(2011!09!06) Introduction to Vehicular Networks for Enhanced Safety Assistance

Embed Size (px)

Citation preview

  • 8/16/2019 (2011!09!06) Introduction to Vehicular Networks for Enhanced Safety Assistance

    1/17

    2011-09-05

    1

     n ro uc on o e cu ar e wor s or

    Enhanced Safety Assistance

    Sept. 06, 2011

    Institute of Logistics IT

    Pusan National University

    Han-You Jeong

    CONTENTS

    • ot vat on

    • Tutorial on Vehicular Networking

  • 8/16/2019 (2011!09!06) Introduction to Vehicular Networks for Enhanced Safety Assistance

    2/17

    2011-09-05

    2

    Motivation

    Impacts of Road Accident s 

    Megat rend of Saf et y Assist ance 

    MOTIVATION- Casualties of Road Accidents

    Worldwide, 1.2 million people are killed in road crashes

    and as high as 50 million are injured every year.

    : How man eo le are killed in the Ira War?  

     A: 100 ~ 150 thousand casualties

     from 2003 to 2006 (Source: Wikipedia)

  • 8/16/2019 (2011!09!06) Introduction to Vehicular Networks for Enhanced Safety Assistance

    3/17

    2011-09-05

    3

    MOTIVATION- Global Injury Mortality

    MOTIVATION- Regional Distribution

  • 8/16/2019 (2011!09!06) Introduction to Vehicular Networks for Enhanced Safety Assistance

    4/17

    2011-09-05

    4

    MOTIVATION- Megatrend of Safety Assistance

    Past Safety SolutionsPresent Safety

    Solutions

    Future Safety

    Solutions

    SeriousAccident

    SlightAccident

    MinorImpact

    Road Accident

    Minor

    Vehicular

    Communications

     Impact

    Dangerous

    Warning Recovery

    Needs enough time to perceive, decide, and react to road environments

    MOTIVATION- Past Safety Solutions against Road Accidents

    Safety Belt Airbag Child Car Seat

    Past safety solutions mostly focus on the reduction of the casualties.

  • 8/16/2019 (2011!09!06) Introduction to Vehicular Networks for Enhanced Safety Assistance

    5/17

    2011-09-05

    5

    MOTIVATION- Statistics of Road Accidents

    Past safety solutions reduce the fatalities, not road accidents.

    MOTIVATION- Present Safety Solutions against Road Accidents

    60 ~ 200 m 5 ~ 10 m30 ~ 50 m

    The present safety solutions focus on the avoidance of road accidents.

  • 8/16/2019 (2011!09!06) Introduction to Vehicular Networks for Enhanced Safety Assistance

    6/17

    2011-09-05

    6

    MOTIVATION- VIAC Project (VisLab, Parma Univ., Italy)

    Intercontinental Autonomous Driving (July 10th ~ Oct. 26th 2010)

    MOTIVATION- MBC News (Jan. 26, 2011)

  • 8/16/2019 (2011!09!06) Introduction to Vehicular Networks for Enhanced Safety Assistance

    7/17

    2011-09-05

    7

    Tutorial on Vehicular Networkin

    Character ist i cs of Vehicular Netw orks 

    Vehicular Netw ork Appl icat ions 

    SAE J2735 

    IEEE 160 9. x 

    IEEE 802 .1 1p 

    TUTORIAL ON VEHICULAR NETWORKING- Overview of Vehicular Networks

    • A vehicular network is an example of mobile ad-hoc

    networks (MANETs)

     –  No Limitation in Power Consumption and Computation

    • A vehicular network supports –  Safety Applications. e.g., Collision Warning

     –  Non-Safety Applications, e.g., Navigation

     –  Infotainment Applications, e.g., Internet Access, LBS, etc.

    • A message of a safety application is either a periodic or

    an event-based broadcast message.

  • 8/16/2019 (2011!09!06) Introduction to Vehicular Networks for Enhanced Safety Assistance

    8/17

    2011-09-05

    8

    TUTORIAL ON VEHICULAR NETWORKING- Characteristics: Location-based Message Delivery

    • Location-based Message Delivery

    Vehicle Collision

    Region of Interest (ROI)

     –  Assume that a safety application informs all vehicles arriving at

    the accident location within 5 min. –  ROI of an Urban Road (54 Km/h): 4.5 Km

     –  ROI of a Highway (108 Km/h): 9 Km

     –  Needs a Multi-hop Message Delivery Mechanism

    TUTORIAL ON VEHICULAR NETWORKING- Characteristics: Dynamic Network Connectivity

    40 m/sec40 m/sec

    • Dynamic Network Connectivity

     

    40 m/sec

    400 m

    40 m/sec

    ommun ca on

     –    e ransm ss on range s m, e connec on me e ween

    two vehicles is about 10 sec, which is much shorter than Wi-Fi

    connection time!!!

     –  Predictable Mobility 

  • 8/16/2019 (2011!09!06) Introduction to Vehicular Networks for Enhanced Safety Assistance

    9/17

    2011-09-05

    9

    TUTORIAL ON VEHICULAR NETWORKING- Characteristics: Wide-Range of Vehicle Density

    • Wide-Range of Vehicle Density

     –  Intermittent Connectivit

    Low Vehicle Density High Vehicle Density

     

     – 

    Scale to Large Network• If the inter-car distance is 10 m on average at the intersection of highway with

    four lanes for each direction, a vehicle can have 640 neighbor vehicles!!!

     –  Vehicle Density based on the Safe Distance

    • Urban Road [Two Lanes per Direction, 60 Km/h (35 m)] : 95 (Vehicles/Km)

    • Highway [Two Lanes per Direction, 100 Km/h (77 m)] : 48 (Vehicles/Km)

    TUTORIAL ON VEHICULAR NETWORKING- Vehicular Network Architecture

    Camera

    Roadside Unit (RSU)Backhaul

    V2I CommV2V Comm.

      .

    • Entities in Vehicular Networks

      –  n oar n t

    • A communication device at each vehicle

     –  Roadside Unit (RSU)

    • Connects a vehicular network to an infrastructure network

    • Acts similar to a wireless LAN access point (AP)

  • 8/16/2019 (2011!09!06) Introduction to Vehicular Networks for Enhanced Safety Assistance

    10/17

    2011-09-05

    10

    TUTORIAL ON VEHICULAR NETWORKING- Vehicular Network Apps: Visibility Warning/Assistant

    V2V Comm.V2V Comm.

     • xamp e o s y arn n ss s an

     –  Visibility Enhancement

     –  Blind-Spot Warning

     –  Emergency Electronic Brake Light (EEBL)

    TUTORIAL ON VEHICULAR NETWORKING- Vehicular Network Apps: Intersection Safety

    : Road Sensors

    : Traffic Controller

    : RSU

    : WAVE/DSRC Link

    • Example of Intersection Safety

     –  Sign/Signal Notification

     –  Sign/Signal Violation Warning

     –  Intersection Collision Warning

     

  • 8/16/2019 (2011!09!06) Introduction to Vehicular Networks for Enhanced Safety Assistance

    11/17

    2011-09-05

    11

    TUTORIAL ON VEHICULAR NETWORKING- Protocol Architecture

    • Protocol Architecture of Vehicular Networks

    TUTORIAL ON VEHICULAR NETWORKING- SAE J2735 DSRC Message Set

    • SAE J2735 standard defines standard message sets, dataframes, and data elements of vehicular a lications

     –  15 Messages/72 Data Frames/146 Data Elements

    • Message Types of SAE J2735

     –  Each data item is encoded in TLV(Type/Length/Value) format

     –  List of Messages

    • A La Carte (ACM) /Basic Safety Message (BSM) /Common Safety Request(CSR)/ Emergency Vehicle Alert (EVA)/Intersection Collision Avoidance (ICA)/

    Map Data (MAP)/NMEA Corrections (NMEA)/Probe Data Management

    (PDM)/Probe Vehicle Data (PVD)/Roadside Alert (RSA)/RTCM Corrections

    (RTCM)/Signal Phase and Timing Message (SPAT)/Signal Request Message(SRM)/Signal Status Message (SSM)/Traveler Information Message (TIM)

  • 8/16/2019 (2011!09!06) Introduction to Vehicular Networks for Enhanced Safety Assistance

    12/17

    2011-09-05

    12

    TUTORIAL ON VEHICULAR NETWORKING- Basic Safety Message (BSM)

    • A basic safety message (BSM) conveys Core State

     –  Also known as the Beacon Message

     –  Part I – Core State Information with 10 Hz transmission rate• Latitude/Longitude/PositionalAccuracy/TransmissionandSpeed/Heading …

     –  Part II – Optional Data Elements and Frames

    • EventFlags/PathHistory/PathPrediction/RTCMPackage

     –  The total size of Part I message is 43 byte.

     • e tota rame s ze s yte, nc u ng ea er ytes , ea er

    (28 bytes), and PLCP Header (5 bytes).

    TUTORIAL ON VEHICULAR NETWORKING- Message Dispatcher

    • Message Dispatcher

     –  assimilates data elements from all the on-board applications and

    constructs a single message in the Tx side.

     –  is responsible for separating and disseminating data elements to

    all on-board applications in the Rx side.

  • 8/16/2019 (2011!09!06) Introduction to Vehicular Networks for Enhanced Safety Assistance

    13/17

    2011-09-05

    13

    TUTORIAL ON VEHICULAR NETWORKING- IEEE 1609.x Standard Overview

    • IEEE 1609.x Standards

     –  IEEE 1609.0 WAVE architecture

     –  IEEE 1609.1 WAVE resource management

     –  IEEE 1609.2 Security defines protocols for optional message

    authentication and encryption

     –  IEEE 1609.3 WAVE Short Message Protocol (WSMP) defines asimple alternative to network and transport layer protocols

     –  IEEE 1609.4 Multi-Channel Operation defines how a given,

    time, which is called a channel-switching protocol –  IEEE 1609.11 Electronic Toll/Free Collection

    TUTORIAL ON VEHICULAR NETWORKING- IEEE 1609.3 WAVE Short Message Format

    • WAVE Short Message Protocol (WSMP)

     –  Defines a standard for directly sending many packets over the air

    from the source to the destination

     –  IEEE 1609.3 defines the WAVE Short Messages (WSMs) and the

    WAVE Service Advertisements (WSAs) packet formats –  Both messages can be transmitted in all channels, whereas the IP

    packets are not allowed on the CCH

    Provider Service IDentifier

  • 8/16/2019 (2011!09!06) Introduction to Vehicular Networks for Enhanced Safety Assistance

    14/17

    2011-09-05

    14

    TUTORIAL ON VEHICULAR NETWORKING- IEEE 1609.3 WAVE Service Advertisements (WSAs)

    1 1Var.1

    Provider Service Table WAVE Routing AdvertisementWAVE

    version

    Extension

    fields

    RepeatsTransmit Power Used

    2D/3D Location

     

    Channel InfoService Info

    2 16 1 16 166

    Routerlifetim

    e

    IpPrefixPrefixlength

    Defaultgatewa

    y

    PrimaryDNS

    Gateway MAC

    address

    Extension

    fields

    Var.

    KEY

    OptionalField

    Lengths in octets

    1

    WAVEElemen

    t ID

    IP configuration info

     

    Secondary DNS

    KEY

    Extension fields

    Optional

    Lengths in octets

    4 1 1 1 1 1

    Channel

    Number

    Adapt-able

    DataRate

    TxPwr_Level

    May be

    repeatedMay be

    repeated

    11

    PSIDServicePriority

    Channel

    Number

    Extension

    fields

    Var.

    Extension

    fields

    Var.1

    WAVEElemen

    t ID

    WAVEElemen

    t ID

    Info about available services Info about service channels

    PSC

    IPv6 Address

    Service Port

    Provider MAC AddressEDCA Parameter Set

    TUTORIAL ON VEHICULAR NETWORKING- IEEE 1609.4 Multi-Channel Operation

    • IEEE 1609.4 defines a mechanism by which a device with

    one or more radios can effectively switch among DSRC CHs

     –  With the rendezvous channel CCH and time-division o eration

     –  All devices have access to a common time source, the universalcoordinated time (UTC), in a GPS signal

    • The CCH is primarily used for the WAVE short messages(WSMs) and the WAVE service advertisements (WSAs)

    Sync Interval = 100 msec

    Start of every UTC second Start of every UTC second

    CCH Interval

    = 50 msecSCH Interval= 50 msec

    Guard Interval = 4 msec

  • 8/16/2019 (2011!09!06) Introduction to Vehicular Networks for Enhanced Safety Assistance

    15/17

    2011-09-05

    15

    TUTORIAL ON VEHICULAR NETWORKING- Characteristics of IEEE 802.11p

    • Characteristics of IEEE 802.11p

    IEEE 802.11 Wi-Fi Cellular Mobile WiMAX 

    Data rate 3-27Mbps 6-54Mbps < 2 Mbps 1-32 Mbps

    Latency < 50ms Seconds Seconds ?

    Range < 1 Km < 100m < 10 Km < 15 Km

    Mobility > 100 Km/h < 5mph > 100 Km/h > 100 Km/h

    NominalBandwidth

    10MHz 20MHz < 3MHz < 10MHz

    FrequencyBand

    5.85-5.925GHz

    (ITS-RS)

    2.4GHz, 5 GH

    z (ISM)

    800MHz, 1.9GH

    z 2.5 GHz

    IEEE std. 802.11p 802.11 N/A 802.16e

    TUTORIAL ON VEHICULAR NETWORKING- Amendments to the Connection Setup in WAVE/DSRC

    • Nodes in vehicular networks are free to use the

    infrastructure and independent BSS concepts in 802.11

     –   

     –  It takes at least 0.2 sec to setup a connection in 802.11 WLAN

    • There is a strong desire in vehicular networks to define

    lightweight rules for accessing the medium

     

     –  There is no connection setup before STAs exchange data frames

     –  The BSSID field of an OCB frame is set of 0xFFFFFF, which iscalled the wildcard value

     –  Does not use authentication, association, and a beacon frameto announce a BSS in the MAC sub-layer

  • 8/16/2019 (2011!09!06) Introduction to Vehicular Networks for Enhanced Safety Assistance

    16/17

    2011-09-05

    16

    TUTORIAL ON VEHICULAR NETWORKING- Adaptive Modulation and Coding in WAVE/DSRC

    • WAVE/DSRC will more commonly use the 10 MHz channel

     –  8 μsec OFDM symbol leads to a data rate of 125 Kbps per symbol

     –    .

     –  Data rate options in a DSRC 10 MHz OFDM channel

    Data Rate(Mbps)

    Modulation Coding RateCoded bits per

    subcarrierCoded bits perOFDM symbol

    Data bits perOFDM symbol

    3 BPSK 1/2 1 48 24

    4.5 BPSK 3/4 1 48 36

    6 QPSK 1/2 2 96 48

    9 QPSK 3/4 2 96 72

    12 16-QAM 1/2 4 192 96

    18 16-QAM 3/4 4 192 144

    24 16-QAM 2/3 6 288 192

    27 64-QAM 3/4 6 288 216

    TUTORIAL ON VEHICULAR NETWORKING- DSRC Spectrum in US

    • US FCC allocates 75 MHz of spectrum for DSRC servicesfrom 5.850 GHz to 5.925 GHz

     –  Ch. 178 in the middle of DSRC s ectrum is the control channel(CCH) and the other six channels are service channels (SCHs)

  • 8/16/2019 (2011!09!06) Introduction to Vehicular Networks for Enhanced Safety Assistance

    17/17

    2011-09-05