12

Click here to load reader

2011 essential oils in mexican bays (litsea spp., lauraceae)

Embed Size (px)

Citation preview

Page 1: 2011 essential oils in mexican bays (litsea spp., lauraceae)

Essential Oils in Mexican Bays (Litsea spp., Lauraceae):Taxonomic Assortment and Ethnobotanical Implications1

NELLY DEL CARMEN JIMÉNEZ-PÉREZ2, FRANCISCO G. LOREA-HERNÁNDEZ2,

CHRISTOPHER K. JANKOWSKI3, AND RICARDO REYES-CHILPA*,4

2Instituto de Ecología A.C., Xalapa, Veracruz, México3Département de Chimie, Université de Moncton, Moncton, New Brunswick, Canada4Instituto de Química, Universidad Nacional Autónoma de México, México, DF, México*Corresponding author; e-mail: [email protected]

Essential Oils in Mexican Bays (Litsea spp., Lauraceae): Taxonomic Assortment and Ethno-botanical Implications. The seven species of Litsea found in Mexico, all of them popularlyknown as “laurel,” were surveyed by gas chromatography-mass spectrometry for their foliaressential oils composition and related ethnobotanical applications. Litsea glaucescens is inhigh demand as a condiment, and is sold in rural and urban markets all over Mexico. Ho-wever, four other species are also locally used for food seasoning. Litsea guatemalensis is thespecies most used in traditional medicine, especially to treat fever, chills, infectious diseases ofthe digestive system, and arthritis. No reports of culinary, medicinal, or other applicationswere located for L. muelleri, and L. pringlei. This is the first report on the essential oils for L.neesiana, L. muelleri, L. parvifolia, L. pringlei, and L. schaffneri. The terpenoids commonlyfound in all the Litsea species studied were 1,8-cineole, linalool, α-pinene, β-pinene, m-cymene, terpinen-4-ol, α-terpineol, caryophyllene, and caryophyllene oxide. Nevertheless,each species can be distinguished by its characteristic assortment of terpenoids. According tohierarchical cluster analysis, three groups of species were recognized: (1) 1,8-cineole group(C-10 terpenes), consisting of L. glaucescens, L. schaffnerii, L. pringlei, and L. muelleri; (2)limonene-rich group (C-10 oxygenated terpenes), including L. guatemalensis, and L. neesi-ana, and (3) oxygenated sesquiterpenes-rich group (C-15 oxygenated terpenes), comprisingL. parvifolia. The chemical profiles of L. glaucescens and L. guatemalensis suggest a correl-ation with the culinary and medicinal uses of these species due to the known properties oftheir main constituents.

Aceites esenciales de laureles mexicanos (Litsea spp., Lauraceae): Distribución taxonómicae implicaciones etnobotánicas. La composición de los aceites esenciales foliares de las sieteespecies de Litsea encontradas en México, todas ellas conocidas popularmente como “laur-el,” fue analizada por cromatografía de gases acoplada a espectrometría de masas y relaci-onada con sus usos tradicionales. Litsea glaucescens es altamente demandada comocondimento y se vende en los mercados rurales y urbanos a lo largo de todo el país. Sinembargo, otras cuatro especies, también se utilizan localmente como especias. Litsea guat-emalensis es la especie más usada en la medicina tradicional para tratar fiebre, resfriados,infecciones del aparato digestivo y artritis. No se registró ningún uso para L. muelleri y L.pringlei. Se reporta por primera vez la composición de los aceites esenciales de L. neesiana, L.muelleri, L. parvifolia, L. pringlei y L. schaffneri. Los terpenoides comunes en todas lasespecies estudiadas de Litsea fueron: 1,8-cineol, linalool, α-pineno, β-pineno, m-cimeno,terpinen-4-ol, α-terpineol, cariofileno y óxido de cariofileno, sin embargo, cada una de lassiete especies puede distinguirse por un perfil característico de terpenoides. Con base en suscompuestos mayoritarios se distinguieron tres grupos: (1) rico en 1,8-cineol (monoterpenosC-10) constituido por L. glaucescens, L. schaffnerii, L. pringlei y L. muelleri; (2) rico enlimoneno (monoterpenos oxigenados C-10) incluye a L. guatemalensis y L. neesiana; y (3)rico en sesquiterpenos oxygenados (C-15) que incluye a L. parvifolia, la cual posee semej-

1 Received 3 March 2010; accepted 25 April 2011;published online 17 May 2011.

Economic Botany, 65(2), 2011, pp. 178–189© 2011, by The New York Botanical Garden Press, Bronx, NY 10458-5126 U.S.A.

Page 2: 2011 essential oils in mexican bays (litsea spp., lauraceae)

anza química con otras especies asiáticas. Nuestros resultados sugieren que los perfiles quí-micos de L. glaucescens y L. guatemalensis están relacionados con sus aplicaciones culinariasy medicinales en razón a las propiedades conocidas de sus componentes mayoritarios.

Key Words: Lauraceae, Mexican bay, laurel, essential oil, gas chromatography—massspectrometry, ethnobotany.

IntroductionLitsea Lam. (Lauraceae) is a genus comprising

about 400 species with a dramatically unevendistribution between Southeast Asia, includingAustralasia (more than 350 spp.) and America (8spp.) (Rohwer 1993). It comprises dioecious,evergreen, or deciduous trees and shrubs. In Asia,several Litsea species are cultivated for timber andessential oil extraction for the perfume industry,as well as for food and flavoring (Howard 1934;Nath et al. 1996). The American species of Litseaoccur at elevations from nearly 0 to 3,000 m, butmostly from 1,000 to 1,500 m. Litsea aestivalis(L.) Fernald “pond spice” is the only species thatis native to the United States (van der Werff1997). Historically, the taxonomic treatments forMexican species of Litsea have shown strong

disagreement in the recognition of species (Allen1945; Bartlett 1909; Meissner 1864; Mez 1889).Recently, however, the group has been revisedwith rigorous morphological analysis and con-fined to seven species (Jiménez-Pérez and Lorea-Hernández 2009). Distribution of recognizedMexican bays species is shown in Fig. 1. Thistaxonomical proposal is followed in the presentstudy.

ETHNOBOTANY

Litsea species in Mexico are popularly knownas “laurel,” or derivatives of this Spanish word.The current name is the same applied to theGreek bay (Laurus nobilis L.), the condiment parexcellence in the European cuisine, and surelyknown by the first Spaniards that arrived in the

Fig. 1. Distribution of Litsea spp. in Mexico and Central America. Δ : L. glaucescens; ▲: L. guatemalensis; □: L.muelleri; ○: L. neesiana; ★: L. parvifolia; ☆: L. pringlei; ●: L. schaffneri.

179JIMÉNEZ-PÉREZ ET AL.: ESSENTIAL OILS IN MEXICAN BAYS2011]

Page 3: 2011 essential oils in mexican bays (litsea spp., lauraceae)

country in the 16th century. In Mexican cuisine,Litsea species leaves are added to pasta, soups,broth, hot peppers in vinaigrette, and manypoultry, meat, and fish dishes (Kennedy andClaiborne 2000). Litsea spp. leaves are widelycommercialized, alone or with other aromaticleaves. In this case, the “bouquet garni” are calledhierbas de olor (scent herbs), and commonlyinclude thyme (Thymus vulgaris L.) and sweetmarjoram (Origanum majorana L.) (Fig. 2). Lau-rel leaves are included among the main non-timber forest products obtained from Mexicanpine and oak forests (Tapia-Tapia and Reyes-Chilpa 2008).Where and when Mexican bays began being

used as medicine and condiment is unknown;however, the earliest printed testimonies datefrom the 16th century. The Spaniard physicianand naturalist Francisco Hernandez in his “His-toria de las Plantas de la Nueva España” (1571–1577) described a plant named in Nahuatllanguage Ecapatli as follows: “It is a kind of‘laurel’ smaller than ours, and with smaller leaves,but similar in whatever else. The natives cureparalysis with its odorous smoke, its decoctionadministered in washing and baths heals fatigue,

and epilepsy of children. It grows in the Mexicanmountains.” Ecapatli has been identified as Litseaglaucescens Kunth (Valdés and Flores 1985).Currently, in Mexico the words ecapatli andecapatle are still used in some localities to namea plant, which etymologically is derived from theNahuatl terms ehécatl (wind) and pahtli (medi-cine) (Montemayor 2007). Another importantsource of Mexican ethnobotanical information isthe Libellus Medicinalibus Indorum Herbis, writ-ten in Latin in 1552 (Bejar et al. 2000). Theauthor, the native physician Martin de la Cruz,described a complex remedy “Against dyspepsia,that is [against] difficult digestion” which includeslauri frondes (bay leaves). This recipe is illustratedwith a beautiful drawing of a plant namedHecapahtli, which it has not been possible toidentify botanically (De la Cruz 1991; Valdés etal. 1992). In our opinion this drawing does notmatch with any Lauraceae species, since it isdepicted with pink flowers with distinct calyx andcorolla. In addition, Ehecapatli is part of sixdifferent recipes in the Libellus. Later, at thebeginning of the 18th century, Juan de Estey-neffer, a Jesuit missionary, in his FlorilegioMedicinal (1712) wrote that “Laurel” was usefulto cure “cold diseases” of the head, and paralysis,with the steam of a decoction of the leaves. Headvised to drink the ashes of the laurel tree inwater for treating edema, and to apply topicallylard with several common medicinal plants,including laurel berries, “for treating tumors inscrotum or testicles, and pernio”; he alsorecommended the oil or lard where laurel leaveshad been fried for eliminating ascites andintestinal worms. The laurel mentioned byEsteyneffer has been interpreted as Litseaglaucescens (Esteyneffer 1978).Regarding current medicinal applications, in

the Atlas de las Plantas de la Medicina TradicionalMexicana (Argueta et al. 1994), laurel is recog-nized as only one species: Litsea glaucescens.According to this source, its main use is fortreating stomach disorders, such as diarrhea,cramps, and indigestion. It is also applied ingynecological problems, as postnatal pains, tofacilitate birth, to treat dysmenorrhea and steri-lity, and to heal pain, infections, fevers, andrheumatism. The mode of application is aninfusion, scrubbing of alcoholic extracts of leaves,baths, including temazcal (a sort of native steambath), and vapor inhalation of the boiled orburned leaves. In addition, Litsea species areFig. 2. L. glaucescens (laurel) in Mexican markets.

180 ECONOMIC BOTANY [VOL 65

Page 4: 2011 essential oils in mexican bays (litsea spp., lauraceae)

employed in ceremonies. Tlapaneca people in thestate of Guerrero use L. glaucescens and L.neesiana (S. Schauer) Hemsl. leaves as part ofthe plant-offering burned during the replacementof local authorities and the Fuego Nuevo (NewFire) rituals (Dehouve 2001).

PHYTOCHEMISTRY AND PHARMACOLOGY

Litsea species are rich in terpenoids, fatty acids,alkaloids, and flavonoids (Gottlieb 1972; Yan etal. 2000). Chemically and pharmacologically, theAmerican Litsea species are poorly known. Asurvey of flavonoids has been reported for L.glaucescens (López et al. 1995), as well as ananalysis of the essential oil of the leaves of L.glaucescens (Tucker et al. 1992) and L. guatema-lensis Mez (Vallverdú et al. 2005). The aqueousand ethanolic extracts of Litsea guatemalensisleaves showed mild inhibition in vitro againstEpidermophyton floccosum (Harz) Langeron etMiloch., Microsporum canis E. Bodin ex. Gueg,and Candida albicans (Robin) Berkhout (Cácereset al. 1987, 1991). The methanol extracts ofthe stems, leaves, fruits, and seeds of L. neesianaand L. glaucescens showed moderate to highactivity against Staphylococcus aureus Rosenbachand Escherichia coli Migula (Meckes et al.1995).

In the present study, the seven species of Litsea(Lauraceae) growing in Mexico were surveyedregarding the chemical composition of their foliaressential oils by GC-MS, and herbarium labelswere examined for ethnobotanical uses. The main

purpose was to relate both topics as a way tounderstand the basis of their utilization. It ishypothesized that differential uses among speciescould be associated with differing composition oftheir essential oils. Examination of the terpenoidcontent of the Mexican Litsea species will allow usto discern whether or not each species has aterpenoid profile consistent with the reporteduses.

Methods and MaterialsThe compilation of vernacular names and

traditional uses of Litsea species from differentregions of the country was based on labelinformation of 195 specimens kept in thefollowing herbaria: A, ECOSUR, ENCB, GH,GUADA, IBUG, IMMS, MEXU, MICH, NY,UANL, and XAL. In order to obtain an accuratepanorama on the ethnobotanical applications ofMexican Litsea species, vouchers were determinedaccording to the Jiménez-Pérez and Lorea-Hernández (2009) taxonomical review. Thera-peutic applications were compiled on the basis ofa classification of diseases proposed for currentMexican traditional medicine (Lozoya et al.1987); although the original classificationincludes many signs and symptoms, only thoserecorded in the voucher labels reviewed in thiswork appear in Table 1.

PLANT MATERIAL AND ESSENTIAL OIL

ISOLATION

Samples of Litsea species were collected fromnatural populations between November 2007 and

TABLE 1. RECORDED USES FOR LITSEA SPECIES IN MÉXICO.

L. glaucescens L. guatemalensis L. neesiana L. schaffneri L. parvifolia Total

Fever, headache, joint aches, chill 10* 10Gastrointestinal diseases 2 6 1 9Baths (undetermined use) 2 5 7Infusion (undetermined use) 4 2 6Respiratory diseases 2 1 3Skin, trauma, muscular pain, rheumatism, stings 1 2 3Gynecology 3 3Cultural affiliation syndromes 3 3Circulatory system 1 1Renal diseases 1 1Eye diseases 1 1Nervous system 1 1 2Medicinal (all applications) 13 28 7 0 1 48Condiment 22 6 7 7 1 43Total 35 34 14 7 2 91

*Number of quotations in herbarium voucher labels.

181JIMÉNEZ-PÉREZ ET AL.: ESSENTIAL OILS IN MEXICAN BAYS2011]

Page 5: 2011 essential oils in mexican bays (litsea spp., lauraceae)

June 2008 as detailed next: L. glaucescens, Huitzila,Veracruz (Jiménez et al. 1585); L. guatemalensis,San José Yashitinín, Chiapas (Jiménez et al. 1613);L. neesiana, San José Yashitinín, Chiapas (Jiménezet al. 1616); L. schaffneri Bartlett, Sierra de Álvarez,San Luis Potosí (Jiménez et al. 1595); L pringlei(Hemsl.) Mez, El Paraíso, Tamaulipas (Jiménez etal. 1569b); L. parvifolia (Hemsl.) Mez, Chipinque,Nuevo León (Marmolejo s/n); and L. muelleriRehder, Galeana, Nuevo León (Marmolejo s/n).Vouchers are deposited in the herbarium of theInstituto de Ecología, A.C. (XAL). The essentialoil samples were isolated from leaves chopped anddried at room temperature (100 g) by hydro-distillation with distilled water (500 ml, 2 h) usinga Clevenger-type apparatus. The oily layer wasobtained from the aqueous distillate with aseparatory funnel, dried with anhydrous sodiumsulphate, and stored in glass vials at 4°C, until theiranalysis. The yield was calculated on leaves’ dryweight basis.

GAS CHROMATOGRAPHY/MASS SPECTROMETRY

The essential oils (as 1.0% hexane solutions)were analyzed by gas chromatography (GC)coupled to a mass spectrometer (MS). Thechromatograph was a Shimadzu GC-2010 capil-lary apparatus equipped with a flame ionizationdetector (FID) using the split-mode injectiontechnique directing a part of the flew to the FIDand a part to MS (Mailina et al. 2007). Thecolumn was SHRXI-5MS 30 m×0.25 mm i.d. ×0.25 μm film thickness, serial number 879307 ofEnvironment Canada in Ottawa, using thefollowing conditions: carrier gas, helium; flowrate, 1 ml/min; oven temperature range fromroom temperature to 330/350°C (hold); injectortemperature, 250°C; detector temperature, 270°C; split ratio, 1:60. Mass spectra were registeredover m/z 35–400, using an ionizing voltage of70 eV with a coupled mass detector. Thecompounds were identified by matching theirfragmentation patterns with the mass spectrastored in NIST Library of Essential Oils and thecombined databases of Agriculture Canada andEnvironment Canada Centers, and their retentionindex calculated Ri as log of Rt (Retention time)using as internal reference an authentic sample of(R)-(+)-Limonene (Aldrich) log 10.27=1,031.The n-decane Ri was at 1,000, and two hydro-carbons, n-hexane and pure n-dodecane, wereused to calibrate the Kovat’s like scale for the

mixtures of terpenes studied. Quantification ofeach compound was performed on the basis oftheir GC peak areas using their individual FID.The percentage composition of the essential oilsamples were also analyzed using the HierarchicalCluster Analysis in PAST version 2.02 (Hammeret al. 2001) to explore the grouping among thespecies. Euclidean distances were selected as themeasure of similarity; the matrix was then used toconstruct a dendrogram using simple linkage forcluster definition.

ResultsETHNOBOTANY

The seven species recognized for Mexico arepopularly known as “laurel,” or related terms likelaurelillo, laurel de monte, and laurel silvestre(Table 2). Voucher information indicates thatMexican people use five species, mainly forculinary and medicinal purposes. No reports forthese or other applications were recorded for L.muelleri and L. pringlei (Table 2). Litsea glauces-cens is in the most demand as a spice, and it issold in rural and urban markets throughout thecountry. However, L. guatemalensis, L. neesiana,L. parvifolia, and L. schaffneri are also locally usedand commercialized as spices in localities nearbytheir natural distribution (Table 1).Regarding ethnomedical applications, L. guate-

malensis was the species most quoted, especially totreat fever, chills, infectious diseases of thedigestive system, and arthritis, followed by L.glaucescens, L. neesiana, and L. parvifolia. Theleaves of these species are generally used asinfusions, decoctions, and baths. In the state ofChiapas, Tzotzil people classify L. guatemalensis as“a hot plant”; they administer this species as aninfusion or vaporization to relieve gastrointestinaldisorders such as diarrhea, vomiting, and stomachache. In the center of the country, L. glaucescens iscommonly applied to ameliorate nervous disor-ders. It is also used in regions of Oaxaca, Hidalgo,Puebla, and the center of Mexico to treatgynecological problems and as baths to acceleratebaby delivery, postnatal recovery, and to promotelactation. Litsea parvifolia is used as infusionagainst flatulence in Nuevo León. In all cases, itis possible to find the use of these species alone orassociated with other plants.In the states of Chiapas and Oaxaca, Litsea

guatemalensis and L. neesiana, as well as L.glaucescens in Xalapa, State of Veracruz, are also

182 ECONOMIC BOTANY [VOL 65

Page 6: 2011 essential oils in mexican bays (litsea spp., lauraceae)

TABLE2.

VERNACULA

RNAMESAND

TRADITIO

NALUSE

SOFLITSE

ASP

ECIESIN

MEXIC

O.

Species

Com

mon

Nam

e(Language)

Uses

Source

(Herbarium

)

L.glaucescens

Laurel,laurelillo,

laurelde

castilla,

laurelde

olor,laurelde

campo,

laureldelgado(Spanish);ecapatli,

cuauhxihuitl(N

ahuatl);wixitik

a’a,

tuKáa,yucú

ñesachoetiaá(M

ixteco);

Sanshiño

(Mazahua)

Infusion;cond

imentin

stew

and

incornflourdrink;

infusion

for

diarrhea,vomit,

pain

inthebones;

forpostpartum

baths;theleaves

boiledto

treatfright,anger,sadn

ess,

nervousness,forcolic

ofchildren,

andforrituals:theblessedand

burned

leaves

calm

storms

Hinton3257

(A);Lo

zano

222,

P.J.13

(IMSS);Calzada

19472,

García1373,

Linares441,

190,

Manzanero

1025,

Villa224(M

EXU);Castillo

1397,

Cházaro

4230,Maya4340

(XAL)

L.guatem

alensis

Laurel,laurelillo,

laurelde

olor,

laurelde

monte,laurelsilvestre,

arrayán(Spanish);sakiltziltziluch’,

tziltzilujch’,tziltzitl,

tzi’uch

(Tzeltal)

Infusion;cond

iment;leaves

boiledfortreatin

gfevers,

headache,diarrhea,vomiting,

fortheheart,chill,anger,mal

deojos,

andas

gargleagainstinfections

inthethroat;crushedleaves

fortreatin

garthritis;bathsforfevers,chill,pain

whileurinating,

andbroken

bones;

tonicforhealingthesoul;infusion

forstom

achache;ornament

Brett312;

Góm

ez353,

Kruse

147;

Palacios

578,

Soto

1696,1724,

(ECOSU

R);Hinton15418(G

H);

Lomelí2312

(GUADA);Bye

14593,

Gallardo88,37,González557,

Santíz384,

440,

683,

43(IMSS);

Acevedo

184,

Díaz14,Góm

ez307,

445,

Pascual933,

Sántiz255

(MEXU);Brett816,

Guízar

C37

(XAL)

L.muelleri

Laurelde

monte

(Spanish)

Norecorded

applications

Hernánd

ez110(U

ANL)

L.neesiana

Laurel(Spanish);sakiltzilziluch’,

tzajaltziltzilzujch(Tzeltal);

guiÊe-blág-bdiÉx,

guìzh-bdiÉx(Zapoteco)

Condiment;leaves

boiled

fortreatin

gfeverdu

eto

infections

ofthethroat;ornament

Mera92

(ECOSU

R);Hurd52

(MIC

H);García7847,

López389(M

EXU);

Calzada

5015,Hun

n647,

Martín

ez1172

(XAL)

L.parvifolia

Laurel(Spanish)

Condimentandinfusion

againstflatulence

Bye

21930(M

EXU)

Lpringlei

Laurel(Spanish)

Norecorded

applications

Muller2662

(GH)

L.schaffn

eri

Laurel(Spanish)

Condiment;infusion

Carmona250,

Torres15594(M

EXU)

183JIMÉNEZ-PÉREZ ET AL.: ESSENTIAL OILS IN MEXICAN BAYS2011]

Page 7: 2011 essential oils in mexican bays (litsea spp., lauraceae)

appreciated as ornamental plants, either as gardenplants or bouquets. In areas where L. glaucescens,L. schaffneri, and L. pringlei grow naturally, theyare collected to complement bouquets in thecelebrations of Palm Sunday (Table 2). It hasbeen observed that two species, L. glaucescens andL. schaffneri, have undergone intensive extractionof natural populations (Jiménez-Pérez, pers. obs.),due to the widespread commercial demand fortheir leaves.

PHYTOCHEMISTRY

The seven Litsea species studied had essentialoil content in the leaves ranging from 0.1 to1.15%. A total of 206 compounds were identi-fied, accounting for 99.95 to 100% of the yield;however, only 46 of these compounds reachedmore than 1% of relative abundance in at leastone species (Table 3). The essential oils werecomplex mixtures containing between 54 (L.schaffneri) and 78 (L. pringlei) compounds. Themain component never exceeded 40%, and manyof them were present in trace amounts.Oils were dominated by the monoterpene

fraction, mainly oxygenated (14 to 60.3%),containing 1,8-cineole (= eucalyptol), linalool,terpinen-4-ol, and α-terpineol as the most abun-dant compounds; non-oxygenated monoterpenes(8.8 to 43.9%) with α-pinene, β-pinene, andm-cymene were present in all the species,followed by sesquiterpenes both oxygenatedand non- oxygenated (0.3 to 40.9% and 0.1to 10.5%, respectively). In this case, nerolidolwas the most abundant component, but onlycaryophyllene and caryophyllene oxide werepresent in all the species.The results of the cluster analysis of the most

abundant terpenoids (46) are illustrated in Fig. 3.The phenogram shows two groups with similaritylevel higher than 50%; the first group includes L.glaucescens, L. muelleri, L. pringlei, and L.schaffneri, and the second group is formed bythe species most closely related phenetically, L.neesiana and L. guatemalensis. On the other hand,L. parvifolia forms a very different branch with75% dissimilarity. The cophenetic correlationcoefficient was very high (Coph. corr.=0.86),indicating little distortion of the data in thephenogram.

DiscussionNine compounds are present in the essential

oils of all the Mexican Litsea species (Table 3):

1,8-cineole, linalool, α-pinene, β-pinene, m-cymene, terpinen-4-ol, α-terpineol, caryophyl-lene, and caryophyllene oxide; however, theirrelative abundances are different, giving rise to acharacteristic chromatographic profile for each ofthe surveyed species. These compounds are alsocommon to other Lauraceae species, includingCinnamomum, Laurus, Lindera, Ocotea, andPersea genera (Jantan et al. 2005; Nor Azah andJantan 1999; Palazzo et al. 2009; Setzer et al.2007). The essential oil of Laurus nobilis leavescontains the nine compounds mentioned before(Kovacevic et al. 2007); Laurus azorica has eightof them, lacking caryophyllene oxide (Pedro et al.2001), and Lindera benzoin has seven, lackinglinalool and 1,8-cineole (Tucker et al. 1994). Aspreviously stated, the leaves of Laurus nobilis aremainly used as a condiment, and rarely in folkmedicine, but in this case the plant is used totreat some neurologic diseases, to relieve rheu-matic pains, and as a diuretic and antiseptic(Kovacevic et al. 2007). Laurus azorica leaves areused as condiment, although recently it has beensuggested that the essential oil has a moderatehepatoprotective activity (Pedro et al. 2001). Theleaves of Lindera benzoin have been used for aseasoning, as a tea, and a miscellaneous diseaseremedy by Native Americans, including as adiaphoretic, febrifuge, tonic, stimulant, andanthelmintic (Tucker et al. 1994).On the basis of cluster analysis of the chemical

composition of the essential oils, we recognize threediscrete groups for the Mexican Litsea species: (1)1,8-cineole-rich (>19%), (2) limonene-rich(>14%), and (3) oxygenated sesquiterpenes-rich.The first group is composed of Litsea glaucescens, L.muelleri, L. pringlei, and L. schaffneri; in addition,they contain terpinen-4-ol and m-cymene in highamounts. The second group is formed by L.neesiana and L. guatemalensis, which, in additionto limonene, both share 20 additional compounds,among them isobornyl acetate as a markersubstance. Even though L. parvifolia has limonenein appreciable amounts (16.7%), only this speciescontains oxygenated sesquiterpenes in significantquantities (21.7%), mainly nerolidol (15.6%),and, exclusively for this species, hedycaryol. Dueto these chemical differences, L. parvifolia wasplaced in a distinct group, the oxygenated sesqui-terpenes-rich, that could include other Asianspecies, for instance L. elliptica, L. robusta, and L.timoriana, which contain oxygenated sesquiter-penes in abundance (9–25%) (Agusta et al. 1999).

184 ECONOMIC BOTANY [VOL 65

Page 8: 2011 essential oils in mexican bays (litsea spp., lauraceae)

TABLE 3. COMPOSITION (% V/V) OF FOLIAR ESSENTIAL OILS OF MEXICAN BAYS.

Compounds RtL.

neesianaL.

glaucescensL.

guatemalensisL.

schaffneriL.

parvifoliaL.

pringleiL.

muelleri

α-Thujene 6.45 1.39 0.51 2.06α-Pinene 6.68 10.11 9.52 10.76 11.93 0.63 2.74 12.50Camphene 7.21 6.30 0.18 7.01 4.48 0.98 5.45Sabinene 8.13 0.04 4.70β-Pinene 8.24 4.06 7.33 4.61 6.04 0.52 1.29 8.56β-Myrcene 8.81 0.67 1.92 0.78 1.24 0.42 1.932-Carene 9.78 1.96 0.26 0.73m-cymene 10.09 0.40 4.98 0.40 7.22 0.31 3.81 5.94Limonene 10.27 14.70 16.45 16.791,8-cineole 10.37 1.92 36.29 1.38 23.74 0.76 21.19 19.46γ-Terpinene 11.45 5.14 2.89 2.11Hop ether e 11.93 2.28cis-Linalool oxide

(furan form)11.95 5.24 0.47 1.61 2.34 3.14 2.08

trans-Linalool oxide(furan form)

12.58 3.58 1.40 1.16 0.54 1.13

Linalool 13.09 14.58 5.01 21.95 11.42 8.88 14.36 1.46Borneol 15.54 11.21 6.46 8.28 2.82 3.60Myrcenol b 15.58 2.02Terpinen-4-ol 15.98 0.3 10.55 0.28 6.82 0.22 2.97 5.48α-Terpineol 16.48 0.39 0.60 1.63 6.43 0.25 3.12 1.39Carveol 17.94 1.20 0.14 0.06 0.37Carvone 18.40 0.86 2.86 0.11 0.18Geraniol 18.82 0.17 0.16 0.19 0.16Isobornyl acetate 19.94 1.77 5.74Bornyl acetate e 19.95 4.743,7-Octadien-2-ol,

2,6-dimethyl- a19.99 4.99

1,7-Octadien-3-ol, acetate 20.00 1.18 5.65 0.692-Undecanone 20.20 0.13 1.35 0.36 2.52 0.44Virginione e 21.03 1.96α-Terpinyl acetate 22.13 0.06 0.97 6.80Carvyl acetate 22.58 4.12 1.30Copaene 23.04 0.08 1.44 0.07β-Caryophyllene 24.46 0.26 0.82 1.86 0.10 1.50 1.33 1.69Cinnamyl acetate 25.18 2.47 0.17Aromadendrene 26.26 0.07 0.09 2.99γ-Cadinene 27.41 0.46 0.04 1.12Calamenened 27.69 1.96Nerolidol 28.88 5.46 2.78 15.67 1.84Spathulenol 29.32 0.12 0.75 1.43 0.09Caryophyllene oxide 29.49 0.20 0.17 2.43 0.11 3.65 9.94 0.383-Octadecyne 30.24 0.21 0.31 1.71Epiglobulol d 30.70 1.05Cubenol 30.78 0.07 2.73Hedycaryol c 30.82 1.704-Eudesmen-11-ol 30.87 0.12 1.67 0.06β-Eudesmol@ 31.41 0.10 0.37 0.16 11.60 0.29 0.303-Eudesmen-11-ol 31.49 0.08 0.20 0.11 5.89 0.21Total 93.30 94.25 90.29 95.82 87.05 85.01 94.93Oil Yield (%) 0.63 1.157 0.193 0.6 0.138 0.1023 0.903Oxygenated monoterpenoids 39.45 58.1 35.01 60.35 14.03 47.67 31.76Monoterpene hydrocarbons 36.24 32.46 40.01 34.57 18.67 8.82 43.98Oxygenated sesquiterpenoids 5.73 0.35 6.02 0.38 40.93 17.28 1.04Sesquiterpene hydrocarbons 0.87 0.86 2.16 0.1 1.81 10.55 1.76

Rt: Retention time. Compounds exclusive to: a L. neesiana; b L. glaucescens; c L. parvifolia; d L. pringlei; e L. muelleri.

185JIMÉNEZ-PÉREZ ET AL.: ESSENTIAL OILS IN MEXICAN BAYS2011]

Page 9: 2011 essential oils in mexican bays (litsea spp., lauraceae)

Analysis of the chemical and ethnobotanical data(Tables 1, 2, and 3) indicates that Litsea glaucescensand L. schaffneri are species commonly used ascondiments, and belong to the 1,8-cineole-richgroup; they have high percentages of this com-pound (36.2 and 23.7%, respectively). Abundanceof this compound confers the pleasant scent to itsleaves and the astringent taste. Interestingly, relativeproportions of the main components of the foliaressential oil of the Greek bay (Laurus nobilis)suggests similarity with L. glaucescens, closer thanto any other Mexican species studied. Both havehigh content of 1,8-cineole, higher than 35%, andhigher than 4% terpinen-4-ol, α-pinene, and β-pinene (Kovacevic et al. 2007). A differentcondition is found for L. guatemalensis, which isused also for seasoning in Chiapas, Oaxaca,Guerrero, and Jalisco, and is sold in local markets.This species presents a high content in limonene(16.4%), but a small quantity of 1,8-cineole(1.3%). However, in regions where L. guatemalensisshares habitat with L. glaucescens, the latter ispreferred over the former. Vallverdú et al. (2005)analyzed the essential oil of L. guatemalensis andreported as major components 1,8-cineole(26.8%), terpineol (14.5%), and linalool (10.8%),a profile similar to what we found in L. glaucescens.Preliminary studies suggest that chemical composi-tion does not vary widely among populations ofLitsea species in Mexico, suggesting that theirbotanical material could be misidentified.

Litsea guatemalensis and L. glaucescens aremostly used for medicinal purposes, as is L.parvifolia to a lesser degree. Medicinal applica-tions of L. guatemalensis could be related to itshigh content of linalool, a monoterpene com-monly found as a major component of theessential oil of several aromatic plant species,and reported to have sedative, antinociceptive,anti-inflammatory, and antiseptic effects (Mazzantiet al. 1998; Peana et al. 2002; Sugawara et al.1998). The medicinal use of L. glaucescens could bealso related to its high content in 1,8-cineole. Thiscompound is well known for its antiseptic andexpectorant activities. It is frequently used in themanufacture of medicinal syrups and inhalants totreat inflamed membranes of the superior respira-tory apparatus. It has been used also as a nasaldecongestant to treat bronchitis, sinusitis, chronicrhinitis, and for the treatment of asthma (Juergenset al. 1998). Assays with 1,8-cineole have as wellshown alleviation of stomach disorders, intestinalmyorelaxant effects, and antispasmodic effects(Magalhaes et al. 1998). Gastric protection wasreported in rats, suggesting also a possible anti-oxidant effect (Santos and Rao 2001). Finally,anti-inflammatory effects have been attributed to1,8-cineole and terpinen-4-ol, another significantcomponent of the essential oil of L. glaucescens(Santos and Rao 2000).In terms of the morphology, species with

glabrous (L. glaucescens, L. schaffneri) or glabrescent

Fig. 3. Phenogram produced by cluster analysis based on Euclidean distance for 46 compounds of Mexicanbay’s essential oils.

186 ECONOMIC BOTANY [VOL 65

Page 10: 2011 essential oils in mexican bays (litsea spp., lauraceae)

(L. guatemalensis) leaves are preferred for cooking.Regarding distribution (Fig. 1), the species that aremost used are those with the widest distribution.This is the case for L. guatemalensis, followed by L.glaucescens and L. neesiana, which occur fromMexico to Central America. We suspect thatrestricted distribution of L. schaffneri, L. pringlei,L. muelleri, and L. parvifolia limit their availabilityand thereby their use.

ConclusionMexican bays have long been used as condi-

ments, in traditional medicine, and in rituals.The many names and uses of these plantsindicate a long history of utilization by localcultures. Besides providing information on theoil composition of the leaves of Mexican bays,our data suggest that chemical compositioninfluence Litsea human preferences: species richin 1,8-cineole (L. glauscescens, and L. schaffnerii)are in demand as spices, while those rich inlimonene and linalool (L. guatemalensis and L.neesiana) are mostly used in traditional medi-cine. Abundance and distribution of thesespecies are also important, since these factorsdetermine the extent of supply and presence inlocal or national markets. On the other hand,terpenoids present in plants’ essential oils canprovide additional descriptors for classification,mainly when morphological features alone areinadequate to clearly distinguish taxonomicunits. The information gathered from essentialoil studies may be of value in taxonomic andevolutionary research.

AcknowledgmentsThe authors wish to thank herbarium curators

of collections for direct access to specimens andby loans; also José Marmolejo (UANL), FelicidadGarcía-Sánchez (IIZD), Marcos Hernández-Vázquez (CI), Carlos García-García, and DoraGarcía Ávalos (CP) for their assistance in thefield. Sincere thanks to Maribel Vázquez-Hernández (SARAH-UV) for substantial helpin laboratory work, and Javier Pérez (Institutode Química, UNAM) for preliminary GC-MSanalysis, and to J.R.J. Pare and J. Belanger(Environment Canada, Ottawa) for their helpin the determination of the GC-MS methodologyand use of their facilities. Three anonymousreviewers provided many useful comments thatimproved the article. This research was possible

with the economic support provided by a Ph.D.scholarship (CONACyT-190036) to the firstauthor.

Literature CitedAgusta, A., D. Chairul, and Y. Jamal. 1999.

Essential oil composition of from three Litseaspecies (Lauraceae). Majalah Farmasi Indone-sia 10:104–112.

Allen, C. K. 1945. Studies in the Lauraceae, VI.Preliminary survey of the Mexican and CentralAmerican species. Journal of Arnold Arbor-etum 26:280–434.

Argueta A., L. Cano, and M. Rodarte. 1994.Atlas de las plantas de la medicina tradicionalmexicana. Vol. 3, 883–884. Instituto Nacio-nal Indigenista, México, D.F.

Bartlett, H. H. 1909. A synopsis of the Americanspecies of Litsea. Proceedings of the AmericanAcademy of Arts and Sciences 44:597–602.

Bejar, E., R. Reyes-Chilpa, and M. Jiménez-Estrada. 2000. Bioactive compounds fromselected plants used in XVI century Mexicantraditional medicine. In: Studies in naturalproducts chemistry, Vol. 24, Part E, ed. Atta-ur-Rahman, 799–844. Amsterdam: ElsevierScience Publishers.

Cáceres, A., L. M. Girón, S. R. Alvarado and M.F. Torres. 1987. Screening of antimicrobialactivity of plants popularly used in Guatemalafor the treatment of dermatomucosal diseases.Journal of Ethnopharmacology 20:223–237.

———, B. R. López, M. A. Girón, and H.Logemann. 1991. Plants used in Guatemalafor the treatment of dermatophytic infections.1. Screening for antimycotic activity of 44plant extracts. Journal of Ethnopharmacology31:263–276.

De la Cruz, M. 1991. Libellus medicinalibusindorum herbis. Manuscrito azteca de 1552.Según traducción latina de Juan Badiano. 2a.ed. Fondo de Cultura. Instituto Mexicano delSeguro Social, México.

Dehouve, D. 2001. El fuego nuevo: Interpreta-ción de una ≪Ofrenda Contada≫ Tlapaneca(Guerrero, México). Journal de la Société desAméricanistes 87:89–112.

Esteyneffer, J. 1978. [1712] Florilegio medicinal.Edición, estudio preliminar, notas, glosario eíndice analítico por M.C. Anzures y Bolaños.2 tomos. Academia Nacional de Medicina,México.

187JIMÉNEZ-PÉREZ ET AL.: ESSENTIAL OILS IN MEXICAN BAYS2011]

Page 11: 2011 essential oils in mexican bays (litsea spp., lauraceae)

Gottlieb, O. R. 1972. Chemosystematics of theLauraceae. Phytochemistry 11:1537–1570.

Hammer, Ø., D. A. T. Harper, and P. D. Ryan.2001. PAST: Paleontological statistics softwarepackage for education and data analysis. Palae-ontologia Electronica 4(1).

Hernández, F. 1959. [1571–1577] Historia de lasplantas de la Nueva España. In: Obras comple-tas, Tomo 2, Universidad Autónoma deMéxico.Imprenta Universitaria, México, D.F.

Howard, A. L. 1934. A manual of the timbers ofthe world. Their characteristics and uses. 2nded. London: Macmillan and Co.

Jantan, I. B., M. F. Yalvema, N. Ayop, and A. S.Ahmad. 2005. Constituents of the essentialoils of Cinnamomum sintoc Blume from amountain forest of Peninsular Malaysia. Fla-vour and Fragrance Journal 20:601–604.

Jiménez-Pérez, N. C. and F. G. Lorea-Hernández.2009. Identity and delimitation of the Americanspecies of Litsea Lam. (Lauraceae). A mor-phological approach. Plant Systematics andEvolution 283:19–32.

Juergens, U. R., M. Stöber, L. Schmidt-Schilling,T. Kleuver, and H. Vetter. 1998. Anti-inflammatory effects of eucalyptol (1.8-cineol)in bronchial asthma: Inhibition of arachidonicacid metabolism in human blood monocytesex vivo. European Journal of Medical Research3:407–412.

Kennedy, D. and C. Claiborne. 2000. Essentialcuisines of Mexico: Revised and updatedthroughout, with more than 30 new recipes.New York: Clarkson Potter, Inc.

Kovacevic, N. N., M. D. Simic, and M. S. Ristic.2007. Essential oil of Laurus nobilis fromMontenegro. Chemistry of Natural Com-pounds 43:408–411.

López, J. A., W. Barillas, J. Gómez-Laurito, L.Fu-Tyan, A. J. Al-Rehaily, M. H. M Sharaf,and P. L. Schiff, Jr. 1995. Flavonoids of Litseaglaucescens. Planta Medica 61:198.

Lozoya, X., A. Aguilar, and J. R. Camacho. 1987.Encuesta sobre el uso actual de plantas en lamedicina tradicional mexicana. Revista Medicadel IMSS 25:283–291.

Magalhaes, P. J. C., D. N. Criddle, R. A.Tavares, E. M. Melo, T. L. Mota, and J. H.Leal-Cardoso. 1998. Intestinal myorelaxantand anti-spasmodic effects of the essential oilof Croton nepetaefolius, and its constituentscineole, methyl-eugenol and terpineol. Phyto-therapy Research 12:172–177.

Mailina, J., M. A. Nor Azah, Y.Y. Sam, S. L. L.Chua, and J. Ibrahim. 2007. Chemical com-position of the essential oil of Amomumuliginosum. Journal of Tropical Forest Science19:240–242.

Mazzanti, G., L. Battinelli, and G. Salvator.1998. Antimicrobial properties of the lina-lool-rich essential oil of Hyssopus officinalis L.var decumbens (Lamiaceae). Flavour and Fra-grance Journal 13:289–294.

Meckes, M., M. L. Villareal, J. Tortoriello, B.Berlin, and E. A. Berlin. 1995. A micro-biological evaluation of medicinal plant usedby the Maya people of southern Mexico.Phytotherapy Research 9:244–250.

Meissner, C. F. 1864. Lauraceae. In: Prodromussystematis naturalis regni vegetabilis, ed. A. P.DeCandolle, Vol. 15(1). Paris: SumptibusVictoris Masson et Fillii.

Mez, C. 1889. Lauraceae Americanae. Jahrbuchdes Koeniglichen Botanischen Gartens unddes Botanischen Museums zu Berlin 5:1–556.

Montemayor, C. 2007. Diccionario del náhuatlen el español de México. Gobierno delDistrito Federal & Universidad NacionalAutónoma de México.

Nath, S. C., A. K Hazarika, A. Baruah, and K. K.Sarma. 1996. Essential oil of Litsea cubebaPers.—An additional chemotype of potentialindustrial value from northeastern India. Jour-nal of Essential Oil Research 8:575–576.

Nor Azah, M. A. and I. Jantan. 1999. Essentialoil of Cinnamomum tahijanum Kost. fromSarawak. ASEAN Review of Biodiversity andEnvironment Conservation, Nov.–Dec.:1–4.

Palazzo, M. C., B. R. Agius, B. S. Wright, W. A.Haber, D. M. Moriarity, and W. N. Setzer.2009. Chemical compositions and cytotoxicactivities of leaf essential oils of four Lauraceaetree species from Monteverde, Costa Rica.Records of Natural Products 3:32–37.

Peana, A. T., P. S. D’Aquila, F. Panin, G. Serra,P. Pippia, and M. D. Moretti. 2002. Anti-inflammatory activity of linalool and linalylacetate constituents of essential oils. Phytome-dicine 9:721–726.

Pedro, L. G., P. A. G. Santos, J. A. da Silva, A. C.Figueiredo, J. G. Barroso, S. G. Deans, A.Looman, and J. J. C. Scheffer. 2001. Essentialoils from Azorean Laurus azorica. Phytochem-istry 57:245–250.

Rohwer, J. G. 1993. Lauraceae. In: The familiesand genera of vascular plants, Vol. 2, eds. K.

188 ECONOMIC BOTANY [VOL 65

Page 12: 2011 essential oils in mexican bays (litsea spp., lauraceae)

Kubitzki, J. G. Rohwer, and V. Bettrich, 366–379. New York: Springer-Verlag.

Santos, F. A. and V. S. Rao. 2000. Antiinflamma-tory and antinociceptive effects of 1,8-cineole aterpenoid oxide present in many plant essentialoils. Phytotherapy Research 14:240–244.

——— and ———. 2001. 1,8-Cineol, a foodflavoring agent, prevents ethanol-induced gas-tric injury in rats. Digestive Diseases andSciences 46:331–337.

Setzer, W. N., S. L. Stokes, A. F. Penton, S.Takaku, W. A. Haber, E. Hansell, C. R.Caffrey, and J. H. McKerrow. 2007. Cruzaininhibitory activity of leaf essential oil neo-tropical Lauraceae and essential oil compo-nents. Natural Products Communication2:1203–1210.

Sugawara, Y., C. Hara, K. Tamura, T. Fujii, K.Nakamura, T. Masujima, and T. Aoki. 1998.Sedative effect on humans of inhalation ofessentials oils of linalool: Sensory evaluationand physiological measurement using opticallyactive linalools. Analytica Chimica Acta365:293–299.

Tapia-Tapia, E. and R. Reyes-Chilpa. 2008.Productos forestales no maderables en México:Aspectos económicos para el desarrollo sus-tentable. Madera y Bosques 14:95–112.

Tucker, A. O., M. J. Maciarello, and M. Hill.1992. Litsea glaucescens Humb., Bomp. &

Kunth var. glaucescens (Lauraceae): A Mexicanbay. Economic Botany 46:21–26.

———, P. W. Burbage, and G. Sturtz. 1994.Spicebush (Lindera benzoin [L.] Blume var.benzoin, Lauraceae): A tea, spice, and medi-cine. Economic Botany 48:333–336.

Valdés, J. and H. Flores. 1985. Comentarios a lahistoria de las plantas de la Nueva España. In:Obras completas de Francisco Hernández,Tomo VII, 179. Universidad Nacional Autón-oma de México, México.

———, H. Flores, and H. Ochoterena. 1992. Labotánica en el Códice De la Cruz. In: Estudiosactuales sobre el Libellus medicinalibus indo-rum herbis, 129–180, Secretaría de Salud,México.

Vallverdú, C., R. Vila, S. M. Cruz, A. Cáceres,and S. Cañigueral. 2005. Composition ofthe essential oil from leaves of Litseaguatemalensis. Flavour and Fragrance Journal20:415–418.

van der Werff, H. 1997. Litsea. In: Flora ofNorth America, Vol. 3, Magnoliophyta, Mag-noliidae and Hammamelidaceae, eds. Flora ofNorth America Editorial Committee, 29. NewYork: Oxford University Press.

Yan, X. H., F. X. Zhang, H. H. Xie, and X. Y. Wei.2000. A review of the studies on chemicalsconstituents from Litsea Lam. Journal ofTropical and Subtropical Botany 8:171–176.

189JIMÉNEZ-PÉREZ ET AL.: ESSENTIAL OILS IN MEXICAN BAYS2011]