  which  manual  picks  and  fault  geometry  can  be  updated.    They  are  also  investigating  using  a  non-­‐uniform  fault  discretization  that  is  based  on  the  local  model  resolution  and  bootstrapping  data  to  obtain  an  ensemble  of  models.    In  the  future  they  plan  to  parallelize   their  code  to  speed  up  the  computation  time  as  well.    Also,   the  NEIC   is  

Page 3: 2013!Source!Inversion!Validation!(SIV)!Workshop!Report! · 2013!Source!Inversion!Validation!(SIV)!Workshop!Report!!! P.#Martin#Mai1,D.Schorlemmer2,Morgan#Page3# # 1#KAUST,#Division#of#Physical#Sciences#&#Engineering#

3

improving   the   latency   of   the   geodetic   data,   so   in   the   future   the   first   fast   finite-­‐fault  model   could   be  generated  from  a  joint  geodetic  and  seismic  inversion.    Finally,   Shenji   Wei   next   presented   results   from   a   CalTech/USGS/JPL   collaboration   on   high-­‐resolution  inversions   for  M≥4.8  earthquakes   in   the  2012  Brawley   swarm.     They  use   a  M3.9  earthquake   for  path  calibration   to   reduce   the   effect   of   errors   in   the   assumed   velocity   structure.     Using   a   synthetic  checkerboard  test  they  determine  that  a  joint  seismic  and  geodetic  inversion  is  best  –  the  seismic  data  improves  the  resolution  at  depth  significantly,  while  the  static  data  improves  the  resolution  at  shallow  depths.  They  found  that  the  two  largest  events,  a  M5.3  and  M5.4,  had  complementary  slip  distributions.      Notes  on  Workshop  Discussions    Following   the   talks,   several   hours  were   budgeted   for   detailed   discussion.   There  was  much   interest   in  bringing   in   researchers   working   on   backprojection   into   the   SIV   project.   Backprojection   can   help  delineate   the   rupture   fault   plane,   and   hence   provide   important   a   priori   information   for   conventional  finite-­‐fault   inversions.   A   prime   example   for   this   „modeling   chain“   is   the   2012   M8.6   Indian   Ocean  earthquake.    There  was  discussion  which  physical  quantities  backprojection   is   imaging  –   its  strength   is  not  slip  amplitude,  but  related  to  the  location  of  high-­‐frequency,  coherent  patches  of  slip.  Peter  Shearer  remarked   that   backprojection   is   not   imaging   the   rupture   front,   but   rather   general   regions  with   high-­‐frequency   bursts,   potentially   on   the   edges   of   high-­‐slip   patches;   Jim   Rice   countered   that   theoretical  models  suggest  that  the  rupture  front  should  have  fast  slip-­‐rate  changes  and  releated  high  frequencies  should   be   seen   by   backprojection.   Backprojection   seems   insensitive   to   stopping   phases   (perhaps  because  it  is  buried  by  the  coda).  However,  finite-­‐fault  inversions  often  show  ruptures  with  multiple  sub-­‐events   rather   than   a   single   smooth   rupture,   hence  multiple   episodes   of   rupture   acceleration   and   de-­‐accleration  that  should  radiate  high-­‐frequency  waves.  To  further  complicate  matters,  there  are  steady-­‐state   models   with   fast   slip-­‐rate   changes   that   do   not   radiate   seismically.   There   is   agreement   among    participants  that  more  work  is  needed  i  sunderstand  what  exactly  backprojection  is  imaging.    Dave   Jackson   proposed   to   focus   the   SIV   project   and   its   goals   on   the   needs   of   the   seismic   hazard  community,  such  as  the  UCERF  project.    These  include  the  depth  of  rupture  (particularly  for  the  largest  earthquakes),   the   prevalence   of   multi-­‐fault   ruptures,   and   the   functional   form   for   slip   along   strike  (particularly   for  multi-­‐fault   ruptures).    Bill  Ellsworth  said  the  goal  should  be  to  predict  ground  motion,  since  that  is  what  is  important  for  hazard.    Higher  frequencies  are  also  important  for  building  response,  yet   the   current   benchmarks   do   not   have   much   high-­‐frequency   content.   Future   benchmarks   should  therefore  ensure  that  the  ruptures  also  radiate  high-­‐frequency  waves  suffciently  (realistically).    In  addition,  the  forward  problems  need  to  be  revisited.  Even  though  the  forward  problem  benchmarks  are  several  years  old,  work  is  required  to  completely  understand  why  different  codes/modeling  groups  are  getting  different  results.    Previous  submission  should  be  revisited  and  revised.    It  was  suggested  that  we   could   provide   Green’s   functions   or   input   parameter   files   to   modeling   groups   to   eliminate   this  difference.    It  was  also  mentioned  that  a  teleseismic  forward  problem  may  be  needed.        John  Vidale  suggested  that  the  SIV  project  move  to  more  complex  problems.    Chen  Ji  agreed  with  this  comment   and   thought   we   should   include   a   realistic   benchmark,   perhaps   based   on   the   Southern  California   ShakeOut   scenario   (to   “make   it  meaningful”   for  modelers).     It  was   thought   that   this  would  help  to  generate  more   interest   in  the  community  since  this   is  a  well-­‐studied,  highly  visible  earthquake  model.   Furthermore,   a   complex   model   is   needed   to   generate   teleseismic   data   usable   by   the  

Page 4: 2013!Source!Inversion!Validation!(SIV)!Workshop!Report! · 2013!Source!Inversion!Validation!(SIV)!Workshop!Report!!! P.#Martin#Mai1,D.Schorlemmer2,Morgan#Page3# # 1#KAUST,#Division#of#Physical#Sciences#&#Engineering#

4

backprojection  modelers   (the  model  needs   to  have  coherent  high   frequencies,  which   is  different   than  the  stochastic  high  frequencies  that  the  CyberShake  platform  adds).    Leveraging  the  work  being  done  by  other  groups  in  SCEC  (e.g.,  the  3D  velocity  model  for  Southern  California)  could  aid  the  SIV  effort.    In  this  context,  Carl  Tape  suggested  that  the  next  benchmark  should  extend  a  high-­‐resolution  near-­‐field  model  to   a   teleseismic,   low-­‐resolution  model,   and,   as   part   of   this   benchmark,   create   a   3D  Green’s   function  catalog  for  modelers  and  the  broader  SCEC  community  to  use.      Conclusions  and  Decisions    The  importance  of  the  SIV  effort  was  underscored  by  a  comment  from  Peter  Shearer  –  „When  reading  a  paper   on   finite-­‐fault   modeling   one   doesn’t   know   what   to   trust“.   The   fit   to   the   data,   while   routinely  presented,  is  not  sufficient  to  understand  which  parts  of  the  solution  are  robust.        The   next   benchmark  will   focus   on   teleseismic   source   inversion,  with   an   attempt   to   generate   far-­‐field  synthetics   that   are   appropriate   for   back-­‐projection   imaging   of   the   rupture   process.   Further   emphasis  will   be   placed   on   accounting   for   uncertainty   in   Earth   structure.   For   this   purpuse,   we   may   design   a  benchmark   exercise   on   regional/local   scale   for   ruptures   embedded   in   3D   geological   structure   (e.g.  Soufthern  California  /  L.A.  Basin)    A  dedicated  modeling-­‐centered  SIV  workshop  is  planned  for  Spring  2014,  to  be  held  at  USC  /  CalTech.                                                      Figure  1:  Submitted  inversion  solutions  from  four  teams,  shown  in  the  graphical  represenation  provided  by  the  SIV  online  collaboration  platform  (http://equake-­‐rc.info/SIV/sivtools/list_benchmarks/),  and  the  actual  „target  model“  for  which  synthetic  near-­‐field  data  at  40  sites  were  computed  and  distributed  

! ! ! ! !

Current'SIV'benchmark'inv'2a!

3!

M'7'kinema6c'normal9faul6ng'EQ;'uncertainty'in'some'meta9data'

Team'A''

Team

'D'

'Team'A'

Team'C'

(1)'TARGET'