2013, A Rotating Framework, 02-Coriolis

Embed Size (px)

Citation preview

  • 7/30/2019 2013, A Rotating Framework, 02-Coriolis

    1/16

    Ocean Modeling - EAS 8803

    We model the ocean on a rotatingplanet

    Rotation effects are consideredthrough the Coriolis and

    Centrifugal Force

    The Coriolis Force arises becauseour reference frame (the Earth) isrotating

    The Coriolis Force is the sourceof many interesting geophysicalprocesses

    Chapter 2

    rotation

  • 7/30/2019 2013, A Rotating Framework, 02-Coriolis

    2/16

    A rotating framework - The coordinates

    -

    6

    1

    M

    M

    y

    x

    X

    r

    Y i

    j J

    I

    M

    6

    1

    -tFigure 2-1 Fixed (X, Y) and rotating

    (x, y) frameworks of reference.

    x = + X cost + Y sint

    y = X sint + Y cost.

    Fixed reference

    Rotatingreference

    Angular Velocity

  • 7/30/2019 2013, A Rotating Framework, 02-Coriolis

    3/16

    A rotating framework - The velocity (1st derivative)

    dx

    dt= +

    dX

    dtcost +

    dY

    dtsint

    +y

    X sint + Y cost

    dy

    dt=

    dX

    dtsint +

    dY

    dtcost X cost Y sint

    xAbsoluteVelocity

    Relative Velocitychange of thecoordinate relative tothe moving frame

    u =dx

    dt i +dy

    dt j U =dX

    dt I +dY

    dt J

  • 7/30/2019 2013, A Rotating Framework, 02-Coriolis

    4/16

    dx

    dt= +

    dX

    dtcost +

    dY

    dtsint

    +y

    X sint + Y cost

    dy

    dt=

    dX

    dtsint +

    dY

    dtcost X cost Y sint

    x

    U

    V

    u

    v

    U = uy, V = v + x.

    Relation between absolute and relative velocity

    !y

    !"x

    entraining velocitydue to rotation

    relativevelocity

    +absolutevelocity

    =

    A rotating framework - The velocity (1st derivative)

  • 7/30/2019 2013, A Rotating Framework, 02-Coriolis

    5/16

    A rotating framework - The acceleration (2nd derivative)

    d2x

    dt2=

    d2X

    dt2cost +

    d2Y

    dt2sint

    + 2

    dX

    dtsint +

    dY

    dtcost

    V

    2 (X cost + Y sint)

    x

    d2

    ydt2

    =

    d2

    Xdt2

    sint + d2

    Ydt2

    cost

    2dXdt

    cost + dYdt

    sint

    U

    2 ( X sint + Y cost)

    y

    .

    du

    dt

    dU

    dt 2!V

    ! "2x

    dv

    dt

    dV

    dt !2"U

    !"2y

  • 7/30/2019 2013, A Rotating Framework, 02-Coriolis

    6/16

    A rotating framework - The acceleration (2nd derivative)

    d2x

    dt2=

    d2X

    dt2cost +

    d2Y

    dt2sint

    + 2

    dX

    dtsint +

    dY

    dtcost

    V

    2 (X cost + Y sint)

    x

    du

    dt

    dU

    dt 2!V

    ! "2x

    U = u y, V = v + x.

    use this equality:

    Relation between absolute and relative velocity

  • 7/30/2019 2013, A Rotating Framework, 02-Coriolis

    7/16

    A rotating framework - The acceleration (2nd derivative)

    Coriolisacceleration

    relativeacceleration

    +absolute

    acceleration=

    Centrifugalacceleration

    +

    U = u y, V = v + x.

    use this equality:

    dU

    dt=

    du

    dt ! 2"v !"2

    x

    dV

    dt

    =

    dv

    dt

    ! 2"u !"2y

  • 7/30/2019 2013, A Rotating Framework, 02-Coriolis

    8/16

    A rotating framework - The acceleration (2nd derivative)

    + 2 u + ( r)VectorNotation

    Coriolis acceleration Centrifugal acceleration

    r =

    x

    y

    !

    "#

    $

    %&

    du

    dt

    define vectors: u =u

    v

    !

    "#

    $

    %&

    d

    dt+! !

    time derivative inrotating frame:

  • 7/30/2019 2013, A Rotating Framework, 02-Coriolis

    9/16

    Coriolis vs. Centrifugal Force

    Centrifugal Forcedepends only on location

    Coriolis Force is active

    only when things move

    dU

    dt=

    du

    dt ! 2"v !"2

    x

    dV

    dt

    =

    dv

    dt

    ! 2"u !"2y

  • 7/30/2019 2013, A Rotating Framework, 02-Coriolis

    10/16

    Centrifugal Force is unimportant for motions

    ....... ....... ......... ............ ............... ................. ................... ...................... ................................ .................................. ..................................... .......................................................... ............................................................ ............................................................ ...............................................................................................

    ..................................................................

    .........................................

    ................................

    ..................................

    ...................................... ...... ....... ........ ......... ......... .................. ......... ......... ........ ............. ............

    .........................

    S

    N

    Net

    Centrifugal

    Grav

    ity

    Local

    vertic

    al

    Figure 2-2 How the flattening of the

    rotating earth (grossly exaggerated in

    this drawing) causes the gravitational

    and centrifugal forces to combine into

    a net force aligned with the local verti-

    cal, so that equilibrium is reached.

    geoidan equipotential surface

  • 7/30/2019 2013, A Rotating Framework, 02-Coriolis

    11/16

    Free Motion on a rotating frame

    Coriolis Force is active

    only when things move

    dU

    dt=

    du

    dt ! 2"v !"2

    x

    dV

    dt

    =

    dv

    dt

    ! 2"u !"2y

  • 7/30/2019 2013, A Rotating Framework, 02-Coriolis

    12/16

    f = 2

    The general solution to this system of linear equations is

    u=

    Vsin(

    f t+

    )

    , v=

    Vcos(

    f t+

    )

    Free Motion on a rotating frame

    dudt

    2v = 0, dvdt

    + 2u = 0.

    NOTE: the speed does not change with timeyet u and vdo change with time!

    changes in u and vimply change in direction.

    Inertial Oscillations

  • 7/30/2019 2013, A Rotating Framework, 02-Coriolis

    13/16

    Trajectory of inertial oscillations

    x = x0 V

    f cos(ft + )

    y = y0 +V

    fsin(ft + )

    (x x0)2 + (y y0)

    2 =

    V

    f

    2combine and take

    the square

    R = Vf

    ...........................................................................................................................................................

    ......................

    ......................

    V

    (x0, y0)

    this is the equation ofa circle with radius

    R = Vf

    1

    Tp = 2/f

    period of a completecircle is calledinertial period

    2

  • 7/30/2019 2013, A Rotating Framework, 02-Coriolis

    14/16

  • 7/30/2019 2013, A Rotating Framework, 02-Coriolis

    15/16

    Coriolis acceleration in 3D - observations of inertial motions

    du

    dt fv = 0

    dv

    dt+ fu = 0

    equation of inertial oscillations

    these describe the unforced motion

  • 7/30/2019 2013, A Rotating Framework, 02-Coriolis

    16/16

    Discretizing the intertial oscillation equations

    du

    dt fv = 0

    un+1 un

    t fvn = 0

    dv

    dt+ fu = 0

    vn+1 vn

    t+ fun = 0

    Euler Method

    un+1 un

    t fvn+1 = 0

    vn+1 vn

    t+ fun+1 = 0

    Euler Method Implicit

    when rigth-hand side isat future time