2010 - Guo, Parker - Nonlinear Dynamics and Stability of Wind Turbine Planetary Gear Sets

Embed Size (px)

Citation preview

  • 7/24/2019 2010 - Guo, Parker - Nonlinear Dynamics and Stability of Wind Turbine Planetary Gear Sets

    1/14

    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/228422578

    Dynamic modeling and analysis of a spurplanetary gear involving tooth wedging

    ARTICLE in EUROPEAN JOURNAL OF MECHANICS - A/SOLIDS APRIL 2010

    Impact Factor: 1.68 DOI: 10.1016/j.euromechsol.2010.05.001

    CITATIONS

    37

    READS

    384

    2 AUTHORS:

    Yi Guo

    National Renewable Energy Laboratory

    21PUBLICATIONS 138CITATIONS

    SEE PROFILE

    Robert G. Parker

    Virginia Polytechnic Institute and State Uni

    136PUBLICATIONS 2,617CITATIONS

    SEE PROFILE

    All in-text references underlined in blueare linked to publications on ResearchGate,

    letting you access and read them immediately.

    Available from: Robert G. Parker

    Retrieved on: 01 February 2016

    https://www.researchgate.net/profile/Yi_Guo14?enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4&el=1_x_4https://www.researchgate.net/profile/Yi_Guo14?enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4&el=1_x_5https://www.researchgate.net/?enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4&el=1_x_1https://www.researchgate.net/profile/Robert_Parker8?enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4&el=1_x_7https://www.researchgate.net/institution/Virginia_Polytechnic_Institute_and_State_University?enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4&el=1_x_6https://www.researchgate.net/profile/Robert_Parker8?enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4&el=1_x_5https://www.researchgate.net/profile/Robert_Parker8?enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4&el=1_x_4https://www.researchgate.net/profile/Yi_Guo14?enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4&el=1_x_7https://www.researchgate.net/institution/National_Renewable_Energy_Laboratory?enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4&el=1_x_6https://www.researchgate.net/profile/Yi_Guo14?enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4&el=1_x_5https://www.researchgate.net/profile/Yi_Guo14?enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4&el=1_x_4https://www.researchgate.net/?enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4&el=1_x_1https://www.researchgate.net/publication/228422578_Dynamic_modeling_and_analysis_of_a_spur_planetary_gear_involving_tooth_wedging?enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4&el=1_x_3https://www.researchgate.net/publication/228422578_Dynamic_modeling_and_analysis_of_a_spur_planetary_gear_involving_tooth_wedging?enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4&el=1_x_2
  • 7/24/2019 2010 - Guo, Parker - Nonlinear Dynamics and Stability of Wind Turbine Planetary Gear Sets

    2/14

    Nonlinear dynamics and stability of wind turbine planetary gear sets

    under gravity effects

    Yi Guo a,*, Jonathan Keller a, Robert G. Parker b

    a National Wind Technology Center, National Renewable Energy Laboratory, Mail Stop: 3811, 15013 Denver West Parkway, Golden, CO 80401-3305, USAb Department of Mechanical Engineering, Virgina Tech, USA

    a r t i c l e i n f o

    Article history:

    Received 23 August 2012

    Accepted 20 February 2014

    Available online 12 March 2014

    Keywords:

    Dynamics

    Wind turbine

    Planetary gear

    a b s t r a c t

    This paper investigates the dynamics of wind turbine planetary gear sets under the effect of gravity using

    a modied harmonic balance method that includes simultaneous excitations. This modied method

    along with arc-length continuation and Floquet theory is applied to a lumped-parameter planetary gear

    model including gravity, uctuating mesh stiffness, bearing clearance, and nonlinear tooth contact to

    obtain the dynamic response of the system. The calculated dynamic responses compare well with time

    domain-integrated mathematical models and experimental results. Gravity is a fundamental vibration

    source in wind turbine planetary gear sets and plays an important role in the system dynamic response

    compared to excitations from tooth meshing alone. Gravity causes nonlinear effects induced by tooth

    wedging and bearing-raceway contacts. Tooth wedging, also known as a tight mesh, occurs when a gear

    tooth comes into contact on the drive-side and back-side simultaneously and it is a source of planet-

    bearing failures. Clearance in carrier bearings decreases bearing stiffness and signicantly reduces the

    lowest resonant frequencies of the translational modes. Gear tooth wedging can be prevented if the

    carrier-bearing clearance is less than the tooth backlash.

    2014 Elsevier Masson SAS. All rights reserved.

    1. Introduction

    The National Renewable Energy Laboratory (NREL) Gearbox

    Reliability Collaborative (GRC) was established by the U.S. Depart-

    mentof Energy in 2006. Its key goal is tounderstand the rootcauses

    of premature gearbox failures (Musial et al., 2007) through a

    combined approach of dynamometer testing, eld testing, and

    modeling (Link et al., 2011), resulting in improved wind turbine

    gearbox reliability and a reduction in the cost of energy. As a part of

    the GRC program, this paper investigates gravity-induced dynamic

    behaviors of planetary gear sets in wind turbine drivetrains that

    could reduce gearbox life. Planetary gear sets have been used inwind turbines for decades because of their compact design and

    high efciency. Despite these advantages, planetary gear sets

    generate considerable noise and vibration. Vibration causing high

    dynamic loads may result in gear tooth and bearing failures (Musial

    et al., 2007). Fatigue failures are a concern in long life-cycle appli-

    cations. Analyzing the dynamics of wind turbine planetary gear

    drivetrains is important in improving gearbox life and reducing

    noise and vibration.

    The majority of wind turbines use a horizontal-axis congura-

    tion; thus, gravity becomes a periodic excitation source in the

    rotating carrier frame. Prior study of gravity by the authors was

    performed with a static analysis and focused on the effect of gravity

    upon bearing force and tooth wedging in a planetary spur gear set

    (Guo and Parker, 2010). It was found that tooth wedging, an

    abnormal contact situation where the tooth is in contact with both

    the drive-side and back-side anks simultaneously, was caused by

    gravity. Tooth wedging increases planet-bearing forces and disturbs

    load sharing among the planets, which could lead to prematurebearing failure.

    Signicant in-plane translational gear component motions in

    planetary systems lead to tooth wedging. It is the combined effect

    of gravity and bearing clearance nonlinearity. Bearing clearance

    results in greater translational vibration, while gravity is the

    dominant excitation source causing the large motions that lead to

    tooth wedging. For heavy planetary gear sets, tooth wedging is

    likely to occur. Tooth wedging in planetary gear sets leads to un-

    equal load sharing and excessive planet-bearing loads by disturbing

    the symmetry of the planet gears. This may cause bearing failure

    and tooth damage (Guo and Parker, 2010).* Corresponding author. Tel.: 1 303 384 7187; fax: 1 303 384 6901.

    E-mail addresses: [email protected],[email protected](Y. Guo).

    Contents lists available atScienceDirect

    European Journal of Mechanics A/Solids

    j o u r n a l h o m e p a g e : w w w . e l s e v i e r . co m / l o c a t e / e j m s o l

    http://dx.doi.org/10.1016/j.euromechsol.2014.02.013

    0997-7538/

    2014 Elsevier Masson SAS. All rights reserved.

    European Journal of Mechanics A/Solids 47 (2014) 45 e57

    http://-/?-http://-/?-http://-/?-http://-/?-https://www.researchgate.net/publication/237293035_Improving_Wind_Turbine_Gearbox_Reliability?el=1_x_8&enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4https://www.researchgate.net/publication/237293035_Improving_Wind_Turbine_Gearbox_Reliability?el=1_x_8&enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4https://www.researchgate.net/publication/237293035_Improving_Wind_Turbine_Gearbox_Reliability?el=1_x_8&enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-mailto:[email protected]:[email protected]://www.sciencedirect.com/science/journal/09977538http://www.elsevier.com/locate/ejmsolhttp://dx.doi.org/10.1016/j.euromechsol.2014.02.013http://dx.doi.org/10.1016/j.euromechsol.2014.02.013http://dx.doi.org/10.1016/j.euromechsol.2014.02.013https://www.researchgate.net/publication/237293035_Improving_Wind_Turbine_Gearbox_Reliability?el=1_x_8&enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4http://dx.doi.org/10.1016/j.euromechsol.2014.02.013http://dx.doi.org/10.1016/j.euromechsol.2014.02.013http://dx.doi.org/10.1016/j.euromechsol.2014.02.013http://www.elsevier.com/locate/ejmsolhttp://www.sciencedirect.com/science/journal/09977538http://crossmark.crossref.org/dialog/?doi=10.1016/j.euromechsol.2014.02.013&domain=pdfmailto:[email protected]:[email protected]://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/24/2019 2010 - Guo, Parker - Nonlinear Dynamics and Stability of Wind Turbine Planetary Gear Sets

    3/14

    Research on tooth separation is well-established for automotive

    and helicopter applications. Tooth separation was observed in spur

    gear pair experiments (Blankenship and Kahraman, 1996).Botman

    (1976)experimentally observed tooth separation in planetary gear

    sets. Using nite element and lumped-parameter models,

    Ambarisha and Parker (2007)predicted tooth separation and other

    nonlinear phenomena in a planetary gear set in a helicopter

    gearbox. Velex and Flamand (1996) investigated tooth separation at

    critical speeds. Bahk and Parker (2011) derived closed-form solu-

    tions for the dynamic response of planetary gear sets with tooth

    separation based on a purely torsional model.

    Nonlinear dynamics induced by bearing clearance has been

    studied for relatively small geared systems.Kahraman and Singh

    (1991)observed chaos in the dynamic response of a geared rotor-

    bearing system with bearing clearance and backlash. Gurkan and

    Ozguven (2007)studied the effects of backlash and bearing clear-

    ance in a geared exible rotor and the interactions between these

    two nonlinearities. Guo and Parker (2012a) investigated the

    nonlinear effects and instability caused by bearing clearance in

    helicopter planetary gear sets. Dynamic effects of bearing clearance

    in wind turbine planetary gear sets have not been studied in the

    past because the wind turbine operating speed was believed to be

    well below the frequency range of drivetrain dynamics. However,bearing clearance reduces some gearbox resonances signicantly.

    The nite element program developed byVijayakar (1991)uses

    a combined surface integral and nite element approach to capture

    tooth deformation and contact loads in geared systems. This nite

    element model includes bearing clearance, tooth separation, tooth

    wedging, uctuating mesh stiffness, and gravity. Numerical inte-

    gration is widely adopted to compute dynamic responses of me-

    chanical systems in the time domain.Ambarisha and Parker (2007)

    used numerical integration to study nonlinear dynamics and the

    impacts of mesh phasing on vibration reduction of planetary gear

    sets. Velex and Flamand used numerical integration results of a

    planetarygear setwith time-varying mesh stiffness as a benchmark

    to evaluate results from a Ritz method.

    The harmonic balance method (Thomsen, 2003) calculatesnonlinear, frequency domain, steady-state response of mechanical

    systems.Zhu and Parker (2005)used this method to study clutch

    engagement loss in a belt-pulley system.Al-shyyab and Kahraman

    (2005a,b) investigated primary resonances, subharmonic reso-

    nances, and chaos in a multimesh gear train caused byuctuating

    gear mesh stiffness.Bahk and Parker (2011) employed harmonic

    balance to analyze planetary gear dynamics based on a purely

    rotational model. Use of the harmonic balance method reduces

    computational time for lightly damped or physically unstable

    systems by avoiding the long transient decay time before a steady

    state is reached. Compared to numerical integration and nite

    element analysis, which are widely adopted approaches to

    compute dynamic responses, the computation time of the har-

    monic balance method is onee

    two orders of magnitude lower.Harmonic balance often employs arc-length continuation (Nayfeh

    and Balachandran, 1995) and Floquet theory (Raghothama and

    Narayanan, 1999; Seydel, 1994) to calculate nonlinear reso-

    nances in the dynamic response, including unstable solutions that

    numerical integration and nite element analysis are unable to

    obtain. The established harmonic balance formulation is only

    suitable for systems with one fundamental excitation frequency

    and its higher harmonics. However, wind turbine drivetrains have

    simultaneous internal and external excitations, including uctu-

    ating mesh stiffness, gravity, bending-moment-induced excita-

    tions in the rotating carrier frame, wind shear, tower shadow, and

    other aero-induced excitations.

    The major objectives of this study are to: 1) develop a modied

    harmonic balance method to obtain the dynamic response of wind

    turbine planetary gear sets considering gravity, uctuating mesh

    stiffness, bearing clearance, and nonlinear tooth contact; 2) validate

    the proposed method by comparing the calculated results against

    experimental data and a numerical integration approach; and 3)

    investigate the gravity-induced dynamic behaviors using the

    developed approach, which includes tooth wedging, tooth contact

    loss, and bearing-raceway contacts.

    2. Gearbox description

    This study investigates both a 750-kW wind turbine planetary

    gear (PG-A) used by the GRC (Link et al., 2011) and a 550-kW wind

    turbine planetary gear (PG-B) (Guo and Parker, 2010;Larsen et al.,

    2003; Rasmussen et al., 2004). These drivetrains have a main

    bearing that supports the main shaft and rotor weight, and two

    trunnion mounts that support the gearbox. These two gearboxes

    have similar congurations and are representative of the majority

    of three-point-mounted wind turbine drivetrains.

    PG-A is congured in a helical planetary gear arrangement with

    two parallel stages as shown inFig. 1.Within the gearbox, there are

    two cylindrical roller bearings supporting the carrier, each with

    275 mm of clearance. The planetary gear set is arranged in an in-

    phase bridged carrier design with three equally spaced planets.

    The sunpinion shaft is connected to the intermediate stage through

    a spline joint that partially oats the sun pinion. The ring gear is

    bolted to the front and rear of the gearbox housing. The rated tor-

    que is 322,610 Nm and the rated speed of the input shaft is 22.2 rpm

    (Guo et al., 2012).

    PG-B is congured in a spur planetary gear arrangement with

    two parallel stages. Like PG-A, PG-B has three equally spaced

    planets. The rated torque is 180,000 Nm and the rated speed is

    30 rpm. Additional key parameters of these two gearboxes are

    listed inTables 1and 2. A large ring gear mass in these designs

    is a result of a typical wind turbine gearbox arrangement

    whereby much of the gearbox housing is rigidly connected to

    the ring.

    3. Mathematical models

    3.1. Lumped-parameter model for planetary gear sets

    A previously developed and validated lumped-parameter model

    was adopted for this paper (Guo and Parker, 2010, 2012a). As

    depicted in Fig. 2(a), the carrier, ring, sun, and planets are rigid

    bodies, each having two translational and one rotational degree of

    freedom. The carrier rotating frame is used as the general co-

    ordinates for all of the components of planetary gear sets. This two-

    dimensional model has 3(N 3) degrees of freedom, where Nis the

    number of planets. The model includes gravity, uctuating mesh

    stiffness, bearing clearance, tooth contact loss, and tooth wedging.

    Fig. 1. The GRC gearbox (PG-A) con

    guration.

    Y. Guo et al. / European Journal of Mechanics A/Solids 47 (2014) 45e5746

    http://-/?-http://-/?-http://-/?-https://www.researchgate.net/publication/222073013_Nonlinear_dynamics_of_planetary_gears_using_analytical_and_finite_element_models?el=1_x_8&enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4https://www.researchgate.net/publication/245366081_Dynamic_Response_of_Planetary_Trains_to_Mesh_Parametric_Excitations?el=1_x_8&enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4https://www.researchgate.net/publication/275377034_Analytical_Solution_for_the_Nonlinear_Dynamics_of_Planetary_Gears?el=1_x_8&enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-https://www.researchgate.net/publication/222073013_Nonlinear_dynamics_of_planetary_gears_using_analytical_and_finite_element_models?el=1_x_8&enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4http://-/?-https://www.researchgate.net/publication/222686194_Non-linear_dynamics_of_a_one-way_clutch_in_belt-pulley_systems?el=1_x_8&enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4http://-/?-http://-/?-http://-/?-https://www.researchgate.net/publication/275377034_Analytical_Solution_for_the_Nonlinear_Dynamics_of_Planetary_Gears?el=1_x_8&enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-https://www.researchgate.net/publication/222686194_Non-linear_dynamics_of_a_one-way_clutch_in_belt-pulley_systems?el=1_x_8&enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4https://www.researchgate.net/publication/245366081_Dynamic_Response_of_Planetary_Trains_to_Mesh_Parametric_Excitations?el=1_x_8&enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4https://www.researchgate.net/publication/275377034_Analytical_Solution_for_the_Nonlinear_Dynamics_of_Planetary_Gears?el=1_x_8&enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4https://www.researchgate.net/publication/275377034_Analytical_Solution_for_the_Nonlinear_Dynamics_of_Planetary_Gears?el=1_x_8&enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4https://www.researchgate.net/publication/222073013_Nonlinear_dynamics_of_planetary_gears_using_analytical_and_finite_element_models?el=1_x_8&enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4https://www.researchgate.net/publication/222073013_Nonlinear_dynamics_of_planetary_gears_using_analytical_and_finite_element_models?el=1_x_8&enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/24/2019 2010 - Guo, Parker - Nonlinear Dynamics and Stability of Wind Turbine Planetary Gear Sets

    4/14

    Bearings are modeled using circumferentially distributed radial

    springs with a uniform clearance. This study focuses on the carrier

    bearing with clearance as shown in Fig. 2(b), which has dynamic

    effects on low-speed resonances (Guo and Parker, 2012a).

    The coordinates are shown in Fig. 2(a). Throughout this paper,

    the subscriptsc,r,s,p denote the carrier, ring, sun, and planet; the

    subscripts B, g, m denote the bearing, gravity, and gear mesh; andsuperscripts b, d denote drive-side and back-side tooth contact.

    Translational displacements in the x and y directions,xw,yw,w c,

    r, s, are assigned to the carrier, ring, and sun, respectively, with

    regard to the rotating carrier frame. The originO is at the center of

    the planetary gear set. The radial and tangential displacements of

    thejth planet are denoted by xj,hj,j 1, .,Nwith respect to the

    carrier and oriented for each planet as shown in Fig. 2(a). The

    rotational displacements areuvrvqv,vc,r,s, 1,.,N, where qvis

    the rotation in radians and rv is the base circle radius for the sun,

    ring, and planets and the radius to the planet center for the carrier.

    The masses and moments of inertias of the carrier, ring, sun, and

    planets are denoted by mk,Ik, k c,r,s,p. Quantitieskwx,kwy,kwudenote the bearing stiffnesses of the carrier, ring, and sun supports

    inx,y, andudirections. The torsional stiffnesses of the carrier, ring,and sun supports equal kwur

    2w, wherekwu is the torsional stiffness

    with units of force/length and rw,w c,r,s is the base radius. The

    jth planet-bearing stiffness is kpj. The mesh stiffnesses at the jth

    sun-planet and ring-planet mesh areksj,krj. The radial stiffnesses of

    the bearing that connects the carrier to ring gear in the x and y

    directions arekcrx, kcry. The nondimensionalized equations of mo-

    tion of planetary gear sets are

    ~Mz00 ~Cz0 ~fd

    ms; z ~f

    b

    ms; z ~fBs; z

    ~Fs

    z x

    L; ~M

    M

    M; ~C

    C

    MLu; ~f

    d

    m fdmMLu2

    ; ~fb

    m fbmMLu2

    ;

    ~fB fBMLu2

    ; ~F FMLu2

    (1)

    where s utand z x/L, whereu is characteristic frequency,L is

    the characteristic length, and Mis the characteristic mass. Deriva-

    tions of the mass matrix M and the displacement vector x are

    detailed in Guo and Parker (2010). C U1Tdiag2znUnU1

    where znare the damping ratios and Unare the natural frequencies

    of the linear system where all bearings are in contact and the mesh

    stiffnesses are averaged over a mesh cycle; U is the ortho-

    normalized modal matrix (UTMUI). The nonlinear forces fall into

    three categories: the drive- and back-side tooth mesh force vectors

    fdmand fbm, and bearing force vector fB(Guo and Parker, 2010). The

    external force F(t) Fs Fg(t). Fs includes the static torques applied

    to each component. Fg(t) is the gravity force vector. Gravitational

    force acting on the carrier, ring, sun, and planets is periodic in the

    rotating carrier frame, resulting in a fundamental external excita-

    tion source.

    Fgt hfxcg;f

    ycg;0;f

    xrg;f

    yrg;0;f

    xsg;f

    ysg;0;f

    x1g

    ;fh1g

    ;0;.;fxNg;fh

    Ng;0iT

    (2)

    Quantities fx

    wg

    ;fywgw c; r; sandf

    x

    jg

    ;fh

    jg

    j 1; .; N denote the

    gravity force acting on the carrier, ring, sun, and planets 1eN. These

    are

    fxwg mwgsinUct

    fywg mwgcosUct; w c; r; s (3)

    fxjg

    mjgsinUct jj

    fh

    jg mjgcos

    Uct jj

    ; j 1; .; N

    (4)

    where the variable Uc um/Nr (if the ring is xed) denotes the

    carrier rotation frequency. um denotes the mesh frequency. Nrde-

    notes the number of teeth on the ring.The mesh stiffness uctuates as the number of teeth in

    contact changes and is also an important internal excitation

    source of geared systems. These excitations are included through

    time-varying mesh stiffnesses. The mesh stiffnesses are calcu-

    lated using the Calyx program (Nayfeh and Balachandran, 1995).

    Its mean amplitudes are listed inTables 1and 2 (Appendix). This

    program analyzes gear tooth contact and rolling element contact

    by using a combined analytical/nite element analysis detailed

    in Vijayakar (1991). Its results have been compared against

    studies of gear dynamics (Singh, 2010, 2011; Guo and Parker,

    2012b).

    3.2. Finite element model

    The two-dimensional nite element model includes 36 quad-

    rilateral elements per tooth, four nodes per element, and each node

    has three degrees of freedom. It uses a combined surface integral

    and nite element method to capture tooth deformation and con-

    tact loads in geared systems (Kahraman and Blankenship, 1994).

    The software developed byVijayakar (1991)intrinsically evaluates

    time-varying tooth contact forces that are specied externally with

    conventional simulation tools. Fluctuating mesh stiffness over a

    mesh cycle, tooth wedging, and tooth separation are included

    intrinsically in the nite element model. The nite element model

    also includes clearance nonlinearity at the carrier-ring bearing.

    Other bearings are modeled as linear stiffnesses without clearance

    in the nite element and analytical models. The nite element

    approach has been validated by experiments of geared systems

    (Parker et al., 2000a,b;Kahraman and Vijayakar, 2001).It is used to

    benchmark the established lumped-parameter model when

    experimental data is unavailable.

    4. Extended harmonic balance method

    The extended harmonic balance method is used to obtain the

    dynamic responses of the model in Eq. (1). The formulation in-

    cludes two excitation sources with excitation frequencies U1 and

    U2. The coupling effects between these two excitations are

    considered by including their side bands. Other excitation sources

    can be considered in a similar way. The response z is expanded

    into a Fourier series and assumed to include theR1,R2,R3R4R5, and

    R6R7R8 harmonics of excitation frequencies U1 and U2 and their

    Table 1

    System parameters for the 750-kW Gearbox Reliability Collaborative (GRC) plane-

    tarygearbox (PG-A). The ringmass includes the gearboxhousing and parallel stages.

    Sun Ring Carrier Planet

    Mass (kg) 181.6 2633 759.9 104

    Moment of Inertia (kg-m2) 3.2 144.2 59.1 3.2

    Number of Teeth 21 99 e 39

    Pitch Diameter (mm) 215.6 1016.4 e 400.4

    Root Diameter (mm) 186.0 1047.7 e

    372.9Average Mesh Stiffness (N/m) ksp 16.9 10

    9,krp 19.2 109

    Bearing Stiffness (N/m) 100 102 106 5 109 6.8 109

    Carrier-Bearing Stiffness (N/m) 3.2 109

    Carrier-Bearing Clearance (mm) 0.275

    Torsional Support Stiffness (N/m) 45.8 106 57.4 106 0 0

    Y. Guo et al. / European Journal of Mechanics A/Solids 47 (2014) 45e57 47

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-https://www.researchgate.net/publication/229758005_A_combined_surface_integral_and_finite-element_solution_for_a_3-dimensional_contact_problem?el=1_x_8&enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4https://www.researchgate.net/publication/229758005_A_combined_surface_integral_and_finite-element_solution_for_a_3-dimensional_contact_problem?el=1_x_8&enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-https://www.researchgate.net/publication/229758005_A_combined_surface_integral_and_finite-element_solution_for_a_3-dimensional_contact_problem?el=1_x_8&enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4https://www.researchgate.net/publication/245366103_Effect_of_Internal_Gear_Flexibility_on_the_Quasi-Static_Behavior_of_a_Planetary_Gear_Set?el=1_x_8&enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4https://www.researchgate.net/publication/245366103_Effect_of_Internal_Gear_Flexibility_on_the_Quasi-Static_Behavior_of_a_Planetary_Gear_Set?el=1_x_8&enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4https://www.researchgate.net/publication/245366103_Effect_of_Internal_Gear_Flexibility_on_the_Quasi-Static_Behavior_of_a_Planetary_Gear_Set?el=1_x_8&enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4https://www.researchgate.net/publication/245366103_Effect_of_Internal_Gear_Flexibility_on_the_Quasi-Static_Behavior_of_a_Planetary_Gear_Set?el=1_x_8&enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4https://www.researchgate.net/publication/245366103_Effect_of_Internal_Gear_Flexibility_on_the_Quasi-Static_Behavior_of_a_Planetary_Gear_Set?el=1_x_8&enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4https://www.researchgate.net/publication/245366103_Effect_of_Internal_Gear_Flexibility_on_the_Quasi-Static_Behavior_of_a_Planetary_Gear_Set?el=1_x_8&enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4https://www.researchgate.net/publication/245366103_Effect_of_Internal_Gear_Flexibility_on_the_Quasi-Static_Behavior_of_a_Planetary_Gear_Set?el=1_x_8&enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4http://-/?-https://www.researchgate.net/publication/229758005_A_combined_surface_integral_and_finite-element_solution_for_a_3-dimensional_contact_problem?el=1_x_8&enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4https://www.researchgate.net/publication/229758005_A_combined_surface_integral_and_finite-element_solution_for_a_3-dimensional_contact_problem?el=1_x_8&enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4https://www.researchgate.net/publication/245366103_Effect_of_Internal_Gear_Flexibility_on_the_Quasi-Static_Behavior_of_a_Planetary_Gear_Set?el=1_x_8&enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4https://www.researchgate.net/publication/275105491_Dynamic_Response_of_a_Planetary_Gear_System_Using_a_Finite_ElementContact_Mechanics_Model?el=1_x_8&enrichId=rgreq-aeb06dd6-64e4-4cea-a719-a91c4c826871&enrichSource=Y292ZXJQYWdlOzIyODQyMjU3ODtBUzo5ODkxNDg3OTQxMDE4M0AxNDAwNTk0NTU4MTA4http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/24/2019 2010 - Guo, Parker - Nonlinear Dynamics and Stability of Wind Turbine Planetary Gear Sets

    5/14

    side bandsmU1lU2and pU1qU2. Each componentzhin z then

    has a total of 2(R1 R2 R3R4R5 R6R7R8) 1 terms and is

    expressed as

    zh zh;1 XR1

    i 1

    zh;2icos iU1s zh;2i1sin iU1sXR2i 1

    hzh;2iL1cosjU2s zh;2iL11 sin iU2s

    i

    XR5i 1

    XR4m 1

    XR3l 1

    nzh;2ai;m;lcosimU1lU2s

    zh;2ai;m;l1 sin imU1lU2so

    XR8i 1

    XR7p 1

    XR6q 1

    nzh;2bi;p;qcosipU1qU2s

    zh;2bi;p;q1sin ipU1qU2so

    (5)

    where a(i, m, l) l L2 (m 1)R3 (i 1)R3R4 and b(i, p,

    q) q L3 (p 1)R6 (i 1)R6R7. L1 R1, L2 R1 R2,

    L3 R1 R2 R3R4R5,L4 2(R1 R2 R3R4R5 R6R7R8) 1.

    The time domain is discretized into n 1 evenly distributed

    time intervals [s1, ., sn]. Each component zh in the response z is

    extended into a vector in the time domain aszhs1; .; zhsnT.

    The response vector transforms intoz Gzby dening a function

    G that maps the response from the frequency domain to the time

    domain. Additional terms G1eG4are dened inAppendix A.

    G

    2664

    n

    G1 G2 PR4

    m1

    PR3l1

    G3m;l;R5PR7

    p1

    PR6q1

    G4p;q;R8

    n

    3775

    (7)

    The response derivatives are then transformed into

    z00 GU21A1z GU22A2z G

    PR4m 1

    PR3l 1

    mU1lU22A3z

    GXR7

    p 1

    XR6q 1

    pU1qU22A4z

    z0

    GU

    1B

    1z

    GU

    2B

    2z

    G X

    R4

    m 1X

    R3

    l 1mU

    1lU

    2B

    3z

    GXR7

    p 1

    XR6q 1

    pU1qU2B4z (8)

    where the operatorsAand B are also dened inAppendix A.

    The nonlinear force vectors, detailed inGuo and Parker (2012a),

    are transformed as

    ~fd

    m Gfd

    m; ~f

    b

    m Gfb

    m; ~fB GfB; ~F GF (9)

    By substituting Eqs.(8) and (9)into the equations of motion, Eq.

    (1)yields

    Table 2

    System parameters for the 550-kW planetary gearbox (PG-B). The ring mass in-

    cludes the gearbox housing and parallel stages.

    Sun Ring Carrier Planet

    Mass (kg) 51 4000 1330 114

    Moment of Inertia (kg-m2) 61.1 2484 314.7 51.9

    Number of Teeth 16 68 e 26

    Pitch Diameter (mm) 224 952 e 364

    Root Diameter (mm) 202 980 e

    329Average Mesh Stiffness (N/m) ksp 3.95 10

    9,krp 5.29 109

    Bearing Stiffne ss (N/m) 100 e 4 109 5.3 109

    Gearbox Trunnion Stiffness (N/m) 126 106

    Carrier-Bearing Stiffness (N/m) 3.6 109

    Carrier-Bearing Clearance (mm) 1

    Torsional Support Stiffness (N/m) 3 106 24.4 106 0 0

    z

    266664

    z1;1; .; z1;2L11|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}xcU1

    ;.; z1;2L21|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}xcU2

    ;.; z1;2L31; .; z1;L4|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}xcU1;U2

    ;.;

    z3N3;1; .; z3N3;2L11|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}uNU1

    ;.; z3N3;2L21|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}uNU2

    ;.; z3N3;2L31; .; z3N3;L4|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}uNU1;U2

    377775

    T

    (6)

    Y. Guo et al. / European Journal of Mechanics A/Solids 47 (2014) 45e5748

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/24/2019 2010 - Guo, Parker - Nonlinear Dynamics and Stability of Wind Turbine Planetary Gear Sets

    6/14

    G

    8