13
Review A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology Jan P.F. Lagerwall a, b, * , Giusy Scalia a, b, * a Seoul National University, Graduate School of Convergence Science & Technology, 864-1 Iui-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-270, Republic of Korea b Advanced Institutes of Convergence Technologies, Department of Nanoscience & Technology, 864-1 Iui-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-270, Republic of Korea article info Article history: Received 14 February 2012 Accepted 13 March 2012 Available online 30 March 2012 Keywords: Liquid crystal Lyotropic Thermotropic Nanotechnology Soft matter Composites Colloids Biomembranes abstract Liquid crystals constitute a fascinating class of soft condensed matter characterized by the counterin- tuitive combination of uidity and long-range order. Today they are best known for their exceptionally successful application in at panel displays, but they actually exhibit a plethora of unique and attractive properties that offer tremendous potential for fundamental science as well as innovative applications well beyond the realm of displays. Today this full breadth of the liquid crystalline state of matter is becoming increasingly recognized and numerous new and exciting lines of research are being opened up. We review this exciting development, focusing primarily on the physics aspects of the new research thrusts, in which liquid crystals e thermotropic as well as lyotropic e often meet other types of soft matter, such as polymers and colloidal nano- or microparticle dispersions. Because the eld is of large interest also for researchers without a liquid crystal background we begin with a concise introduction to the liquid crystalline state of matter and the key concepts of the research eld. We then discuss a selection of promising new directions, starting with liquid crystals for organic electronics, followed by nanotemplating and nanoparticle organization using liquid crystals, liquid crystal colloids (where the liquid crystal can constitute either the continuous phase or the disperse phase, as droplets or shells) and their potential in e.g. photonics and metamaterials, liquid crystal-functionalized polymer bers, liquid crystal elastomer actuators, ending with a brief overview of activities focusing on liquid crystals in biology, food science and pharmacology. Ó 2012 Elsevier B.V. All rights reserved. Contents 1. Introduction ......................................................................................................................1388 2. Liquid crystals in a nutshell ........................................................................................................1388 2.1. Two liquid crystal classes, many liquid crystal phases ............................................................................ 1388 2.2. The anisotropic physical properties of liquid crystals ........................................ ................................... 1390 2.3. Deformations and singularities in the nematic director field ..................................................................... 1391 3. New directions for applied and fundamental liquid crystal science ......................................................................1393 3.1. Liquid crystals for organic electronics and energy conversion applications ......................................................... 1393 3.2. Liquid crystal templating for creating nanostructured materials or ordering nano- and microparticles ................................. 1396 3.2.1. Solidifying liquid crystal phases for creating regular nanoporous solids ............................ ........................ 1396 3.2.2. Synthesizing nanoparticles in liquid crystalline templates ................................................................ 1397 3.2.3. Colloidal particles organized by liquid crystals and liquid crystal phases from colloids .................... .................. 1397 3.3. Composite materials containing thermotropic liquid crystals as functional additive .................................................. 1400 3.3.1. Emulsions of cholesteric droplets for tunable omnidirectional lasing applications ........................................... 1400 3.3.2. Liquid crystalline shells .............................................................................................. 1401 3.3.3. Liquid crystal-filled electrospun micro-/nanofibers ...................................................................... 1403 * Corresponding authors. Seoul National University, Graduate School of Convergence Science & Technology, 864-1 Iui-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-270, Republic of Korea. E-mail addresses: [email protected] (J.P.F. Lagerwall), [email protected] (G. Scalia). URL: http://www.snm.lcsoftmatter.com, http://www.solcanta.com Contents lists available at SciVerse ScienceDirect Current Applied Physics journal homepage: www.elsevier.com/locate/cap 1567-1739/$ e see front matter Ó 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.cap.2012.03.019 Current Applied Physics 12 (2012) 1387e1412 3.4. Actuators made from liquid crystal elastomers ................................................................................. 1404 3.5. Liquid crystals in biology, biotechnology, food science and pharmacology .......................................................... 1405 3.5.1. Biodetection with liquid crystals ....................................................................................... 1405 3.5.2. Drug/nutrient delivery with liquid crystal cubosomes and hexosomes or liquid crystalline cremes ............... ............. 1405 3.5.3. Lipidomics and the liquid crystal phases of cell membranes .............................................................. 1406 4. Conclusions and outlook ...........................................................................................................1407 Acknowledgments ................................................................................................................ 1407 References ....................................................................................................................... 1407 1. Introduction It is almost 125 years since the Prague scientist Friedrich Rein- itzer in 1888 observed a curious behavior with double melting points of cholesterol benzoate, a discovery that today is widely recognized as the birth of liquid crystal science. The discovery and the new area of research that it triggered, engaging physicists and chemists around the world, remained of almost pure academic interest for some 75 years, until the idea occurred to utilize the simplest liquid crystal phase e the nematic e in display devices [1]. The impact of this idea was hardly clear at the time, but today we can look back at the development of liquid crystal displays (LCDs) and conclude that this application of the curious materials that liquid crystals consti- tute have entirely revolutionized our society. The explosive progress in display design and construction have made old-style cathode ray tube displays dinosaurs, and it has made possible a number of entirely new devices such as smart phones, laptop and tablet computers, digital projectors and dynamic information billboards. When the promise of liquid crystal displays became clear in the 1970s this stimulated great activity among academic and industrial researchers alike, and for quite a long time this single application strongly dominated the international research efforts in the eld. As a result of this long engagement, stimulated by the commercial success, liquid crystal display technology is today so advanced that the continued research and development is conducted primarily in industry labs. Academic liquid crystal science has, in contrast, during the last few years shown a clear trend of moving away from display research and instead focusing on topics that can be very different and in many respects even more stimulating [2], for instance in new uses in optics, nano-/micro manipulation, novel composites and biotechnology. The academic research eld is presently experi- encing a very creative and explorative phase, giving the eld a rebirth into a metamorphosed state in which other unique aspects of liquid crystals are brought forward and where the curious liquid crystalline states of matter are studied in new contexts. In their encounter with other very relevant elds of soft matter science, most conspicuously the science of polymers, colloids, nanotechnology and biotechnology, highly interesting and attrac- tive research elds are emerging, many with considerable potential for applications of entirely new kinds. The unique subtle balance between order and uidity that characterizes liquid crystals is not only deeply fascinating from a scientic point of view, but it gives rise to a broad range of spectacular phenomena that are far from fully explored. It is the aim of this review article to give a snapshot of the exciting development that the eld is currently experiencing, with an emphasis on the physics and materials science issues involved. The recent developments of liquid crystal chemistry (which are also very impressive and innovative) have been reviewed elsewhere, see e.g. [3e12]. We have tried to give a birds eye view of the most exciting current activities in liquid crystal- related nano-, micro- and biotechnology not related to displays or similar electrooptic devices, providing also a critical analysis of the key outstanding challenges in each eld. Since the topics covered are highly interdisciplinary and thus of interest also to readers outside the liquid crystal community we begin with a very condensed introduction to liquid crystals with explanations of the key concepts (an extended version can be found in one of the authorshabilitation thesis [13]), allowing also non-liquid crystal experts to enjoy the science described in the following chapters. 2. Liquid crystals in a nutshell 2.1. Two liquid crystal classes, many liquid crystal phases What makes liquid crystals unique is that they are uids, yet they exhibit long-range order: either the orientation or position, or both, of the phase building blocks are correlated over a long distance. In the nematic phase (abbreviated N) the long-range order is of purely orientational type: the anisometric building blocks (often rods or discs) are roughly oriented along one and the same direction, referred to as the director (abbreviated n), as illustrated in Fig. 1. In the absence of aligning forces the director varies smoothly throughout a nematic sample without discrete changes (except in defects), hence one often speaks of the director eld n(r), where r is the space coordinate. Two main classes of liquid crystal exist. Thermotropic liquid crystals are built up by individual molecules and no further Fig. 1. Cartoon of a nematic phase built from rod-shaped building blocks, drawn with a vertical director n. From [13]. J.P.F. Lagerwall, G. Scalia / Current Applied Physics 12 (2012) 1387e1412 1388

2012 LC review

Embed Size (px)

Citation preview

Page 1: 2012 LC review

Rev

iew

Anew

eraforliq

uid

crystalresea

rch:Applic

ationsof

liquid

crystals

insoftmatter

nan

o-,b

io-an

dmicrotech

nolog

y

JanP.F.

Lage

rwalla

,b, *,G

iusy

Scalia

a,b, *

aSeou

lNationa

lUniversity,

Gradu

ateScho

olof

Conv

ergenc

eScienc

e&

Tech

nology,8

64-1

Iui-do

ng,Y

eong

tong

-gu,

Suwon

-si,Gyeon

ggi-do

443-27

0,Rep

ublic

ofKorea

bAdv

ancedInstitutes

ofCo

nvergenc

eTech

nologies,D

epartm

entof

Nan

oscien

ce&

Tech

nology,8

64-1

Iui-do

ng,Y

eong

tong

-gu,

Suwon

-si,Gyeon

ggi-do

443-27

0,Rep

ublic

ofKorea

ar

ticle

in

fo

Article

history:

Received

14Fe

bruary20

12Accep

ted13

March

2012

Ava

ilableon

line30

March

2012

Keywords:

Liqu

idcrystal

Lyotropic

Thermotropic

Nan

otechnolog

ySo

ftmatter

Com

posites

Colloids

Biomem

bran

es

abstr

act

Liqu

idcrystals

constitute

afascinatingclassof

soft

conden

sedmatterch

aracterize

dby

theco

unterin-

tuitiveco

mbinationof

fluidityan

dlong-range

order.T

oday

they

arebe

stkn

ownfortheirex

ception

ally

successfula

pplication

inflat

pan

eldisplays,b

utthey

actually

exhibitaplethoraof

uniquean

dattractive

properties

that

offertrem

endou

spoten

tial

forfundam

entalscience

aswellas

innov

ativeap

plic

ations

wellbe

yond

therealm

ofdisplays.To

day

this

full

brea

dth

oftheliq

uid

crystallinestateof

matteris

beco

mingincrea

singlyreco

gnized

andnumerou

snew

andex

citinglin

esof

research

arebe

ingop

ened

up.

Wereview

this

excitingdev

elop

men

t,focu

singprimarily

onthephy

sics

aspects

ofthenew

research

thrusts,

inwhich

liquid

crystals

ethermotropic

aswellas

lyotropic

eoftenmee

tother

types

ofsoft

matter,su

chas

polym

ersan

dco

lloidal

nan

o-or

microparticledispersion

s.Becau

sethefieldis

oflarge

interest

also

forresearch

erswithou

taliq

uid

crystalb

ackg

roundwebe

ginwithaco

ncise

introd

uctionto

the

liquid

crystalline

state

ofmatteran

dthe

key

concepts

ofthe

research

field.W

ethen

discu

ssaselectionof

promisingnew

direction

s,startingwithliq

uid

crystals

fororga

nic

electron

ics,follo

wed

bynan

otem

platingan

dnan

oparticleorga

nization

usingliq

uid

crystals,liq

uid

crystalco

lloids(w

herethe

liquid

crystalc

anco

nstitute

either

theco

ntinuou

sphaseor

thedisperse

phase,

asdroplets

orsh

ells)an

dtheirpoten

tial

ine.g.

photon

icsan

dmetam

aterials,liq

uid

crystal-functionalized

polym

erfibe

rs,liq

uid

crystalelastomer

actuators,

ending

with

abriefov

erview

ofactivities

focu

sing

onliq

uid

crystals

inbiolog

y,food

science

andpharmacolog

y.�

2012

Elsevier

B.V.A

llrigh

tsreserved

.

Contents

1.Introd

uction

.................................................................

....

....

....

....

....

....

....

....

....

....

....

....

....

.138

82.

Liqu

idcrystals

inanu

tshe

ll........................................................

....

....

....

....

....

....

....

....

....

....

....

....13

882.1.

Twoliq

uidcrystalclasses,

man

yliq

uidcrystalph

ases

..........................................

....

....

....

....

....

....

....

....

..13

882.2.

Thean

isotropicph

ysical

prop

erties

ofliq

uidcrystals

........................................

....

....

....

....

....

....

....

....

...1

390

2.3.

Deformations

andsing

ularitiesin

thene

matic

director

field

.......................................

....

....

....

....

....

....

....

..13

913.

New

directions

forap

pliedan

dfund

amen

talliq

uidcrystalscienc

e......................................

....

....

....

....

....

....

....

....13

933.1.

Liqu

idcrystals

fororga

nicelectron

icsan

den

ergy

conv

ersion

applications

..............................

....

....

....

....

....

....

...1

393

3.2.

Liqu

idcrystaltemplatingforcrea

ting

nano

structured

materials

ororde

ring

nano

-an

dmicropa

rticles..................

....

....

....

...1

396

3.2.1.

Solid

ifyingliq

uidcrystalph

ases

forcrea

ting

regu

larna

nopo

rous

solid

s............................

....

....

....

....

....

....

1396

3.2.2.

Synthe

sizing

nano

particlesin

liquidcrystalline

templates

....................................

....

....

....

....

....

....

....

1397

3.2.3.

Collo

idal

particlesorga

nize

dby

liquidcrystals

andliq

uidcrystalph

ases

from

collo

ids

....................

....

....

....

....

..13

973.3.

Compo

site

materials

containingthermotropicliq

uidcrystals

asfunc

tion

alad

ditive

............................

....

....

....

....

....

..14

003.3.1.

Emulsion

sof

cholestericdrop

lets

fortuna

bleom

nidirectiona

llasing

applications

.........................

....

....

....

....

..14

003.3.2.

Liqu

idcrystalline

shells

.....................................................

....

....

....

....

....

....

....

....

....

....

.140

13.3.3.

Liqu

idcrystal-filledelectrospu

nmicro-/na

nofib

ers

.......................................

....

....

....

....

....

....

....

...1

403

*Corresp

onding

authors.

Seou

lNational

University,Graduate

Schoo

lof

Con

vergen

ceScience

&Te

chnolog

y,86

4-1

Iui-don

g,Ye

ongton

g-gu

,Su

won

-si,

Gye

ongg

i-do

443-27

0,Re

public

ofKorea

.E-mailad

dresses:

jan.la

gerw

all@

lcsoftmatter.c

om(J.P.F.L

agerwall),g

iusy.scalia

@solcan

ta.com

(G.S

calia

).URL:

http://w

ww.snm.lcsoftmatter.c

om,h

ttp://w

ww.solcanta.com

Contents

lists

available

atSciVerseScienceDirect

Curren

tApplie

dPh

ysics

journalhom

epage:www.e

lsevie

r.c

om

/locate

/cap

1567

-173

9/$e

seefron

tmatter�

2012

Elsevier

B.V.A

llrigh

tsreserved

.doi:10.10

16/j.cap

.201

2.03

.019

Curren

tApp

liedPh

ysics12

(201

2)13

87e14

12

3.4.

Actua

tors

mad

efrom

liquidcrystalelastomers

.............................................

....

....

....

....

....

....

....

....

....

1404

3.5.

Liqu

idcrystals

inbiolog

y,biotechn

olog

y,food

scienc

ean

dph

armacolog

y.................................

....

....

....

....

....

....

.140

53.5.1.

Biod

etection

withliq

uidcrystals

................................................

....

....

....

....

....

....

....

....

....

...1

405

3.5.2.

Drug/nu

trient

deliv

erywithliq

uidcrystalcu

bosomes

andhe

xosomes

orliq

uidcrystalline

crem

es.................

....

....

...1

405

3.5.3.

Lipido

micsan

dtheliq

uidcrystalph

ases

ofcellmem

bran

es..................................

....

....

....

....

....

....

....

1406

4.Co

nclusion

san

dou

tloo

k...........................................................

....

....

....

....

....

....

....

....

....

....

....

....14

07Ack

nowledg

men

ts............................................................

....

....

....

....

....

....

....

....

....

....

....

....

....

1407

Referenc

es................................................................

....

....

....

....

....

....

....

....

....

....

....

....

....

...1

407

1.Introduction

Itis

almost12

5ye

arssince

thePrag

uescientist

Friedrich

Rein-

itze

rin18

88ob

served

acu

riou

sbeh

aviorw

ithdou

blemeltingpoints

ofch

olesterolb

enzo

ate,adisco

very

that

today

iswidelyreco

gnized

asthebirthof

liquid

crystalscien

ce.Thedisco

very

andthenew

area

ofresearch

that

ittrigge

red,en

gaging

phy

sicistsan

dch

emists

arou

ndtheworld,rem

ained

ofalmostpure

acad

emic

interest

for

some75

years,untiltheidea

occu

rred

toutiliz

ethesimplest

liquid

crystalp

hasee

thene

matic

ein

displaydev

ices

[1].Th

eim

pactof

thisidea

was

hardly

clea

rat

thetime,bu

ttoday

wecanlook

back

atthedev

elop

men

tofliquid

crystald

isplays

(LCDs)

andco

ncludethat

this

applic

ationof

thecu

riou

smaterials

that

liquid

crystals

consti-

tute

hav

een

tirely

revo

lution

ized

ours

ociety.Theex

plosive

progress

indisplaydesignan

dco

nstructionhav

emad

eold-style

cathod

eray

tube

displays

dinosau

rs,an

dit

has

mad

epossibleanumbe

rof

entirely

new

dev

ices

such

assm

artphon

es,laptop

and

tablet

computers,d

igital

projectorsan

ddyn

amic

inform

ationbillb

oards.

When

thepromiseof

liquid

crystald

isplays

becameclea

rin

the

1970

sthisstim

ulatedgrea

tactivity

amon

gacad

emican

dindustrial

research

ersalike,

andforqu

itealongtimethis

singleap

plic

ation

stronglydom

inated

theinternationalresearch

effortsin

thefield.A

saresu

ltof

this

longen

gage

men

t,stim

ulated

bytheco

mmercial

success,liq

uid

crystald

isplaytech

nolog

yistoda

yso

adva

ncedthat

theco

ntinued

research

anddev

elop

men

tisco

nducted

primarily

inindustry

labs

.Academ

icliq

uid

crystalscien

cehas,inco

ntrast,during

thelast

few

yearssh

ownaclea

rtren

dof

mov

ingaw

ayfrom

display

research

andinstea

dfocu

singon

topicsthat

canbe

very

different

andin

man

yresp

ects

even

morestim

ulating[2],forinstan

cein

new

usesin

optics,nan

o-/m

icro

man

ipulation

,nov

elco

mposites

and

biotechnolog

y.Th

eacad

emic

research

field

ispresently

experi-

encing

ave

rycrea

tive

and

explorative

phase,

giving

the

field

arebirthinto

ametam

orphosed

statein

whichother

uniqueaspects

ofliq

uid

crystalsarebrou

ghtforw

ardan

dwherethecu

riou

sliq

uid

crystallinestates

ofmatterarestudiedin

new

contexts.

Intheiren

counterwithother

very

releva

ntfieldsof

softmatter

science,mostco

nsp

icuou

sly

the

science

ofpolym

ers,

collo

ids,

nan

otechnolog

yan

dbiotechnolog

y,highly

interestingan

dattrac-

tive

research

fieldsareem

erging,man

ywithco

nsiderab

lepoten

tial

forap

plic

ationsof

entirely

new

kinds.

Theuniquesu

btle

balance

betw

eenorder

andfluiditythat

characterize

sliq

uid

crystals

isnot

only

dee

ply

fascinatingfrom

ascientificpointof

view

,butitgive

srise

toabroa

drange

ofsp

ectacu

larphen

omen

athat

arefarfrom

fully

explored.Itistheaim

ofthisreview

articleto

give

asn

apsh

otof

theex

citingdev

elop

men

tthat

thefieldiscu

rren

tlyex

periencing,

with

anem

phasis

onthe

phy

sics

and

materials

science

issu

esinvo

lved

.Th

erecentdev

elop

men

tsof

liquid

crystalch

emistry

(which

are

also

very

impressive

and

innov

ative)

hav

ebe

enreview

edelsewhere,

seee.g.

[3e12

].Wehav

etriedto

give

abird’s

eyeview

ofthemostex

citingcu

rren

tactivities

inliq

uid

crystal-

relatednan

o-,m

icro-an

dbiotechnolog

ynot

relatedto

displays

orsimila

relectroo

ptic

dev

ices,p

rovidingalso

acritical

analysisof

the

keyou

tstandingch

allenge

sin

each

field.S

ince

thetopicsco

vered

are

highly

interdisciplin

ary

and

thusof

interest

also

toread

ers

outside

the

liquid

crystalco

mmunity

we

begin

with

ave

ryco

nden

sedintrod

uction

toliq

uid

crystals

withex

planationsof

the

keyco

ncepts(an

extended

version

can

befound

inon

eof

the

authors’

hab

ilitation

thesis

[13]),allowingalso

non

-liquid

crystal

experts

toen

joythescience

described

inthefollo

wingch

apters.

2.Liquid

crystals

inanutshell

2.1.

Twoliq

uidcrystalclasses,man

yliq

uidcrystalph

ases

What

mak

esliq

uid

crystals

uniqueis

that

they

arefluids,

yet

they

exhibitlong-range

orde

r:either

theorientation

orposition,o

rbo

th,of

the

phase

build

ing

bloc

ksare

correlated

over

along

distance.In

the

nem

atic

phase

(abb

reviated

N)the

long-range

order

isof

purely

orientation

altype:

the

anisom

etric

build

ing

bloc

ks(often

rodsor

discs)arerough

lyorientedalon

gon

ean

dthe

same

direction

,referred

toas

the

director

(abb

reviated

n),

asillustratedin

Fig.

1.In

theab

sence

ofaligningforces

thedirector

varies

smoo

thly

through

outa

nem

atic

sample

withou

tdiscrete

chan

ges(exc

eptin

defects),hen

ceon

eoftensp

eaks

ofthedirector

fieldn(r),whereris

thesp

aceco

ordinate.

Two

main

classesof

liquid

crystalex

ist.

Thermotropicliq

uid

crystals

are

built

up

byindividual

molecules

and

no

further

Fig.

1.Ca

rtoo

nof

ane

matic

phasebu

iltfrom

rod-sh

aped

build

ingbloc

ks,d

rawnwith

ave

rtical

director

n.F

rom

[13].

J.P.F.L

agerwall,G.S

calia

/Cu

rren

tApp

liedPh

ysics12

(201

2)13

87e1412

1388

Page 2: 2012 LC review

molecularsp

ecies(specifically

solven

tmolecules)

arerequ

ired

for

theliq

uid

crystalp

haseform

ation.Tem

perature

isthefundam

ental

thermod

ynam

icco

ntrol

param

eter

determiningthephase,thetw

oke

ytemperature

values

beingthosedefi

ningthebe

ginningan

den

dof

liquid

crystallineorder,themelting

pointT m

from

thecrystalline

solid

andtheclea

ring

pointT c

into

anisotropic

liquid.T

heclea

ring

pointow

esitsnam

eto

thefact

that

abu

lkliq

uid

crystalscatters

light,wherea

stheisotropic

liquid

isclea

r.Becau

seof

theirinter-

med

iate

state

betw

een

solid

san

dliq

uids,

liquid

crystals

are

sometim

esreferred

toas

mesom

orph

icsystem

san

dmoleculesor

other

entitites(nan

oparticles,m

olecule

aggreg

ates,.

)capab

leof

form

ing

liquid

crystalphases

arecalle

dmesog

ensor

said

tobe

mesog

enic.In

addition

toan

isom

etry,mesog

enicityam

ongther-

motropic

moleculeshas

itsorigin

inaco

mbinationof

astiffco

re(often

alin

earor

circulararrange

men

tof

arom

atic

rings)an

dflex

ible

term

inal

chains,

generally

aliphatic

hydrocarbon

s,cf.the

exam

plesin

Fig.

2.Lyotropicliq

uid

crystals

form

only

upon

additionof

asolven

t,mostoftenwater.M

oreo

ver,thebu

ildingbloc

kof

alyotropic

phase

isoftennot

onebu

tman

ymolecules(typ

ically

ontheorder

of10

0),

orga

nized

into

anag

greg

atecalle

damicelle.T

hemicelle

form

ation

isaresu

ltof

theam

phiphilicch

aractero

ftheco

nstituen

tmolecules,

generally

surfactants,cf.thean

-,cat-

and

non

ionic

exam

plesin

Fig.

2def,

resp

ective

ly.Micelles,

inwhich

the

amphiphile

sare

orga

nized

with

thenon

-polar

tails

inwards,

thusprotected

from

water

contact

bytheou

twards-directed

polar

hea

dgrou

ps,start

form

ing

beyo

nd

alim

iting

amphiphile

concentration

calle

dthe

Critical

Micelle

Conc

entration,

abbrev

iatedCM

C.Ty

pical

CMCva

lues

liein

the1e

10mM

range

(abo

ut0.01

e0.1wt.%).Th

eCMCdoe

snot

constitute

theon

seto

fliquid

crystallineorder:themicellarphasein

thevicinityof

theCMCan

dqu

iteasu

bstantial

regimebe

yondis

isotropic

inallproperties.Another

very

importantex

ample

of

amphiphile

sform

ing

liquid

crystals,

althou

ghge

nerally

not

micelles,

isgive

nby

theam

phiphiliclip

ids(e.g.phospho-,glyco-

andsp

hingo

lipids)

that

build

upthemem

bran

esof

thecells

inou

row

nbo

dies.

The

prototypic

phospholipid

DMPC

issh

own

asex

ample

inFig.

2g.Alsoam

phiphlic

bloc

kco

-polym

erscan

form

liquid

crystalp

hases.

Lyotropic

liquid

crystals

can

form

also

byan

isom

etric

non

-am

phiphilicmacromoleculesor

particles

such

asvirusesor

inor-

ganic

rodsor

discs

inco

lloidal

susp

ension

.Th

issu

bclass

oflyo-

trop

icsis

attracting

increa

sing

interest

today

[14e

21].

Polymers

that

form

liquid

crystals

ofthis

typemay

besynthetic

such

ascarbon

nan

otube

sor

thepolya

ramidech

ainsthat

areprocessed

via

aliq

uid

crystallinestateinto

Kev

lar�

fibe

rs,or

they

may

bebio-

logical,e.g.

DNA.

Thenem

aticisthesimplest

liquid

crystalp

hase,ex

hibitinglong-

range

orientation

albu

tnopositional

order.Ifw

ead

d1D

positional

orde

r,i.e

.aperiodicdistribution

ofthemoleculesalon

gon

esp

ecific

direction

,wege

ttheso-calledsm

ectic(thermotropic)or

lamellar

(lyo

trop

ic)phases,w

herethemolecules(typ

ically

rod-shap

ed)are

orga

nized

into

laye

rs.Insm

ectics

thedeg

reeof

positional

order

isstill

not

very

highan

dmoleculesfreq

uen

tlymov

efrom

onelaye

rto

the

nex

t,bu

tin

the

lamellarphases

the

amphiphile

sbu

ildup

bilaye

rsthat

areseparated

byan

aqueo

usregion

that

canbe

much

thicke

rthan

thebilaye

r,mak

ingthelaye

ringmuch

moredistinct.

Within

thelaye

rsthemoleculesmay

beon

theav

erag

eperpen

-dicularto

thelaye

rs(w

ecallthis

asm

ectic-A,or

SmA,statefor

thermotropics,an

dan

L astateforlamellarlyotropics)

orthey

can

beinclined

withacertainan

gle(thermotropic

SmCor

lyotropic

L0 b;

thedifference

betw

eenL a

andL0 b

how

ever

goes

farbe

yondtheissu

eof

molecule

tilt[13]).

Thenex

tstep

inlong-range

positional

orde

rin

liquid

crystal

phases

isen

countered

amon

gthe

columnar

phases,where

the

Fig.

2.So

metypicalrod-sh

aped

thermotropicmesog

ens(aeb),a

classicdiscotic

thermotropicmesog

en(c)an

dfour

common

lyoc

curringam

phiphiles(deg).

J.P.F.L

agerwall,G.S

calia

/Cu

rren

tApp

liedPh

ysics12

(201

2)13

87e1412

1389

build

ingbloc

ksarepositioned

ona2D

lattice,

butwithou

tlong-

range

positional

correlationin

thethirddirection

.Inthethermo-

trop

iccase

the

columnar

orde

ris

typically

form

edby

disco

tic

mesog

ens,thearom

atic

coresstackingupas

inpile

sof

coins,ea

chpile

beinglocatedon

apointof

alatticethat

isoftenhex

agon

al.In

thelyotropic

columnar

phases

wehav

e‘in

finitely’

longrod-shap

edmicellespositionally

correlated

ona2D

latticein

aplaneperpen

-dicularto

therods.

Ifwead

dch

iral

moleculesto

aliq

uid

crystalphase,

either

asnon

-mesog

enic

dop

ants

orby

usingch

iral

mesog

ens,

themacro-

scop

icliq

uid

crystalphaseis

generally

also

chiral.T

hepresence

ofstereo

isom

erically

enrich

edch

iral

moleculesis

forthermotropic

liquid

crystalsge

nerally

indicated

byad

dingastar

tothesh

orthan

dof

theco

rrespon

dingachiral

phase,

e.g.

N*forach

iral

nem

atic.In

lyotropicsthesameindicationis

usedforch

iral

nem

aticsbu

tthe

conve

ntion

has

not

been

adop

tedforlamellaran

dco

lumnar

phases.

The

best

studied

chiral

liqu

idcrystalis

the

chiral

nem

atic

phase,

oftenreferred

toas

thech

olestericphase.

Thech

iralityhere

expresses

itself

asahelical

mod

ulation

ofthedirec

toralon

gan

axis

perpen

dicularto

n,cf.Fig.

3.In

smec

ticphases,ahelical

directormod

ulation

perpen

dicularto

nwou

ldbrea

kthelaye

rsan

disthusnot

normally

admitted(anex

ception

istherare

classof

twist-grainbo

undaryphases).Th

eSm

A*phasethereforehas

the

samestru

cture

asan

achiral

SmAphase,bu

tits

phy

sicalp

roperties

arequ

itedifferentfrom

itsachiral

analog

[22].Inco

ntrasttoSm

A*,

thech

iral

SmC*phasedoe

sallow

ahelical

superstru

cture,b

utit

applies

tothedirec

tion

alon

gwhichthemolec

ulestiltaw

ayfrom

thelaye

rnormal.Inother

words,nin

SmC*doe

snot

twista

sin

N*,

butthetiltingdirec

tion

precesses

helically

alon

gthesm

ecticlaye

rnormal.T

heSm

C*phaseis

differentfrom

itsnon

-chiral

analog

,as

wellas

from

anynem

atic

phase,

also

inthat

itex

hibitsasp

onta-

neo

uspolarization

and

can

thussh

owferroe

lectric

switch

ing

properties

[22].

Theperiodicityof

thehelix

(thepitch

p)canbe

anyw

herefrom

afew

hundrednan

ometersto

infinity,

forch

olesterics

aswellas

SmC*-typephases.Ifitis

shortthephy

sicalproperties

canch

ange

dramatically

compared

tothe

non

-chiral

phases

[23].

The

mechan

ical

prope

rtiesof

ash

ort-pitch

N*phasealon

gthehelix

can

startresemblingthoseof

awea

ksolid

andforpon

theorde

rof

visible

lightwav

elen

gthsthe

periodicity

lead

sto

visible

Bragg

scattering,

from

N*as

wellas

from

SmC*,

referred

toas

selective

reflection

.Thesech

iral

liquid

crystals

then

beco

meself-assem

bled

photon

iccrystalswithaba

ndga

pthat

canbe

tuned

fairly

easily,e.g.

bytemperature

variation.

2.2.

Thean

isotropicph

ysical

prop

erties

ofliq

uidcrystals

Themacroscop

ican

isotropy

ofliq

uid

crystals,a

property

shared

with

no

other

fluid,is

theba

sisfortheirsu

ccessfulco

mmercial

exploitation.T

hean

isom

etry

ofthebu

ildingbloc

kstoge

ther

with

thelong-range

orientation

alorde

rge

nerally

render

liquid

crystals

optically

anisotropic,i.e

.theirrefractive

index

n kparallelto

nis

differentfrom

that

perpen

dicularto

thedirector,n t

.Fo

ranon

-ch

iral

uniaxial

material,thesetw

oindices

aretheex

trem

erefrac-

tive

index

values

andthedirectoriseq

uivalen

ttotheop

ticax

isof

the

liquid

crystal(pleasereferto

moresp

ecializ

edtexts,e.g.[23],for

the

specialcase

ofch

iral

liquid

crystals

with

short-pitch

director

mod

ulation

).Th

ebirefringe

nce

ofthe

material

isthen

Dn

¼n k

�n t

.Con

sequ

ently,ifn k

isthemax

imum

refractive

index

,Dn>

0an

dwecalltheliq

uid

crystalpositiveuniaxial

(this

isthe

generalcase

forrod

-shap

edmesog

ens),w

herea

sifitistheminim

um

thephaseisneg

ativeuniaxial(thisisthestan

dardcase

ford

isco

tics).

Since

the

effect

onpolarized

lightof

abirefringe

ntmaterial

dep

endscritically

ontheorientation

oftheop

ticax

isitisim

portant

tosp

ecify

how

aliq

uid

crystalis

aligned

with

resp

ectto

the

direction

oflig

htp

ropag

ation.A

dev

icein

whichtheliq

uid

crystalis

usedforitsan

isotropicop

ticalp

roperties,e.g.a

display,isge

nerally

athin

flat

film

,referred

toas

a‘cell’in

thege

neral

case.In

the

stan

dardco

nfigu

ration

lighten

ters

perpen

dicularto

thecellplane.

When

nis

aligned

perpen

dicularto

the

cell

the

lightray

thus

trav

ersesthecellalon

gtheop

ticax

is,lea

dingto

noeffectivebire-

fringe

nce

(any

polarization

ofthelig

htex

periencestheordinary

refractive

index

)andthisdirectoralignmen

tisthereforereferred

toas

homeo

trop

ic,aterm

that

can

beunderstoo

das

mea

ning

like

isotropic.Ifnis

instea

dperpen

dicularto

thecellplanewecallthis

planar

geom

etry.Atnormal

inciden

ceto

thecell,

lightwill

now

Fig.

3.Ca

rtoo

nsof

helic

aldirector

mod

ulationin

thech

iral

nematic

(cho

lesteric)ph

asewithrod-

anddisc-sha

pedbu

ildingbloc

ks,respe

ctively.

Each

rodor

disc

represen

tseither

amesog

en(the

rmotropics)or

micelle

(lyo

trop

ics)

withtheco

rrespo

ndingsh

ape.

Notethat,for

clarity,thepitchha

sbe

endraw

norde

rsof

mag

nitude

smallerthan

inrealityan

dthe

localde

gree

oforde

ris

muc

htoohigh

.From

[13].

Fig.

4.Sche

matic

draw

ingof

homeo

trop

ican

dplan

aralignm

ent,resp

ective

ly,h

ereillus

trated

forthecase

ofan

SmAph

ase(lay

erno

rmal

kpa

ralle

ltodirector

n)co

nfine

dbe

twee

npa

ralle

lflat

subs

trates.N

ormal

light

incide

ncemea

nsthat

thelig

htbe

amisprop

agatingve

rtically

inthepicture.

Notethat

thedraw

ingisno

tto

scale:

asm

ecticlaye

rissomethree

orde

rsof

mag

nitude

thinne

rthan

thedistan

cebe

twee

nthesamplesu

bstrates.F

rom

[13].

J.P.F.L

agerwall,G.S

calia

/Cu

rren

tApp

liedPh

ysics12

(201

2)13

87e1412

1390

Page 3: 2012 LC review

experience

themax

imum

birefringe

nce.Fo

rcu

rved

samples,

e.g.

liquid

crystald

ropletsor

shells,theterm

shom

eotrop

ican

dplanar

arestill

used,then

referringto

thedirectoralignmen

twithresp

ect

tothe

interface

with

the

continuou

sphase,

althou

ghthe

optic

effectsaremoreco

mplexdueto

thecu

rvature.In

Fig.

4thetw

oprincipal

alignmen

ttypes

areillustratedforthecase

ofasm

ectic-A

phasebe

twee

nflat

subs

trates.

Inaplanar-alig

ned

nem

atic

sample

wheren(r)has

norestric-

tion

toan

yparticu

lardirection

inthesample

plane(w

ereferto

this

geom

etry

asde

gene

rate

plan

aralignmen

t),thedirectoran

dthusthe

optic

axis

vary

random

lythroug

hou

tthe

sample

area

.W

hen

observing

the

sample

betw

een

crossed

polarizers,

alllocation

swherenis

parallelto

oneof

thepolarizerswill

appea

rblacksince

then

either

theordinaryor

theex

trao

rdinaryco

mpon

entva

nishes.

Since

these

location

sare

continuou

sly

connected,

form

ing

random

lycu

rving‘thread

s’or

‘strea

ks’,wege

tatexture

that

isve

rych

aracteristic

forthenem

atic

phase,

cf.theex

ample

inFig.

5.Th

istexture

iscalle

da

schlieren

texture

afterthe

German

word

for

streak

;Schliere.

Theab

ility

tomod

ulate

aliq

uid

crystald

isplayelem

entb

etwee

ndark

and

bright

isnormally

due

tothe

dielectric

anisotropy

Dε¼

εjj�εt,with

εjjan

dεt

beingthepermittivities

alon

gan

dperpen

dicularto

n,respe

ctively.

Byap

plyingan

electric

fieldthis

give

susahan

dle

forsw

itch

ingthedirectororientation

betw

een

differentdefi

ned

geom

etries,g

ivingdifferenttran

smission

.When

anelectricfieldEisap

plie

dov

eradielectricmed

ium

such

asaliq

uid

crystal,thefield

will

polarizethemed

ium,i.e

.an

electric

dipole

mom

entP

will

beinduced,p

roportion

alto

thefieldstrengthan

dto

thepermittivity

ofthemed

ium.Since

aliq

uid

crystalisdielectrically

anisotropicthepolarizationan

dthefieldwill

bedirecteddifferently

foran

ydirectororientation

that

isnot

alon

gE.

The

resu

ltis

adielectrictorqueGε¼P�Eon

thedirector,actingto

alignnalon

gðD

ε>

0Þor

perpen

dicularðD

ε<

0Þto

thefield.For

asimple

nem

atic

phasethetorquecanbe

calculatedto

be[23]:

Gε¼

�1 2ε0DεE2

sin2f

y(1)

Hereε0z8:85

$10�

12C/Vm

istheva

cuum

permittivity

andfis

the

angle

ofthe

directorwith

resp

ectto

the

electric

field.Th

edirectorisco

nsidered

tobe

inthex�

zplanean

dthefieldisap

plie

dalon

g�x

.In

adev

iceor

inatypical

research

sample

cellthereishow

ever

also

astronginfluen

cefrom

thesample

subs

trates,im

posingthe

startingco

nfigu

ration

(normally

planar

with

apositiveDεliq

uid

crystal).W

hen

anelectric

field

isap

plie

dwethustypically

get

aco

mpetition

betw

een

the

dielectric

contribution

tothe

free

energy

,promotingareorientation

ofthedirector,an

dtheelastic

contribution

,co

unteracting

any

chan

gefrom

the

initialplanar-

aligned

state.

Atwea

kfieldstheelasticco

ntribution

‘wins’

and

thedirectorremainsunaffected

bythefield,atstrongfieldsitisthe

other

way

arou

ndan

dthesample

issw

itch

ed.T

hebo

rderlin

ecase

iscalle

dtheFred

eriksthresholdafterthePo

lish-R

ussianphy

sicist

Vsevo

lod

Fred

eriks,

who

was

the

firstto

study

the

switch

ing

phen

omen

onin

detail[1].

The

switch

ing

process

isnow

aday

scalle

dtheFred

erikstran

sition

.Th

ean

isotropy

ofliq

uid

crystals

isalso

reflectedin

theirmag

netican

dco

nductiveproperties

aswella

sin

theirmultiple

viscosities,seee.g.

[23]

fordetails.

2.3.

Deformations

andsing

ularitiesin

thene

matic

director

field

Theundeformed

elasticgrou

ndstateof

anachiralnem

aticison

ewherethedirectorfieldistotally

uniform,i.e.n

points

inthesame

direction

everyw

herethroug

hou

tthesample.A

nelasticdeforma-

tion

inthecase

ofanem

atic

resu

ltsfrom

alocalreo

rien

tation

dnof

thedirector,lead

ingto

adirectorfielddistortiontran

smittedov

eralarger

scale.Since

distortionsin

n(r)c

oste

nergy

,thenem

atictries

toreestablishtheuniform

directorfield,n

otby

aforceas

insolid

elasticity

butby

anelastictorque

.Thestrengthof

thetorquecanbe

calculated

bydifferentiating

the

elastic

free

energy

.Neg

lecting

surfaceeffects,an

yge

neric

deformationof

n(r)canbe

described

asa

linea

rco

mbination

ofthree

elem

entary

elastic

deformations,

defi

ned

grap

hically

inFig.

6:splay,

twistan

dbe

nd.A

saresu

ltthe

fullelasticfree

energy

ofabu

lknon

-chiral

nem

atic

canbe

written

Fig.

6.Graph

ical

definition

sof

thethreeelem

entary

director

fieldde

form

ations

splay,

twistan

dbe

nd,tog

ethe

rwiththeirco

rrespo

ndingterm

sin

theelasticfree

energy

andtheir

resp

ective

elasticco

nstantsK1,K2an

dK3.Th

edraw

ings

illus

trateho

wea

chde

form

ationcanbe

prod

uced

inpractice

byen

caps

ulatingane

matic

betw

eenflat

subs

trates,the

inside

sof

which

areprep

ared

such

asto

ensu

reun

iform

plan

aror

homeo

trop

icdirector

orientationat

thesu

bstrate(the

preferreddirector

isindicatedwithathickdo

uble-h

eade

darrow).

Redraw

nafterde

Gen

nesan

dProst[23].

Fig.

5.Anex

ampleof

thech

aracteristic

schlierentextureof

nematic

liquidcrystals

inde

gene

rate

plan

aralignm

ent.Th

emicrograp

hisof

alyotropicne

matic

form

edby

disc-

shap

edmicelles,

butthesametype

oftexturecanbe

form

edby

anytype

ofachiral

nematic

inde

gene

rate

plan

arge

ometry.F

rom

[13].

J.P.F.L

agerwall,G.S

calia

/Cu

rren

tApp

liedPh

ysics12

(201

2)13

87e1412

1391

asasu

mof

threeterm

s,ea

chgivingthetotalelasticfree

energy

contribution

due

tosp

lay,

twistan

dbe

nd

deformationsin

the

sample,respective

ly:

Gdeform:¼

1 2K1ðV

$nÞ2þ1 2K

2ðn

$V�nÞ2þ1 2K

3ðn

�V�nÞ2

(2)

Thisex

pressionisreferred

toas

theOseen

-Frankex

pressionfor

the

free

energy

,afterthe

Swed

eCarlW

ilhelm

Oseen

and

the

Englishman

SirCharlesFran

k.Ea

chdeformationis

described

bytheap

propriateco

mbination

oftheve

ctor

operatorsdiverge

nce

(V$n

)an

dcu

rl(V

�n)squared

andtheen

ergy

cost

foracertaindeformationisproportion

alto

the

resp

ective

elasticco

nstan

t,K1forsp

lay,K2fortw

ista

ndK3forbe

nd.

Theseco

nstan

tsareve

ryim

portantmaterialparam

eters,critically

dictatingthebe

hav

iorof

anem

atic.Th

eyhav

ethedim

ension

ofaforce,

themag

nitudetypically

inthepN

range

,andthey

must

bepositive

(req

uired

forstab

ility).

Theirva

lues

are

sosm

allthat

thermal

motioninducesco

nsiderab

lefluctuationsin

n(r)in

abu

lknem

aticat

room

tempe

rature.O

ften

K1an

dK2hav

eab

outthesame

valuewherea

sK3is

abou

ttw

icethat

value.

Itcanbe

conve

nientto

approximatethem

alleq

ual

toasingleva

lueK,theso-called‘one-

constan

tap

proximation’.

Thedirectorfieldssh

own

inFig.

6areallsm

ooth

andlocally

defect-free

despitetheirdeformed

state.

Ifweprepareanem

atic

sample

withdeg

enarateplanar

alignmen

twewill

how

ever

almost

alway

shav

edefects

inthedirectorfield,i.e.p

oints

wheren(r)isnot

defi

ned

.Su

chadefectis

calle

dadisclin

ation.

Someex

amplesof

disclinations

are

show

nin

Fig.

7toge

ther

with

exem

plifying

polarizingmicrograp

hsof

how

themostco

mmon

ones

may

appea

rvisu

ally.Th

edrawings

are

two-dim

ension

alas

isthe

plane

of

observation

inthe

microscop

e.Th

elin

esillustrate

n(r)in

the

sample

planean

dtheblackdot

indicates

thedisclinationitself(the

pointwherethedirectoris

undefi

ned

).As

can

beseen

inthe

figu

re,a

disclination

can

begive

nadefi

ningparam

eter

s,givingitacertainmag

nitudean

dsign

.This

resembles

electrical

charge

san

d,in

fact,theinteraction

ofdis-

clinationsisin

man

yresp

ects

analog

ousto

electrostatics,w

ithlik

e-sign

eddisclinationsrepellin

gea

chother

wherea

sdisclinationsof

oppositesign

sattract.Disclinationswithjsji1

arerarely

observed

since

theen

ergy

den

sity

inthesu

rrou

ndingfieldof

asingu

larity

increa

sesas

s2.E

nergy

isthusge

nerally

gained

bysp

littingan

jsj¼

2disclinationinto

twojs j

¼1,

oron

ejs j

¼1into

twojs j

¼1=

2.In

three

dim

ension

sthe

2Ddrawings

discu

ssed

here

correspon

deither

toadefectlin

ethrough

thebu

lk(valid

forhalf-intege

rdis-

clinations)

orto

apointdefectstuck

atthesu

rface(s

intege

r).F

orarich

erdiscu

ssion

oftheseissu

es,seee.g.

thetext

book

byde

Gen

nes

andProst[23].

Disclinationsareim

portantintoda

y’sresearch

onliq

uid

crystals

foremostfortw

omain

reason

s.In

onecase

thetopolog

yof

the

sample

requ

ires

disclinationsto

form

,e.g.inplanar-alig

ned

drop-

lets

orsh

ells

ofliq

uid

crystal.In

theseco

nd

case

wecrea

tedis-

clinationsby

addingco

lloidal

particles

totheliq

uid

crystal,su

chas

glassor

polym

erbe

adsor

isotropic

liquid

droplets.B

othcaseswill

bediscu

ssed

below.

The

elasticity

theo

rydescribed

abov

ewas

dev

elop

edfor

nem

aticsbu

titc

anbe

extende

dan

dmod

ified

tophases

withpartial

positional

order.F

orea

chparticu

larphaseon

emust

how

ever

take

into

acco

untthesp

ecialrestriction

sim

posed

byitssymmetry.Itis

forinstan

cerelative

lyea

syto

realizethat

twoof

thethreeelem

en-

tary

deformationsarenot

allowed

inSm

Adueto

itsstructure.Since

thedirectoralso

defi

nes

thelaye

rsthroug

hitsdou

blerole

aslaye

r

Fig.

7.Ex

amples

ofdisclin

ations

ofmag

nitude

1/2,1an

d2,

ofpo

sitive

andne

gative

sign

,inaplan

ar-alig

nedne

matic.For

thes¼

�1/2

ands¼

�1cases,po

larizing

micrograp

hsare

prov

ided

asillus

trations

how

thesedisclin

ations

canbe

reco

gnized

inthepo

larizing

microscop

e.Notethat

thesign

ofthedisclin

ationcann

otea

sily

bede

term

ined

from

asing

lemicrograp

h.

J.P.F.L

agerwall,G.S

calia

/Cu

rren

tApp

liedPh

ysics12

(201

2)13

87e1412

1392

Page 4: 2012 LC review

normal,a

twistin

thedirectorfieldalso

entails

atw

istin

thelaye

rstructure,som

ethingthat

wou

ldrequ

ireabrea

kingupof

thelaye

rs.

This

cann

othap

penin

ordinarySm

Aphases

andthustw

istdefor-

mationsdonot

occu

rin

SmA.A

sfordirectorbe

nd,a

lsothis

give

sproblem

swiththelaye

rstructure

since

abe

ndin

n(r)effectively

correspon

dsto

asp

layin

thelaye

rs.T

helaye

rthickn

esswou

ldhav

eto

chan

geco

nstan

tly,asituationthat

doe

snot

occu

rin

realitysince

thelaye

rthickn

essisdefi

ned

bytheeffectivelengthan

dinclination

ofthe

molecules.

We

are

thus

left

with

only

directorsp

lay

asapossibledeformationin

SmA,corresp

ondingto

smecticlaye

rben

d.Althou

ghSm

Cis

less

symmetrican

dthusin

somesense

more

ordered

than

SmA

(occurringat

lower

tempe

ratures)

itactually

allowsmorefluctuationsin

thedirectorfield

than

SmA.Th

isis

because

thead

ditionof

atiltingdirection

give

sanew

free

dom

for

deformationswhich

do

not

interferewith

thelaye

red

structure,

allowingnto

bendas

wella

stw

istin

SmCan

dSm

C*.

We

end

this

briefintrod

uction

toliq

uid

crystalelasticity

bypointingou

tthat

this

isacontinuu

mdescription

:it

relie

sfund

a-men

tally

ontheassu

mption

that

theliq

uid

crystal’s

true

discrete

molecular

nature

can

beneg

lected

,the

fluid

being

trea

ted

asaco

ntinuum

instea

d.Th

isassu

mptionholds

aslongas

theob

jectsan

dphe

nomen

aund

erdiscu

ssion

have

sizesthat

are

very

large

onamolecular

scale.Sinc

ethisisindee

dthecase

inmostp

racticalusesof

liquid

crystals,the

elasticity

theo

ryismosto

ften

valid

andex

trem

ely

useful.Th

ereareho

wev

ersituations

whe

rethetheo

rymay

brea

kdow

n,in

particu

larin

theresearch

onna

noparticles

inliq

uidcrystals.

3.New

direc

tion

sforap

plied

andfu

ndam

entalliquid

crystal

science

Intheremainder

ofthis

articlewewill

highlig

htafew

ofthe

major

curren

tdirection

sinto

whichliq

uid

crystalscien

ceishea

ding

today.O

ther

authorsmighthav

emad

easlightlydifferentselection

from

the

very

rich

playg

roun

dthat

research

onliq

uid

crystals

constitutes,

butwebe

lieve

that

theex

amplesgive

ndorepresent

some

ofthe

mostex

citing

activities,an

dthey

certainly

attract

considerab

leinterest

across

theinternational

research

community.

3.1.

Liqu

idcrystals

fororga

nicelectron

icsan

den

ergy

conv

ersion

applications

Anarea

wherethesp

ontaneo

uslong

-ran

georder

ofliq

uid

crys-

tals

andtheea

seof

controllingtheiralignm

entov

erlargearea

sis

very

attractive

isorga

nicmaterials

forsemicon

ductor

dev

ices

and

energy

conv

ersion

.Inparticu

lartheuse

ofliq

uid

crystalsforb

uild

ing

efficien

torga

nic

pho

tovo

ltaic

and

tran

sistor

dev

ices

byself-

assemblyhas

been

attracting

attention

forsometime[7,24e

27],

butrecentlytherewerealso

impressivedem

onstration

sof

mecha-

noe

lectricalen

ergy

conv

ersion

utiliz

ingthehighflex

oelectricco

ef-

ficien

tsof

bent-corenem

atics[28e

31].Herewewill

firstg

iveabrief

review

oftheactivities

intheform

erfieldan

dthen

ween

dthis

subsection

withasn

apsh

otof

thestateof

theartof

thelatter.

Theinterest

inorga

nic

electron

icshas

been

very

strongon

anintern

ational

scalean

dov

erarelative

lylongperiodof

time,

andas

aresu

ltalargenumbe

rof

arom

atic

moleculesthat

arepoten

tially

usefulfororga

nic

semicon

ductorsor

solarcells

[32]

hav

ebe

endesigned

.Th

esingle-molecule

properties

arehow

ever

only

one

factor

indeterminingtheperform

ance

ofadev

iceem

ployingthese

materials.In

orde

rto

ensu

rehigh

charge

carrier

mob

ility

onadev

icescale,

themoleculesmust

bepacke

din

awellordered

arrange

men

tproviding

good

overlap

ofthe

porbitals

ofthe

arom

atic

moieties.

Long-range

orientation

alan

dat

leastpartial

positional

orde

rallows

the

orbitalov

erlap

betw

een

adjacent

moleculesto

extend

over

macroscop

icdistances,

thuslead

ingto

theco

mmon

picture

ofba

nd-likeco

nduction,cf.Fig.

8.Th

etypeof

conductionis

how

ever

ofthehop

pingtype.

Amorphou

smaterials

areob

viou

slyinap

propriatein

this

resp

ectsince

themoleculesare

disordered

alread

yon

asm

allscale.C

rystallin

estructuresmighton

the

other

han

dseem

tobe

idea

lat

first,

buton

emust

then

remem

berthat,fordev

iceap

plic

ation,theordered

arrange

men

tmust

extenduniformly

over

distancesco

rrespon

dingto

theinter-

electrod

edistancesof

thedev

ice.

This

typically

range

sfrom

some

hundredsof

nan

ometersto

seve

ralmicrons.

Iftheorde

rbrea

ksdow

nlocally

,asin

agrainbo

undary,

thego

odco

nductionpathis

brok

en.B

ecau

seitisve

rych

allengingto

achieve

perfect

crystals

ofthedesired

materials

over

thedistancesrequ

ired

,this

mak

esthe

route

viathecrystallinestateless

than

optimal.

By

using

molecules

that

are

suitab

lefororga

nic

electron

icap

plic

ationsat

thesametimeas

they

exhibitmesog

enicproperties,

onecansolvetheproblem

oflarge-scalealignmen

tin

aneleg

ant

andsimple

way

[24,25

].A

liquid

crystalphaseis

much

easier

toalignthan

acrystallinephasean

dgrainbo

undariescanbe

annea

led

rather

easily.Moreo

ver,they

arehighly

suitab

leforsolution

pro-

cessing.

The

mostco

mmon

lyem

ploye

dliq

uid

crystals

inthis

context

aretheco

lumnar

phases

ofdisco

ticmesog

ens,

providing

good

charge

carriermob

ility

andba

nd-typ

eco

nductivityalon

gthe

Fig.

8.Ca

rtoo

nillus

tratingthetran

sition

from

individu

alen

ergy

leve

lsto

energy

band

sas

theex

tens

ionof

pelectron

overlapgrow

salon

gtheco

lumns

ofaco

lumna

rdiscotic

liquid

crystalph

ase.

J.P.F.L

agerwall,G.S

calia

/Cu

rren

tApp

liedPh

ysics12

(201

2)13

87e1412

1393

columnswhichthuseffectivelybe

comeakindof

‘molecularwire’

[24e

26].

Butalso

smectic

and

nem

atic

phases

ofrod-shap

edmesog

enshav

ebe

enex

ploredin

this

context.

Han

naan

dco

-worke

rsfunctionalized

moleculesop

timized

for

field

effect

tran

sistor

applic

ationswith

alky

lch

ains,

givingthem

smecticphases

betw

een

the

crystalline

and

isotropic

states.By

dissolvingthematerialin

anap

propriatesolven

tan

dsp

inco

ating

thesolution

sat

atemperature

wherethepure

materialis

inthe

smecticstate,

they

achieve

dex

celle

ntfilm

swithve

ryhighunifor-

mityan

dlong-range

order

[33],cf.Fig.9.

Ifthematerialw

asinstea

dsp

inco

ated

atlow

temperature,such

that

acrystallinestateform

swhen

thesolven

tev

aporates

they

achieve

darather

inhom

oge-

neo

uspolycrystallin

efilm

witharough

surface.Th

eresu

ltco

uld

beim

prove

dby

raisingthetemperatureto

theliq

uid

crystallinerange

aftersp

inco

atingan

dthusan

nea

lingthefilm

,butthefilm

did

not

reachthequ

alityof

thefilm

spin

coated

intheliq

uid

crystalline

state.

Using

arelated

non

-functionalized

materialwithou

tthe

capab

ility

toform

liquid

crystalp

hases

theresu

ltswereev

enworse

andthean

nea

lingop

tion

was

obviou

slynot

available.

Adrawba

ckof

using

liquid

crystalline

system

sfororga

nic

electron

icsis

that

themolecule

mob

ility

intheliq

uid

crystalline

stateis

still

rather

high.T

his

lead

sto

less

strongp-p

-stack

ingan

dthusto

alim

ited

hop

pingco

nduction,con

siderab

lypoo

rerthan

in

acrystallinestate.

Inge

neral,theea

sier

thephaseis

toalign,the

grea

terthisproblem

.Nem

aticsthushav

ethelowestch

arge

carrier

mob

ility

amon

gliq

uid

crystalphases

and

even

SmA

and

SmC

phases

hav

eunsatisfactory

values.T

herefore,

themostpromising

approachis

generally

topreparethelarge-scaleordered

arrange

-men

tin

theliq

uid

crystallinephase,

inwhichthealignmen

tcanbe

controlledea

sily,an

dthen

quen

chthesystem

tolower

tempe

ra-

turesso

rapidly

that

crystallization

ispreve

nted,instea

dgiving

aglassy

statein

whichtheliq

uid

crystallineorder

isfroz

enin.In

thisway

thego

odlong-range

order

withlittleor

nodefects

that

can

beachieve

dby

processing

intheliq

uid

crystallinestatecan

beco

mbined

with

smallmolecular

fluctuations,

and

hen

cehigh

charge

carriermob

ilities

over

longdistancescanbe

expected.

An

orga

nic

solarcell

consistsprimarily

ofa

heterojunction

betw

eenan

electron

-don

atingan

dan

electron

-accep

tingmaterial.

The

energy

provided

when

aphoton

isab

sorbed

lead

sto

the

crea

tion

ofan

exciton,i.e

.abo

und

electron

eholepair.

Forthe

function

ofthesolarcell

theex

citon

shou

lddiffuse

toward

the

interfacewhereitcandissociateinto

free

charge

carriers

inthetw

oresp

ective

materials,that

can

then

beharve

sted

asan

electrical

curren

t.In

addition

tothe

charge

carriermob

ility,alread

ydis-

cussed

,ake

yparam

eter

forthephotoe

lectricalco

nve

rsion

effi-

cien

cyof

orga

nic

solarcells

istheex

citondiffusion

length,i.e.h

ow

Fig.

9.Po

lycrystalline

film

sof

ado

ubly

alky

lterminated

terthiop

hene

spin

coated

from

isotropicsolution

sat

differen

ttempe

ratures;

a,dan

dg:

tempe

rature

ofcrystalline

phase;

b,ean

dh:

tempe

rature

ofsm

ecticliq

uidcrystalline

phase;

c,fa

ndi:tempe

rature

ofisotropicph

ase.

Optical

microscop

ytextures

(aec,scaleba

rin

aeb:

10mm

;inc:

100mm

),co

nfoc

allaserscan

ning

microscop

yprofi

les(def),A

FMtopo

grap

hicalimag

esan

dco

rrespo

ndinghe

ight

analyses

(gei).N

otetheve

rydifferen

tve

rtical

height

axes

inthelatter

diag

ramsfor

thedifferen

tsamples.F

rom

referenc

e[33].C

opyright

Wile

y-VCH

VerlagGmbH

&Co

.KGaA

.Rep

rodu

cedwithpe

rmission

.

J.P.F.L

agerwall,G.S

calia

/Cu

rren

tApp

liedPh

ysics12

(201

2)13

87e1412

1394

Page 5: 2012 LC review

longan

excitoncantrav

elwithin

thematerialbe

fore

theelectron

andholereco

mbine.

Thedistance

from

theex

citoncrea

tion

site

tothe

heterojunction

must

besm

allerthan

the

exciton

diffusion

length

inorder

toharve

stthe

energy

.Disco

ticco

lumnar

liquid

crystals

hav

eturn

edou

tto

hav

eparticu

larlyhigh

values

ofthis

crucial

param

eter

(>70

nm

[7])

aswellas

high

charge

carrier

mob

ility

(1.4

cm2V�1

s�1[34]),an

dthishas

ledto

astrongfocu

sof

attention

thelast

yearson

usingtheseliq

uid

crystals

forphoto-

voltaics

[7,26].

These

materials

clea

rly

hold

promise,

asdem

onstrated

with

experim

entalan

dtheo

reticalwork,

butim

portantch

allenge

sstill

remainto

bead

dressed

.Itis

forinstan

cenot

trivialto

ensu

rethe

alignmen

tof

theco

lumnsthat

isrequ

ired

foraparticu

larap

plic

a-tion

.For

aphotov

oltaic

dev

iceba

sedon

disco

ticliq

uid

crystals,o

ne

must

crea

teauniformly

hom

eotrop

ic-alig

ned

heterostructure

oftw

odifferen

tco

lumnar

phases,whereon

eis

designed

forgo

odelectron

-don

atingproperties,theother

oneforbe

ingago

odelec-

tron

acceptor.Th

isis

quitech

allenging,

butrecentlysomehop

eful

reports

appea

red,

sugg

esting

that

carefulmolecule

design

and

optimization

ofthedev

iceprepa

ration

strategy

may

lead

tothe

passingalso

ofthis

hurdle,see

e.g.

[35].

While

hom

eotrop

icalignm

entis

requ

ired

fordiscotic

liquid

crystalsolar

cells

,for

anorga

nicfieldeffect

tran

sistor

(FET

)based

ondiscoticpha

sestheco

lumnssh

ould

liein

thesample

planean

dbe

aligne

duniform

lyalon

gasp

ecificdirection

.Th

isis

perhap

sev

enmorech

allenging,be

caus

etrad

itiona

lalig

nmen

ttech

niques

such

asrubb

ingof

polyimideco

atingor

pho

toalignm

enthavelittleor

no

impacton

theorientation

ofthedirectorin

disco

ticliq

uid

crystal

pha

ses.

Tothis

end,a

nex

perim

entby

Scalia

andco

-worke

rsmay

how

ever

show

some

promise

[36].Th

eysp

inco

ated

atoluen

esolution

oftheco

mmon

lyused

columna

rphase-form

ingdisco

tic

material

hex

akis(pen

tyloxy

)-triphe

nylene,

abbrev

iated

HAT-5

(Fig.2

c),a

ndstudied

theprodu

cedfilm

sby

polarizingmicroscop

yan

datom

icforcemicroscop

y(A

FM).Th

eAFM

studyreve

aled

very

interesting

textures,

cf.Fig.

10,highly

reminiscentof

nem

atic

directorfields

withafew

disclinationsbe

twee

nfairly

largearea

swithin

whichfibrils

ofco

lumnswereuniform

lyaligned

.The

authors

propo

sedthat

thego

odalignmen

tco

uldbe

aneffect

ofalyotropic

nem

aticpha

seof

shortd

iscco

lumns

form

ingduringthesp

inco

ating

process,as

the

solven

tqu

ickly

evap

orated

.Th

edirectorof

this

columna

r-nem

aticpha

sewou

ldthen

alignprimarily

alon

gtheradial

shea

rflow

active

duringthesp

inco

atingprocess.Itis

notew

orthy

that

HAT-5doe

snot

exhibitanem

atic

pha

seon

itsow

n,hen

cethe

prope

rco

mbinationof

solven

tcon

centration

andtempe

rature

(note

that

thetemperaturerapidly

coolsduringsp

inco

atingdueto

the

evap

orationof

solven

t)wou

ldbe

critical

forob

tainingthenem

atic

order.Further

inve

stigations

areclea

rlynee

ded

toco

nfirm

theex

act

origin

oftheuniform

columnalignmen

tbu

tthis

tech

niquemay

bepromising

foraligning

disco

ticco

lumna

rpha

sesuniform

lyov

erarea

sthat

areve

rylargeon

thescaleof

typicalorga

nicFE

Tstructures.

Morerecenta

ndmuch

less

exploredistheco

ncept

ofharve

sting

mechan

ical

motionas

electrical

energy

usingliq

uid

crystals

that

displayhighflex

oelectrican

d/orpiezo

electric

coefficien

ts.T

heidea

was

proposed

in20

09by

AntalJaklian

dco

-worke

rsat

Ken

tState

University,U

SA[28,30

,31].T

heprinciple

isillustratedin

Fig.11

for

thecase

ofanem

atic

phasemad

eou

tof

bent-co

remolecules.Su

chphases

displaythehighestflex

oelectricco

efficien

tskn

ownso

far.If

theco

ntainer

oftheliq

uid

crystalb

ends,thesemoleculeswill

pack

moreefficien

tlyifthey

allbe

ndin

thesamedirection

.Since

they

hav

eahighpolarizationalon

gthebe

nddirection

,ben

dingof

the

sample

thuspolarizes

it,an

dasu

rfacech

arge

resu

lts.

Flex

ingan

electrod

e-eq

uipped

sample

back

and

forth

then

generates

analternatingcu

rren

t.Under

practical

applic

ationco

nditionsliq

uid

crystals

areactu-

ally

foundto

outperform

man

ysolid

statealtern

atives

interm

sof

energy

conve

rsion

efficien

cy[28],since

one

must

take

the

max

imum

strain

grad

ientinto

acco

unt(w

hich

issu

bstantially

higher

fortheliq

uid

crystalcase)an

das

theliq

uid

crystal-ba

sed

materials

can

bemad

eve

rythin,en

suring

high

efficien

cy.Fo

r

Fig.

10.Atomic

forcemicroscop

yim

ages

ofasampleof

thediscotic

liquidcrystalH

AT-

5sp

inco

ated

from

toluen

esolution

,formingfibe

rsorga

nize

din

ane

matic-likeorde

red

arrang

emen

t.From

referenc

e[36].

Fig.11.Abe

nt-coreliq

uidcrystalcon

fine

din

aflex

ible

containe

rwill

prod

uceaflex

oelectricsu

rfacech

arge

dueto

theim

prov

edpa

ckingefficien

cywhe

nthebe

ndof

allm

olecules

isalon

gthemacroscop

icsamplebe

nddirection.

Ifthesampleis

flex

edba

ckan

dforthan

delectrod

esareattach

edto

theou

tsides,a

naltern

atingelectrical

curren

tcanbe

pick

edup

.

J.P.F.L

agerwall,G.S

calia

/Cu

rren

tApp

liedPh

ysics12

(201

2)13

87e1412

1395

experim

ents

theJakliteam

contained

thebe

nt-sh

aped

mesog

enphasebe

twee

nflex

ible

subs

trates

orinsidean

elastomer,a

llowing

them

tova

rythemacroscop

icsample

shap

ebe

twee

nco

nve

xan

dco

ncave

.Indee

d,this

flex

ingresu

lted

inacu

rren

tthat

was

easily

detectable

byfitting

the

sample

with

two

brasselectrod

esan

dco

nnectingthem

toastan

dardoscillo

scop

e.Itwill

beve

ryex

citing

tostudythefurther

dev

elop

men

tduringthenex

tfew

yearsof

this

very

recentlyintrod

ucedco

ncept,withco

nsiderab

lepoten

tial

for

new

low

cost

mea

nsof

energy

harve

sting.

3.2.

Liqu

idcrystaltem

platingforcreating

nano

structured

materials

ororde

ring

nano

-an

dmicropa

rticles

With

today

’sfocu

sin

materials

science

onnan

ostructured

materials

theab

ility

ofliq

uid

crystals

ethermotropic

aswellas

lyotropic

eto

self-assem

bleinto

structuresthat

exhibit

specific

nan

oscale

arrange

men

tsex

tending

inan

ordered

fash

ion

over

amuch

longe

rrange

isex

trem

elyattractive

.Se

veralap

proaches

hav

ebe

endev

ised

totake

adva

ntage

oftheliq

uid

crystallineorder

forge

neratingnew

functionalmaterials,either

bymak

ingtheliq

uid

crystal-ge

nerated

order

perman

entviapolym

erization,g

elationor

glassform

ation,or

bypreparingaliq

uid

crystallinesample

such

that

aregu

lararrayof

defects

form

s,whichcanthen

beusede.g.for

positioningnan

o-or

micropa

rticlesov

erlargearea

s.Herewebriefly

review

thecu

rren

tstateof

theartof

thesetw

omainap

proaches.

3.2.1.

Solid

ifyingliq

uidcrystalph

ases

forcrea

ting

regu

lar

nano

porous

solid

sOne

ofthe

mostim

portantcu

rren

tex

amplesof

how

liquid

crystalsareusedas

templatesistheproduc

tion

ofnan

oporou

ssilic

amaterials

forcatalysisap

plic

ationsfrom

orvialyotropic

hex

agon

alor

cubicliq

uid

crystalphases

[37].Very

often

the

term

‘meso-

porou

s’is

used

instea

d,follo

wing

anon

-metric

term

inolog

yco

mmon

inthis

particu

larresearch

field,bu

twehereuse

‘nan

o-porou

s’,refl

ectingthefact

that

thepores

arein

thenan

ometer

size

range

.Anorga

nosilicate

compou

ndsu

chas

tetrae

thylorthosilicate

(TEO

S)isad

ded

asasilic

aprecu

rsor

tothelyotropic

phasean

dthis

isthen

hydroliz

edinto

SiO2.

Asthereaction

take

splace

inthe

aqueo

usch

annelsof

thelyotropic

liquid

crystalhostphasethe

produced

silic

aad

opts

theinternal

shap

eof

thenan

ostructured

template,cf.Fig.12

.Thesoftan

dsensitive

liquid

crystalstructure

isthereb

ytran

sferredto

ahardan

ddurableinorga

nicco

py.A

fterward

thesu

rfactantis

remov

edby

thermal

decom

position(calcination),

leav

ingon

lythenan

ostructuredsilic

awhichnow

has

thehex

ag-

onal

orcu

bicstructure

imprintedby

theliq

uid

crystal.

Insomecasesitisof

adva

ntage

tofollo

wadifferenta

pproachfor

solid

ifyingthelyotropic

structure,instea

dreplacingtheordinary

surfactants

withsu

rfactants

withreactive

hea

dgrou

ps[38e

41].In

this

way

one

can

polym

erize

the

surfactantco

mpon

entof

the

lyotropicliq

uid

crystala

ndrather

than

mak

ingan

inorga

nicco

pyof

the

template,the

liquid

crystalline

structure

isthusfixa

ted

byturn

ing

itinto

anorga

nic

solid

.Th

eresu

lting

materials

are

ofinterest

forinstan

cein

water

filtration

applic

ationsor

assynthetic

biod

egradab

lematerials

formed

ical

applic

ations.

Alsothermotropicliq

uid

crystalscanbe

very

usefula

stemplates

inva

riou

sco

ntexts,

realizingasolid

either

bypolym

erizingthe

liquid

crystallinephase[42,43

]orby

polym

erizingan

other

material

insidetheliq

uid

crystal[44

,45].A

particu

larlybe

autifule

xample

ofthelatter

approach

isthesu

ccessfulproduction

ofhelical

poly-

acetylen

efibe

rsby

polym

erizingacetylen

ega

sin

ach

iral

nem

atic

reaction

field,a

strategy

pionee

redby

Hidek

iShirak

awaan

dKazuo

Aka

gian

dco

-worke

rsat

KyotoUniversity,Japan

[46].Th

ech

ole-

steric

liquid

crystalline

environmen

tforces

the

polya

cetylene

chainsto

twistas

they

grow

,into

fibe

rsthat

mim

icthestructural

featuresof

the

helical

liquid

crystalphase.

The

resu

lting

fibe

rsex

hibitphy

sicalp

rope

rtiesthat

canbe

quiteunique,in

particu

larin

term

sof

theirmag

netoresistance.T

hishas

trigge

redmuch

interest

inarea

sve

ryfarfrom

liquid

crystalresea

rch[47].T

hech

iral

liquid

crystalrea

ctionfieldis

critical

forthesu

ccessin

thepreparationof

this

new

material.

An

interesting

recent

extension

ofliq

uid

crystalstructure

form

ation,related

tolyotropic

liquid

crystals

inman

yresp

ects

but

not

invo

lving

asolven

t,is

the

class

ofpolyp

hilic

mesog

ens

[8,48e

55].W

iththesemolecules,that

aream

phiphilicwithat

least

Fig.

12.Ca

rtoo

nillus

tratingthetw

omainap

proa

ches

toprod

ucena

nopo

rous

silic

aus

inghe

xago

nallyo

trop

icliq

uidcrystaltem

plates.R

eprinted

withpe

rmission

(from

referenc

e[37].C

opyright

(200

7)American

Chem

ical

Society).

J.P.F.L

agerwall,G.S

calia

/Cu

rren

tApp

liedPh

ysics12

(201

2)13

87e1412

1396

Page 6: 2012 LC review

three,

rather

than

two,

sectionshav

ingdifferentpreferred

envi-

ronmen

ts(for

instan

ceon

eperfluorinated

,onehy

drophilican

don

earom

aticsection)awholerange

ofnew

structureshav

ebe

enfound

toform

viaself-assem

bly.

Atthemom

enttheresearch

onthese

new

materialsispurely

acad

emic,b

uttheco

mplexity

ofthesenew

phases

isbe

ginningto

beelucidated

.Thetimemay

thusbe

ripefor

exploring

them

for

different

types

ofap

plic

ations,

where

anob

viou

sroute

toex

plore

isthat

oftemplating

from

these

new

nan

ostructures.

Com

pared

tolyotropic

liquid

crystals

ahuge

adva

ntage

with

the

polyp

hilic

thermotropics

isthat

they

can

generally

bequ

iteea

sily

aligned

over

macroscop

icarea

s.

3.2.2.

Synthe

sizing

nano

particlesin

liquidcrystalline

templates

Seve

ralg

roup

shav

eusedtheself-organ

ized

structuresof

liquid

crystals

as‘nan

oreactors’for

synthesizing

very

well-defi

ned

nan

oparticles

with

desirab

lesh

apes.

Inparticu

lar

lyotropic

columnar

phases

areusefulforsynthesizing

e.g.

semicon

ductor

nan

orod

s[56e

62]bu

tother

liquid

crystalphases

canbe

usedfor

synthesizingnan

oparticles

withother

shap

es[63e

67].

Amon

gtheke

yad

vantage

swith

this

tech

niqueco

mpared

tostan

dardmethod

sforsynthesizingnon

-spherical

nan

oparticles

are

low

dispersity,a

relative

ease

oftunab

ility

ofthe

geom

etrical

features,

andthefact

that

very

highaspectratioparticles

canbe

achieve

dby

carryingou

tthesynthesis

within

theve

rylongch

an-

nelsof

themicellesin

ahex

agon

alco

lumnar

phase.

Bytuningthe

composition

ofthe

phase,

often

including

anoilco

mpon

entin

additionto

theam

phiphile

san

dwater

that

form

thestarterkit,the

inner

diameter

ofthe

chan

nelscan

beva

ried

over

anorder

ofmag

nitude(1e10

nm)while

theirlengthcanbe

inthecentimeter

range

orev

enlonge

r.Another

benefi

cial

aspectis

that

itis

easy

toremov

etheco

mpon

ents

ofthelyotropic

phasetemplate.T

his

isin

contrastto

method

swheresolid

templatesareused,whichtypi-

cally

requ

ireetch

ingby

strongan

d/orharmfula

cids.

Obv

iouslyon

enee

dsalso

precu

rsor

materials

inad

ditionto

the

basic

constituen

tsof

the

liquid

crystalphase.

These

are

often

orga

nom

etallic

saltsthat

actas

precu

rsorsforthe

nan

oparticle

synthesis.It

iscrucial

toreco

gnizethat

thesesaltswill

normally

beco

meaco

mpon

entof

theliq

uid

crystalphaseas

wellan

dtheir

presence

will

almostalway

shav

esome

influen

ceon

the

self-

assemblyprocesses

lead

ingto

theliq

uid

crystalphaseform

ation.

Onethusge

nerally

nee

dsto

mod

ifytherecipes

forform

ingpure

liquid

crystalp

hases,g

ivingtheprecu

rsor

materials

active

rolesin

thestructure

form

ation.Insomecasestheinfluen

cefrom

thesalts

wou

ldsimply

betoo

strong

atthe

concentrationsrequ

ired

for

form

inginterestingparticles

andon

emust

then

findsp

ecialsolu-

tion

s.Asm

artap

proachem

ploye

dby

dos

Santoset

al.isto

inco

r-porateco

lloidsam

ong

theprecu

rsor

materials

[62].Th

isallows

arelative

lyhigh

deg

reeof

load

ingwith

inorga

nic

materialwith

minim

alinfluen

ceon

thelyotropic

phase.

3.2.3.

Collo

idal

particlesorga

nizedby

liquidcrystals

andliq

uid

crystalph

ases

from

collo

ids

Adifferentway

ofex

ploitingtheliq

uid

crystallineorder,that

doe

snot

necessarily

invo

lvefixa

tingthestructure

into

asolid

,isto

introd

uceco

lloidal

particles

intheliq

uid

crystal.Th

elatter

then

functionsas

ave

rysp

ecialc

ontinuou

sphase,actingin

uniqueway

son

thedispersedparticles

whichcanbe

inthenan

o-to

micrometer

size

range

andof

ava

rietyof

shap

es.T

herehas

been

aco

ntinuou

sly

grow

inginterest

inco

mbiningparticles

with

liquid

crystals

over

thelast

15ye

ars,

and

anumbe

rof

interestingphen

omen

ahav

ebe

endem

onstrated,invo

lvingpolym

eror

silic

amicrobe

ads,carbon

nan

otube

s,or

semicon

ductor

ormetal

nan

orod

sor

-spheres.

Theliq

uid

crystalcan

orga

nizethedispersedparticles

inva

riou

sway

san

dem

ploysomew

hat

differentmechan

isms,dep

endingon

theparticlesize

,sh

apean

dhow

theirsu

rfaces

interact

with

the

liquid

crystal.W

hat

allstudieshav

ein

common

,how

ever,isthat

theparticles

insomeway

disturb

theliq

uid

crystaldirectorfield,

whichthereforeex

erts

forces

ortorques

ontheparticles

inorde

rto

promoteaco

nfigu

ration

ofthem

wherethedistortionis

minim

al.

This

canlead

toan

alignmen

tof

anisom

etricparticles

aswella

sto

theorga

nizationof

particles

into

regu

larclusters.

Amon

gthemoststraight-forw

ardap

proa

ches

ofthiskind

isthe

alignm

entof

rod-sh

aped

particles

alon

gthenem

atic

directorfield.

The

firstparticle

type

tobe

studied

inthis

way

was

mag

netic

nan

orod

s,initially

cons

idered

theo

retically

byPierre-G

illes

deGen

-nes

and

Fran

çoiseBroch

ard

[68].In

recentye

arsthefirstnan

o-particleto

receiveco

nsiderab

leattention

asdop

anttoliq

uid

crystals

was

the

carbon

nan

otube

[69e

81].

Sing

le-as

wellas

multiw

all

carbon

nan

otub

eshavebe

ensu

ccessfully

dispersedin

thermotropic

aswellaslyotropicliq

uid

crystals,p

rimarily

ofnem

atictype

,and

the

alignm

entof

thetube

salon

gthenem

aticdirectorfieldwas

verified

byva

riou

stech

niques.Initially

only

indirect

proof

ofthealignm

ent

couldbe

provide

d[69,70

],bu

tsomew

hatlaterdirectin-situve

rifi-

cation

ofthenan

otub

eorientation

bymea

nsof

polarized

Ram

ansp

ectrosco

pyco

nfirm

edwithou

tdou

btthealignm

ente

ffect[82,83

].Th

eex

perimen

talworkwas

also

complemen

ted

byanum

berof

rigo

rous

theo

reticaltreatmen

ts[84e

87].

Arather

seve

reproblem

with

the

carbon

nan

otub

ee

liquid

crystalcom

posites

isto

maintain

asu

fficien

tlygo

oddispersion

ofthe

nan

otub

es.C

arbo

nnan

otube

sarenotorious

lydifficu

ltto

disperse

inan

ymed

ium

and

inliq

uid

crystals

long

-term

stab

ility

ofthe

dispersion

isex

trem

elydifficu

ltto

achieve

.Allinitialw

orkwas

don

ewiththermotropicliq

uid

crystalhosts

andon

lytraceam

ounts

ofcarbon

nan

otub

esweredispersedin

order

toav

oidseve

renan

otub

eag

greg

ation.

The

firstsu

ccessfulway

ofdrastically

raising

the

nan

otub

eco

ncen

tration

was

tosw

itch

tolyotropicliq

uid

crystal

hosts,w

here

theop

tion

touse

surfactantsforstab

ilizingthenan

o-tube

dispersion

allowed

amuch

grea

terco

ncen

trationof

thenan

o-particlegu

ests

[78,83

,88,89

]Particu

larlyhighnan

otube

load

ingwas

possibleby

usingtw

odifferentionicsu

rfactantsof

oppositech

arge

,on

efordispersing

thenan

otub

esan

dtheother

forbu

ildingthe

liquid

crystalpha

se.Inthis

way

Scalia

etal.succee

ded

inreaching

such

high

nan

otub

eload

ing

atsu

chgo

odalignmen

tthat

the

compositebe

have

dlik

ealiq

uid

linea

rpolarizer

[90,91

],cf.Fig.13:

asthe

nan

otub

esab

sorb

lightpolarized

alon

gthe

tube

axis,the

compositebe

camedarke

rforpolarizationalon

gthedirectorthan

perpen

dicularto

it.T

hiswas

thefirsttimethat

nan

oparticlealign-

men

tby

aliq

uid

crystalco

uld

beve

rified

bythenak

edey

e.Th

eco

mposites

also

acqu

ireve

ryinterestingviscoe

lastic

prope

rties,in

particu

lartheab

ility

toform

very

long

and

slen

derfilamen

tsin

Fig.

13.Acapilla

ryco

ntaining

alyotropicliq

uidcrystalph

asealigne

dwithn

alon

gthecapilla

ryax

isan

dco

ntaining

0.2wt.%

well-disp

ersedsing

le-w

allcarbon

nano

tube

s.Th

eun

iform

alignm

entof

thena

notube

s,presen

tat

such

high

conc

entration,

turn

stheco

mpo

site

fluidinto

apo

larize

r,as

demon

stratedby

view

ingthecapilla

rythroug

hapo

larize

rfilm

withitstran

smission

directionalon

g(a)an

dpe

rpen

dicu

lar(b)to

thecapilla

ry.F

rom

referenc

e[90].R

eprodu

cedby

perm

ission

ofTh

eRo

yalSo

cietyof

Chem

istry.

J.P.F.L

agerwall,G.S

calia

/Cu

rren

tApp

liedPh

ysics12

(201

2)13

87e1412

1397

which

thenan

otub

esarehighlyordered

[92].A

num

bero

fstudieson

dispersion

ofnan

otub

esin

lyotropicliq

uid

crystals

hav

efollo

wed

[93e

98],co

nfirm

ingtheve

rsatility

andusefulnessof

theap

proach.

Anim

portan

trecentachieve

men

tis

thepolym

erizationof

thelyo-

trop

ichostpha

sein

order

toturn

thenan

otub

ee

liquid

crystal

compositeinto

asolid

,withmaintained

uniform

alignm

entof

the

nan

otub

es[96].

Thereis

how

ever

considerab

lepoten

tial

inusingalso

thermo-

trop

icliq

uid

crystalsas

thehostfornan

otube

dispersion

[99e

102],

inparticu

lardueto

theea

seof

aligningan

dreorientingthermo-

trop

icnem

atics,

andthereis

thusamotivationforim

provingthe

dispersion

stab

ility

also

inthermotropic

hosts.In

fact,althou

ghlong-term

stab

ility

isaseriou

sproblem

,thefirstsystematicstudyof

carbon

nan

otube

dispersion

inthermotropic

liquid

crystals

[103

]reve

aled

that

thermotropic

hosts

are

actually

amon

gthe

best

orga

nicsolven

tsforcarbon

nan

otube

sin

term

sof

aqu

ickreduction

ofinitialag

greg

atesize

.Th

eproblem

isto

ensu

reex

folia

tion

ofbu

ndlesto

singletube

leve

lan

dto

maintain

long-term

dispersion

stab

ility,v

erydifficu

ltsince

nosu

rfactants

canbe

added

forstab

i-liz

ingthedispersion

.An

importantresu

ltof

this

studywas

that

thereareco

nsiderab

ledifferencesbe

twee

ndifferentnem

aticsin

term

sof

their

suitab

ility

ashosts

for

carbon

nan

otube

s,the

common

lyusedqu

artenarymixture

E7an

dtheneg

ativedielectric

anisotropy

nem

atic

MBBA

comingou

tas

thebe

sthosts

ofthose

inve

stigated

[103

].A

promisingrecentdev

elop

men

tis

theintro-

duction

oftailo

r-synthesized

hybrid

molecules,

actingsimila

rto

surfactants

inaq

ueo

ussolution

,butherewithon

een

dop

timized

forcarbon

nan

otube

adhesionwherea

stheother

ismad

eforther-

motropic

liquid

crystalco

mpatibility.Th

isis

ave

rynew

research

thrust

butsomepromisingresu

ltshav

ebe

enpresented[104

e10

6].

Therehav

ealso

been

observationsof

positiveeffectsof

carbon

nan

otube

son

the

liquid

crystal

[71e

74,80,10

1,10

7,10

8],

even

including

the

function

ofcarbon

nan

otube

sas

chiral

dop

ants

[109

,110

],bu

tas

theliq

uid

crystalinthesecasesplays

apassive

role

wedonot

further

discu

sstheseissu

esin

this

review

.Alm

ostall

work

has

been

don

ewith

nem

atic

hosts

ofrod-lik

emesog

ens,

primarily

dueto

thedifficu

ltiesin

dispersingnan

otube

sin

more

orde

redan

dthusmuch

moreviscou

sliq

uid

crystalphases.A

rare

exam

ple

ofastudyof

nan

otube

sdispersedin

ach

iral

smecticliq

uid

crystalw

aspublished

byLage

rwalle

tal.,thesu

ccessin

dispersion

beingdueto

atw

o-step

process

wherethenan

otube

swerefirst

dispersedin

anem

atic

phasethat

was

then

mixed

withastrong

smectoge

nic

mesog

en[100].Th

enan

otube

sturn

edou

tto

hav

eadrastic

influen

ceon

thephasesequ

ence

ofthesm

ectichostbu

tthe

dispersion

was

still

not

sufficien

tly

good

toinve

stigate

ifsw

itch

ingof

thesm

ecticliq

uid

crystald

irectormighth

avean

effect

onthenan

otube

s.Kumar

andco

-worke

rssu

ccee

ded

indispersing

chem

ically

functionalized

nan

otub

esin

thermotropicdisco

tichosts

[3,111,112

],bu

talso

herelittleeffortsweredon

eto

inve

stigatethe

effectsof

thehoston

theorga

nizationof

thenan

otube

s.Rathe

rthan

dop

ingaliq

uid

crystalh

ostwiththena

notube

son

ecan

infact

also

getthenan

otub

esthem

selves,su

spen

ded

inan

isotropicliq

uid

host,to

form

alyotropicliq

uid

crystalp

hase,provide

dsu

fficien

tco

ncen

tration

and

qualityof

dispe

rsion

[16,18

,113

e12

4].

Thishas

thead

vantag

ethat

thenan

otub

eco

ncen

trationob

viou

slyis

high,

muc

hhigh

erthan

intheworkrelyingon

thermotropichosts,

butthe

rearetw

omajor

diffi

culties.First,ev

enin

isotropicsolven

tsit

isfarfrom

trivialtoachieve

sufficien

tlygo

oddispe

rsionat

such

high

conc

entrationof

nan

otub

esrequ

ired

toge

tlyo

trop

icliq

uid

crystalline

pha

ses,an

dthegrou

psdrivingthisap

proachhavethereforeresorted

toox

idationof

thenan

otub

esforsolubilityin

water

[18,118e

120],

using

super

acidsas

thesolven

t[12

1e12

3]or

take

ngrea

tcarein

using

efficien

twrapp

ingof

pristinenan

otub

esby

molecules

such

asDNA

that

stab

ilize

the

susp

ension

sev

enat

high

conc

entration

[16,113e

117].A

nex

ample

ofthelatter

type

issh

ownin

Fig.14

.The

seco

ndmajor

diffi

cultyis

toen

sure

macroscop

icorientationof

the

directorin

thesepha

sesov

eralongen

ough

timescalethat

the

aligned

nan

otub

escanbe

put

touse.G

enerally,she

aringistheon

lyway

toalignlyotropicpha

sesof

thistypebu

tassoon

asthesh

earfl

owisremov

edthealignmen

tisoftenlost.R

ecen

tlythePo

ulin

team

has

howev

ersh

ownsomeprogressin

thetask

ofretainingthealignmen

tev

enafterdryingalyotropicliq

uid

crystallinenan

otub

esu

spen

sion

[116

]an

dthisroutethusholds

promiseforthefuture.

Withtheve

rystrongcu

rren

tfocu

son

grap

hen

eit

was

hardly

unex

pected

when

thefirstreports

onliq

uid

crystalphases

with

grap

hen

ecameou

t.Like

withcarbon

nan

otube

ssomegrou

psuse

liquid

crystallinephases

foraligningthegrap

hen

esh

eets

[125

,126

]while

othersen

sure

sufficien

tco

ncentrationan

ddispersion

quality

ofox

idized

grap

hen

eflak

esthat

they

form

liquid

crystalp

hases

ontheirow

n[19e

21,127

].Carbo

nparticles

were

the

firstbu

tof

course

not

the

only

nan

oparticles

that

hav

ebe

enstudiedin

combinationwith

liquid

crystals.S

everal

studieshav

ebe

endev

oted

totheinve

stigationof

liquid

crystalline

phases

containing

gold

[128

e14

2],

semi-

conducting[143

e15

4]or

silic

anan

oparticles

[155

e15

9]as

wellas

mag

netic

[160

e16

7]or

ferroe

lectric[168

e17

2]particles.W

hile

the

extended

arom

atic

structure

ofcarbon

nan

otube

sprovides

for

benefi

cial

interactionswithtypical

mesog

ens,

promotingparticle

solubilityin

athermotropic

host[103

],theprimarily

hydrophilic

character

ofman

ynon

-carbo

n-based

inorga

nic

nan

oparticles

mak

esan

efficien

tcappingag

entpromotinggu

est-hostco

mpati-

bilityab

solutely

essential

ifmetal

orsemicon

ductor

nan

oparticles

shou

ldbe

efficien

tly

dispersed

inathermotropic

liquid

crystal.

Com

mon

choicesforsolving

thedispersion

problem

arealka

ne

thiols

[129

,136

,140

]whichbindco

valentlyto

ametal

surfacewith

the

thiolhea

dgrou

p,ex

tending

analky

lch

ain

more

orless

perpen

dicularto

theparticlesu

rface.

This

improve

stheco

mpati-

bility

with

athermotropic

hostco

nsiderab

ly,bu

tit

promotes

hom

eotrop

icalignmen

tof

themesog

enssu

rrou

ndingtheparticle,

hen

ceon

emay

expectthe

opposite

alignmen

tof

alka

ne

thiol-

functionalized

nan

orod

sco

mpared

tocarbon

nan

otube

s,i.e

.perpen

dicularrather

than

alon

gthe

liquid

crystaldirector.

The

much

lower

aspectratioof

mostinorga

nic

nan

orod

s(typ

ically

two

ordersof

mag

nitudeless

than

forcarbon

nan

otub

es)mak

esthe

alignmen

taslightlyless

seriou

sissu

e.In

fact,man

ystudiesdea

lwith

spherical

gold

orsemicon

ducting

quan

tum

dot

particles.

Another

altern

ativeis

touse

anon

ionic

polym

ersu

chas

poly-

viny

lpyrrolid

one(PVP)

foraidingthedispersion

[133

].Muc

hof

theworkdev

oted

toinorga

nicnan

oparticles

inliq

uid

crystalsisdev

oted

tomod

ification

oftheliq

uid

crystalp

rope

rtiesin

its

classic

electroo

ptic

dev

ice

(e.g.display

)ap

plication,e.g.

for

Fig.

14.Po

larizing

micrograp

hof

ane

matic

liquid

crystalph

ase

from

sing

le-w

all

carbon

nano

tube

sstab

ilize

dby

DNA

inwater

at4

wt.%

conc

entration

(scale

bar:

50mm

).From

referenc

e[114

].Co

pyrigh

tW

iley-VCH

Verlag

GmbH

&Co

.KG

aA.

Reprod

uced

withpe

rmission

.

J.P.F.L

agerwall,G.S

calia

/Cu

rren

tApp

liedPh

ysics12

(201

2)13

87e1412

1398

Page 7: 2012 LC review

mod

ifyingsw

itch

ingtimeor

alignm

enttyp

e[137

,150

,153

,173

],an

dis

thusou

tsidethescop

eof

this

review

.From

thestan

dpo

intof

this

articletherearetw

olin

esof

research

inthisfieldthat

areof

particu

lar

interest.First,goldnan

oparticles

areattractive

due

totheirp

lasm

onic

resp

onse

butthis

dep

endsalso

onthedielectricpermittivity

ofthe

med

ium

surrou

ndingthenan

oparticles.The

refore,iftheco

ntinuo

uspha

seof

thego

ldnan

oparticleco

lloid

isathermotropicliq

uid

crystal,

theplasm

onicresp

onse

canea

sily

andrapidly

betuned

bych

anging

thedielectricco

nstan

tcom

ponen

texp

erienc

edby

thenan

oparticles

bysw

itch

ingtheliq

uid

crystalw

ithan

external

electricor

mag

netic

field

[132

,174

,175

].A

seco

ndthrust

that

may

turn

outto

beve

ryinterestingistheeffortto

dev

elop

metam

aterialsusingmetal

nan

o-particles

inliq

uid

crystals,b

utthisisco

nsiderab

lymorech

allenging

since

complexnan

oparticlesh

apes

arerequ

ired

,littlefluctua

tion

scanbe

accepted

,andhighlyregu

lara

rran

gemen

tsof

theparticles

are

sough

tfor[176

,177

].Wewill

return

tothisissu

ein

amom

ent.

Like

with

surfactant-stab

ilize

dcarbon

nan

otube

slyotropic

liquid

crystalhosts

canbe

quitead

vantage

ousin

ensu

ringahigh

load

ing

ofmetallic

nan

oparticles.Fo

rinstan

ce,using

the

same

cation

icsu

rfactant-ba

sedlyotropic

liquid

crystalhostas

was

used

very

successfully

forcarbon

nan

otube

alignmen

tby

Scalia

andco

-worke

rs,a

sdescribed

abov

e,Liuet

al.d

ispersedan

daligned

gold

nan

orod

sin

nem

atic

andhex

agon

alhostphases

[134

].Since

the

directorcan

bemacroscop

ically

aligned

and

laterrealigned

bymag

netic

fieldsin

thenem

atic

phaseor

shea

rflow

intheco

lumnar

phase,

theplasm

onic

resp

onse

could

betuned

bych

anging

the

nan

orod

orientation

.So

meof

themostb

eautiful

workon

particles

inliq

uid

crystalsha

sdea

ltwithsp

here-sh

aped

particles

ordropletsin

themicro-rather

than

nan

ometer

rang

e.W

hendispe

rsinge.g.

spherical

silic

abe

ads

functiona

lized

withcapping

agen

tsthat

induc

ehom

eotrop

icdirector

alignmen

tof

thesu

rrou

nding

liquid

crystal,or

glycerol

droplets,

gene

rally

induc

ingplana

rdirectoralignmen

t,ea

chinclusion

effec-

tive

lybe

comes

aunits

tren

gthtopo

logicald

efectinthedirectorfield

due

tothe

spherical

symmetry

ofthe

directoran

choring

atits

bound

ary.

Becau

sethetotaltopo

logicalch

arge

must

beco

nserved

,be

ingzero

inaflat

surface,ea

chpositiveunitdefectin

aflat

sample

cellintrod

ucedby

aninclusion

mus

tbe

acco

mpan

iedby

aneg

ative

unitdefector

adisclinationringge

neratednex

tto

it,turningthe

particlean

ditssu

rrou

ndingeffectivelyinto

atopo

logicaldipoleor

quad

rupo

le[178

].W

henseve

ralsuc

hmultipoles

arebrou

ghtc

lose

toea

chothe

r,e.g.

bymov

ingthem

withop

ticaltw

eezers,theinterac-

tion

sbe

twee

nthem

,inman

yresp

ects

analog

ousto

theinteractions

ofelectrostaticdipoles,resultin

chainsor

2Dpatternsbe

ingge

ner-

ated

andstab

ilized.A

ltho

ughbe

autifule

xperim

ents

ontheinterac-

tion

ofglycerol

droplets

with

the

nem

atic

director

field

were

condu

cted

byPa

wel

Pieran

skian

dco

-worke

rsalread

yin

the19

70s

[179

]the

mod

erninterestin

thisnew

classof

resp

onsive

collo

idtook

offafteran

eleg

antstudy

pub

lished

in19

97of

chainsof

surfactant-

stab

ilizedwater

dropletsin

liquid

crystals

byPo

ulin

etal.[18

0].A

num

bero

fgroup

shavesince

achieve

dfascinatinglarge-scaleordered

arrang

emen

tsof

collo

idal

inclusion

sin

nem

atic

hosts

basedon

the

sameprinc

iples,

suppo

rted

also

byanum

berof

theo

reticaltrea

t-men

ts[158

,181

e20

6],and

somegrou

psha

vedem

onstratedthesame

typeof

phe

nomen

ain

free

-stand

ingSm

Cfilm

s[207

e21

2].

Theresearch

onco

lloidal

inclusion

sin

liquid

crystals

has

sofar

been

mainly

offundam

entala

cadem

ictypebu

tafew

proposalsfor

future

applic

ationhav

ebe

enpresented.F

orinstan

ce,M

usevican

dco

-worke

rsdem

onstratedtheusage

ofsu

chasystem

asatunab

leop

ticalgrating[213

] .Th

epoten

tial

applic

ation

that

has

proba

bly

attractedthemostattention

,how

ever,isthat

ofproducingmeta-

materials

byhav

ing

the

liquid

crystalorga

nize

tailo

r-designed

nan

oparticles,s

uch

that

composites

withnew

anduniqueop

tical

properties

can

berealized

.Th

emaingo

alis

toprodu

ceneg

ative

refractive

index

materials

functioningin

theop

ticalwav

elen

gth

regime,

which

could

beused

for

cloa

king

orperfect

lensing

[176

,177

,214

e21

7].T

his

typically

requ

ires

thepositioningof

nan

o-scaleco

nductiverodsan

dco

nductiveinco

mplete

rings

(split

ring

resonators)

inregu

lararrays

over

largedistances.

Obv

iously,

theresearch

onliq

uid

crystal-drive

npositioningof

particles

isstill

very

farfrom

reachingthis

goal.Th

eparticlesize

must

bein

thenan

ometer

range

,hen

cetheworkon

micronscale

particles

must

bescaled

dow

n(this

may

not

bepossible

for

spherical

particles

ason

emay

reach

thelim

itof

theco

ntinuum

description

oftheliq

uid

crystal,be

low

whichtheelasticity

theo

ryforthedistorted

directorfieldbrea

ksdow

n),an

dthepositioningof

spherical

particles

isge

nerally

not

ofmuch

use

perse

inthis

context.Th

esu

ccessesin

aligningmetallic

nan

orod

san

dcarbon

nan

otube

s(w

hichcanbe

metallic

orsemicon

ductingdep

endingon

the

geom

etry

ofthe

grap

hen

enetwork

form

ing

the

tube

)is

promisingbu

tit

isstill

not

sufficien

t.Con

trol

ofposition

isalso

requ

ired

,som

ethingwhichhas

not

yetbe

enachieve

d,a

ndge

ner-

ally

also

thesp

litringresonatorsmust

bearrange

din

therequ

ired

configu

ration

.Finally,on

emust

also

ask

ifthe

generally

rather

strongfluctuationsin

liquid

crystals

areacceptab

leforthereali-

zation

ofmetam

aterials

withacceptableloss

leve

ls.

Anoriginal

approachto

realizingliq

uid

crystal-orga

nized

split

ring

resonators

was

presented

bythe

Ljubljana

team

arou

nd

Musevican

dZu

mer.They

trap

ped

gold

nan

oparticles

indisclination

lines

surrou

ndingmicronsize

dsilic

abe

adsthat

areorga

nized

into

anarrayby

thenem

atic

continuum

phase[193

],cf.F

ig.15.

Inthis

case

thenan

oparticles

(100nm

indiameter

inthis

study)

migrate

into

theve

ryco

reof

thedefectrings

that

form

arou

ndthelarger

collo

idalparticles,asthisreducesthevo

lumeof

liquid

crystalw

ithin

whichtheorientation

alorde

rbrea

ksdow

ndueto

thedisclination.

This

typeof

nan

oparticleordering,

somew

hat

differentfrom

the

previou

slydescribed

approaches,is

also

beingex

ploredforother

purposes,in

particu

larwith

theaim

toex

pan

dthetemperature

range

ofliq

uid

crystalbluephases.T

heseareex

otic

liquid

crystal

phases

characterize

dby

acu

biclatticeof

disclinationsthat

may

form

incase

ofve

rystrongch

iral

interactions[218

].Th

ephaseis

infact

isotropicdueto

thecu

bicsymmetry

ofthelattice,bu

tbirefringe

nce

canbe

inducedby

applyingan

electricfield,andthedisplayindustry

curren

tlyhas

ake

eninterest

inthepossibilitiesof

exploitingthis

effect

indisplays

that

could

beve

ryfast

andrequ

irenoalignmen

tco

ntrol

[219

].How

ever,thetemperature

range

ofbluephases

isnormally

very

small,

typically

abou

ta

deg

ree,

and

the

hop

eis

thereforeto

mak

ethedisclinationlin

elatticemoreperman

entby

fillingitwithnan

oparticles.S

omepositiverepo

rtshav

eap

pea

red,

both

ofex

perim

ental[14

1,22

0]an

dtheo

retical[20

3,22

1]nature,but

sofartheachieve

men

tsarenot

comparab

leto

themoredev

elop

edap

proachof

expan

dingthebluephasetemperature

range

bypoly-

merizingareactive

mon

omer

additivewithin

thebluephase[222

].

Fig.

15.(a)Co

lloidal

gold

particles(100

nmdiam

eter)trap

pedinto

theSa

turn

ring

dis-

clinationlin

esu

rrou

ndingalargesp

hericalsilica

particle

(1mm

diam

eter)su

spen

dedin

athermotropicne

matic

liquidcrystalh

ost.(b)Th

ecalculated

stab

leco

lloidal

ring

supe

r-structureforthisco

mbina

tion

ofco

lloids(ins

etsh

owsasche

matic

oftheco

rrespo

nding

electricalcircuit).R

eprinted

figu

rewithpe

rmission

fhttp://pre.ap

s.org/ab

stract/PRE

/v77

/i6/e06

1706

gffrom

[193

]g.Co

pyrigh

t(20

08)b

ytheAmerican

Physical

Society.

J.P.F.L

agerwall,G.S

calia

/Cu

rren

tApp

liedPh

ysics12

(201

2)13

87e1412

1399

Aninterestingva

riationof

liquid

crystal-ba

sedco

lloid

ordering

has

been

dev

elop

edby

theteam

ofHee

-Tae

Jung

atKAIST,Korea

,and

Oleg

Lavren

tovich

,Ken

tState

University

[223

,224

].Rather

than

nem

atic

hosts

they

workwithsm

ectics

andthey

confinethephase

inside

narrow

chan

nels

microfabricated

ina

silic

onwafer.Th

ech

annelsaretrea

tedwithafluorinated

polym

erin

order

toen

sure

planar

directoran

choringalon

gtheside

walls

aswellas

atthe

chan

nel

bottom

.Th

ech

annelsare

open

atthe

top

and

the

air

interfaceindu

cesstrong

hom

eotrop

icalignm

entthere.

Theco

nflict

inalignm

entbe

twee

nthetopan

dbo

ttom

forces

thesm

ecticphase

todev

elop

aregu

lara

rray

oftoricfocalcon

icdefects,inea

chof

which

thelaye

rscu

rvearou

ndacentraldefectlin

e.Asin

thecasesdis-

cussed

abov

e,co

lloidalparticles

introd

ucedto

theliq

uid

crystalscan

betrap

ped

inthesedefectlines.Inthisway

theteam

coulddistribute

fluorescent

particles

alon

ghex

agon

alpatternswithve

rylong

-ran

gefidelity

solely

byliq

uid

crystalself-assem

bly

[223

].Th

eregu

lar

smecticliq

uid

crystald

efecta

rray

canalso

beusedin

gene

ralasasoft

lithog

raphic

template

[225

]or

asa

basisforfabricating

supe

r-hy

drop

hob

icsu

rfaces

[226

].Byva

ryingthecrosssectionge

ometry

ofthe

micro

chan

nels

and

byreplic

amolding

the

structureson

toapho

topo

lymerizab

leprecu

rsor

materialthegrou

precentlysu

c-ceed

edin

broa

den

ingtheco

ncep

t[227

].Th

eyco

uld

now

crea

teava

rietyof

defectp

atternsan

din

contrastto

theinitialw

orks,w

hich

requ

ired

rather

specialsemi-fluorinated

mesog

ens,

they

can

now

workalso

withthemostco

mmon

lyem

ploye

dSm

Amaterial8

CB.

3.3.

Compo

site

materialscontaining

thermotropicliq

uidcrystalsas

func

tion

alad

ditive

3.3.1.

Emulsion

sof

cholestericdrop

lets

fortuna

bleom

nidirectiona

llasing

applications

Thereis

also

astronginterest

inco

lloidsof

thereve

rsetype,

where

droplets

ofliq

uid

crystalare

dispersed

inan

isotropic

continuou

sphase.

Thesystem

sin

focu

srange

from

dispersednan

odroplets

oflyotropic

liquid

crystalfordrugor

nutrientdelivery,

somethingwewill

comeba

ckto

inSe

ction3.5,

todropletsof

short-

pitch

cholesteric

liquid

crystalfor

lasing

applic

ations.

Inthe

follo

wingwewill

describethis

dev

elop

men

tin

somedetail,also

takingtheop

portunityto

brieflydiscu

ssthepoten

tial

ofch

olesteric

liquid

crystals

forlasingin

general.

Aswithan

yem

ulsion,lon

g-term

stab

ility

canon

lybe

ensu

red

byad

ding

anem

ulsifier

(e.g.a

surfactantor

polym

er)to

the

continuou

sphase,

that

adsorbsat

theinterfacebe

twee

ntheliq

uid

crystalan

dthesu

rrou

ndingmed

ium.Th

isreducestheinterfacial

tension

betw

eenthetw

ophases

anditco

unteractsco

alescence

ofthedroplets.

Thetypical

choice

fortheco

ntinuou

sphaseof

anem

ulsion

iswater,

with

the

added

emulsifier

being

either

asu

rfactant,oftenof

ionic

type,e.g.

SDSor

CTA

B(see

Fig.

2dee),o

rawater

solublepolym

ersu

chas

polyv

inylalco

hol

(PVA)or

poly-

viny

lpyrrolid

one(PVP).In

case

ofliq

uid

crystallinedroplets

the

choice

ofem

ulsifier

isqu

itecritical

because

itwill

influen

cethe

alignmen

tof

thedirectorat

theinterface,

andthereb

ythrough

out

thedropletifitisnot

toolargein

diameter.A

surfactantad

sorbsat

theinterfacewithitsnon

-polar

alky

lchainex

tendingradially

into

the

liquid

crystalphase,

imposing

aradialorientation

ofthe

director.

This

mea

ns

that

asu

rfactant-stab

ilize

dliq

uid

crystal

dropletwill

generally

hav

ehom

eotrop

icalignmen

t.PV

Aor

PVP,on

theother

han

d,adsorb

attheinterfacein

amoreor

less

random

coil

conform

ation,w

ithou

tactually

enteringtheliq

uid

crystal,an

dthis

leav

estheliq

uid

crystalwith

planar

alignmen

t,since

this

isthe

mostfavo

rableat

aninterfacewithapolar

phasesu

chas

water.

Asan

altern

ativeto

usingaq

ueo

ussolution

sof

surfactants

orpolym

erssomeresearch

ersch

oose

touse

silic

oneoil[228

,229

]or

glycerol

[230

,231

] astheco

ntinuou

sphase.Th

iscannot

give

along-

term

stab

leco

lloid,asnothingpreve

nts

theco

alescence

ofdroplets

andas

theinterfacialten

sion

isstill

non

-neg

ligible

(althou

ghnot

ashigh

aswith

water)bu

ton

atimescaleof

hou

rsto

day

ssu

chasystem

canbe

sufficien

tlystab

leforex

perim

ents.T

hebe

auty

ofthis

approachis

thesimplic

ityin

preparation.F

orinstan

ce,H

umar

andMusevicusedsimple

han

dstirringof

ach

olestericliq

uid

crystal

inglycerol

topreparean

emulsionwithdroplets

ofdiameter

inthe

15e50

mm

range

[230

].Th

eyused

cholesteric

mixtures

with

differentco

mpositionto

tunethehelical

pitch

over

alargerange

,themostinterestinghav

ingapitch

of30

0e40

0nm.W

ith

such

short-pitch

the

droplets

show

selective

Bragg

reflection

inthe

visiblerange

alon

gthedropletradius.Th

isisattractive

because

the

helix

ofach

olestericor

other

chiral

liquid

crystalsh

owingvisible

reflection

canactas

aresonan

tcavity

formirrorlesslasingifon

ead

dsafluorescentdye

with

emission

wav

elen

gth

tuned

tothe

reflection

band

ofthech

olesteric[232

e23

5].Indee

d,by

adding

Fig.

16.(a)Sche

matic

ofthech

olestericdrop

lets

func

tion

ingas

amed

ium

formirrorlesslasing

.(b)

Polarizing

microscop

yim

ageof

ash

ort-pitchch

olestericdrop

letreflecting

red

light.(c)

Lasing

from

thedrop

letwhe

npu

mpe

dwithan

extern

alpu

lsed

lasersource.A

dapted

withpe

rmission

(Cop

yright

2010

Optical

Societyof

America)

from

referenc

e[230

].(For

interpretation

ofthereferenc

esto

colorin

this

figu

relege

nd,the

read

eris

referred

totheweb

versionof

this

article.)

J.P.F.L

agerwall,G.S

calia

/Cu

rren

tApp

liedPh

ysics12

(201

2)13

87e1412

1400

Page 8: 2012 LC review

asm

allam

ountof

thelaserdye

4-dicya

nom

ethy

lene-2-methy

l-6-

(p-dim

ethy

laminostyryl)-4H-pyran

(DCM)

and

pumping

the

collo

idwithapulsed

freq

uen

cy-dou

bled

Nd:YAG

laser,lasingwas

achieve

dfrom

thedroplets

atab

out6

00nm,cf.Fig.16

.What

mak

esthis

dem

onstration

particu

larly

interesting

isthat

the

spherical

geom

etry

ofthe

cholesteric

droplets

lead

sto

omnidirection

allasing,

i.e.thelaserlig

htisem

ittedradially

inallthreedim

ension

s.Atthesametime,

theea

sein

tuningthech

olestericpitch

,e.g.b

ych

angingthetempe

rature,allowsforsometuningof

thelasing

wav

elen

gth,althou

ghtherange

islim

ited

bytherequ

irem

entto

match

theem

ission

wav

elen

gthof

thelaserdye

.Th

epreparationprocedure

isattractive

initssimplic

itybu

tthe

method

suffersfrom

lack

oflong-term

stab

ility

anditdoe

snot

offer

very

good

control

ofdroplet

diameter.A

fairly

largedispersity

inthe

dropletsize

isalso

tobe

expected.

Forim

prove

dco

ntrol

ofthe

collo

idch

aracteristicsitmay

thusbe

preferableto

use

morestan

-dard

emulsion

preparation

tech

niques,typically

dispersing

the

liquid

crystalin

anaq

ueo

us

continuou

sphase,

stab

ilizing

the

emulsion

with

added

polym

er(surfactants

wou

ldnot

beuseful

heresince

theradialorientation

ofthech

olesterichelix

requ

ires

planar

alignmen

t).S

till,

thestab

ility

ofsu

chasystem

may

not

besatisfactory,a

situationthat

motivated

Landfester

andco

-worke

rsin

theirworkon

‘miniem

ulsions’

ofoilphases

inwater

prepa

red

byultrasonication

todev

elop

asm

arttrick

[236

].Th

eyad

ded

asm

allam

ountof

hex

adecan

eto

thenon

-polar

phase,

actingas

a“super

hydrophob

e”.Its

very

low

solubility

inthe

aqueo

us

continuou

sphasecrea

tesan

osmotic

pressuredirected

into

the

droplet

interior

that

counteracts

the

Laplace

pressure,which

promotes

dropletco

alescence.T

hey

reportedadramatic

improve

-men

toftheem

ulsionstab

ility

inthisway,andthey

even

tested

the

concept

successfully

onliq

uid

crystald

roplets

[237

].How

ever,their

studydea

ltwithnon

-chiral

nem

atic

droplets

ofsu

bmicrondiam-

eter.If

one

wishes

toap

ply

theirmethod

olog

yto

the

case

ofch

olestericdroplets

forlasing,

whichmust

besometw

oordersof

mag

nitude

grea

terin

size

,on

ewou

ldthusnee

dto

reduce

the

quan

tity

ofstab

ilize

rin

order

tomatch

themuch

smallersu

rface-

to-volumeratio

ofthelarger

droplets.It

isalso

proba

blyad

vis-

able

touse

aless

intense

dispersion

method

than

ultrasonication,

whichtypically

yieldsve

rysm

alldroplet

size

.Anicealtern

ativeif

theeq

uipmen

tis

availableis

touse

asp

ecially

designed

micro-

fluidic

system

toproduce

dropletsof

controlledsize

,anap

proach

that

has

enab

led

quite

beau

tifulstudiesof

non

-chiral

nem

atic

liquid

crystaldroplets

under

varyingco

nditions[238

,239

].A

general

problem

with

lasing

from

dye

-dop

edch

iral

liquid

crystals

isthefact

that

continuou

swav

e(CW

)lasinghas

not

yet

been

achieve

d.Th

ismay

hav

eseve

ralcauses,

thetw

omostprob-

able

beinghea

tingof

theliq

uid

crystalsu

chthat

itspitch

chan

ges

toomuch

orev

ento

theex

tentthat

aphasetran

sition

into

isotropic

liquid

occu

rs,an

dthelim

ited

stab

ility

oftheorga

nic

dye

s(inor-

ganic

dye

sge

nerally

hav

etoopoo

rsolubilityin

theliq

uid

crystal).

Inthis

resp

ectthe

droplet-ba

sed

liquid

crystallasermay

offer

asolution

,provided

that

they

are

susp

ended

ina

low-visco

us

continuou

sphase

that

can

easily

bepumped

through

narrow

chan

nels.

By

inco

rporating

the

cholesteric

droplet

collo

idin

amicrofluidic

system

itsh

ould

bepossibleto

continuou

slypump

theco

lloid

pastthearea

exposed

bythepumpinglaser,su

chthat

no

singlech

olestericdropletis

exposed

totheCW

pumpingradiation

longe

rthan

itcansu

pport.Asnew

droplets

continuou

slyen

terthe

active

area

ofthe

system

aqu

asi-CW

laser

outputmightbe

achieve

d.

Thefuture

dev

elop

men

tof

this

very

new

concept

ofap

plying

aliq

uid

crystalem

ulsionwill

behighly

interestingto

follo

w.Th

einitial

resu

lts

hav

ealread

yattracted

much

attention

inthe

photon

icsco

mmunity[240

],hen

cethereis

astrongdrivingforce

fortaking

theco

nceptto

astag

ewherepractical

applic

ation

is

viab

le.If

the

remaining

obstaclescan

beov

erco

me,

this

wou

ldallow

ave

rych

eapfabricationof

tunab

le3D

lasers

ofan

entirely

new

type.

3.3.2.

Liqu

idcrystalline

shells

Colloids

with

liquid

crystaldroplets

can

beproduced

with

relative

lysimple

method

s.Arecentdev

elop

men

tmad

epossibleby

theintrod

uctionof

somew

hat

moread

vancedeq

uipmen

t,aco

axial

nestedcapillarymicrofluidic

system

forpreparingmultiple

emul-

sion

swithex

trem

elylow

dispersity

[241

],is

thepreparationan

dstudyof

collo

idswheretheparticles

arethin

shellsof

liquid

crystal

rather

than

droplets.E

achsh

ellco

ntainsadropletof

anisotropic

phase,

generally

anaq

ueo

us

surfactant

orpolym

ersolution

althou

ghglycerol

orsilic

onoilcan

also

beused,an

dthese

‘com

positedroplets’aresu

spen

ded

inaco

ntinuou

sphasethat

can

hav

ethesameor

differentco

mpositionas

theinner

dropletphase.

Mostworkhas

been

don

ewith

aqueo

usinner

andou

terphases

since

this

allowsforea

sytuningof

thedirectorge

ometry

atthe

shell’s

inner

and

outerbo

undaries.

Asdiscu

ssed

inthepreviou

ssu

bsection

,anionic

surfactantyieldshom

eotrop

icalignmen

tan

dapolym

erlik

ePV

Ainducesplanar

alignmen

t.Th

ework

inthis

new

field

has

largely

been

motivated

byaseminal

theo

reticalpap

erby

Dav

idNelson,published

inNan

oLettersin

2002

[242

].Hepointedou

tthat

aplanar-alig

ned

spherical

liquid

crystalsu

rfacecan

beex

trem

elyinterestingas

aba

sisfor

adva

ncedco

lloids.Th

etopo

logy

ofsu

chasystem

dictatesthat

the

liquid

crystaldirectorfield

must

hav

eatotaldefectstrength

ofs¼

þ2ov

erthesu

rface.

Wearealla

wareof

thissituationfrom

the

orientation

alfieldsp

anned

bythemeridianson

theea

rth,which

cometoge

ther

into

twos¼

þ1topolog

ical

defects

atthenorth

and

south

pole.

Thesamedefectarrange

men

tis

possiblein

aplanar-

aligned

spherical

liquid

crystalsu

rface,

butNelson

pointed

out

that

this

isnot

theen

ergy

minim

izingco

nfigu

ration

.Bysp

litting

each

unitstrengthdefect,or

disclination,into

twos¼

þ1/2

defects

theen

ergy

isreduced,a

stheen

ergy

den

sity

ofadefectis

propor-

tion

alto

thesquareof

itsstrength.(Se

eFig.7foran

overview

ofthe

mostco

mmon

nem

atic

topolog

ical

defects.)Moreo

ver,be

cause

the

directorfield

inthe

vicinity

ofa

disclination

isdistorted

,with

aco

nsequ

ent

elastic

energy

pen

alty,the

totalen

ergy

ofthe

spherical

system

isminim

ized

when

thefourhalf-va

lued

defects

arrange

asto

minim

izethetotald

istortionof

thedirectorfield.T

his

hap

pen

sforatetrah

edralco

nfigu

ration

ofthedisclinations.

Thereason

that

thisisparticu

larlyinterestingisthat

thedefects

arehigh

energy

points

wheretheliq

uid

crystallineorde

rbrea

ksdow

n,an

difaforeignnon

-liquid

crystallinesp

eciesis

added

,its

moleculesmay

beex

pectedto

aggreg

ateat

thedefects.T

hiswou

ldminim

izetheen

ergy

astheforeignsp

ecieswou

ldtake

upthesp

ace

where

otherwise

mesog

ens

must

be,putting

them

ina

non

-favo

rabledisordered

isotropic

statewith

higher

energy

than

the

orde

redbu

lk.If

theforeign

speciesareinco

mpatible

with

liquid

crystallineorder

yetmisciblewiththeliq

uid

crystallinematerialin

itsisotropic

state,

this

wou

ldfurther

promotemigration

ofthat

species

toward

the

defects.Th

istype

oflocaliz

ation

ofgu

est

particles

ormoleculesto

disordered

region

sof

aliq

uid

crystalh

ost

has

been

used

tocrea

tesoft

solid

swith

unusu

alproperties

[181

,182

]an

ditisthou

ghtto

betheorigin

ofthedramatic

polym

erstab

ilization

ofliq

uid

crystalbluephases

[222

],cu

rren

tlystrongly

explored

asa

poten

tial

basis

for

nex

tge

neration

high

spee

ddisplays.R

ecen

tlyitwas

also

usedforman

ipulatingan

dtran

slating

polym

ermoleculeswithin

anem

atic

liquid

crystalwithlocaliz

edreductionof

orientation

alorde

r[243

].Nelson’sco

njecture

was

that

thisphen

omen

onco

uld

beusedfor

anch

oring

ligan

dmolecules

tothe

topo

logicaldefects

inthe

sphericalliq

uid

crystalsurface,wheretheex

tern

alen

dof

thelig

and

moleculeswou

ldhav

ethecapacityto

bindto

other

ligan

ds.

The

J.P.F.L

agerwall,G.S

calia

/Cu

rren

tApp

liedPh

ysics12

(201

2)13

87e1412

1401

water

soluble

endsof

the

ligan

dmoleculesco

uld

forinstan

ceco

mprise

complemen

tary

single

DNA

strands.

Becau

sethe

dis-

clinationsarearrange

don

atetrah

edronthelig

andswou

ldgive

the

liquid

crystalspheres

thepossibilityto

bondin

thesameway

assp

3 -hy

bridized

carbon

doe

s,bu

ton

amuch

larger

collo

idal,rather

than

atom

ic,scale.

Inthis

way

the

shells

could

self-assem

ble

into

collo

idal

diamon

d-like

crystals,as

illustrated

schem

atically

inFig.

17,s

omethingwhichis

exception

ally

difficu

ltto

achieve

with

regu

larco

lloids

which

typically

crystallize

inhex

agon

alclose-

packe

darrange

men

ts.A

collo

idal

crystalwith

adiamon

dlattice

structure

isex

trem

elyinterestingforthephoton

icsco

mmunity,

asthis

wou

ldallow

thege

nerationof

metam

aterials

withco

mplete

polarization-indep

enden

t3D

photon

icba

ndga

p.

Onecanim

agineafew

differentway

sof

achievingtherequ

ired

planar-alig

ned

liquid

crystalsu

rfacebu

tso

fartheon

lyroute

that

has

been

pursued

isviathemicrofluidics-producedliq

uid

crystal-

line

shells.Th

eteam

arou

nd

Dav

idWeitz,Alberto

Fern

andez

-Nieve

san

dTe

resa

Lopez

-Leo

nwerethefirstto

explore

this

line

ofresearch

andtoge

ther

they

hav

epublished

aseries

ofbe

autiful

experim

entalstudiesof

nem

atic

shells

[244

e24

7],c

omplemen

ted

bytheo

reticalan

alyses

from

other

grou

ps[248

e25

0].Itturn

sou

tthat

thedesired

tetrah

edralco

nfigu

ration

isnot

quiteas

easy

toachieve

inpracticeas

expected,thereason

being

theex

tension

within

thesh

ello

fthes¼

þ1/2

disclinationlin

es.W

hile

theen

ergy

den

sity

isproportion

alto

thesquareof

thedefectstrength,the

actual

energy

isalso

proportion

alto

thelengthof

thedisclination

line.

Thus,

the

liquid

crystaltypically

minim

izes

the

energy

bydistortingthesh

ellsomew

hat,renderingit

asym

metricwiththe

thinnestpointat

thetopor

bottom

(incase

ofim

perfect

den

sity

match

ingof

liquid

crystala

ndinner

fluid,w

hichis

theusu

alcase),

and

bringingallfourdefects

closeto

this

regime.

Althou

ghthis

increa

sesthedirectorfielddistortionin

thevicinityof

thedefects,

thereis

atotalen

ergy

gain

dueto

thereduced

extension

ofthe

disclinationlin

eswithin

thesh

ell[247

].In

aneleg

antrecentstudy

Lopez

-Leo

nan

dco

-worke

rssu

c-ceed

edin

thinningthesh

ellin

aco

ntrolledway

byex

pan

dingthe

intern

aldropletvo

lumethrough

osmotically

drive

nflow

from

the

continuou

sphase[245

].Ev

entually

thesh

ellge

tsso

thin

that

the

shellasym

metry

isneg

ligible

and

then

thetetrah

edralarrange

-men

toffou

rdefects

canindee

dbe

stab

ilize

d.H

owev

er,thissu

ccess

comes

attheco

stof

expan

dingthesh

elldiameter

quitedramati-

cally

,arather

subs

tantial

problem

consideringthat

thetarget

size

isthesu

bmicronrange

ofco

lloidswithattractive

opticalp

rope

rties.

Infact,thelargesize

ofthesh

ells(they

aretypically

intherange

ofab

out10

0mm)is

oneof

thetw

oke

yob

stacleson

theroad

toward

realizingNelson’svision

.Eve

nwithou

tthinningthesh

ellitis

very

difficu

ltto

produc

esh

ells

that

aresm

allerthan

some50

e60

mm

usingthemicrofluidic

tech

nique,

hen

ceamethod

toreduce

the

shellsizeby

abou

ttw

oordersof

mag

nitudeisrequ

ired

.Thismight

bepossibleby

produc

ingthesh

ells

withalargeam

ountof

volatile

solven

tsu

chas

chloroform

mixed

with

theliq

uid

crystal,which

could

beev

aporated

aftersh

ellproductionin

order

toreduc

ethe

shellsize

,bu

tcarryingou

ttheev

aporationwithou

tbrea

kingthe

shellis

adelicatetask

.Itis

not

unlik

elythat

themicrofluidic

shell

productiontech

niqueev

entually

has

tobe

replacedby

adifferent

tech

niquethat

issp

ecifically

adap

tedto

thetask

ofprodu

cingsu

bmicronsh

ells.T

heseco

ndissu

eto

address

istherealizationof

the

requ

ired

ligan

dmolecules.

Todateno

grou

phas

presented

any

effortson

designingan

dsynthesizingthesemoleculesin

practice.

While

thereis

proba

blynofundam

entalproblem

preve

ntingtheir

phy

sicalrea

lization,itisach

allenge

that

will

certainly

requ

iresome

ded

icated

effortsfrom

skilled

synthetic

team

s,an

dthech

emistry

invo

lved

islik

elyto

neither

besimple

nor

low

cost.

Theap

plie

dgo

alof

realizinginterestingpho

toniccrystalmeta-

materialsusing

liquid

crystalshe

llsisthusstill

farah

ead,w

ithsome

keych

allenge

sremainingto

bead

dressed

,bu

tthesh

ells

that

are

curren

tlyavailablearenev

erthelessex

trem

elyattractive

asthey

offer

afantastic

playg

roun

dfor

fund

amen

talscientific

research

.Fo

racad

emic

research

thesize

rang

eof

abou

t10

0mm

diameter

isqu

ite

perfect

andseve

ralgrou

pshavepub

lished

beau

tifulstudies

ofthe

texturaldev

elop

men

tsan

ddefectco

nfigu

ration

sin

thesh

ells.T

heab

ovemen

tion

edstudies

havegive

nusago

odund

erstan

dingof

how

thedirectorfieldan

dthedefects

arrang

ein

nem

atic

shells

ofva

ryingthickn

ess,foremostw

ithplana

ralignmen

tatb

othinterfaces

totheaq

ueo

uspha

ses.Astudy

whe

rethealignmen

tato

neinterface

was

chan

gedbe

twee

nplana

ran

dhom

eotrop

icwhile

theothe

ron

e

Fig.

17.Prod

uction

ofliq

uidcrystals

hells

inane

sted

capilla

rymicrofluidicde

vice,tog

ethe

rwithacartoo

nillus

tratingthepo

stulated

self-

assemblyof

ligan

d-eq

uipp

edtetrav

alen

tliq

uidcrystalsh

ells

into

adiam

ond-lik

eco

lloidal

crystal.Microfluidics

photog

raph

courtesy

ofHsin-

Ling

Lian

g.

Fig.18

.Tran

sition

from

thene

matic

(a,b

)totheSm

Aph

ase(c,d

)inaplan

ar-alig

nedsh

ello

f8CB

.The

shelld

iameter

isab

out1

00mm

.Pho

tograp

hsco

urtesy

ofHsin-

Ling

Lian

g,from

referenc

e[251

].Co

pyrigh

t(201

1)by

theAmerican

Physical

Society.

J.P.F.L

agerwall,G.S

calia

/Cu

rren

tApp

liedPh

ysics12

(201

2)13

87e1412

1402

Page 9: 2012 LC review

was

kept

plana

rga

veinsigh

tintothedyn

amicsas

wella

sthephy

sics

preva

iling

inanem

aticsh

ellw

ithhy

brid

bound

aryco

ndition

s[246

].Th

efirststud

ieson

smecticsh

ells,an

dthetran

sition

betw

een

nem

atic

andsm

ecticstates,w

ererecentlypresentedby

Lian

get

al.

[251,252

],an

dLo

pez-Le

onet

al.[25

3].T

head

ded

complexity

of1D

positiona

lorder

heregive

srise

tonew

defects

andtexturalfea

tures

incase

ofplanar-alig

ned

shells,cf.theex

ample

inFig.18

.The

frus-

trationof

acrosssectionsu

rfacearea

that

dim

inishe

son

goingfrom

thesh

ellexteriortotheinterior,andthus

alaye

rnum

berthat

shou

ldge

tsm

allerin

case

ofa

cons

tantdirectororientation

,lead

sto

bucklin

ginstab

ilities

whe

rethedirectortw

ists

from

thein-to

the

outside,

with

aco

nseq

uen

tincrea

singund

ulation

ofthesm

ectic

laye

rs[251

].In

arecent

study

Lian

get

al.also

studied

the

nem

aticesm

ectictran

sition

insh

ells

withhy

brid

bound

aryco

ndi-

tion

s,reve

alingave

ryrich

seto

ftex

turalfea

tures,withbe

autifuland

intriguingtran

sitory

texturesarisingduringthetran

sition

[254

].A

strongdep

ende

nceon

shellsizean

dthickn

essan

don

thean

choring

strengthof

thedifferentstab

ilize

rsusedwas

also

found

,providing

seve

ralh

andlesfortuningthedefectco

nfigu

ration

inthesh

ell.

Thestudyof

liquid

crystallinesh

ells

isstill

very

much

inits

infancy,with

nostudiesex

istingye

ton

awholerange

ofliq

uid

crystalp

hases.T

heinfluen

ceof

chiralityhas

forinstan

cenot

atall

been

inve

stigated

sofar.Th

efuture

will

beex

citingforthis

field

whichmay

holdman

ysu

rprisesof

fundam

entalscien

tificnature,as

wellas

trueprogresson

theap

plie

dtrack,

even

tually

lead

ingto

highly

attractive

nov

elmetam

aterials.

3.3.3.

Liqu

idcrystal-fille

delectrospu

nmicro-/na

nofibe

rsA

very

new

dev

elop

men

tin

liquid

crystalresearch

that

holds

considerab

leap

plic

ationpoten

tial

istheproductionof

textile

fibe

rsfunctionalized

with

liquid

crystalin

the

core.W

ith

the

aim

tofabricateakindof

wov

enelectron

icpap

er,N

akataet

al.e

mploye

damod

ified

meltsp

inningtech

niqueto

produce

core-shea

thpoly-

olefi

nfibe

rsthat

contained

either

cholestericliq

uid

crystalor

anelectrop

horetic

dispersion

intheco

re[255

].In

case

ofsh

ort-pitch

cholestericliq

uid

crystalco

resthe

fibe

rswerereflecting

inthe

visiblerange

andtheco

lorco

uld

besw

itch

edoffby

applyingan

electric

field.T

his

how

ever

requ

ired

ave

ryhighdrivingvo

ltag

eof

400Vov

erthefibe

rs,w

ithou

terdiameter

inthe80

e10

0mm

range

.W

hile

not

atrad

itional

textile

,theweava

bility

oftheproduced

fibe

rsop

ensfortaking

the

concept

into

the

direction

ofsm

art

textile

s.Adifferent

approachto

produ

cing

liquid

crystal-co

ree

polym

ersh

eath

fibe

rs,with

conside

rably

smallerdiameter,was

recently

introd

ucedby

Lage

rwallan

dco

-worke

rs[256

].Using

coax

ialelec-

trospinning

they

could

introd

uceava

rietyof

liquid

crystalsinto

the

core

ofthesp

inning

jet,whe

rethesh

eath

fluid

was

asolution

ofwater

solublepolym

erslik

epolyv

inylpy

rrolidon

e(PVP)

orPV

A,som

etim

eswithinorga

nicsol-ge

lprecu

rsor

forprodu

cing

aco

mpo

site

shea

th,

e.g.

withaco

mpo

nent

ofTiO2.Electrospinningisaprocess

forsp

in-

ningpolym

erfibe

rsthat

israpidlyga

iningin

attentionacross

the

international

nan

oscien

cean

dtech

nolog

yan

dmaterials

scienc

earen

a.In

contrast

toco

nven

tion

altech

niques

thesp

inningis

not

drive

nby

highpressurebu

tthepolym

erfibe

ris

essentially

‘pulled’

outby

astrongelectric

field

from

adroplet

protruding

from

the

spinneret.T

heproduc

tisanon

-wov

enmat

offibe

rswithdiameters

typically

intherang

efrom

some10

0nm

toafew

microns

.Withthe

simplest

colle

ctor

geom

etries

thematsco

nsist

ofrand

omly

criss-

crossing

fibe

rsbu

tit

isrelative

lyea

syto

achiev

equ

ite

uniform

alignmen

t,e.g.

byusing

split

electrod

esfortheco

llector

[257

e25

9].

Part

ofthebe

auty

ofthemetho

dis

that

itrequ

ires

very

simple

equipmen

tthat

easily

fits

onan

ordinarych

emistryor

phy

sics

lab

bench

andit

isve

rydyn

amic

inthesense

that

thedetails

ofthe

spinningset-upcanea

sily

andqu

icklybe

varied

,allo

wingformuc

hex

perimen

tation

andrapidtestingof

new

idea

s.Wedonot

gointo

the

details

behindtheelectrospinningprocess

herebu

trefertheinter-

estedread

erto

oneof

seve

ralexcellent

curren

trev

iew

articles

onthe

topic[260

e26

5]as

wellas

abo

okch

aptersp

ecifically

dev

oted

toliq

uid

crystale

lectrosp

inning[266

].Th

eco

axialelectrospinningtech

niqueis

particu

larlyusefulfor

liquid

crystalresea

rchan

dap

plic

ationsas

itallowsessentially

any

fluid

tobe

spunin

thefibe

rco

re,since

thestronglynon

-New

tonian

polym

ersh

eath

solution

stab

ilize

stheliq

uid

jetan

dpreve

nts

the

Ray

leighinstab

ility

tobrea

kit

upinto

droplets.

Inprinciple,an

yliq

uid

crystalp

hasewithviscositylow

enou

ghto

bepumped

tothe

spinneret

can

thus

beinco

rporated

inside

electrospun

fibe

rs.

Lage

rwalla

ndco

-worke

rsdem

onstratedthisso

faron

regu

larnon

-ch

iral

nem

atics[256

],non

-chiral

smectic-A[267

]as

wellas

short-

pitch

chiral

nem

atics[268

].In

particu

larthelatter

isinteresting

from

anap

plic

ational

pointof

view

,since

theselectivereflection

oftheliq

uid

crystalisvisiblethrough

thesh

eath

forsu

fficien

tlythick

fibe

rs,thusgivingthewholemat

theco

lorof

theliq

uid

crystal,

easily

visibleby

thenak

edey

e.On

theother

han

d,if

themat

ishea

tedab

ovetheclea

ringpointof

theliq

uid

crystal,thisturn

sinto

anisotropic

liquid

within

thefibe

rco

re,remov

ingtheco

loran

dleav

ingthemat

withawhiteap

pea

rance

from

lightscatteringoff

thepolym

ersh

eath,cf.Fig.19

.Thissimple

experim

entprovided

anim

portant

dem

onstration

ofthe

applic

ation

poten

tial

ofthe

producedliq

uid

crystal-functionalized

matsin

sensingdev

ices.T

he

mat

was

ave

ryba

sicnon

-wov

entextile

basedtemperature

sensor,

butthe

same

conceptcan

bedev

elop

edforinstan

ceinto

gas

sensors

[269

e27

2],w

heretheprimead

vantage

swou

ldbe

low

cost

andsimple

production,rapid

andsensitive

resp

onse

dueto

very

largesu

rface-to-volumeratio,

directop

ticalrea

d-outby

thenak

edey

eby

untrained

users,fullau

tono

myan

dindep

enden

ceof

pow

ersu

pply,a

ndea

seof

integrationinto

clothing.

While

theco

axiale

lecrospinningap

proachis

very

efficien

tan

dprovides

good

control,on

ecanactually

achieve

theliq

uid

crystal

core-polym

ersh

eath

fibe

rmatsusingco

nve

ntion

alelectrospinning

aswell.Buyu

ktan

iret

al.m

ixed

stan

dardnem

atic

5CBwithpoly-

lactic

acid

usingamixture

ofch

loroform

andaceton

eas

common

solven

tan

dsp

unthis

usingsingle-fluid

electrospinning[273

].As

the

solven

tev

aporated

the

liquid

crystalan

dpolym

erphase

separated

,luck

ilywiththeliq

uid

crystalp

rimarily

intheco

re,thus

contained

bythepolym

er.T

hesimplic

ityof

this

approachis

very

attractive

butthedeg

reeof

control

doe

snot

quitereachtheleve

ls

Fig.

19.An

electrospu

nno

n-wov

enmat

ofpo

lyviny

lpyrrolid

one

fibe

rsco

ntaining

ash

ort-pitch

cholestericliq

uid

crystalmixture

inthe

core.(a)Re

flection

atroom

tempe

rature.(b)

Tran

smission

atroom

tempe

rature,sho

wingtheco

mplem

entary

red-

brow

nco

lorto

thereflectedblue

color.(c)Re

flection

afterhe

atingab

ovetheclea

ring

point.Onlythewhite

scattering

from

thepo

lymer

shea

this

visible,

theco

lorha

ving

disapp

earedwiththedisapp

earanc

eof

theorde

redstructureat

thech

olesterice

isotropic

tran

sition

.Ph

otog

raph

sco

urtesy

ofEv

aEn

z,from

referenc

e[268

].Re

prod

uced

bype

rmission

ofTh

eRo

yalSo

cietyof

Chem

istry.

(For

interpretation

ofthereferenc

esto

colorin

thisfigu

relege

nd,the

read

erisreferred

totheweb

versionof

thisarticle.)

J.P.F.L

agerwall,G.S

calia

/Cu

rren

tApp

liedPh

ysics12

(201

2)13

87e1412

1403

oftheco

axialelectrospinningtech

nique,

hen

ceitsslightlyhigher

deg

reof

complexity

canin

man

ycasesbe

clea

rlyworthwhile

.In

term

sof

theprodu

ced

fibe

rsthedistingu

ishingfeature

ofelectrospinning

compared

toco

nve

ntion

alelectrospinning

isprimarily

theve

rythin

diameter.W

hile

itis

challengingto

reach

fibe

rdiametersbe

low

seve

raltensof

micronswith

conve

ntion

alsp

inningmethod

s,dueto

thedye

swella

sthepolym

ersolution

ormeltex

itsthesp

inneret,e

lectrosp

inningfreq

uen

tlyyieldsfibe

rsin

therange

oftensof

nan

ometersupto

afew

microns.Th

isgive

sthe

produced

matsve

ryhigh

surface-to-volumeratio,

mak

ingthem

very

attractive

forinstan

ceforsensingap

plic

ations.Itmay

also

bead

vantage

ousin

term

sof

bringingdow

nthevo

ltag

esrequ

ired

for

switch

ing

the

liquid

crystal,

althou

ghthe

stronge

rsu

rface

anch

oringupon

reducedinner

diameter

may

raisethethresh

old

voltag

e.Th

eelectrod

esrequ

ired

forap

plyingan

electric

fieldco

uld

berealized

indifferentw

ays.Th

ewholefibe

rmat

may

belaminated

betw

eenco

nductivesh

eets,rea

lized

forinstan

ceby

coatingregu

lar

textile

fibe

rswithcarbon

nan

otube

s[274

,275

],or

oneco

uld

add

athird

capillarytube

totheelectrospinningset-up

toallow

for

tripple

fluid

coax

ialsp

inning.

Inthis

way

fibe

rsco

nsistingof

aninterm

ediate

phasebe

twee

nash

eath

andacentral

core

material

hav

ebe

enrealized

[276

]an

difco

nductiveparticles

such

ascarbon

nan

otube

saread

ded

totheinner

andou

terpolym

ersolution

s,at

aco

ncentrationab

ovetheperco

lation

thresh

old,a

coax

iale

lectrode

geom

etry

wou

ldbe

realized

directlyin

each

fibe

r.Th

ecritical

challenge

forelectrospinningifthetarget

issm

art

textile

s,or

wea

rabletech

nolog

yas

itis

also

calle

d,isthedifficu

lty

inproducing

continuou

sya

rns

ofthe

fibe

rs.Electrospinning

generally

produc

esnon

-wov

enmatswherea

sattempts

topickup

thefibe

rson

asp

ool,individually

orsp

uninto

aya

rn,gen

erally

fail.

This

mak

esit

impossible

toweave

orkn

itfabricsusing

fibe

rsproduced

byelectrospinningan

dtheprosp

ects

forbringingthe

liquid

crystalco

refibe

rsto

truetextile

garm

ents

arethereb

yseri-

ouslylim

ited

.W

hat

issometim

esreferred

toas

‘pseudo-wov

en’

matscanbe

realized

bysp

ecialtech

niques

providingparticu

larly

good

control

ofalignmen

t,su

chthat

fibe

rscanbe

spunin

subs

e-qu

entlaye

rsof

parallelfi

bers,w

herethefibe

rdirection

ofon

elaye

ris

perpen

dicularto

that

ofitsneigh

borlaye

rs[277

e27

9].T

his

may

yield

matswith

better

mechan

ical

properties

than

random

non

-wov

ens,

althou

ghthey

wou

ldhav

edifficu

ltiesto

competewith

wov

enor

knittedtextile

s.Oneap

proach

toinco

rporatean

electrospu

nnon

-wov

eninto

atextile

fabricisto

laminateitbe

twee

nsh

eets

offabricwov

enfrom

trad

itional

textile

fibe

rs,an

approach

that

has

been

used

for

inco

rporatingprotectivefiltersmad

eou

tof

electrospunfibe

rmats

into

garm

ents

[280

].Th

ismay

beaway

forw

ardalso

forthefibe

rmatsfunctionalized

byliq

uid

crystal.Alternativelyon

emightsee

the

liquid

crystalelectrospinning

activity

primarily

asa

useful

exploratory

phasetech

nique,

itsve

rsatility

beingof

grea

tva

lueas

longas

thequ

estion

sto

bean

swered

dea

lwiththesp

innab

ility

ofcertainphases,theirresp

onse

tothestrongcy

lindrical

encapsu

la-

tion

within

thefibe

rs(quitestrongeffectson

liquid

crystalphase

sequ

ence

werefoundin

someof

thematsstudiedso

far[256

,268

]),

the

resp

onse

toch

ange

sin

the

environmen

talco

nditionsor

toex

tern

alfieldsetc.

Once

aco

ncept

iden

tified

asusefulsh

ould

bebrou

ghtto

astag

ewheretruetextile

scanbe

produc

ed,this

could

then

betran

sferredto

conve

ntion

alsp

inningtech

niques,a

task

that

shou

ldbe

feasible

provided

that

theve

rythin

diameter

ofelec-

trospun

fibe

rsis

not

requ

ired

.Fo

rfabricsthefibe

rdiametersare

usu

ally

much

larger,h

ence

this

shou

ldge

nerally

beacceptable.

3.4.

Actua

tors

mad

efrom

liquidcrystalelastomers

Theco

mbinationof

liquid

crystals

andpolym

ersis

attheco

realso

ofan

other

subfieldof

mod

ernliq

uid

crystalresea

rch,that

has

dem

onstratedgrea

tpoten

tial

andattractedman

yplaye

rsfrom

all

over

theworld.Th

isis

thefield

ofliq

uid

crystallineelastomers,

produced

bywea

klycross-lin

king

reactive

mesog

enspresentin

athermotropic

liquid

crystalphase,

afteren

suringamacroscop

i-cally

uniform

directoralignmen

t.Th

eprodu

ctis

anem

atic

orsm

ectic

side-

ormain-chain

polym

errubb

erwith

actuating

capacity.

Due

tothe

long-range

order

ofthe

liquid

crystalthe

polym

erba

ckbo

ne

issu

bstantially

stretched

outin

the

liquid

crystallinestate,bu

tifthesystem

istake

nto

theisotropic

statethe

back

boneisfree

toad

optan

entrop

ically

favo

redrandom

coilstate

instea

d[281

e28

3].A

saresu

ltthewholesystem

shrinks

alon

gthe

initialdirectororientation

,while

itex

pan

dsin

theperpen

dicular

dim

ension

s.Th

etran

sition

betw

een

the

liquid

crystalline

and

isotropicphases

canbe

trigge

redeither

bytempe

rature

chan

geor

bylig

htirradiation

,thelatter

option

mad

epossibleby

thead

dition

ofphotoisomerizab

legrou

pssu

chas

azob

enze

ne.

Thesh

apech

ange

canbe

quitedramatic

andve

ryfast,a

ndthe

concept

has

thusbe

enproposed

foruse

inva

riou

stypes

ofactuator

dev

ices.F

ilmsor

ribb

onsof

liquid

crystalelastomer

wereusedas

lightdrive

nmotors[284

]or

artificial

muscles[285

],sh

eets

ordisks

can

resp

ond

tolig

htirradiation

bybe

ndingalon

gan

ydirection

,ch

osen

bysetting

the

lightpolarization

[286

],or

turn

edinto

swim

mersthat

mov

eaw

ayfrom

alig

htsource[287

],an

dfibe

rsof

liquid

crystalelastomer

show

ed‘hea

vy’weigh

tlifting

capacity

[288

].W

hen

adye

-dop

edsh

ort-pitch

chiral

nem

atic

was

turn

edinto

arubb

eritco

uld

beusedas

alaserwithem

ission

wav

elen

gth

that

could

betuned

bystretchingtherubb

er[289

].A

crucial

requ

irem

entforachieving

efficien

tactuation

from

liquid

crystale

lastom

ersisamon

odom

ainsample,i.e.thedirector

field

must

beuniformly

aligned

through

outtheru

bber

sample.

Seve

raltechniques

hav

ebe

endev

elop

edto

mee

tthisrequ

irem

ent

[290

],e.g.

starting

with

anon

-polym

erized

system

ofreactive

mesog

ensthat

can

bealigned

usingco

nve

ntion

alliqu

idcrystal

alignmen

tlaye

rsprior

tocross-linking,

orap

plyingatw

o-stag

ecross-linking

process

with

amom

entof

uniaxial

stretching

inbe

twee

n.R

ecen

tlyafew

interestingaltern

ativeap

proaches

were

added

tothetoolbo

xformak

ingliqu

idcrystale

lastom

eractuators,

includingmicro-or

nan

otem

plating[291

,292

]an

dinkjet

printing

[293

] .Another

highly

original

rece

nt

addition,allowing

the

productionof

quitepeculiar

liqu

idcrystalelastomer

objects,

was

introd

ucedby

theZe

ntelg

roup.T

hey

pumpdroplets

ofanem

atic

liquid

crystallinephaseform

edby

areactive

mesog

enic

mon

omer

through

amicrofludic

system

athigh

shea

rrate,su

chthat

the

director

field

within

each

droplet

iswell-defi

ned

[238

,294

].Duringtheflow

thedroplets

ewhichco

ntain

photoinitiatoran

dcross-linke

rin

additionto

thereactive

mesog

ense

areex

pos

edto

high-p

ower

ultraviolet

radiation

that

ensu

res

arapid

cros

s-lin

king,

thusturn

ingthedroplets

into

rubb

erparticles.Byhea

t-ing

orco

oling

pastthe

nem

aticeisotropic

tran

sition

ofthese

elastomeric

particles

their

shap

ecan

bereve

rsibly

chan

ged

betw

eensp

herical

andellipso

idal

orbe

twee

nob

late

andprolate

ellipso

id.

This

very

recentad

ditionto

thetoolbo

xof

liquid

crystalelas-

tomersmay

provideseve

ralnew

open

ings

forex

citingresearch

aswellas

applic

ations.

Althou

ghtheparticles

sofararerelative

lylarge,

the

dispersity

issm

allan

dthe

poten

tial

todyn

amically

switch

betw

een

differentsh

apes

isclea

rly

very

attractive

for

adva

ncedco

lloid

science.Iftheparticlesize

canbe

shrunkto

the

range

ofab

outamicronwecanex

pectve

ryinterestingresu

ltsin

term

sof

collo

idcrystalswhichcanbe

mad

eto

chan

gesymmetry

bymea

nsof

temperature

chan

geor

lightirradiation

.Moreo

ver,itcan

beve

ryinterestingto

disperse

theliq

uid

crystalrubb

erparticles

inanon

-polym

ericliq

uid

crystalh

ost,allowingthedyn

amictuningof

bych

angingthesh

apeof

theparticleby

inducingtheliq

uid

crystal-

isotropicphasetran

sition

.

J.P.F.L

agerwall,G.S

calia

/Cu

rren

tApp

liedPh

ysics12

(201

2)13

87e1412

1404

Page 10: 2012 LC review

Another

compellin

grecentdev

elop

men

talon

gthis

trackis

the

combination

oftheliq

uid

crystalsh

ellco

nceptdescribed

abov

ewith

liquid

crystalelastomers,

explored

inajointeffort

ofthe

Zentelan

dLage

rwallteam

s[295

].Byprodu

cingthesh

ells

with

areactive

mon

omer

nem

atic,dop

edwithcross-lin

keran

dphoto

initiator,an

dirradiatingthem

withUVlig

htduringflow

,thefluid

shellscanbe

turn

edinto

stab

lesh

ellsof

rubb

er,thesh

apeof

which

can

bech

ange

dsu

bstantially

bytaking

the

system

past

the

nem

aticeisotropic

tran

sition

.Bypok

ingasm

allholein

thesh

ell

with

amicropipette

this

shell

dem

onstrated

rapid

pumping

capacityan

dtheco

nceptco

uld

thusbe

usedforrealizingon

e-piece

micro

pumpsthat

could

finduse

forinstan

cein

microfluidics.

3.5.

Liqu

idcrystals

inbiolog

y,biotechn

olog

y,food

scienc

ean

dph

armacolog

y

Itis

no

coinciden

cethat

the

mem

bran

esof

the

cells

inou

rbo

diesarein

alyotropiclamellarliq

uid

crystallinestate.Itprovides

just

theco

mbinationof

sturdinessan

dflex

ibility

that

liferequ

ires.

Asolid

phasewou

ldhav

ebe

enfartoostiff,rigidan

dim

permea

ble,

wherea

san

isotropic

liquid

could

not

separatethecell

from

its

surrou

ndings

orprovideascaffoldingformem

bran

eproteinsan

dinternal

compartm

ents

fortheorga

nelles.

Itis

thusperhap

snot

surprisingthat

liquid

crystalsplayave

ryim

portantrole

inbiolog

y.W

hat

ismoresu

rprising

isthat

this

role

has

long

been

largely

neg

lected

and

that

itis

only

recentlythat

such

issu

esas

phase

tran

sition

sin

lipid

mem

bran

esan

dtheeffect

ofch

olesterolo

nthe

lyotropic

phasesequ

ence

oflip

idshav

ebe

comeahot

topic.

Furthermore,theco

nnection

ofbiolog

yan

dliq

uid

crystalsisnot

limited

tocellmem

bran

es.Ithas

longbe

enkn

ownthat

DNAform

sliq

uid

crystalp

hases

[296

e29

8],b

utrecentlyitwas

even

proposed

that

this

very

fact

may

hav

ehad

ake

yrole

intheea

rliest

dev

el-

opmen

toflifein

theprebioticera[299

e30

1].Likew

ise,present-day

cryo

electron

microscop

ytech

niques

hav

eallowed

studiesof

virus

capsidsthat

reve

althat

theviralD

NAcanbe

stored

soco

mpactlyin

thecapsidbe

cause

itform

sahighly

ordered

liquid

crystallinephase

[302

e30

5].A

ninterestingob

servationis

that

man

yfeaturesfound

inliv

ingorga

nismsareve

ryreminiscentof

liquid

crystaltextures,

andcanoftenbe

mod

eled

usingdescription

sof

liquid

crystalline

order

[306

e30

8].

Theinterest

inliq

uid

crystals

inbiolog

yan

dtheim

plic

ationsof

liquid

crystallineorde

rforbiolog

ical

processes

istoday

increa

sing

strongly.

Ween

dthis

briefreview

ofgrou

ndbrea

kingactivities

inmod

ernliq

uid

crystalscien

ceby

highlig

htingafew

ofthethem

esin

thisfield.First

wewill

how

ever

discu

sssomerelatedtopics,where

liquid

crystalsareusedas

biod

etectors

oras

smartc

argo

carriers

for

delay

eddrugdelivery.

3.5.1.

Biod

etection

withliq

uidcrystals

Becau

sea

reorientation

ofthe

director

has

such

dramatic

consequ

enceson

the

opticalproperties

ofa

liquid

crystal,

and

because

thedirectoralignmen

tat

aninterfaceisso

sensitive

tothe

chem

ical

andphy

sicale

nvironmen

tat

theinterface,

liquid

crystals

hav

egrea

tpoten

tial

foruse

insensors.An

exam

ple

that

has

attracted

strong

attention

during

thelast

decad

esis

theuse

ofthermotropic

nem

aticsforam

plifying

biolog

ical

binding

even

ts,

aresearch

field

that

was

largelypionee

red

bytheteam

arou

nd

Nicholas

Abb

ott

atthe

University

ofW

isco

nsin-M

adison

[309

e31

5].Th

eke

yidea

isto

prepare

anem

atic

phase

with

aparticu

laralignmen

t,either

uniformly

planar

orhom

eotrop

ic,a

tan

interfacewith

anaq

ueo

usphase.

Dep

endingon

thedirector

alignmen

ttheliq

uid

crystalwill

exhibitach

aracteristic

texture

inpolarizingmicroscop

y.Th

ean

alyteis

then

added

totheaq

ueo

us

phasean

difabiom

olecularbindingev

entlik

ean

tige

nean

tibo

dy

reco

gnition

take

splace

atthe

interface,

the

liquid

crystalwill

experience

ach

ange

initsen

vironmen

tat

theinterface.

Asaresu

ltthedirectormay

reorient,mod

ifyingtheop

ticalprope

rtiesof

the

liquid

crystalan

dadistinct

chan

gein

thepolarizingmicroscop

ytexture

resu

lts.Th

eliq

uid

crystala

mplifi

esthebindingev

entsu

chthat

itbe

comes

easily

visibleon

amicroscop

icscale.Th

eco

ncept

ismostoftenap

plie

dto

planar

liquid

crystalsamplesbu

talso

liquid

crystaldroplets

weresu

ccessfully

usedfordetectingba

cteria

and

viruses[309

].W

hile

mostbiod

etectors

requ

irefluorescenttagg

ing

orlabe

lingof

keymolecules,

this

isunnecessary

with

theliq

uid

crystal-ba

sed

detection

tech

nique.

Thusit

isoften

referred

toas

labe

l-free

biod

etection

.Re

centlyother

research

ersex

tended

this

concept

todetectthe

presence

ofsingle-stranded

(ss)

DNAusingliq

uid

crystals[316

,317

].Pricean

dSchwarz[317

]prepa

red

athermotropic

nem

atic

atan

interfacewithan

aqueo

ussolution

ofacation

icsu

rfactant,inducing

hom

eotrop

icdirectoralignmen

tsu

chthat

thesample

appea

rsdark

inpolarizingmicroscop

y.IfssDNA(anionic)is

added

,electrostatic

complexa

tion

betw

eentheop

positelych

arge

dDNAan

dsu

rfactant

take

splace,ch

anging

theliq

uid

crystalalignmen

tan

dthusthe

texture.Ifthen

theco

mplemen

tary

DNA

strandis

added

thetw

ostrandsform

aduplex,

brea

kinguptheelectrostatically

complexe

dDNA-surfactantstructure

and

thusag

ain

chan

ging

the

nem

atic

directororientation

,an

dag

aintheop

ticalap

pea

rance

chan

ges.

Asimila

rap

proachwas

follo

wed

byChen

andYa

ng[316

]an

dthey

even

succee

ded

inqu

antitative

determinationof

theDNAco

ncen-

trationba

sedon

theliq

uid

crystalrea

lignmen

t.

3.5.2.

Drug/nu

trient

deliv

erywithliq

uidcrystalcu

bosomes

and

hexo

somes

orliq

uidcrystalline

crem

esByreplacingthethermotropic

cholestericliq

uid

crystalin

the

concept

ofliq

uid

crystal-co

ntaining

dropletsor

collo

idal

particles

discu

ssed

inSe

ction

3.3.1

bya

suitab

lelyotropicpha

se,an

dby

bringingtheparticlesize

dow

nto

thesu

bmicronrang

e,system

swith

strong

applic

ationpoten

tial

inthefieldof

pha

rmaceu

ticalsciences

andfunctiona

lfoo

dscanbe

realized

[318

e32

2].The

lyotropicpha

seis

form

edby

bioc

ompatibleam

phiph

ilesin

water,p

ossiblyalso

withan

oil(alsobioc

ompatible),an

dtheinterest

has

sofarbe

enfocu

sed

primarily

oncu

bicor

hex

agon

alpha

ses.Th

eliq

uid

crystalpha

seis

contained

inathin

shello

famphiph

ilicblockco

-polym

er.T

hese

soft

matternan

oparticles,g

enerally

prepared

viaultrasonication

giving

diametersin

the10

0nm

rang

e,arereferred

toas

cubo

somes

and

hexosom

es,respe

ctively,an

dthey

canbe

heav

ilyload

edwithdrugs

fororal

delivery.So

meex

amples

aresh

ownin

Fig.

20.

Theinterest

intheserather

adva

ncedve

sselsfordrugdelivery

has

seve

ralo

rigins[323

,324

].First,be

cause

theco

reof

theparticle

containsroug

hly

equal

amou

nts

ofpolar

andnon

-polar

regimes,

theparticles

can

carryhy

drophilicas

wellas

hydrophob

icdrug

cargo,

even

both

atthesametime.

Withsimplerclassiclip

osom

es(also

calle

dve

sicles,essentially

ash

ell

ofa

lamellar

phase

mem

bran

eof

lipidssu

rrou

ndingan

aqueo

usinterior)thecargocan

only

behy

drophilic.Aseco

ndim

portanta

dva

ntage

isthat

thedrugs

are

protected

inthe

particle

core

from

chem

ical

oren

zymatic

deg

radationduringthepassage

throug

hthedigestive

system

tothe

site

ofrelease.Directlyrelatedto

thisisthefact

that

thereleaserate

issu

bstantially

slow

erthan

forsimple

liposom

esdueto

themore

complexsoft

solid

build

upof

theco

re.A

conve

ntion

allip

osom

ereleases

itstarget

immed

iately

once

thelip

idmem

bran

ehas

been

brok

enthrough

.Th

eslow

release

and

high

capacity

forhy

dro-

phob

icload

mak

ethese

liquid

crystalline

collo

idal

particles

particu

larlyinterestingforcancertrea

tmen

t,as

thecy

totoxicity

of(frequ

entlyhy

drophob

ic)cancerdrugs

may

been

han

ced.

What

isso

farprimarily

discu

ssed

inthis

fieldin

term

sof

drug

deliverycanin

general

easily

betran

slated

tonutrientdeliveryvia

smartfood

sinco

rporatingfood

-gradeliq

uid

crystals.Apartfrom

thead

vantage

salread

ylis

ted,lyo

trop

icliq

uid

crystalphases

may

J.P.F.L

agerwall,G.S

calia

/Cu

rren

tApp

liedPh

ysics12

(201

2)13

87e1412

1405

also

beusefulinfood

sby

controllin

gthetexture,v

isco

sity

etc.Th

isco

ncept

iscu

rren

tlybe

ingex

plored

byseve

ralmajor

compan

ies

active

inthetech

nical

food

ssector.

While

thisfieldisfascinatingan

dholdspromise,be

ingtheba

sis

even

forafew

compan

iesactive

inthefield,therearesomeke

ych

allenge

sto

address.P

rimarily

they

rega

rdrobu

stnessan

dstorag

estab

ility

oftheco

lloidal

particles

andthescalab

ility

issu

e.W

hen

tran

sition

ing

toa

commercial

produ

ctthe

production

method

sem

ploye

din

alabarege

nerally

not

applic

able.T

heco

stis

another

importantissu

e.En

capsu

latingdrugs

ornutrients

insideco

lloidal

liquid

crystallineparticles

isarather

expen

sive

venture

andthere

must

beasu

bstantial

gain

inefficien

cyto

motivatesu

chadiffer-

ence.So

far,

the

experim

entalev

iden

ceof

added

value

isnot

sufficien

tly

convincing.

The

requ

irem

ents

onbioc

ompatibility/

food

-gradematerials

arealso

quiterestrictivean

drule

outman

yop

tion

sthat

workwelld

uringin-vitro

labex

perim

ents

forcrea

ting

stab

leco

lloidal

particles

withdesired

prope

rties.

Butperhap

sthe

grea

test

challenge

istheim

men

seco

mplexity

ofthehuman

body.A

myriad

ofbiop

hysico

chem

ical

param

etersmust

beop

timized

inparallelan

dthepathway

from

themou

thto

thetarget

site

inthe

bodyis

soco

mplexan

dinvo

lves

soman

ystag

eswithdrastically

varyingen

vironmen

tsthat

itis

extrem

elydifficu

ltto

findadrug

deliveryve

ssel

designthat

withstan

dsthejourn

ey.

Aslightlyless

tech

nically

adva

nced

way

ofem

ploying

liquid

crystals

indrugdeliveryis

intopical

orother

directap

plic

ation

[325

,326

].Th

ehigh

viscosity

oftheliq

uid

crystalphaseaidsin

localiz

ationof

drugs

e.g.

attheskin

orsu

bcutaneo

usly(under

the

skin),

intram

uscularly,

orin

body

cavities

such

asthe

mou

th.

Moreo

ver,

tran

sition

sbe

twee

ndifferentliq

uid

crystallinephases

induced

bytemperature

orco

ncentration

chan

geallow

dyn

amic

tuning

ofproperties

like

consisten

cy,sh

ape

stab

ility

etc.

tothe

requ

irem

ents

ofea

chstag

e.Fo

rex

ample,skin

crea

mcan

bein

acu

bic/hex

agon

alphaseat

room

temperature

butmeltto

lamellar

byhea

tingfrom

rubb

ing,

allowingqu

ickan

dsimple

administration

butreduced

stickinessan

dsm

earinessafterw

ard

asthe

higher

orde

redphaseis

again

form

edupon

cooling.

This

strategy

holds

importance

also

inco

smetics.

Another

smartex

ample

iswhere

alow-visco

us

solution

containing

almostno

water

turn

sinto

aviscou

sliq

uid

crystallinephasewhen

mixed

with

water

atthe

target

location

,whichin

thiscase

wou

ldtypically

bethemou

th.In

this

way

thedrugcan

behan

dledan

dap

plie

dve

ryea

sily,ye

tit

stay

sin

place

once

administered.

3.5.3.

Lipido

micsan

dtheliq

uidcrystalph

ases

ofcellmem

bran

esAsmen

tion

edab

ovetheL a

lamellarliq

uid

crystallinephaseis

the

naturalstate

ofou

rcell

mem

bran

es.In

recentye

arsit

has

beco

me

increa

singly

clea

r,how

ever,that

one

actually

nee

dsto

distingu

ishtw

osu

bclasses

ofthis

phase.

Tothis

endtheco

ncepts

liquid-orde

red

(lo)

and

liquid-disordered

(ld)

states

were

recently

introd

uced[327

e33

1].T

heterm

“liquid”hererefers

tothelack

oflong-range

positional

order

(andthuslack

ofalattice)

ofthelip

ids

within

thebilaye

rplanean

dahighsp

eedof

lateraldiffusion

,in

contrastto

thege

lphases

likeL0 b

which

inthis

term

inolog

yare

considered

as“solid”(they

do

hav

epositional

order

within

the

mem

bran

ean

dlaterald

iffusion

isve

ryslow

).Th

ead

ditions“ordered

”or

“disordered

”referto

thestateof

the

acyl

chains.Th

eclassicL a

picture

fits

thel dphasebe

stbe

cause

there

areman

yga

uche

conform

ersam

ongthech

ainsan

dthey

areve

ryflex

ible

and

dyn

amic.Th

ech

ains

are

considered

molten,in

arando

mco

nform

ation.In

theen

dof

the19

80’s

itwas

realized

,how

ever,that

astatecan

dev

elop

wherethech

ainsaremainly

(albeitn

otsolely)inall-tran

sco

nform

ation,yet

withou

tdev

elop

ing

thein-planepositional

order

ofthege

lphases.S

uch

astatecanbe

described

as“liquid”as

wella

s“ordered

”an

ditisthusthel ostate.

Itsap

pea

rance

ispromoted

bythepresence

ofch

olesterol,thestiff

and

largely

hydrophob

icstructure

ofwhich

prefers

tobe

sur-

rounded

byordered

alky

lch

ainsan

dthusen

han

cesthe

chain

ordering.

Atthesametimeitsbu

lkysh

aperuinslong-range

in-

planepositional

orde

rof

thelip

idsan

ditthuspromotes

a“liquid”

stateov

era“gel”state.

Theco

nsequ

entfrustration

isthou

ghtto

betheorigin

ofthel ophase.

Itis

not

clea

rif

thel o

phasecan

existmacroscop

ically.It

istypically

found

asmicroscop

icdom

ainssu

spen

ded

inaseaof

l dphasein

mod

elmem

bran

es.Th

ephases

thusco

existlaterally

asaresu

ltof

phaseseparation.T

hissituationhas

give

nthel odom

ains

the

nam

e‘lipid

rafts’.A

dee

per

analysis

has

reve

aled

them

asdyn

amic

fluctuatingnan

oscale

regimes

enrich

edin

sphingo

lipids,

cholesterola

ndtran

smem

bran

eproteins.Th

esu

rrou

ndingl d‘sea

’is

instea

den

rich

edin

ordinary

glycerop

hospholipids.

One

cannot

draw

theco

nclusion

that

thel oan

dl dstates

necessarily

occu

rin

live

Fig.

20.Cryo

-TEM

imag

esof

softna

nopa

rticlesco

ntaining

reve

rsed

bico

ntinuo

us(aed),spo

nge(eef)an

dreve

rsed

hexa

gona

l(ge

h)lyotropicliq

uidcrystalp

hases.Re

printedwith

perm

ission

from

referenc

e[320

].Co

pyrigh

t(200

5)American

Chem

ical

Society.

J.P.F.L

agerwall,G.S

calia

/Cu

rren

tApp

liedPh

ysics12

(201

2)13

87e1412

1406

Page 11: 2012 LC review

cell

mem

bran

es,since

living

system

sare

farfrom

equilibrium.

Nev

ertheless,

the

lipid

raft

parad

igm

with

localincrea

ses

insp

hingo

lipid

and

cholesterolco

ntent

has

now

been

generally

accepted,a

lsoformem

bran

esof

livingcells

.Thetenden

cyof

this

lipid

compositionto

promoteincrea

sedch

ainorde

rcertainly

plays

arole

intheprocess,m

ostlik

elyin

providingco

nnectivity,w

hichis

then

further

mod

ulatedby

thesp

ecificity

ofthemem

bran

eproteins

aswellas

theiran

tibo

dies[330

].Th

einve

stigationof

lipid

raftsan

dl o-ldphaseco

existence,a

nd

theco

nsequ

encesforcellsign

alingan

dtraffick

ing,

isave

ryactive

research

area

that

form

san

importantco

mpon

entof

theem

erging

fieldof

‘lipidom

ics’.W

ecanex

pectve

ryinterestingresu

ltsin

the

future

and

asthe

(still

relative

lynew

)liq

uid-ordered

phase

beco

mes

better

understoo

dthiswill

certainly

beago

odsu

bjectfor

studyfrom

aclassicliq

uid

crystalp

hysics

pointof

view

.Atpresent,

the

research

isco

nducted

primarily

follo

wing

abiop

hysical

chem

istryap

proach,h

ence

theinputfrom

research

erswithstrong

liquid

crystalba

ckgrou

ndmay

providenew

andinterestinginter-

disciplin

arylin

esof

research

.Enco

uragingex

amplesaregive

nby

theworkof

theHirst

grou

p,USA

[331

e33

3],foc

usingstronglyon

photo-induced

phaseseparation

effectsin

lipid

mem

bran

esan

dtubu

les,an

dof

theLe

egrou

p,K

orea

,whouse

surfacetopog

raph

yto

influen

cean

dev

enpattern

lipid

rafts[334

].

4.Co

nclusionsan

doutlook

Wehop

ethat

this

briefreview

oftheex

citingactivities

inthe

broa

dfieldof

liquid

crystalresearch

detached

from

displayap

pli-

cation

swill

hav

einsp

ired

theread

eras

much

astheau

thorsare

insp

ired

bytheresearch

discu

ssed

.Sev

eral

new

routeshav

ebe

eninitiated

during

thelast

few

yearsan

dsomemay

dev

elop

into

highly

successfulresea

rchfieldsan

dpossiblyap

plic

ations,wherea

sothersmay

turn

outnot

tobe

soprolifi

c.In

mostof

thefieldsdis-

cussed

wearestill

atarelative

lyea

rlyex

plorative

stag

e,an

dwe

hav

eto

waitafew

yearsto

assess

thepoten

tial

ofea

chthem

e.In

anycase,thisisave

ryex

citingdev

elop

men

t,ou

tliningabrightan

drich

future

fortheop

en-m

inded

liquid

crystalscien

tist

orother

soft

matternan

o-/m

icrotech

nolog

yresearch

erwithan

interest

inliq

uid

crystals.

Ack

now

ledgm

ents

Theau

thorsgratefully

ackn

owledge

finan

cial

supportfrom

the

National

Resea

rchFo

undationof

Korea

(NRF),theAdva

ncedInsti-

tutesof

Con

vergen

ceTe

chnolog

y(A

ICT),K

orea

,andSe

oulN

ational

University,K

orea

.

Referen

ces

[1]T.J.Sluck

in,D

.A.D

unmur,H.S

tege

mey

er,C

rystalsTh

atFlow

:Classic

Papers

from

theHistory

ofLiqu

idCrystals,

Taylor

andFran

cis,Lo

ndon

,200

4.[2]R.S

tannarius,

Morethan

displayfillings,N

at.M

ater

8(8)(200

9)61

7e61

8.[3]H.K.B

isoy

i,S.

Kumar,Liquid-crystal

nan

oscien

ce:an

emergingav

enueof

soft

self-assem

bly,

Chem

.Soc

.Rev

40(1)(201

1)30

6e31

9.[4]J.W

.Goo

dby

,I.Sae

z,S.Cow

ling,

V.G

ortz,M

.Draper,A

.Hall,S.Sia,G.C

osqu

er,

S.Le

e,E.

Ray

nes,Tran

smission

andam

plifi

cation

ofinform

ationan

dprop-

erties

innan

ostructuredliq

uid

crystals,A

nge

w.C

hem

.Int.Ed

47(15)

(200

8)27

54e27

87.

[5]T.

Kato,

Y.Hirai,S.

Nak

aso,

M.Moriyam

a,Liqu

id-crystallin

ephysical

gels,

Chem

.Soc

.Rev

36(12)

(200

7)18

57e18

67.

[6]M.M

arco

s,R.M

artin-R

apun,A

.Omen

at,J.S

errano,

Highly

conge

sted

liquid

crystalstructures:

den

drimers,

den

drons,

den

dronized

andhyp

erbran

ched

polym

ers,

Chem

.Soc

.Rev

36(12)

(200

7)18

89e19

01.

[7]S.

Sergey

ev,W

.Pisula,Y

.Gee

rts,Disco

ticliq

uid

crystals:anew

generationof

orga

nic

semicon

ductors,

Chem

.Soc

.Rev

36(12)

(200

7)19

02e19

29.

[8]C.Tsch

ierske

,Liqu

idcrystalen

ginee

ring-new

complexmesop

hasestruc-

turesan

dtheirrelation

sto

polym

ermorpholog

ies,nan

oscale

pattern

ingan

dcrystalen

ginee

ring,

Chem

.Soc

.Rev

36(12)

(200

7)19

30e19

70.

[9]J.W

.Goo

dby

,V.Gortz,S.

Cow

ling,

G.Macke

nzie,

P.Martin,D.Plusq

uellec,

T.Ben

vegn

u,P

.Bou

llange

r,D.L

afon

t,Y.Q

uen

eau,S

.Cham

bert,J.F

itreman

n,

Thermotropic

liquid

crystallineglyc

olipids,

Chem

.So

c.Rev

36(12)

(200

7)19

71e20

32.

[10]

R.Lem

ieux,

Molecularreco

gnitionin

chiral

smecticliq

uid

crystals:theeffect

ofco

reinteractionsan

dch

iralitytran

sfer

onpolar

order,C

hem

.Soc

.Rev

36(12)

(200

7)20

33e20

45.

[11]

C.Imrie,

P.Hen

derson,L

iquid

crystald

imersan

dhigher

oligom

ers:

betw

een

mon

omersan

dpolym

ers,

Chem

.Soc

.Rev

36(12)

(200

7)20

96e21

24.

[12]

T.Kato,

N.M

izoshita,

K.K

ishim

oto,

Functional

liquid-crystallin

eassemblies:

self-organ

ized

soft

materials,A

nge

w.C

hem

.Int.Ed

45(1)(200

6)38

e68

.[13]

J.P.F.Lage

rwall,Th

reefacets

ofmod

ern

liquid

crystalscience,Hab

ilitation

thesis,M

artin-Luther-U

niversitätHalle-W

ittenbe

rg.

[14]

E.Barry,Z

.Dog

ic,E

ntrop

ydrive

nself-assem

blyof

non

amphiphilicco

lloidal

mem

bran

es,P

roc.

Natl.Acad.S

ci.U

SA10

7(23)

(201

0)10

348e

1035

3.[15]

M.C.

Mou

rad,

J.E.

Wijnhov

en,

D.D.

Van

’tZa

nd,

D.

van

der

Bee

k,H.N.W

.Le

kkerke

rker,Gelation

versus

liquid

crystalphase

tran

sition

sin

susp

ension

sof

plate-likeparticles,Ph

ilos.

Tran

sact.A

Math.Ph

ys.En

g.Sci

364(184

7)(200

6)28

07e28

16.

[16]

G.A

o,D.N

epal,M

.Aon

o,V.D

avis,C

holesterican

dnem

atic

liquid

crystalline

phase

behav

iorof

dou

ble-stranded

DNA

stab

ilize

dsingle-walled

carbon

nan

otube

dispersion

s,ACSNan

o5(2)(201

1)14

50e14

58.

[17]

L.Lu

,W

.Chen

,Large-scalealigned

carbon

nan

otube

sfrom

theirpurified

,highly

concentrated

susp

ension

,ACSNan

o4(2)(201

0)10

42e10

48.

[18]

S.J.

Zhan

g,I.A

.Kinloch

,A.H.W

indle,Mesog

enicity

drive

sfraction

ation

inlyotropic

aqueo

ussu

spen

sion

sof

multiw

allcarbon

nan

otube

s,Nan

o.Le

tt6

(3)(200

6)56

8e57

2.[19]

S.H.A

boutalebi,M

.M.G

udarzi,Q

.B.Z

hen

g,J.-K.K

im,S

pon

taneo

usform

ation

ofliq

uid

crystals

inultralargegrap

hen

eox

idedispersion

s,Adv.

Funct.M

ater

21(15)

(201

1)29

78e29

88.

[20]

J.E.K

im,T

.H.H

an,S

.H.L

ee,J.Y.K

im,C

.W.A

hn,J.M

.Yun,S

.O.K

im,G

raphen

eox

ideliq

uid

crystals,A

nge

w.C

hem

.Int.Ed

50(13)

(201

1)30

43e30

47.

[21]

F.Guo,

F.Kim

,T.H.H

an,V

ivek

B.Shen

oy,J.H

uan

g,H.H

urt

Rob

ert,Hyd

ration

-resp

onsive

foldingan

dunfoldingin

grap

hen

eox

ideliq

uid

crystalphases,

ACSNan

o5(10)

(201

1)80

19e80

25.

[22]

J.P.F.Lage

rwall,

F.Giesselman

n,Curren

ttopics

insm

ectic

liquid

crystal

research

,Chem

.Phys.C

hem

7(1)(200

6)20

e45

.[23]

P.-G

.deGen

nes,J.Prost,

ThePh

ysicsof

Liqu

idCrystals,

Clarendon

Press,

Oxford,U

K,1

993.

[24]

M.O

’Neill,

S.Kelly,O

rdered

materials

fororga

nic

electron

icsan

dphoton

ics,

Adv.

Mater

23(5)(201

1)56

6e58

4.[25]

W.Pisu

la,M.Zo

rn,J.Y

.Chan

g,K.Muellen,R.Ze

ntel,

Liqu

idcrystalline

ordering

and

charge

tran

sportin

semicon

ducting

materials,Macromol.

Rap

idCom

mun30

(14)

(200

9)11

79e12

02.

[26]

S.Laschat,A

.Baro,

N.S

teinke

,F.G

iesselman

n,C

.Häg

ele,

G.S

calia

,R.Judele,

E.Kap

atsina,S.

Sauer,A

.Sch

reivog

el,M

.Toson

i,Disco

ticliq

uid

crystals:from

tailo

r-mad

esynthesis

toplastic

electron

ics,

Ange

w.Chem

.Int.

Ed46

(26)

(200

7)48

32e48

87.

[27]

M.O’Neill,

S.Kelly,Liqu

idcrystals

forch

arge

tran

sport,luminescence,an

dphoton

ics,

Adv.

Mater

15(14)

(200

3)11

35e11

46.

[28]

J.Harden

,M.Cham

bers,R.Verduzco,

P.Lu

chette,J.T

.Gleeson

,S.

Sprunt,

A.Jak

li,Giantflex

oelectricity

inbe

nt-co

renem

atic

liquid

crystalelastomers,

Appl.Ph

ys.L

ett96

(10)

(201

0)10

2907

.[29]

A.Jakli,

Electro-mechan

ical

effectsin

liquid

crystals,Liq.

Cryst

37(6e7)

(201

0)82

5e83

7.[30]

M.Cham

bers,R.Verduzco,

James

T.Gleeson

,S.

Sprunt,

A.Jakli,Calam

itic

liquid-crystallin

eelastomerssw

ollen

inbe

nt-co

reliq

uid-crystal

solven

ts,

Adv.

Mater

21(16)

(200

9)16

22e16

26.

[31]

M.C

ham

bers,R

.Verduzco,

J.T.G

leeson

,S.S

prunt,A.Jak

li,Flex

oelectricity

ofacalamitic

liquid

crystalelastomer

swollenwithabe

nt-co

reliq

uid

crystal,

J.Mater.C

hem

19(42)

(200

9)79

09e79

13.

[32]

L.Schmidt-Men

de,

A.Fe

chtenko

tter,K.Mulle

n,E.

Moo

ns,

R.Friend,

J.MacKen

zie,

Self-organ

ized

disco

tic

liquid

crystals

for

high-efficien

cyorga

nic

photov

oltaics,Science

293(553

2)(200

1)11

19e11

22.

[33]

H.Iino,

J.Han

na,

Ava

ilabilityof

liquid

crystallinityin

solution

processingfor

polyc

rystallin

ethin

film

s,Adv.

Mater

23(15)

(201

1)17

48e17

51.

[34]

E.Garcia-Frutos,

U.Pa

ndey

,R.Te

rmine,

A.Omen

at,J.Barbe

ra,J.Se

rran

o,A.Golem

me,

B.Gom

ez-Lor,High

charge

mob

ility

indisco

tic

liquid-

crystallinetriin

doles:Just

aco

rebu

siness?

Ange

w.Chem

.Int.

Ed50

(32)

(201

1)73

99e74

02.

[35]

O.Th

ieba

ut,

H.Boc

k,E.

Grelet,

Face-on

oriented

bilaye

rof

two

disco

tic

columnar

liquid

crystals

fororga

nic

don

or-accep

torheterojunction,J.Am.

Chem

.Soc

132(20)

(201

0)68

86e68

87.

[36]

P.Morales,J.Lag

erwall,P.

Vacca,S

.Lasch

at,G

.Scalia

,Self-assembled

ordered

structuresin

thin

film

sof

HAT5

disco

ticliq

uid

crystal,Beilstein

J.Org.C

hem

6(51)

(201

0).d

oi:10.37

62/bjoc.6.51

.[37]

Y.W

an,D.Zh

ao,On

the

controllable

soft-tem

plating

approach

tomeso-

porou

ssilic

ates,C

hem

.Rev

107(7)(200

7)28

21e28

60.

[38]

Evan

S.Hatak

eyam

a,Christop

her

J.Gab

riel,Brian

R.W

iesenau

er,Jenny

L.Lo

hr,

M.Zh

ou,D.Nob

le,D.Richard,Dou

glas

L.Gin,W

ater

filtration

perform

ance

ofalyotropic

liquid

crystalpolym

ermem

bran

ewithuniform,

sub-1-nm

pores,J.M

embr.S

ci36

6(1e2)

(201

1)62

e72

.[39]

L.Siev

ens-Figu

eroa

,C.Guym

on,Cross-linking

ofreactive

lyotropic

liquid

crystals

fornan

ostructure

retention

,Chem

.Mater

21(6)(200

9)10

60e10

68.

[40]

D.Gin,J.

Bara,

R.Nob

le,B.Ellio

tt,Po

lymerized

lyotropic

liquid

crystal

assembliesformem

bran

eap

plic

ations,

Macromol.Rap

idCom

mun

29(5)

(200

8)36

7e38

9.

J.P.F.L

agerwall,G.S

calia

/Cu

rren

tApp

liedPh

ysics12

(201

2)13

87e1412

1407

[41]

J.Clapper,S.

Iverson,C.Guym

on,Nan

ostructured

biod

egradab

lepolym

ernetworks

usinglyotropic

liquid

crystallinetemplates,

Biomacromolecules8

(7)(200

7)21

04e21

11.

[42]

C.Moc

k-kn

oblauch

,O.S.En

ger,

U.D.Schalko

wsky,

Nov

elpolym

erisab

leliq

uid

crystallineacrylatesfortheman

ufacturingof

ultrathin

opticalfilm

s,SID

Dig

(200

6)16

73e16

76.

[43]

H.K

örner,A

.Shiota,T

.Bunning,

C.O

ber,Orien

tation

-on-dem

andthin

film

s:cu

ringof

liquid

crystallinenetworks

inac

electric

fields,Science

272(525

9)(199

6)25

2e25

5.[44]

H.H

entze,

E.Kaler,P

olym

erizationof

andwithin

self-organ

ized

med

ia,C

urr.

Opin.C

olloid

InterfaceSci8(2)(200

3)16

4e17

8.[45]

J.Hulvat,S

.Stupp,Liquid-crystal

templatingof

conductingpolym

ers,Ange

w.

Chem

42(7)(200

3)77

8e78

1.[46]

M.Goh

,S.

Matsu

shita,

K.Aka

gi,From

helical

polya

cetylene

tohelical

grap

hite:

synthesisin

thech

iral

nem

atic

liquid

crystalfi

eldan

dmorpholog

y-retainingcarbon

isation,C

hem

.Soc

.Rev

39(7)(201

0)24

66e24

76.

[47]

Y.P

ark,

Mag

netoresistan

ceof

polya

cetylenenan

ofibe

rs,C

hem

.Soc

.Rev

39(7)(201

0)24

28e24

38.

[48]

R.K

ieffer,M

.Prehm,K

.Pelz,U.B

aumeister,F.Liu,H

.Hah

n,H

.Lan

g,G.U

nga

r,C.T

schierske

,Silo

xanes

andcarbosila

nes

asnew

build

ingbloc

ksfort-sh

aped

bolaam

phiphilicLC

molecules,

Soft

Matter5(6)(200

9)12

14e12

27.

[49]

X.C

hen

g,X.D

ong,

G.W

ei,M

.Prehm,C

.Tschierske

,Liquid-crystallin

etriangle

hon

eyco

mb

form

edby

adithiophen

e-ba

sed

x-sh

aped

bolaam

phiphile

,Ange

w.C

hem

.Int.Ed

48(43)

(200

9)80

14e80

17.

[50]

X.Chen

g,X.Don

g,R.Huan

g,X.Ze

ng,

G.Unga

r,M.Preh

m,C.Tsch

ierske

,Po

lygo

nal

cylin

der

phases

of3-alky

l-2,5-diphen

ylthiophen

e-ba

sedbo

laam

-phiphile

s:ch

angingsymmetry

byretainingnet

topolog

y,Chem

.Mater

20(14)

(200

8)47

29e47

38.

[51]

F.Liu,B.Chen

,B.Glettner,M.Preh

m,M.Das,U.Bau

meister,X.Ze

ng,

G.U

nga

r,C.T

schierske

,Thetrap

ezoidal

cylin

der

phase:

anew

mod

eof

self-

assemblyin

liquid-crystallin

esoft

matter,J.Am.C

hem

.Soc

130(30)

(200

8)96

66e96

67.

[52]

B.Glettner,F.

Liu,X.Ze

ng,

M.Preh

m,U.Bau

meister,M.W

alke

r,Martin

A.Bates,P.

Boe

seck

e,G.Unga

r,C.Tsch

ierske

,Liqu

id-crystallin

eka

gome,

Ange

w.C

hem

.Int.Ed

47(47)

(200

8)90

63e90

66.

[53]

B.G

lettner,F

.Liu,X

.Zen

g,M.P

rehm,U

.Bau

meister,G

.Unga

r,C.T

schierske

,Liqu

id-crystal

enginee

ring

with

anch

or-shap

edmolecules:

hon

eyco

mbs

with

hex

agon

alan

dtrigon

alsymmetries

form

edby

polyp

hilicbe

nt-co

remolecules,

Ange

w.C

hem

.Int.Ed

47(32)

(200

8)60

80e60

83.

[54]

F.Liu,B

.Chen

,U.B

aumeister,X

.Zen

g,G.U

nga

r,C.T

schierske

,Thetriangu

lar

cylin

der

phase:

anew

mod

eof

self-assem

bly

inliq

uid-crystallin

esoft

matter,J.Am.C

hem

.Soc

129(31)

(200

7)95

78e95

79.

[55]

M.P

rehm,F

.Liu,U

.Bau

meister,X

.Zen

g,G.U

nga

r,C.T

schierske

,Thegian

t-hex

agon

cylin

der

networke

aliq

uid-crystallin

eorga

nizationform

edby

at-

shap

edqu

aternary

amphiphile

,Ange

w.Chem

.Int.

Ed46

(42)

(200

7)79

72e79

75.

[56]

S.Sa

liba,

P.Dav

idson,M.Im

peror-Clerc,C.Mingo

taud,L.

Kah

nMyrtil,J.-

D.M

arty,F

acile

directsynthesis

ofzn

onan

oparticles

within

lyotropic

liquid

crystals:towardsorga

nized

hyb

ridmaterials,J.M

ater.C

hem

21(45)

(201

1)18

191e

1819

4.[57]

G.Su

rendran,F.

Ksar,

L.Ram

os,B.Keita,L.

Nad

jo,E.

Prou

zet,

P.Bea

unier,

P.Dieudon

ne,

F.Audon

net,H.Rem

ita,

Palla

dium

nan

oballs

synthesized

inhex

agon

almesop

hases,J.P

hys.C

hem

.C11

2(29)

(200

8)10

740e

1074

4.[58]

R.G

uo,

B.Z

han

g,Y.S

un,X

.Liu,L

yotrop

icliq

uid

crystals

andap

plic

ationsin

synthesis

ofnan

ostructured

materials,

Prog

.Chem

19(11)

(200

7)16

95e17

02.

[59]

G.Su

rendran,L.

Ram

os,B.Pa

nsu

,E.

Prou

zet,

P.Bea

unier,

F.Audon

net,

H.R

emita,

Synthesis

ofporou

splatinum

nan

oballs

insoft

templates,Chem

.Mater

19(21)

(200

7)50

45e50

48.

[60]

G.Karan

ikolos,P.

Alexa

ndridis,R.Mallory,A.Pe

trou

,T.

Mou

ntziaris,

Tem-

plated

synthesis

ofZn

Senan

ostructures

using

lyotropic

liquid

crystals,

Nan

otechnolog

y16

(10)

(200

5)23

72e23

80.

[61]

T.Dellin

ger,

P.Braun,Ly

otropic

liquid

crystals

asnan

orea

ctorsfornan

o-particlesynthesis,C

hem

.Mater

16(11)

(200

4)22

01e22

07.

[62]

E.Dos

Santos,C.San

tilli,S.P

ulcinelli,

E.Prou

zet,Zircon

ianee

dlessynthesized

inside

hex

agon

alsw

ollen

liquid

crystals,Chem

.Mater

16(21)

(200

4)41

87e41

92.

[63]

L.W

ang,

X.Chen

,Z.

Sun,Y.Chai,Sy

nthesis

ofgo

ldnan

oplatesin

lecithin

lamellarliq

uid

crystals,C

an.J.C

hem

.Eng85

(5)(200

7)59

8e60

1.[64]

P.Vem

ula,V.Mallia

,K.Bizati,

G.John,Cholesterolphen

oxy

hex

anoa

temesog

ens:

effect

ofmetasu

bstituen

tson

theirliq

uid

crystallinebe

hav

ior

and

insitu

metal

nan

oparticle

synthesis,Chem

.Mater

19(22)

(200

7)52

03e52

06.

[65]

J.W

ang,

W.W

ang,

P.Su

n,Z

.Yuan

,B.Li,Q.Jin,D

.Ding,

T.Chen

,Hierarchically

helical

mesostructured

silic

anan

ofibe

rstemplated

byachiral

cation

icsu

rfactant,J.Mater.C

hem

16(42)

(200

6)41

17e41

22.

[66]

L.W

ang,

X.C

hen

,J.Z

han

,Y.C

hai,C

.Yan

g,L.Xu,W

.Zhuan

g,B.Jing,

Synthesis

ofgo

ldnan

o-an

dmicroplatesin

hex

agon

alliq

uid

crystals,J.P

hys.C

hem

.B10

9(200

5)31

89e31

94.

[67]

H.Y

ang,

M.Y

ang,

Y.Z

han

g,G.C

hen

,Insitu

synthesis

andlubricationof

pbs

nan

oparticles

inlamellarliq

uid

crystal,Colloid

J66

(5)(200

4)63

5e64

1.[68]

F.Broch

ard,P.-G

.de

Gen

nes,Th

eory

ofmag

netic

susp

ension

sin

liquid

crystals,Jou

rnal

dePh

ysique31

(7)(197

0)69

1e70

8Pa

ris.

[69]

M.Lyn

ch,D

.Patrick

,Organ

izingcarbon

nan

otube

swithliq

uid

crystals,N

ano.

Lett

2(11)

(200

2)11

97e12

01.

[70]

I.Dierking,

G.S

calia

,P.M

orales,D

.Leclere,A

ligningan

dreorientingcarbon

nan

otube

swithnem

atic

liquid

crystals,A

dv.

Mater

16(11)

(200

4)86

5e86

9.[71]

W.L

ee,C

.Wan

g,Y.S

hih,E

ffects

ofcarbon

nan

osolidson

theelectro-op

tical

properties

ofatw

istednem

atic

liquid-crystal

host,Appl.Ph

ys.Le

tt85

(4)

(200

4)51

3e51

5.[72]

H.C

hen

,W.L

ee,Electro-op

ticalch

aracteristicsof

atw

istednem

atic

liquid-

crystalcelldop

edwithcarbon

nan

otube

sin

adcelectric

field,O

pt.Rev

12(3)(200

5)22

3e22

5.[73]

C.H

uan

g,C.H

u,H

.Pan

,K.L

o,Electroo

pticalresp

onsesof

carbon

nan

otube

-dop

edliq

uid

crystaldev

ices,Jpn.J.A

ppl.Ph

ys44

(11)

(200

5)80

77e80

81.

[74]

I.S.B

aik,

S.Y.Jeo

n,S

.H.L

ee,K

.A.P

ark,

S.H.Jeo

ng,

K.H.A

n,Y

.H.L

ee,E

lectrical-

fieldeffect

oncarbon

nan

otube

sin

atw

istednem

atic

liquid

crystalc

ell,Appl.

Phys.L

ett87

(26)

(200

5)26

3110

.[75]

H.Duran,B.Gazdecki,A.Yam

ashita,

T.Kyu

,Effect

ofcarbon

nan

otube

son

phasetran

sition

sof

nem

atic

liquid

crystals,Liq.C

ryst

32(7)(200

5)81

5e82

1.[76]

I.Dierking,

G.S

calia

,P.M

orales,L

iquid

crystal-carbon

nan

otube

dispersion

s,J.Appl.Ph

ys97

(200

5)04

4309

.[77]

I.Dierking,

S.Sa

n,M

agnetically

stee

redliq

uid

crystal-nan

otube

switch

,Appl.

Phys.L

ett87

(23)

(200

5)23

3507

.[78]

J.P.F.Lage

rwall,

G.Scalia,M.Haluska,

U.Dettlaff-W

eglik

owska,

S.Roth,

F.Giesselman

n,Simultan

eousalignmen

tan

ddispersion

ofcarbon

nan

o-tube

swith

lyotropic

liquid

crystals,Ph

ys.Stat.So

l(b)24

3(13)

(200

6)30

46e30

49.

[79]

J.P.F.L

agerwall,G.S

calia

,Carbo

nnan

otube

sin

liquid

crystals,J.M

ater.C

hem

18(25)

(200

8)28

90e28

98.

[80]

M.Rah

man

,W

.Le

e,Scientificduoof

carbon

nan

otube

san

dnem

atic

liquid

crystals,J.P

hys.D

-Appl.Ph

ys42

(6)(200

9)06

3001

.[81]

G.Scalia,Alig

nmen

tof

carbon

nan

otube

sin

thermotropic

and

lyotropic

liquid

crystals,C

hem

.Phys.C

hem

11(2)(201

0)33

3e34

0.[82]

G.Scalia,M.Haluska,

U.Dettlaff-W

eglik

owska,

F.Giesselman

n,S.

Roth,

Polarize

draman

spectrosco

py

study

ofSW

CNT

orientation

alorder

inan

aligningliq

uid

crystallinematrix,

AIP

Con

f.Proc

786(200

5)11

4e11

7.[83]

J.P.F.Lage

rwall,

G.Scalia,M.Haluska,

U.Dettlaff-W

eglik

owska,

S.Roth,

F.Giesselman

n,Nan

otube

alignmen

tusing

lyotropic

liquid

crystals,Adv.

Mater

19(3)(200

7)35

9e36

4.[84]

P.va

nder

Schoo

t,V.Po

pa-Nita,

S.Kralj,Alig

nmen

tof

carbon

nan

otube

sin

nem

atic

liquid

crystals,J.P

hys.C

hem

.B11

2(15)

(200

8)45

12e45

18.

[85]

V.Po

pa-Nita,

S.Kralj,Liqu

idcrystal-carbon

nan

otube

smixtures,

J.Chem

.Ph

ys13

2(2)(201

0)02

4902

.[86]

M.C

vetko,

M.A

mbroz

ic,S

.Kralj,C

ompetitionbe

twee

nlocald

isorderingan

dglob

alorderingfieldsin

nem

atic

liquid

crystals,B

eilstein

J.Org.C

hem

6(2)

(201

0).d

oi:10.37

62/bjoc.6.2.

[87]

A.M

atsu

yama,

Theo

ryof

binarymixturesof

arodlik

epolym

eran

daliq

uid

crystal,J.Chem

.Phys

132(21)

(201

0)21

4902

.[88]

V.W

eiss,R

.Thiruve

nga

dathan

,O.R

egev

,Preparationan

dch

aracterization

ofa

carbon

nan

otube

-lyo

trop

icliq

uid

crystalco

mposite,

Langm

uir

22(3)

(200

6)85

4e85

6.[89]

W.Jian

g,B.Yu,W

.Liu,J.Hao

,Carbo

nnan

otube

sinco

rporated

within

lyo-

trop

ichex

agon

alliq

uid

crystalform

edin

room

-tem

perature

ionic

liquids,

Langm

uir

23(16)

(200

7)85

49e85

53.

[90]

G.Scalia,C.vo

nBühler,

C.Häg

ele,

S.Roth,F.

Giesselman

n,J.P

.F.Lage

rwall,

Spon

taneo

usmacroscop

iccarbon

nan

otube

alignmen

tviaco

lloidal

susp

en-

sion

inhex

agon

alco

lumnar

lyotropic

liquid

crystals,S

oftMatter4(3)(200

8)57

0e57

6.[91]

S.Schym

ura,E.

Enz,

S.Roth,G.Scalia,J.P

.F.Lage

rwall,Macroscop

ic-scale

carbon

nan

otube

alignmen

tviaself-assem

bly

inlyotropic

liquid

crystals,

Synthetic

Met

159(21e

22)(200

9)21

77e21

79.

[92]

S.Schym

ura,S.

Dölle,J.

Yam

amoto,

J.Lage

rwall,

Filamen

tform

ation

incarbon

nan

otube

-dop

edlyotropic

liquid

crystals,So

ftMatter7

(6)(201

1)26

63e26

67.

[93]

X.Xin,H.Li,S.

Wieczorek

,T.

Szym

borski,E.

Kalwarczyk

,N.Zieb

acz,

E.Gorecka

,D.Po

ciecha,

R.Holyst,

Inco

rporation

ofcarbon

nan

otube

sinto

alyotropic

liquid

crystalb

yphaseseparationin

thepresence

ofahyd

rophilic

polym

er,L

angm

uir

26(5)(201

0)35

62e35

68.

[94]

H.W

.Le

e,W

.You

,S.

Barman

,S.

Hellstrom

,C.Le

MieuxMelbu

rne,

J.H.Oh,

S.Liu,T

.Fujiwara,

W.M

.Wan

g,B.C

hen

,Y.W

.Jin,J.M

.Kim

,Z.B

ao,L

yotrop

icliq

uid-crystallin

esolution

sof

high-con

centration

dispersion

sof

single-

walled

carbon

nan

otube

swith

conjuga

ted

polym

ers,

Small5

(9)(200

9)10

19e10

24.

[95]

X.X

in,H

.Li,E.

Kalwarczyk

,A.K

elm,M

.Fialkow

ski,E.

Gorecka

,D.P

ociech

a,R.Holyst,

Single-walled

carbon

nan

otube

/lyo

trop

icliq

uid

crystalhyb

rid

materials

fabricated

byaphaseseparationmethod

inthepresence

ofpoly-

electrolyte,

Langm

uir

26(11)

(201

0)88

21e88

28.

[96]

Mea

gan

S.Mau

ter,

M.Elim

elech,Chined

um

O.Osu

ji,Nan

ocom

posites

ofve

rtically

aligned

single-walledcarbon

nan

otube

sby

mag

neticalignmen

tand

polym

erizationof

alyotropic

precu

rsor,A

CSNan

o4(11)

(201

0)66

51e66

58.

[97]

K.Oka

no,

I.Nog

uch

i,T.

Yam

ashita,

Anisotropic

carbon

nan

otube

film

sfabricated

from

alyotropic

liquid-crystallin

epolym

er,Macromolecules43

(13)

(201

0)54

96e54

99.

[98]

F.Ta

rdan

i,C.La

Mesa,

Elasticity

ofdispersion

sba

sedon

carbon

nan

otube

sdissolved

inalyotropic

nem

atic

solven

t,J.Ph

ys.Chem

.C

115(19)

(201

1)94

24e94

31.

[99]

(a)L.N.Lisetski,A.M

.Che

piko

v,S.S.

Minen

ko,N.I.

Lebo

vka,

M.S.So

skin,

Dispe

rsions

ofcarbon

nan

otub

esin

nem

aticliq

uidcrystals:e

ffects

ofnan

otub

ege

ometry,F

unct.M

ater.1

8(2)(201

1)14

3e14

9;

J.P.F.L

agerwall,G.S

calia

/Cu

rren

tApp

liedPh

ysics12

(201

2)13

87e1412

1408

Page 12: 2012 LC review

(b)L.N.Lisetski,N.I.Lebo

vka,S.V.N

ayde

nov,

M.S.Soskin,

Dispe

rsions

ofmulti-

walledcarbon

nan

otub

esin

liquidcrystals:Aphy

sicalpicture

ofag

greg

ation,

J.Mol.L

iq.1

64(201

1)14

3e14

7.[100

]J.P

.F.L

agerwall,R.D

abrowski,G.S

calia

,Antiferroe

lectricliq

uid

crystals

with

induced

interm

ediate

polar

phases

and

theeffectsof

dop

ingwith

carbon

nan

otube

s,J.Non

-Cryst.S

olids35

3(47e

51)(200

7)44

11e44

17.

[101

](a)G.Scalia,J.P

.F.Lage

rwall,

S.Schym

ura,M.Haluska,

F.Giesselman

n,

S.Roth,C

arbo

nnan

otube

sin

liquid

crystals

asve

rsatile

functional

materials,

Phys.S

tat.So

l.(b)24

4(11)

(200

7)42

12e42

17;

(b)

G.

Scalia,

J.P.F.

Lage

rwall,

M.

Haluska,

U.

Dettlaff-W

eglik

owska,

F.Giesselman

n,S

.Roth,E

ffectof

phen

ylrings

inliq

uid

crystalmoleculeson

SWCNTs

studiedby

Ram

ansp

ectrosco

py,

Phys.S

tat.So

l.(b)24

3(13)

(200

6)32

38e32

41.

[102

]R.Basu,G.Iannacch

ione,

Carbo

nnan

otube

dispersedliq

uid

crystal:

anan

oelectrom

echan

ical

system

,Appl.Ph

ys.L

ett93

(18)

(200

8)18

3105

.[103

]S.Schym

ura,M

.Kühnast,V.Lutz,S.Jag

iella

,U.D

ettlaff-W

eglik

owska,S.Roth,

F.Giesselman

n,C.Tsch

ierske

,G.Scalia,J.

Lage

rwall,

Towards

efficien

tdispersion

ofcarbon

nan

otube

sin

thermotropic

liquid

crystals,A

dv.

Funct.

Mater

20(19)

(201

0)33

50e33

57.

[104

]M.K

ühnast,C.T

schierske

,J.Lag

erwall,Ta

ilor-designed

polyp

hilicpromotors

forstab

ilizing

dispersion

sof

carbon

nan

otube

sin

liquid

crystals,Chem

.Com

mun46

(201

0)69

89e69

91.

[105

]Y.Ji,Y.Huan

g,R.Rungsaw

ang,

E.Te

rentjev

,Dispersion

and

alignmen

tof

carbon

nan

otube

sin

liquid

crystallinepolym

ersan

delastomers,Adv.

Mater

22(31)

(201

0)34

36e34

40.

[106

]Y.Ji,Y.Y.Huan

g,Eu

gene

M.Te

rentjev

,Dissolving

and

aligning

carbon

nan

otube

sin

thermotropic

liquid

crystals,

Langm

uir

27(21)

(201

1)13

254e

1326

0.[107

]R.Basu,S.

Iannacch

ione,

German

o,Orien

tation

alco

uplin

gen

han

cemen

tin

acarbon

nan

otube

dispersedliq

uid

crystal,Ph

ys.R

ev.E

81(5)(20

10)0

5170

5.[108

]K.P.S

igdel,G

.S.Ian

nacch

ione,

Effect

ofcarbon

nan

otube

son

theisotropic

tonem

atic

andthenem

atic

tosm

ectic-aphasetran

sition

sin

liquid

crystala

nd

carbon

nan

otube

sco

mposites,E

ur.Ph

ys.J.E

34(4)(201

1)34

.[109

]R.Basu,Krysta

A.Boc

cuzzi,

S.Fe

rjan

i,C.Rosen

blatt,

Carbo

nnan

otube

-induced

chirality

inan

achiral

liquid

crystal,

Appl.

Phys.Le

tt97

(12)

(201

0)12

1908

.[110

]R.Basu,Rolfe

G.Pe

tsch

ek,C.Rosen

blatt,

Nem

atic

electroc

linic

effect

inacarbon

-nan

otube

-dop

edachiral

liquid

crystal,Ph

ys.Rev

.E83

(4)(201

1)04

1707

.[111

]S.Kumar,H

.Bisoy

i,Alig

ned

carbon

nan

otube

sin

thesu

pramolecularorder

ofdisco

ticliq

uid

crystals,A

nge

w.C

hem

.Int.Ed

46(9)(200

7)15

01e15

03.

[112

]H.K.B

isoy

i,S.

Kumar,C

arbo

nnan

otube

sin

triphen

ylen

ean

dru

figa

llol-ba

sed

room

temperature

mon

omeric

and

polym

eric

disco

tic

liquid

crystals,

J.Mater.C

hem

18(25)

(200

8)30

32e30

39.

[113

]S.

Bad

aire,C.Za

kri,M.Mau

gey,

A.Derre,J.N

.Barisci,G.W

allace,P.

Poulin

,Liqu

idcrystals

ofDNA-stabiliz

edcarbon

nan

otube

s,Adv.

Mater

17(13)

(200

5)16

73e16

76.

[114

]C.Z

akri,P

.Pou

lin,P

hasebe

hav

iorof

nan

otube

susp

ension

s:from

attraction

induced

perco

lation

toliq

uid

crystalline

phases,J.

Mater.Chem

16(42)

(200

6)40

95e40

98.

[115

]S.

Mou

lton

,M.Mau

gey,

P.Po

ulin

,G.W

allace,Liqu

idcrystalbe

hav

iorof

single-walled

carbon

nan

otube

sdispersed

inbiolog

ical

hya

luronic

acid

solution

s,J.Am.C

hem

.Soc

129(30)

(200

7)94

52e94

57.

[116

]C.Za

mora-Le

dez

ma,

C.Blanc,

M.Mau

gey,

C.Za

kri,P.

Poulin

,E.

Anglaret,

Anisotropic

thin

film

sof

single-wallcarbon

nan

otube

sfrom

aligned

lyo-

trop

icnem

atic

susp

ension

s,Nan

o.Le

tt8(12)

(200

8)41

03e41

07.

[117

]N.P

uech,E

.Grelet,P.

Poulin

,C.B

lanc,P.

vander

Schoo

t,Nem

atic

droplets

inaq

ueo

usdispersion

sof

carbon

nan

otube

s,Ph

ys.R

ev.E

82(2)(201

0)02

0702

.[118

]W

.H.So

ng,

I.A.Kinloch

,A.H.W

indle,Nem

atic

liquid

crystallinity

ofmultiw

allcarbon

nan

otube

s,Science

302

(564

9)(200

3)13

63.

[119

]W

.So

ng,

A.W

indle,Isotropic-n

ematic

phase

tran

sition

ofdispersion

sof

multiw

allcarbon

nan

otube

s,Macromolecules38

(14)

(200

5)61

81e61

88.

[120

]W

.So

ng,

A.W

indle,Size

-dep

enden

cean

delasticity

ofliq

uid-crystallin

emultiw

alledcarbon

nan

otube

s,Adv.

Mater

20(16)

(200

8)31

49e31

54.

[121

]V.D

avis,L

.Ericson

,A.P

arra-vasqu

ez,H

.Fan

,Y.W

ang,

V.P

rieto,

J.Lo

ngo

ria,

S.Ram

esh,R.Sa

ini,C.Kittrell,W

.Billups,

W.Adam

s,R.Hau

ge,R.Sm

alley,

M.Pa

squali,Ph

asebe

hav

ioran

drh

eology

ofSW

NTs

insu

peracids,

Macro-

molecules37

(1)(200

4)15

4e16

0.[122

]P.

Rai,R

.Pinnick,

A.P

arra-vasqu

ez,V

.Dav

is,H

.Sch

midt,R.H

auge

,R.Smalley,

M.Pa

squali,

Isotropic-n

ematic

phase

tran

sition

ofsingle-walled

carbon

nan

otube

sin

strongacids,

J.Am.C

hem

.Soc

128(2)(200

6)59

1e59

5.[123

]A.N.G.Pa

rra-Vasqu

ez,N.Beh

abtu,Micah

J.Green

,Cary

L.Pint,

Colin

C.You

ng,

J.Schmidt,E.

Kesselm

an,A.Goy

al,Pu

licke

lM.Ajaya

n,Y.Coh

en,

Y.Ta

lmon

,Rob

ert

H.Hau

ge,M.Pa

squali,

Spon

taneo

us

dissolution

ofultralong

single-

and

multiw

alled

carbon

nan

otube

s,ACS

Nan

o4

(7)

(201

0)39

69e39

78.

[124

]V.A.D

avis,L

iquid

crystallineassemblyof

nan

ocylinders,J.Mater.R

es26

(2)

(201

1)14

0e15

3.[125

]D.W

ang,

R.Kou

,D.Choi,Z.

Yan

g,Z.

Nie,J.Li,Laxm

ikan

tV.Sa

raf,D.Hu,

J.Zh

ang,

Gordon

L.Graff,J.Liu,M

ichae

lA.P

ope,

Ilhan

A.A

ksay

,Ternaryself-

assembly

ofordered

metal

oxide-grap

hen

enan

ocom

posites

forelectro-

chem

ical

energy

storag

e,ACSNan

o4(3)(201

0)15

87e15

95.

[126

]F.

Guo,

A.Mukh

opad

hya

y,B.Sh

eldon

,R.Hurt,Vertically

aligned

grap

hen

elaye

rarrays

from

chromon

icliq

uid

crystalprecu

rsors,

Adv.

Mater

23(4)

(201

1)50

8e51

3.

[127

]B.Dan

,N.Beh

abtu,A.Martinez

,J.Ev

ans,

D.Kosyn

kin,J.To

ur,

M.Pa

squali,

I.Sm

alyu

kh,Liqu

idcrystals

ofaq

ueo

us,

gian

tgrap

hen

eox

ideflak

es,So

ftMatter7(23)

(201

1)11

154e

1115

9.[128

]B.Don

nio,P.

Garcia-Vazqu

ez,J.Gallani,D.Guillon

,E.

Terazzi,Den

dronized

ferrom

agnetic

gold

nan

oparticles

self-organ

ized

ina

thermotropic

cubic

phase,

Adv.

Mater

19(21)

(200

7)35

34e35

39.

[129

]M.D

raper,Isabe

lM.S

aez,

Step

hen

J.Cow

ling,

P.Gai,B

.Heinrich

,B.D

onnio,

D.G

uillon

,Joh

nW

.Goo

dby

,Self-assemblyan

dsh

apemorpholog

yof

liquid-

crystallinego

ldmetam

aterials,A

dv.

Funct.M

ater

21(7)(201

1)12

60e12

78.

[130

]L.

Holt,R.B

ush

by,S

.Eva

ns,A.B

urgess,G.S

eeley,

A10

(6)-fold

enhan

cemen

tin

theco

nductivityof

adisco

ticliq

uid

crystald

oped

withon

ly1%

(w/w

)go

ldnan

oparticles,J.A

ppl.Ph

ys10

3(6)(200

8)06

3712

.[131

]GaryM.J.

Koe

nig,Juan

J.dePa

blo,

Nicholas

L.Abb

ott,Characterization

ofthe

reve

rsible

interaction

ofpairs

ofnan

oparticles

dispersedin

nem

atic

liquid

crystals,L

angm

uir

25(23)

(200

9)13

318e

1332

1.[132

]P.

Kossyrev,

A.Yin,S.

Cloutier,D.Cardim

ona,

D.Huan

g,P.

Alsing,

J.Xu,

Electric

fieldtuningof

plasm

onic

resp

onse

ofnan

odot

arrayin

liquid

crystal

matrix,

Nan

o.Le

tt5(10)

(200

5)19

78e19

81.

[133

]R.P

ratibh

a,W

.Park,

I.I.S

malyu

kh,C

olloidal

gold

nan

ospheredispersion

sin

smecticliq

uid

crystalsan

dthin

nan

oparticle-decorated

smecticfilm

s,J.Appl.

Phys

107(6)(201

0)06

3511

.[134

]Q.Liu,Y.Cui,D.Gardner,X.Li,S.

He,

I.Sm

alyu

kh,Ivan

,Se

lf-alig

nmen

tof

plasm

onic

gold

nan

orod

sin

reco

nfigu

rable

anisotropic

fluidsfortunab

lebu

lkmetam

aterialap

plic

ations,

Nan

o.Le

tt10

(4)(201

0)13

47e13

53.

[135

]H.P

ark,

A.A

garw

al,N

.Kotov

,O.L

avrentovich

,Con

trollableside-by

-sidean

den

d-to-en

dassembly

ofau

nan

orod

sby

lyotropic

chromon

icmaterials,

Langm

uir

24(24)

(200

8)13

833e

1383

7.[136

]H.Qi,

J.O’Neil,

T.Heg

man

n,Chirality

tran

sfer

innem

atic

liquid

crystals

dop

edwith

(s)-nap

roxe

n-functionalized

gold

nan

oclusters:

aninduced

circulardichroism

study,

J.Mater.C

hem

18(4)(200

8)37

4e38

0.[137

]H.Qi,B.Kinke

ad,T.

Heg

man

n,Unpreceden

ted

dual

alignmen

tmod

ean

dfree

dericksztran

sition

inplanar

nem

atic

liquid

crystalc

ells

dop

edwithgo

ldnan

oclusters,

Adv.

Funct.M

ater

18(2)(200

8)21

2e22

1.[138

]H.Q

i,B.K

inke

ad,V

anessa

M.M

arx,

Huai

R.Z

han

g,T.

Heg

man

n,M

iscibility

and

alignmen

teffectsof

mixed

mon

olay

ercy

anob

iphen

ylliq

uid-crystal-

capped

gold

nan

oparticles

innem

atic

cyan

obiphen

ylliq

uid

crystalhosts,

Chem

.Phys.C

hem

10(8)(200

9)12

11e12

18.

[139

]H.Qi,T.

Heg

man

n,Multiple

alignmen

tmod

esfornem

atic

liquid

crystals

dop

edwithalky

lthiol-capped

gold

nan

oparticles,A

CSAppl.Mater.Interfaces

1(8)(200

9)17

31e17

38.

[140

]M.W

ojcik,

W.Le

wan

dow

ski,

J.Matraszek

,J.

Mieczko

wski,

J.Borysiuk,

D.Po

ciecha,

E.Gorecka

,Liqu

id-crystallin

ephases

mad

eof

gold

nan

o-particles,A

nge

w.C

hem

.Int.Ed

48(28)

(200

9)51

67e51

69.

[141

]H.Y

oshida,

Y.T

anak

a,K.K

awam

oto,

H.K

ubo

,T.T

suda,

A.F

ujii,S.

Kuwab

ata,

H.Kikuch

i,M.Ozaki,Nan

oparticle-stab

ilize

dch

olestericbluephases,Appl.

Phys.E

xpress

2(12)

(200

9)12

1501

.[142

]X.Ze

ng,

F.Liu,Alan

G.Fo

wler,

G.Unga

r,L.

Cseh,Geo

rgH.Meh

l,J.E

.Macdon

ald,3D

ordered

gold

strings

byco

ating

nan

oparticles

with

mesog

ens,Adv.

Mater

21(17)

(200

9)17

46.

[143

]L.Li,J.W

alda,L.Man

na,A.A

livisatos,S

emicon

ductor

nan

orod

liquid

crystals,

Nan

o.Le

tt2(6)(200

2)55

7e56

0.[144

]L.Li,A

.Aliv

isatos,S

emicon

ductor

nan

orod

liquid

crystals

andtheirassembly

onasu

bstrate,

Adv.

Mater

15(5)(200

3)40

8e41

1.[145

]L.

Shou

te,D.Kelley,

Spatialorga

nization

ofGaS

equ

antum

dots:

orga

nic/

semicon

ductor

liquid

crystals,J.Phys.C

hem

.C11

1(28)

(200

7)10

233e

1023

9.[146

]G.

Shan

dryuk,

E.Matukh

ina,

R.

Vasil’ev

,A.

Reb

rov,

G.

Bon

daren

ko,

A.M

erek

alov

,A.G

as’kov

,R.T

alroze

,Effectof

h-bon

ded

liquid

crystalpoly-

merson

cdse

quan

tum

dot

alignmen

twithin

nan

ocom

posite,

Macromole-

cules41

(6)(200

8)21

78e21

85.

[147

]M.Z

orn,S

.Meu

er,M

.Tah

ir,Y

.Khalav

ka,C

.Sön

nichsen,W

.Tremel,R

.Zen

tel,

Liqu

idcrystalline

phases

from

polym

erfunctionalised

semicon

ducting

nan

orod

s,J.Mater.C

hem

18(25)

(200

8)30

50e30

58.

[148

]T.

Zhan

g,C.Zh

ong,

J.Xu,Cds-nan

oparticle-dop

edliq

uid

crystaldisplays

show

inglow

thresh

oldvo

ltag

e,Jpn.J.A

ppl.Ph

ys48

(5)(200

9)05

5002

.[149

]C.Nob

ile,L.

Carbo

ne,

A.Fiore,

R.Cingo

lani,

L.Man

na,

R.Krahne,

Self-

assembly

ofhighly

fluorescentsemicon

ductor

nan

orod

sinto

large

scale

smectic

liquid

crystalstructures

byco

ffee

stain

evap

oration

dyn

amics,

J.Ph

ys.-Con

den

s.Matter21

(26)

(200

9)26

4013

.[150

]B.K

inke

ad,T

.Heg

man

n,E

ffects

ofsize

,cap

pingag

ent,an

dco

ncentrationof

CdSe

and

CdTe

quan

tum

dotsdop

edinto

anem

atic

liquid

crystalon

the

opticalan

delectro-op

tic

properties

ofthe

final

collo

idal

liquid

crystal

mixture,J.M

ater.C

hem

20(3)(201

0)44

8e45

8.[151

]L.

Petti,

M.Rippa,

A.Fiore,

L.Man

na,

P.Mormile

,Dyn

amic

orientation

alphoto-refractive

gratings

observed

inCdSe

/CdS

nan

orod

sdop

ednem

atic

liquid

crystalcells

,J.N

onlin

.Opt.Ph

ys.M

at19

(1)(201

0)11

1e12

1.[152

]M.Zo

rn,M.N.Ta

hir,B.Bergm

ann,W

.Trem

el,C.Grigo

riad

is,G.Flou

das,

R.Z

entel,Orien

tation

anddyn

amicsof

ZnOnan

orod

liquid

crystalsin

electric

fields,Macromol.R

apid

Com

mun31

(12)

(201

0)11

01e11

07.

[153

]J.Mirzaei,M

.Urban

ski,K.Y

u,H

.-S.

Kitze

row,T

.Heg

man

n,N

anoc

omposites

ofa

nem

atic

liquid

crystaldop

edwith

mag

ic-sized

CdSe

quan

tum

dots,

J.Mater.C

hem

21(34)

(201

1)12

710e

1271

6.[154

]S.

Zhan

g,Can

dice

I.Pe

lligra,

G.Keska

r,Pa

wel

W.Majew

ski,

F.Ren

,Lisa

D.Pfefferle,

Chined

um

O.Osu

ji,Liqu

idcrystalline

order

and

mag

neto-

crystalline

anisotropy

inmag

netically

dop

edsemicon

ducting

ZnO

nan

o-wires,A

CSNan

o5(10)

(201

1)83

57e83

64.

J.P.F.L

agerwall,G.S

calia

/Cu

rren

tApp

liedPh

ysics12

(201

2)13

87e1412

1409

[155

]M.R

amazan

oglu,P

.Clegg

,R.B

irge

nea

u,C

.Garland,M

.Neu

bert,J.K

im,F

irst-

order

isotropic-smectic-atran

sition

inliq

uid-crystal-aerosilge

ls,P

hys.R

ev.E

69(6)(200

4)06

1706

.[156

]L.Dolgo

v,O.Y

aroshch

uk,

Electroo

pticproperties

ofliq

uid

crystalsfille

dwith

silic

anan

oparticles

ofdifferentsorts,

Colloid

Polym.Sci28

2(12)

(200

4)14

03e14

08.

[157

]J.

Payn

e,E.

Thom

as,To

wards

anunderstan

ding

ofnan

oparticle-ch

iral

nem

atic

liquid

crystalco

-assem

bly,

Adv.

Funct.Mater

17(15)

(200

7)27

17e27

21.

[158

]M.S

karabo

t,I.Musevic,Directob

servationof

interactionof

nan

oparticles

inanem

atic

liquid

crystal,So

ftMatter6(21)

(201

0)54

76e54

81.

[159

]E.

Ven

ugo

pal,Suresh

K.B

hat,JijoJ.Vallooran

,R.M

ezze

nga

,Phasebe

hav

iorof

lipid-based

lyotropic

liquid

crystals

inpresence

ofco

lloidal

nan

oparticles,

Langm

uir

27(16)

(201

1)97

92e98

00.

[160

]H.S

ong,

J.Kim

,J.H

ong,

Y.Lee

,J.C

hoi,J.Lee

,W.K

im,J.K

im,N

.Hur,Mag

netic

andtran

sparen

tco

mposites

bylin

kingliq

uid

crystalsto

ferritenan

oparticles

through

cova

lentnetworks,A

dv.

Funct.M

ater

17(13)

(200

7)20

70e20

76.

[161

]P.

Kop

cansky,

N.To

masov

icov

a,M.Kon

eracka

,V.Za

visova

,M.Timko

,A.D

zarova

,A.S

princo

va,N

.Ebe

r,K.F

odor-Csorba,

T.To

th-K

aton

a,A.V

ajda,

J.Jadzy

n,Structuralchan

gesin

the6C

HBTliq

uid

crystald

oped

withsp

herical,

rodlik

e,an

dch

ainlik

emag

netic

particles,P

hys.R

ev.E

78(1)(200

8)01

1702

.[162

]C.Lapointe,D.Reich

,R.Le

hen

y,Man

ipulation

and

orga

nization

offerro-

mag

netic

nan

owires

bypattern

ednem

atic

liquid

crystals,L

angm

uir

24(19)

(200

8)11

175e

1118

1.[163

]G.Cordoy

iannis,Ly

nn

K.Kurihara,

Luz

J.Martinez

-Miran

da,

C.Glorieu

x,J.Th

oen,E

ffects

ofmag

netic

nan

oparticles

withdifferentsu

rfaceco

atingon

thephasetran

sition

sof

octylcya

nob

iphen

ylliq

uid

crystal,Ph

ys.R

ev.E

79(1)

(200

9)01

1702

.[164

]L.Za

doina,

B.Lon

etti,K

.Sou

lantica,A

.F.M

ingo

taud,M

.Respau

d,B

.Chau

dret,

M.Mau

zac,

Liqu

idcrystallinemag

netic

materials,J.Mater.Chem

19(43)

(200

9)80

75e80

78.

[165

]Jijo

J.Vallooran

,S.

Bolisetty,R.Mez

zenga

,Macroscop

icalignmen

tof

lyo-

trop

icliq

uid

crystals

using

mag

netic

nan

oparticles,Adv.

Mater

23(34)

(201

1)39

32e39

37.

[166

]S.

Hernan

dez

-Nav

arro,P.

Tierno,

J.Ignes-M

ullo

l,F.

Sagu

es,Break

ing

the

deg

eneracy

ofnem

atic

liquid

crystals

bymea

nsof

actuated

anisom

etric

param

agnetic

collo

ids,

Soft

Matter7(11)

(201

1)51

09e51

12.

[167

]O.B

uluy,

S.Nep

ijko

,V.R

eshetnya

k,E.

Ouskov

a,V.Z

adoroz

hnii,

A.Leo

nhardt,

M.R

itschel,G

.Sch

oenhen

se,Y

.Rez

nikov

,Mag

netic

sensitivity

ofadispersion

ofag

greg

ated

ferrom

agnetic

carbon

nan

otube

sin

liquid

crystals,S

oftMatter

7(2)(201

1)64

4e64

9.[168

]Y.Rez

nikov

,O.Buch

nev

,O.Te

resh

chen

ko,V.Reshetnya

k,A.Glush

chen

ko,

J.W

est,

Ferroe

lectricnem

atic

susp

ension

,Appl.Ph

ys.Le

tt82

(12)

(200

3)19

17e19

19.

[169

]M.Cop

ic,A.Mertelj,O.Buch

nev

,Y.Rez

nikov

,Cou

pleddirectoran

dpolari-

zation

fluctuationsin

susp

ension

sof

ferroe

lectricnan

oparticles

innem

atic

liquid

crystals,P

hys.R

ev.E

76(1)(200

7)01

1702

.[170

]L.Lo

patina,J.Se

linge

r,Th

eory

offerroe

lectricnan

oparticles

innem

atic

liquid

crystals,P

hys.R

ev.L

ett10

2(19)

(200

9)19

7802

.[171

]J.Blach

,S.

Saitze

k,C.Le

gran

d,L.

Dupon

t,J.-F.

Hen

ninot,M.W

aren

ghem

,BaT

iO3ferroe

lectricnan

oparticles

dispersedin

5CBnem

atic

liquid

crystal:

Synthesis

and

electro-op

ticalch

aracterization

,J.

Appl.

Phys.10

7(201

0)07

4102

.[172

]O.

Kuroch

kin,

H.

Atkuri,

O.

Buch

nev

,A.

Glush

chen

ko,

O.

Graba

r,R.K

arap

inar,V

.Reshetnya

k,J.W

est,Y.R

eznikov

,Nan

o-co

lloidsof

sn2P

2S6

innem

atic

liquid

crystalpen

tyl-cian

obiphen

ile,Con

den

sMatterPh

ys13

(3)(201

0)33

701.

[173

]H.Qi,T.

Heg

man

n,Im

pactof

nan

oscale

particles

andcarbon

nan

otube

son

curren

tan

dfuture

generationsof

liquid

crystaldisplays,J.M

ater.C

hem

18(28)

(200

8)32

88e32

94.

[174

]V.H

siao

,Y.Z

hen

g,B.Juluri,T

.Huan

g,Ligh

t-drive

nplasm

onic

switch

esba

sed

onau

nan

odiskarrays

and

photorespon

sive

liquid

crystals,Adv.

Mater

20(18)

(200

8)35

28e35

32.

[175

]S.

Khatua,

P.Man

na,

W.Chan

g,A.Tc

herniak,

E.Friedlander,E.R.Zu

barev,

S.Link,

Plasmon

icnan

oparticles

-liq

uid

crystalco

mposites,J.P

hys.C

hem

.C11

4(201

0)72

51e72

57.

[176

]W

.Cai,U.Chettiar,A.Kild

ishev

,V.Sh

alae

v,Opticalcloa

king

with

meta-

materials,N

at.P

hoton

1(4)(200

7)22

4e22

7.[177

]V.Sh

alae

v,Opticalneg

ative-index

metam

aterials,Nat.Ph

oton

1(1)(200

7)41

e48

.[178

]H.Stark,

Director

field

configu

ration

sarou

nd

asp

herical

particle

inanem

atic

liquid

crystal,Eu

r.Ph

ys.J.B

10(2)(199

9)31

1e32

1.[179

]P.

Cladis,M.Kleman

,P.

Pieran

ski,

New

method

fordecoration

ofmeso-

morphic

phaseof

paramethox

yben

zilid

eneparabe

tylaniline,

CrAcad.S

ci.B

Phys

273(6)(197

1)27

5e27

9.[180

]P.

Poulin

,H.Stark,

T.Lu

bensky,

D.A.W

eitz,Nov

elco

lloidal

interactionsin

anisotropic

fluids,

Science

275(530

7)(199

7)17

70e17

73.

[181

]S.P.

Mee

ker,

W.C.K.Po

on,J.

Crain,E.M.Te

rentjev

,Colloid-liquid-crystal

composites:an

unusu

alsoftsolid

,Phys.R

ev.E

61(6)(200

0)R60

83eR60

86.

[182

]P.

Petrov

,E.M

.Teren

tjev

,Formationof

cellu

larsolid

inliq

uid

crystalc

olloids,

Langm

uir

17(10)

(200

1)29

42e29

49.

[183

]J.Lo

udet,P

.Han

usse,

P.Po

ulin

,Stoke

sdragon

asp

herein

anem

atic

liquid

crystal,Science

306(570

1)(200

4)15

25.

[184

]G.Liao

,I.

Smalyu

kh,J.

Kelly,O.Lavren

tovich

,A.Jákli,

Electrorotation

ofco

lloidal

particles

inliq

uid

crystals,P

hys.R

ev.E

72(3)(200

5)31

704.

[185

]I.Musevic,

M.Sk

arab

ot,U.Tk

alec,M.Rav

nik,S.

Zumer,Tw

o-dim

ension

alnem

atic

collo

idal

crystals

self-assem

bled

bytopolog

ical

defects,S

cien

ce31

3(578

9)(200

6)95

4e95

8.[186

]L.

Foret,A.O

nuki,C

harge

dinclusion

innem

atic

liquid

crystals,P

hys.R

ev.E

74(3)(200

6)03

1709

.[187

]M.S

karabo

t,U.T

kalec,

I.Musevic,

Tran

sportan

dcrystallization

ofco

lloidal

particles

inathin

nem

atic

cell,

Eur.Ph

ys.J.E

24(1)(200

7)99

e10

7.[188

]O.P

ishnya

k,S.

Tang,

J.Kelly,S

.Shiyan

ovskii,

O.L

avrentovich

,Lev

itation,lift,

and

bidirection

almotion

ofco

lloidal

particles

inan

electrically

drive

nnem

atic

liquid

crystal,Ph

ys.R

ev.L

ett99

(12)

(200

7)12

7802

.[189

]M.S

karabo

t,M.R

avnik,S

.Zumer,U

.Tka

lec,I.Po

beraj,D.B

abic,N

.Osterman

,I.Musevic,

Two-dim

ension

aldipolar

nem

atic

collo

idal

crystals,P

hys.R

ev.E

76(5)(200

7)05

1406

.[190

]M.R

avnik,M

.Ska

rabo

t,S.

Zumer,U

.Tka

lec,I.Po

beraj,D.B

abic,N

.Osterman

,I.Musevic,

Entangled

nem

atic

collo

idal

dim

ersan

dwires,P

hys.R

ev.L

ett99

(24)

(200

7)24

7801

.[191

]I.Musevic,

M.S

karabo

t,Se

lf-assem

blyof

nem

atic

collo

ids,So

ftMatter4(2)

(200

8)19

5e19

9.[192

]M.S

karabo

t,M.R

avnik,S

.Zumer,U

.Tka

lec,I.Po

beraj,D.B

abic,N

.Osterman

,I.Musevic,

Interactionsof

quad

rupolar

nem

atic

collo

ids,

Phys.R

ev.E

77(3)

(200

8)03

1705

.[193

]M.S

karabo

t,M.R

avnik,S

.Zumer,U

.Tka

lec,

I.Po

beraj,D.B

abic,I.M

usevic,

Hierarchical

self-assem

blyof

nem

atic

collo

idal

superstructures,Ph

ys.R

ev.E

77(6)(200

8)06

1706

.[194

]S.

Roz

hko

v,New

extended

objectsin

nem

atics:

disclinations,

mon

opoles,

pipes,E

PL83

(5)(200

8)56

003.

[195

]J.Han

,Ordered

structuresof

glyc

erol

droplets

susp

ended

innem

atic

liquid

crystals,J.K

or.P

hys.S

oc54

(2)(200

9)80

5e80

8.[196

]V.M

.Pe

rgam

ensh

chik,V.A.Uzu

nov

a,Colloid-w

allinteraction

inanem

atic

liquid

crystal:

the

mirror-im

age

method

ofco

lloidal

nem

atostatics,Ph

ys.

Rev

.E79

(2)(200

9)02

1704

.[197

]R.H

ung,

Fran

cisco,

Quad

rupolar

particles

inanem

atic

liquid

crystal:effects

ofparticlesize

andsh

ape,

Phys.R

ev.E

79(2)(200

9)02

1705

.[198

]J.-i.Fu

kuda,

Liqu

idcrystalco

lloids:

anov

elco

mpositematerialba

sed

onliq

uid

crystals,J.P

hys.S

oc.Jpn78

(4)(200

9)04

1003

.[199

]U.T

kalec,

M.R

avnik,S

.Zumer,I.M

usevic,

Vortexliketopolog

ical

defects

innem

atic

collo

ids:

chiral

collo

idal

dim

ersan

d2D

crystals,P

hys.R

ev.L

ett10

3(12)

(200

9)12

7801

.[200

]K.T

ojo,

A.F

uruka

wa,

T.Araki,A

.Onuki,D

efectstructuresin

nem

atic

liquid

crystals

arou

ndch

arge

dparticles,E

ur.Ph

ys.J.E

30(1)(200

9)55

e64

.[201

]U.Ogn

ysta,A.Nyc

h,V.Nazaren

ko,M.Sk

arab

ot,I.Musevic,

Design

of2D

binaryco

lloidal

crystals

inanem

atic

liquid

crystal,Langm

uir25

(20)

(200

9)12

092e

1210

0.[202

]M.C

onradi,M.R

avnik,M

.Bele,

M.Z

orko

,S.Z

umer,I.M

usevic,Janusnem

atic

collo

ids,So

ftMatter5(20)

(200

9)39

05e39

12.

[203

]M.Rav

nik,Gareth

P.Alexa

nder,Julia

M.Yeo

man

s,S.

Zumer,Mesosco

pic

mod

ellin

gof

collo

idsin

chiral

nem

atics,Fa

rad.D

iscu

ss14

4(201

0)15

9e16

9.[204

]M.B

ates,G

.Ska

cej,C.Z

annon

i,Defects

andorderingin

nem

atic

coatings

onuniaxial

andbiax

ialco

lloids,

Soft

Matter6(3)(201

0)65

5e66

3.[205

]U.T

kalec,M.R

avnik,S

.Cop

ar,S

.Zumer,I.M

usevic,Recon

figu

rablekn

otsan

dlin

ksin

chiral

nem

atic

collo

ids,

Science

333(603

8)(201

1)62

e65

.[206

]A.M

artinez,H

ectorC.M

ireles,Iva

nI.Sm

alyu

kh,Large

-areaop

toelasticman

ip-

ulationof

collo

idal

particles

inliq

uid

crystalsusingpho

torespon

sive

molecular

surfacemon

olay

ers,Proc

.Natl.Acad.

Sci.USA10

8(52)

(201

1)20

891e

2089

6.[207

]C.Voltz,R.Stan

narius,

Self-organ

ization

ofisotropic

droplets

insm

ectic-c

free

-standingfilm

s,Ph

ys.R

ev.E

70(6)(200

4)06

1702

.[208

]C.B

ohley,

R.S

tannarius,En

erge

tics

of2d

collo

idsin

free

-standingsm

ectic-c

film

s,Eu

r.Ph

ys.J.E

Soft

Matter20

(3)(200

6)29

9e30

8.[209

]P.

Dolga

nov

,V.D

olga

nov,

Directorco

nfigu

ration

andself-orga

nization

ofinclu-

sion

sintw

o-dim

ension

alsm

ecticmem

bran

es,Phy

s.Rev

.E73

(4)(20

06)0

4170

6.[210

]C.Boh

ley,

R.Stan

narius,

Colloidal

inclusion

sin

smecticfilm

swithsp

onta-

neo

usbe

nd,E

ur.Ph

ys.J.E

23(1)(200

7)25

e30

.[211

]C.Boh

ley,

R.Stan

narius,

Inclusion

sin

free

stan

dingsm

ecticliq

uid

crystal

film

s,So

ftMatter4(4)(200

8)68

3e70

2.[212

]P.V.Dolga

nov

,V.K.Dolga

nov

,P.

Cluze

au,Beh

avior

ofinclusion

swith

differentva

luean

dorientation

oftopolog

ical

dipoles

inferroe

lectricsm

ectic

film

s,J.Ex

p.T

heo

r.Ph

ys10

9(1)(200

9)16

9e17

5.[213

]M.H

umar,M

.Ska

rabo

t,M.R

avnik,S

.Zumer,I.P

oberaj,D

.Bab

ic,I.M

usevic,

Electrically

tunab

lediffraction

oflig

htfrom

2Dnem

atic

collo

idal

crystals,

Eur.Ph

ys.J.E

27(1)(200

8)73

e79

.[214

]J.Pe

ndry,Neg

ativerefraction

mak

esaperfect

lens,

Phys.Rev

.Le

tt85

(18)

(200

0)39

66e39

69.

[215

]J.Pe

ndry,N

egativerefraction

,Con

tempPh

ys45

(3)(200

4)19

1e20

2.[216

]J.Pe

ndry,D.Schurig,

D.Sm

ith,Con

trollin

gelectrom

agnetic

fields,

Science

312(578

1)(200

6)17

80e17

82.

[217

]N.L

iu,H

.Guo,

L.Fu

,S.K

aiser,H.S

chweize

r,H.G

iessen

,Three-dim

ension

alphoton

icmetam

aterialsat

opticalfrequ

encies,N

at.M

ater

7(1)(20

08)3

1e37

.[218

]P.P.

Crook

er,Th

ebluephases

eareview

ofex

perim

ents,Liq.

Cryst

5(3)

(198

9)75

1e77

5.[219

]J.Yan

,M.Jiao,

L.Rao

,S.-T.

Wu,D

irectmea

suremen

tof

electric-fi

eld-induced

birefringe

nce

inapolym

er-stabiliz

edblue-phaseliq

uid

crystalco

mposite,

Opt.Ex

press

18(11)

(201

0)11

450e

1145

5.[220

]E.

Karatairi,B.Roz

ic,Z.

Kutnjak,

V.Tz

itzios,G.Nou

nesis,G.Cordoy

iannis,

J.Th

oen,C

.Glorieu

x,S.

Kralj,N

anop

article-inducedwiden

ingof

thetemper-

ature

range

ofliq

uid-crystallin

ebluephases,P

hys.R

ev.E

81(201

0)04

1703

.

J.P.F.L

agerwall,G.S

calia

/Cu

rren

tApp

liedPh

ysics12

(201

2)13

87e1412

1410

Page 13: 2012 LC review

[221

]M.R

avnik,J.F

uku

da,

J.Yeo

man

s,S.

Zumer,C

onfiningbluephaseco

lloidsto

thin

laye

rs,S

oftMatter7(21)

(201

1)10

144e

1015

0.[222

]H.K

ikuch

i,M.Y

okota,

Y.H

isak

ado,

H.Y

ang,

T.Kajiyam

a,Po

lymer-stabiliz

edliq

uid

crystalbluephases,N

at.M

ater

1(1)(200

2)64

e68

.[223

]D.Y

oon,M

.Choi,Y

.Kim

,M.K

im,O

.Lav

rentovich

,H.Jung,

Intern

alstructure

visu

alizationan

dlithog

raphic

use

ofperiodic

toroidal

holes

inliq

uid

crystals,

Nat.M

ater

6(11)

(200

7)86

6e87

0.[224

]Y.Kim

,D.Yoo

n,H.Jeon

g,O.Lavren

tovich

,H.Jung,

Smecticliq

uid

crystal

defects

forself-assem

blingof

build

ingbloc

ksan

dtheirlithog

raphic

appli-

cation

s,Adv.

Funct.M

ater

21(4)(201

1)61

0e62

7.[225

]Y.K

im,D

.Yoo

n,H.Jeo

ng,H.Jung

,Self-assembled

periodicliq

uidcrystald

efects

arrayforsoftlitho

grap

hictemplate,So

ftMatter6(7)(201

0)14

26e14

31.

[226

]Y.H.K

im,D

.K.Y

oon,H

.S.Jeo

ng,

J.H.K

im,E

.K.Y

oon,H

.-T.

Jung,

Fabricationof

asu

perhyd

rophob

icsu

rfacefrom

asm

ecticliq

uid-crystal

defectarray,

Adv.

Funct.M

ater

19(18)

(200

9)30

08e30

13.

[227

]J.H

.Kim

,Y.H.Kim

,H.S.Jeon

g,E.K.You

n,H.-T.

Jung,

Highly

ordered

defect

arrays

of8C

B(4

‘-n-octyl-4-cya

no-biphen

yl)liq

uid

crystalvia

template-

assisted

self-assem

bly,

J.Mater.C

hem

21(45)

(201

1)18

381e

1838

5.[228

]B.Ham

lington

,B.Steinhau

s,J.Fe

ng,

D.R.Link,

M.Sh

elley,

A.Sh

en,Liqu

idcrystaldropletproductionin

amicrofluidic

dev

ice,

Liq.

Cryst

34(7)(200

7)86

1e87

0.[229

]J.Lo

udet,H.Richard,G.Siga

ud,P.

Poulin

,Non

aqueo

usliq

uid

crystalem

ul-

sion

s,Langm

uir

16(16)

(200

0)67

24e67

30.

[230

]M.H

umar,I.M

usevic,3D

microlasers

from

self-assem

bled

cholestericliq

uid-

crystalmicrodroplets,O

pt.Ex

press

18(26)

(201

0)26

995e

2700

3.[231

]C.B

lanc,

M.K

leman

,Theco

nfinem

entof

smectics

withastrongan

choring,

Eur.Ph

ys.J.E

4(2)(200

1)24

1e25

1.[232

]H.C

oles,S

.Morris,Liqu

id-crystal

lasers,N

at.P

hoton

4(10)

(201

0)67

6e68

5.[233

]P.

Palffy-M

uhoray

,W

.Cao

,M.Moreira,B.Ta

heri,A.Munoz

,Ph

oton

icsan

dlasingin

liquid

crystalm

aterials,P

hilo

s.Tran

sact.A

Math.P

hys.E

ng.

Sci3

64(184

7)(200

6)27

47e27

61.

[234

]M.Ozaki,M.Kasan

o,T.

Kitasho,

D.Gan

zke,

W.Haa

se,K.Yoshino,

Electro-

tunab

leliq

uid-crystal

laser,Adv.

Mater

15(12)

(200

3)97

4e97

7.[235

]W

.Cao

,A.M

unoz

,P.P

alffy-muhoray

,B.T

aheri,Lasingin

athree-dim

ension

alphoton

iccrystalof

theliq

uid

crystalbluephaseII,Nat.Mater

1(2)(200

2)11

1e11

3.[236

]K.Landfester,Miniemulsion

polym

erization

and

thestructure

ofpolym

eran

dhyb

ridnan

oparticles,A

nge

w.C

hem

.Int.Ed

48(25)

(200

9)44

88e45

07.

[237

]O.T

ongc

her,R

.Sigel,K

.Lan

dfester,L

iquid

crystalnan

oparticles

prepared

asminiemulsions,

Langm

uir

22(10)

(200

6)45

04e45

11.

[238

]A.Fernan

dez-N

ieve

s,D.Link,

M.Marqu

ez,D.W

eitz,To

polog

ical

chan

gesin

bipolar

nem

aticdroplets

und

erflow

,Phy

s.Rev

.Lett98

(8)(20

07)08

7801

.[239

]A.Fernan

dez

-Nieve

s,G.C

ristob

al,V

.Garces-Chav

ez,G

.Spalding,

K.D

holak

ia,

D.W

eitz,O

ptically

anisotropic

collo

idsof

controllablesh

ape,

Adv.

Mater

17(6)(200

5)68

0e68

4.[240

]R.W

on,L

iquid

crystals

tinytunab

le3D

lasers,N

at.P

hoton

5(3)(201

1)13

3.[241

]A.Utada,

E.Lo

renceau

,D.R.Link,

P.D.Kap

lan,H.A.Ston

e,D.A.W

eitz,

Mon

odisperse

dou

ble

emulsionsge

nerated

from

amicrocapillary

dev

ice,

Science

308(572

1)(200

5)53

7e54

1.[242

]D.Nelson,To

ward

atetrav

alen

tch

emistry

ofco

lloids,

Nan

o.Le

tt2

(10)

(200

2)11

25e11

29.

[243

]S.Sa

mitsu

,Y.Tak

anishi,J.Yam

amoto,Molecularm

anipulatord

rive

nby

spatial

variationof

liquid-crystallin

eorder,N

at.M

ater

9(10)

(201

0)81

6e82

0.[244

]T.

Lopez

-Leo

n,A.Fe

rnan

dez

-Nieve

s,Drops

and

shells

ofliq

uid

crystal,

Colloid

Polym.S

ci28

9(4)(201

1)34

5e35

9.[245

]T.

Lopez

-Leo

n,V.Kon

ing,

K.B.S.Dev

aiah

,V.Vitelli,

A.Fe

rnan

dez

-Nieve

s,Frustratednem

aticorder

insp

hericalge

ometries,N

at.Phys

7(201

1)39

1e39

4.[246

]T.

Lopez

-Leo

n,A.Fe

rnan

dez

-Nieve

s,To

polog

ical

tran

sformationsin

bipolar

shells

ofnem

atic

liquid

crystals,P

hys.R

ev.E

79(2)(200

9)02

1707

.[247

]A.F

ernan

dez

-Nieve

s,V.V

itelli,

A.U

tada,

D.R.L

ink,

M.M

arqu

ez,D

.R.N

elson,

D.A.W

eitz,N

ovel

defectstructuresin

nem

atic

liquid

crystalshells,P

hys.R

ev.

Lett

99(15)

(200

7)15

7801

.[248

]X.Xing,

Topolog

yan

dge

ometry

ofsm

ectic

order

onco

mpactcu

rved

subs

trates,J.S

tat.Ph

ys13

4(3)(200

9)48

7e53

6.[249

]H.S

hin,M

.Bow

ick,

X.X

ing,

Topolog

ical

defects

insp

herical

nem

atics,Ph

ys.

Rev

.Lett10

1(3)(200

8)03

7802

.[250

]G.Sk

acej,C.Za

nnon

i,Con

trollin

gsu

rfacedefectva

lence

inco

lloids,

Phys.

Rev

.Lett10

0(19)

(200

8)19

7802

.[251

]H.-L.Lian

g,S.Schym

ura,P

.Rudqu

ist,J.Lage

rwall,Nem

atic-smectictran

sition

under

confinem

entin

liquid

crystallineco

lloidal

shells,Ph

ys.Rev

.Le

tt10

6(24)

(201

1)24

7801

.[252

]H.-L.

Lian

g,E.

Enz,

G.S

calia

,J.L

agerwall,Liqu

idcrystals

innov

elge

ometries

prepared

bymicrofluidicsan

delectrospinning,

Mol.Cryst.Liq.

Cryst

549

(201

1)69

e77

.[253

]T.

Lopez

-Leo

n,A.Fe

rnan

dez

-Nieve

s,M.Nob

ili,C.Blanc,

Nem

atic-smectic

tran

sition

insp

herical

shells,P

hys.R

ev.L

ett10

6(24)

(201

1)24

7802

.[254

]H.-L.

Lian

g,R.Ze

ntel,

P.Rudqu

ist,

J.Lage

rwall,

Towards

tunab

ledefect

arrange

men

tsin

smecticliq

uid

crystalsh

ells

utiliz

ingthenem

atic-smectic

tran

sition

inhyb

rid-alig

ned

geom

etries,S

oftMatter,20

12.

[255

]M.N

akata,M.S

ato,

Y.M

atsu

o,S.

Mae

da,

S.Hay

ashi,Hollow

fibe

rsco

ntaining

variou

sdisplayelem

ents:anov

elstructure

forelectron

icpap

er,J.S

ID14

(8)

(200

6)72

3e72

7.[256

]J.P

.F.Lage

rwall,

J.T.McC

ann,E.

Form

o,G.Scalia,Y.Xia,Coa

xial

electro-

spinningof

microfibres

withliq

uid

crystalin

theco

re,Chem

.Com

mun42

(200

8)54

20e54

22.

[257

]H.Y

an,L

.Liu,Z

.Zhan

g,Alig

nmen

tof

electrospunnan

ofibe

rsusingdielectric

materials,A

ppl.Ph

ys.L

ett95

(14)

(200

9)14

3114

.[258

]R.D

ersch,T

.Liu,A

.Sch

aper,A

.Greiner,J.W

endorff,E

lectrosp

unnan

ofibe

rs:

intern

alstructure

and

intrinsicorientation

,J.Po

lym.Sci.A

41(4)(200

3)54

5e55

3.[259

]D.Li,Y.W

ang,

Y.X

ia,E

lectrosp

inningof

polym

eric

andceramic

nan

ofibe

rsas

uniaxially

aligned

arrays,N

ano.

Lett

3(8)(200

3)11

67e11

71.

[260

]A.Y

arin,C

oaxial

electrospinningan

dem

ulsionelectrospinningof

core-shell

fibe

rs,P

olym

.Adva

nTe

chnol

22(3)(201

1)31

0e31

7.[261

]L.

Bellan,H.Craighea

d,Applic

ationsof

controlledelectrospinningsystem

s,Po

lym.A

dva

nTe

chnol

22(3)(201

1)30

4e30

9.[262

]X.Lu,C

.Wan

g,Y.W

ei,O

ne-dim

ension

alco

mpositenan

omaterials:synthesis

byelectrospinningan

dtheirap

plic

ations,

Small5(21)

(200

9)23

49e23

70.

[263

]D.R

enek

er,A

.Yarin,E

lectrosp

inningjets

andpolym

ernan

ofibe

rs,Po

lymer

49(10)

(200

8)23

87e24

25.

[264

]A.G

reiner,J.W

endorff,E

lectrosp

inning:

afascinatingmethod

fortheprep-

arationof

ultrathin

fibres,A

nge

w.C

hem

.Int.Ed

46(30)

(200

7)56

70e57

03.

[265

]D.Li,Y.Xia,Electrospinning

ofnan

ofibe

rs:reinve

nting

the

whee

l?Adv.

Mater

16(14)

(200

4)11

51e11

70.

[266

]J.P

.F.

Lage

rwall,

Liqu

idcrystal-functionalized

nan

o-an

dmicrofibe

rsproducedby

electrospinning,

in:Q.L

i(Ed.),L

iquid

CrystalsBey

ondDisplay

Applic

ations,

JohnW

iley&

Sons,

2012

.[267

]E.

Enz,

U.B

aumeister,J.L

agerwall,Coa

xial

electrospinningof

liquid

crystal-

containingpoly(vinyl

pyrrolid

one)

microfibe

rs,B

eilstein

J.Org.C

hem

5(58)

(200

9).d

oi:10.37

62/bjoc.5.58

.[268

]E.

Enz,

J.Lage

rwall,

Electrospun

microfibres

with

temperature

sensitive

iridescence

from

encapsu

latedch

olestericliq

uid

crystal,J.Mater.Chem

20(33)

(201

0)68

66e68

72.

[269

]Y.Han

,K.Pa

checo,

C.W

.M.Bastiaa

nsen,D.J.

Broer,R.P.Sijbesma,

Optical

mon

itoringof

gaseswithch

olestericliq

uid

crystals,J.A

m.C

hem

.Soc

132(9)

(201

0)29

61e29

67.

[270

]A.Mujahid,H.Stathop

ulos,

A.Lieb

erze

it,Pe

ter,

L.Dicke

rt,Fran

z,So

lven

tva

pou

rdetection

withch

olestericliq

uid

crystals-opticalan

dmass-sensitive

evaluationof

thesensormechan

ism,S

ensors

10(5)(201

0)48

87e48

97.

[271

]L.

Sutarlie,H.Qin,K.-L.

Yan

g,Po

lymer

stab

ilize

dch

olestericliq

uid

crystal

arrays

fordetectingva

porou

sam

ines,A

nalyst13

5(7)(201

0)16

91e16

96.

[272

]D.W

interbottom,R

.Naray

anaswam

y,I.Raimundo,

Cholestericliq

uid

crystals

fordetection

oforga

nic

vapou

rs,Sen

sor.Actuat.B

90(1e3)

(200

3)52

e57

.[273

]Eb

ruA.B

uyu

ktan

ir,Marga

retW

.Frey,

JohnL.

.West,Se

lf-assem

bled

,op

ti-

cally

resp

onsive

nem

atic

liquid

crystal/polym

erco

re-shellfibe

rs:Fo

rmation

andch

aracterization

,Polym

er51

(21)

(201

0)48

23e48

30.

[274

]Y.L

iu,X

.Wan

g,K.Q

i,J.Xin,F

unctionalizationof

cotton

withcarbon

nan

o-tube

s,J.Mater.C

hem

18(29)

(200

8)34

54e34

60.

[275

]B.Sh

im,W

.Chen

,C.Doty,

C.Xu,N.Kotov

,Sm

artelectron

icya

rnsan

dwea

rablefabricsforhuman

biom

onitoringmad

eby

carbon

nan

otube

coating

withpolye

lectrolytes,

Nan

o.Le

tt8(12)

(200

8)41

51e41

57.

[276

]H.Chen

,N.W

ang,

J.Di,Y.Zh

ao,Y.So

ng,

L.Jian

g,Nan

owire-in-m

icrotube

structured

core/shellfibe

rsviamultifluidic

coax

ialelectrospinning,

Lang-

muir

26(13)

(201

0)11

291e

1129

6.[277

]C.Hellm

ann,J.Belardi,R.Dersch,A.Greiner,J.W

endorff,S.

Bah

nmueller,

High

precision

dep

osition

electrospinning

ofnan

ofibe

rsan

dnan

ofibe

rnon

wov

ens,Po

lymer

50(5)(200

9)11

97e12

05.

[278

]L.

Carnell,E.

Sioc

hi,N.H

olloway

,R.S

tephen

s,C.R

him

,L.N

iklason,R

.Clark,

Alig

ned

matsfrom

electrospun

single

fibe

rs,Macromolecules41

(200

8)53

45e53

49.

[279

]C.Chan

g,K.Limkrailassiri,L.

Lin,Con

tinuou

snea

r-fieldelectrospinningfor

largearea

dep

ositionof

orderly

nan

ofibe

rpattern

s,Appl.Ph

ys.L

ett93

(12)

(200

8)12

3111

.[280

]S.

Lee,

S.Obe

ndorf,

Dev

elop

ing

protectivetextile

materials

asba

rriers

toliq

uid

pen

etration

using

melt-electrospinning,

J.Appl.Po

lym.Sci10

2(4)

(200

6)34

30e34

37.

[281

]M.W

arner,E

.M.T

eren

tjev

,Liquid

Crystal

Elastomers(Intern

ational

Series

ofMon

ographson

Physics),O

xfordUniversity

Press,USA

,200

7.[282

]H.Y

ang,

G.Y

e,X.W

ang,

P.Keller,Micron-sized

liquid

crystallineelastomer

actuators,

Soft

Matter7(3)(201

1)81

5e82

3.[283

]C.O

hm,M

.Brehmer,R

.Zen

tel,Liqu

idcrystallineelastomersas

actuatorsan

dsensors,A

dv.

Mater

22(31)

(201

0)33

66e33

87.

[284

]M.Yam

ada,

M.Kon

do,

J.Mam

iya,

Y.Yu,M.Kinoshita,

C.Barrett,T.

Iked

a,Ph

otom

obile

polym

ermaterials:

towards

light-drive

nplastic

motors,

Ange

w.C

hem

.Int.Ed

47(27)

(200

8)49

86e49

88.

[285

]D.T

hom

sen,P.

Keller,J.Naciri,R.Pink,

H.Jeo

n,D

.Sh

enoy

,B.R

atna,

Liqu

idcrystalelastomerswithmechan

ical

properties

ofamuscle,M

acromolecules

34(17)

(200

1)58

68e58

75.

[286

]Y.Yu,M.Nak

ano,

T.Iked

a,Directed

bendingof

apolym

erfilm

bylig

ht-

miniaturizingasimple

photom

echan

ical

system

could

expan

ditsrange

ofap

plic

ations,

Nature

425(695

4)(200

3)14

5.[287

]M.C

amacho-Lo

pez

,H.Finke

lman

n,P

.Palffy-Muhoray

,M.Shelley,Fa

stliq

uid-

crystale

lastom

ersw

imsinto

thedark,

Nat.M

ater

3(5)(200

4)30

7e31

0.[288

]C.Ohm,M.Morys,F.R.Fo

rst,

L.Braun,A.Erem

in,C.Se

rra,

R.Stan

narius,

R.Ze

ntel,

Prep

aration

ofactuating

fibres

oforiented

main-chain

liquid

crystallineelastomersby

awetsp

inningprocess,So

ftMatter7

(8)(201

1)37

30e37

34.

[289

]H.Finke

lman

n,S.

Kim

,A.Munoz

,P.

Palffy-M

uhoray

,B.Ta

heri,

Tunab

lemirrorlesslasingin

cholestericliq

uid

crystallineelastomers,

Adv.

Mater

13(14)

(200

1)10

69e10

72.

J.P.F.L

agerwall,G.S

calia

/Cu

rren

tApp

liedPh

ysics12

(201

2)13

87e1412

1411

[290

]M.L

i,P.

Keller,Artificial

musclesba

sedon

liquid

crystalelastomers,

Philo

s.Tran

sact.A

Math.P

hys.E

ng.

Sci36

4(184

7)(200

6)27

63e27

77.

[291

]C.Ohm,N.Hab

erko

rn,P.

Thea

to,R.Ze

ntel,Te

mplate-based

fabrication

ofnan

ometer-scaledactuatorsfrom

liquid-crystallin

eelastomers,

Small7(2)

(201

1)19

4e19

8.[292

]A.Bugu

in,M.Li,P.

Silberzan,B.Ladou

x,P.

Keller,

Micro-actuators:

when

artificial

muscles

mad

eof

nem

atic

liquid

crystalelastomers

mee

tsoft

lithog

raphy,

J.Am.C

hem

.Soc

128(4)(200

6)10

88e10

89.

[293

]Casper

L.va

nOosten,C

eesW

.M.B

astiaa

nsen,D

irkJ.Broer,P

rintedartificial

cilia

from

liquid-crystal

networkactuatorsmod

ularlydrive

nby

light,

Nat.

Mater

8(8)(200

9)67

7e68

2.[294

]C.O

hm,E

.Fleisch

man

n,I.K

raus,C.S

erra,R

.Zen

tel,Con

trol

oftheProp

erties

ofMicrometer

Size

dActuatorsfrom

Liqu

idCrystallin

eElastomersPrep

ared

inaMicrofluidic

Setup,A

dv.

Funct.M

ater

20(24)

(201

0)43

14e43

22.

[295

]E.-K

.Fleischman

,H.-L.

Lian

g,J.Lage

rwall,R.Ze

ntel,To

wardsmicrometer

size

dco

re-shella

ctuatorsfrom

liquid

crystallineelastomersby

aco

ntinuou

sflow

synthesis,S

PIEPh

oton

icsW

est82

79(201

2).

[296

]R.Fran

klin,R.Goslin

g,Molecularco

nfigu

ration

insodium

thym

onuclea

te,

Nature

171(435

6)(195

3)74

0e74

1.[297

]M.W

ilkins,

A.Stok

es,H.W

ilson

,Molecular

structure

ofdeo

xypen

tose

nucleicacids,Nature

171(435

6)(195

3)73

8e74

0.[298

]J.E

.Lyd

on,T

heDNAdou

blehelix

-theuntold

story,

Liq.

Cryst.T

oday

12(2)

(200

3)1e

9.[299

]G.Za

nch

etta,T.

Bellin

i,M.Nak

ata,

N.Clark,Ph

ysical

polym

erization

and

liquid

crystallization

ofRNA

oligom

ers,

J.Am.Chem

.So

c13

0(39)

(200

8)12

864e

1286

5.[300

]G.Z

anch

etta,M

.Nak

ata,

M.B

uscag

lia,T

.Bellin

i,N.A.C

lark,P

haseseparation

and

liquid

crystallization

ofco

mplemen

tary

sequ

ences

inmixtures

ofnan

oDNAoligom

ers,Proc

.Natl.Acad.S

ci.U

SA10

5(4)(200

8)11

11e11

17.

[301

]M.Nak

ata,

G.Za

nch

etta,B.D.Chap

man

,C.D.Jones,J.O

.Cross,R.Pindak

,T.

Bellin

i,N.A.C

lark,E

nd-to-en

dstackingan

dliq

uid

crystalcon

den

sation

of6

to20

base

pairDNAduplexe

s,Science

318(585

4)(200

7)12

76e12

79.

[302

]A.Leforestier,F.Livolan

t,Th

eba

cteriophag

ege

nom

eundergo

esasu

ccession

ofintracap

sid

phase

tran

sition

supon

DNA

ejection

,J.

Mol.Biol39

6(2)

(201

0)38

4e39

5.[303

]A.Le

forestier,

F.Livo

lant,

Structure

oftoroidal

DNA

colla

psed

inside

the

phag

ecapsid,P

roc.

Natl.Acad.S

ci.U

SA10

6(23)

(200

9)91

57e91

62.

[304

]A.Le

forestier,

A.Berlin

,J.

Dubo

chet,K.Richter,

N.Blanc,

F.Livo

lant,

Expression

ofch

iralityin

columnar

hex

agon

alphases

orDNA

andnucleo

-somes,C

.R.C

him

11(3)(200

8)22

9e24

4.[305

]A.Le

forestier,

S.Brasiles,

M.deFrutos,

E.Raspau

d,L.

Letellier,P.

Tava

res,

F.Livo

lant,Bacteriop

hag

et5

DNAejection

under

pressure,J.M

ol.B

iol3

84(3)

(200

8)73

0e73

9.[306

]Y.B

oulig

and,Liquid

crystals

andbiolog

ical

morphog

enesis:an

cien

tan

dnew

question

s,C.R

.Chim

11(3)(200

8)28

1e29

6.[307

]Y.B

oulig

and,

Liqu

idcrystals

andtheirstab

ilizedan

alog

ues

as“tem

plates”

ofbioc

ompo

sites,Ann

ales

DeChimie-scien

ceDes

Materiaux

29(1)(20

04)8

3e96

.[308

]Y.Bou

ligan

d,Th

erenew

alof

idea

sab

out

biom

ineralisations,

Com

ptes

Ren

dus-Pa

levo

l3(6e7)

(200

4)61

7e62

8.[309

]S.Siva

kumar,K

imL.W

ark,

Juga

lK.G

upta,N

icho

lasL.Abb

ott,F.Carus

o,Liqu

idcrystale

mulsions

astheba

sisof

biolog

ical

sens

orsfortheop

ticald

etection

ofba

cteria

andviruses,Adv

.Fun

ct.M

ater

19(14)

(200

9)22

60e22

65.

[310

]J.Gupta,M

.Meli,S.

Teren,N

.Abb

ott,Elasticen

ergy

-drive

nphaseseparation

ofphospholipid

mon

olay

ersat

thenem

atic

liquid-crystal-aqu

eousinterface,

Phys.R

ev.L

ett1(4)(200

8)04

8301

.[311

]C.Jan

g,L.Chen

g,C.O

lsen

,N.A

bbott,Anch

oringof

nem

atic

liquid

crystals

onviruseswithdifferente

nve

lopestructures,Nan

o.Le

tt6(5)(20

06)1

053e

1058

.

[312

]N.L

ockw

ood,

J.Moh

r,L.Ji,

C.M

urph

y,S.

Palecek,

J.DePa

blo,

N.A

bbott,Th

er-

motropicliq

uid

crystalsas

substrates

forimag

ingthereorga

nizationof

matrige

lby

hum

anem

bryo

nicstem

cells,A

dv.Fun

ct.M

ater

16(5)(200

6)61

8e62

4.[313

]J.

Brake

,M.Dasch

ner,Y.Lu

k,N.Abb

ott,

Biomolecular

interactions

atphospholipid-decorated

surfaces

ofliq

uid

crystals,Science

302

(565

3)(200

3)20

94e20

97.

[314

]S.

Kim

,N.A

bbott,Rubb

edfilm

sof

functionalized

bovineserum

albu

min

assu

bstrates

forthe

imag

ing

ofprotein-recep

torinteractions

using

liquid

crystals,A

dv.

Mater

13(19)

(200

1)14

45e14

49.

[315

]V.G

upta,J.S

kaife,

T.Dubrov

sky,

N.A

bbott,Opticalam

plifi

cation

oflig

and-

receptor

binding

using

liquid

crystals,

Science

279

(535

9)(199

8)20

77e20

80.

[316

]C.-H.C

hen

,K.-L.Yan

g,Detection

andqu

antification

ofDNAad

sorbed

onsolid

surfaces

byusingliq

uid

crystals,L

angm

uir

26(3)(201

0)14

27e14

30.

[317

]A.Price,

D.Schwartz,DNA

hyb

ridization-induced

reorientation

ofliq

uid

crystalan

choring

atthe

nem

atic

liquid

crystal/aq

ueo

usinterface,

J.Am.

Chem

.Soc

130(26)

(200

8)81

88e81

94.

[318

]A.Yag

hmur,

O.Glatter,Characterization

and

poten

tial

applic

ations

ofnan

ostructured

aqueo

us

dispersion

s,Adv.

Colloid

Interface

Sci14

7e48

(200

9)33

3e34

2.[319

]L.

Saga

lowicz,

M.L

eser,H

.Watzk

e,M.M

ichel,M

onog

lycerideself-assem

bly

structuresas

deliveryve

hicles,Tren

ds.Fo

odSci.Te

ch17

(5)(200

6)20

4e21

4.[320

]J.Barau

skas,M.Johnsson

,F.

Tibe

rg,Se

lf-assem

bled

lipid

superstructures:

beyo

ndve

sicles

andlip

osom

es,N

ano.

Lett

5(8)(200

5)16

15e16

19.

[321

]R.M

ezze

nga

,P.Sch

urten

berger,A

.Burbidge

,M.M

ichel,U

nderstan

dingfood

sas

soft

materials,N

at.M

ater

4(10)

(200

5)72

9e74

0.[322

]P.

Spicer,Prog

ress

inliq

uid

crystallinedispersion

s:cu

bosomes,Curr.Opin.

Colloid

InterfaceSci10

(5e6)

(200

5)27

4e27

9.[323

]O.Fa

rokh

zad,R.Lange

r,Im

pactof

nan

otechnolog

yon

drugdelivery,

ACS

Nan

o3(1)(200

9)16

e20

.[324

]M.M

almsten

,Softdrugdeliverysystem

s,So

ftMatter2(9)(200

6)76

0e76

9.[325

]S.Sa

vic,G.V

uleta,R

.Dan

iels,C

.Mulle

r-go

yman

n,C

olloidal

microstructure

ofbinarysystem

san

dmod

elcrea

msstab

ilize

dwithan

alky

lpolyg

luco

sidenon

-ionic

emulsifier,C

olloid

Polym.S

ci28

3(4)(200

5)43

9e45

1.[326

]C.Mulle

r-go

yman

n,Ph

ysicoc

hernical

characterization

ofco

lloidal

drug

delivery

system

ssu

chas

reve

rse

micelles,

vesicles,liq

uid

crystals

and

nan

oparticles

fortopical

administration,Eu

r.J.

Pharm.Biopharm

58(2)

(200

4)34

3e35

6.[327

]Ole

G.Mou

ritsen

,Th

eliq

uid-ordered

stateco

mes

ofag

e,Bioch

im.Biohys.

Acta-Biomem

br17

98(7)(201

0)12

86e12

88.

[328

]O.G.M

ouritsen

,Lifee

AsaMatterof

Fat,Sp

ringe

r,20

04.

[329

]K.S

imon

s,M.G

erl,Rev

italizingmem

bran

erafts:

new

toolsan

dinsigh

ts,N

at.

Rev

.Mol.C

ellBio

11(10)

(201

0)68

8e69

9.[330

]D.Lingw

ood,K.Simon

s,Lipid

raftsas

amem

bran

e-orga

nizing

principle,

Science

327(596

1)(201

0)46

e50

.[331

]L.S.

Hirst,

P.Uppam

ooch

ikka

l,C.

Lor,

Phase

separation

and

critical

phen

omen

ain

biom

imetic

tern

ary

lipid

mixtures,

Liq.

Cryst

38(11e

12)

(201

1)17

35e17

47.

[332

]LindaS.

Hirst,J.Y

uan

,Theeffectsof

fluorescentprobe

son

mod

elmem

bran

eorga

nization:photo-inducedlip

idsortingan

dsoft

structure

form

ation,L

iq.

Cryst

36(6e7)

(200

9)73

9e74

5.[333

]J.Yuan

,S.

Hira,

G.S

trou

se,L.

Hirst,L

ipid

bilaye

rdiscs

andba

nded

tubu

les:

photoinduced

lipid

sortingin

tern

arymixtures,

J.Am.Chem

.So

c13

0(6)

(200

8)20

67e20

72.

[334

]T.

Yoo

n,C

.Jeo

ng,

S.Le

e,J.Kim

,M.C

hoi,S

.Kim

,M.K

im,S

.Lee

,Top

ographic

control

oflip

id-raftreco

nstitution

inmod

elmem

bran

es,Nat.Mater

5(4)

(200

6)28

1e28

5.

J.P.F.L

agerwall,G.S

calia

/Cu

rren

tApp

liedPh

ysics12

(201

2)13

87e1412

1412